1
|
Hao Z, Lu Q, Zhou Y, Liang Y, Gao Y, Ma H, Xu Y, Wang H. Molecular characterization of MyD88 as a potential biomarker for pesticide-induced stress in Bombyx mori. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105610. [PMID: 37945249 DOI: 10.1016/j.pestbp.2023.105610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 11/12/2023]
Abstract
The widespread use of pesticides hampers the immune system of non-target organisms, however, there is a lack of common biomarkers to detect such effects. Myeloid differentiation primary response factor 88 (MyD88) is a crucial junction protein in the Toll-like receptor signaling pathway, which plays an important role in the inflammatory response. In this study, we investigated MyD88 as a potential biomarker for pesticide-induced stress. Phylogenetic analysis revealed that MyD88 was a conserved protein in the evolution of vertebrates and invertebrates. MyD88s usually have death domain (DD) and Toll/interleukin-1 receptor (TIR) domain. Bombyx mori (B. mori) is an important economic insect that is sensitive to toxic substances. We found microbial pesticides enhanced the expression level of MyD88 in B. mori. Transcriptome analysis demonstrated that MyD88 expression level was increased in the fatbody after dinotefuran exposure, a third-generation neonicotinoid pesticide. Moreover, the expression of MyD88 was upregulated in fatbody and midgut by imidacloprid, a first-generation neonicotinoid pesticide. Additionally, insect growth regulator (IGR) pesticides, such as methoprene and fenoxycarb, could induce MyD88 expression in the fatbody of B. mori. These results indicated that MyD88 is a potential biomarker for pesticide-induced stress in B. mori. This study provides novel insights into screening common biomarkers for multiple pesticide stresses and important implications for the development of more sustainable pest management strategies.
Collapse
Affiliation(s)
- Zhihua Hao
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Qingyu Lu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yanyan Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yanting Liang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yun Gao
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Huanyan Ma
- Agricultural Technology Extension Center of Zhejiang Province, Hangzhou, China
| | - Yusong Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Huabing Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Anjum S, Vyas A, Sofi T. Fungi-mediated synthesis of nanoparticles: characterization process and agricultural applications. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4727-4741. [PMID: 36781932 DOI: 10.1002/jsfa.12496] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/31/2022] [Accepted: 02/13/2023] [Indexed: 06/08/2023]
Abstract
In the field of nanotechnology, the use of biologically active products from fungi for the reduction and synthesis of nanoparticles as an alternative to toxic chemicals has received extensive attention, due to their production of large quantities of proteins, high yields, easy handling, and the low toxicity of the residues. Fungi have become valuable tools for the manufacture of nanoparticles in comparison with other biological systems because of their enhanced growth control and diversity of metabolites, including enzymes, proteins, peptides, polysaccharides, and other macro-molecules. The ability to use different species of fungi and to perform the synthesis under different conditions enables the production of nanoparticles with different physicochemical characteristics. Fungal nanotechnology has been used to develop and offer products and services in the agricultural, medicinal, and industrial sectors. Agriculturally, it has found applications in plant disease management, crop improvement, biosensing, and the production of environmentally friendly, non-toxic pesticides and fertilizers to enhance agricultural production in general. The subject of this review is the application of fungi in the synthesis of inorganic nanoparticles, characterization, and possible applications of fungal nanoparticles in the diverse agricultural sector. The literature shows potential uses of fungi in biogenic synthesis, enabling the production of nanoparticles with different physiognomies. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shahnaz Anjum
- Department of Botany, Lovely Professional University, Phagwara, India
- Division of Plant Pathology, FoH, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, India
| | - Ashish Vyas
- Department of Microbiology and Biochemistry, Lovely Professional University, Phagwara, India
| | - Tariq Sofi
- Division of Plant Pathology, FoH, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, India
| |
Collapse
|
3
|
He P, Wei E, Wang R, Wang Q, Zhang Y, Tang X, Zhu F, Shen Z. The spirotetramat inhibits growth and reproduction of silkworm by interfering with the fatty acid metabolism. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105282. [PMID: 36464337 DOI: 10.1016/j.pestbp.2022.105282] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Spirotetramat is a novel insecticide and acaricide that can effectively control many species of piercing-sucking pests by inhibiting lipid synthesis. The silkworm is an economically important insect and a model organism for genetics and biochemical research. However, the toxic effect on their development and reproduction remain unclear. In this study, we demonstrated the negative effects of spirotetramat on the development, vitality, silk protein synthesis, and fecundity of silkworm. We also compared expression changes of silkworm genes using digital gene expression (DGE). A total of 1567 differentially expressed genes (DEGs) were detected, of which 874 genes were downregulated and 693 genes were upregulated. Gene Ontology (GO) enrichment analysis showed that the DEGs were enriched in the oxidation-reduction process, oxidoreductase activity, and fatty-acyl-CoA reductase activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the DEGs were mainly enriched in fatty acid metabolism and lysosome pathways. We detected the relative expression of silkworm genes related to fatty acid synthesis and decomposition pathways and the degradation pathway of juvenile hormone by quantitative real-time PCR. The expression levels of Acetyl CoA carboxylase (ACC), fatty acyl-CoA reductase (FACR), Enoyl-CoA hydratase (ECH), very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase (LCHAD), juvenile hormone epoxide hydrolase (JHEH), and phytanoyl-CoA dioxygenase (PCD) genes were downregulated. These data demonstrate the effects of spirotetramat on silkworm and its effects on genes involved in fatty acid metabolism.
Collapse
Affiliation(s)
- Ping He
- Jiangsu University of Science and Technology, Zhenjiang, People's Republic of China
| | - Erjun Wei
- Jiangsu University of Science and Technology, Zhenjiang, People's Republic of China
| | - Runpeng Wang
- Jiangsu University of Science and Technology, Zhenjiang, People's Republic of China
| | - Qiang Wang
- Jiangsu University of Science and Technology, Zhenjiang, People's Republic of China; Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, People's Republic of China
| | - Yiling Zhang
- Jiangsu University of Science and Technology, Zhenjiang, People's Republic of China; Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, People's Republic of China
| | - Xudong Tang
- Jiangsu University of Science and Technology, Zhenjiang, People's Republic of China; Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, People's Republic of China
| | - Feng Zhu
- College of Life Sciences, Zaozhuang University, Zaozhuang, People's Republic of China.
| | - Zhongyuan Shen
- Jiangsu University of Science and Technology, Zhenjiang, People's Republic of China; Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, People's Republic of China.
| |
Collapse
|
4
|
Li G, Lan H, Lu Q, He C, Wei Y, Mo D, Qu D, Xu K. The JH-Met2-Kr-h1 pathway is involved in pyriproxyfen-induced defects of metamorphosis and silk protein synthesis in silkworms, Bombyx mori. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 179:104980. [PMID: 34802530 DOI: 10.1016/j.pestbp.2021.104980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Environmental residues of pryriproxyfen, a juvenile hormone analogue (JHA) type pesticide, may have on unintended consequences on non-target insects. However, the mechanism of pyriproxyfen action and silk protein synthesis in silkworms has not been reported. In the present study, we treated the silkworms with trace pyriproxyfen (1 × 10-4 mg/L) and found that the silkworm larvae showed no obvious poisoning symptoms, while the development of silk glands and cocoon-forming function were both seriously damaged due to the accumulation of pyriproxyfen in posterior silk gland (PSG). The titer of the juvenile hormone (JH) was increased, whereas the content of 20-hydroxyecdysone (20E) was reduced in pyriproxyfen-exposed hemolymph. Met2 is a component of the JH receptor complex and JH can promote its phosphorylation. We found Met2 and SRC were up-regulated in the larval stage after pyriproxyfen exposure, the JH-Met2/SRC complex led to the up-regulation of downstream genes Kr-h1, and Dimm, and then specifically inhibited the transcription of Fib-H. Meanwhile, the transcription of ecdysone inducible transcription factor Br-C Z4 was also inhibited by pyriproxyfen and resulted in the defects of metamorphosis. In conclusion, the trace pyriproxyfen could affect the metamorphosis and silk protein synthesis through the Met2-mediated pathway. Our study provided new evidence that Met2 might be a potential target gene of JHA in Lepidoptera.
Collapse
Affiliation(s)
- Guoli Li
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Huangli Lan
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Qingyu Lu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Chunhui He
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yuting Wei
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Danmei Mo
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Dacai Qu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China; Sericulture Institute of Guangxi University, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Kaizun Xu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China; Sericulture Institute of Guangxi University, Guangxi University, Nanning, Guangxi 530004, PR China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China.
| |
Collapse
|
5
|
Zhao G, Zhang X, Wang C, Zhang H, Guo H, Qian H, Li G, Xu A. Effect of pyriproxyfen exposure on cocooning and gene expression in the silk gland of Bombyx mori (Linnaeus, 1758). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110914. [PMID: 32800249 DOI: 10.1016/j.ecoenv.2020.110914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Bombyx mori(Linnaeus, 1758) is an important economical insect, and the sericulture is a flourishing industry in many developing countries. Pyriproxyfen, a juvenile hormone pesticide, is often applied to cultivations widely in the world, and its exposure often resulted in silk yield reduction and non-cocooning. However, the effect of pyriproxyfen exposure on cocooning and gene expression level in the silk gland of B. mori has not been studied yet, and this study focused on the above issues. The result indicated that pyriproxyfen exposure can lead to silk gland injury, reduction of silk yield and cocooning rate. Furthermore, the expression levels of silk protein synthesis related genes were down regulated significantly. The same change trends were shown between PI3K/Akt and CncC/Keap1 pathway, which is the expressions of key genes can be elevated by pyriproxyfen exposure. In addition, the activity of detoxification enzymes (P450, GST and CarE) and the expression levels of detoxification genes were elevated after pyriproxyfen exposure, suggesting that detoxification enzymes may play an important role in detoxification of pyriproxyfen in silk gland. These results provided possible clues to the silk gland injury and gene transcriptional level changes in silkworm after pyriproxyfen exposure.
Collapse
Affiliation(s)
- Guodong Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Xiao Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Chentao Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Haitao Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Huimin Guo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Heying Qian
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Gang Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Anying Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China.
| |
Collapse
|
6
|
Zhao G, Guo H, Zhang H, Zhang X, Qian H, Li G, Xu A. Effects of pyriproxyfen exposure on immune signaling pathway and transcription of detoxification enzyme genes in fat body of silkworm, Bombyx mori. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 168:104621. [PMID: 32711761 DOI: 10.1016/j.pestbp.2020.104621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/18/2020] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
Sericulture is a very important and flourishing industry in developing countries. Bombyx mori is a kind of important and well-studied economic insects in the whole world. In China, applying of pyriproxyfen pesticide often resulted in non-cocooning and silk yield reduction. However, the effects of pyriproxyfen exposure on immune signaling pathway in fat body of silkworm has not been reported yet now. In the present study, we found that the growth and development of silkworm were significantly affected by pyriproxyfen exposure and the fat body tissues were injured after treatment. It was also showed that the expressions of key genes of PI3K/Akt and CncC/Keap1 pathway can be elevated at 24-96 h after pyriproxyfen exposure. Furtherly, the relative expression levels of detoxification enzyme genes and the activities of detoxification enzymes were both increased by pyriproxyfen exposure. These results provided comprehensive view of fat body injury and gene expression changes in silkworm after pyriproxyfen exposure.
Collapse
Affiliation(s)
- Guodong Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Huimin Guo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Haitao Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Xiao Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Heying Qian
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Gang Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Anying Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China.
| |
Collapse
|
7
|
Santorum M, Costa RM, Dos Reis GH, Carvalho Dos Santos D. Novaluron impairs the silk gland and productive performance of silkworm Bombyx mori (Lepidoptera: Bombycidae) larvae. CHEMOSPHERE 2020; 239:124697. [PMID: 31499307 DOI: 10.1016/j.chemosphere.2019.124697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
This study investigates the effects of the insect growth regulator Novaluron on the silk gland (SG) and silk cocoon production in a nontarget insect, the silkworm Bombyx mori, which is a model research insect among Lepidoptera and of great economic importance for the commercial production of silk threads. Larvae were segregated into experimental groups: the control group (CG) and the treatment group (TG), which was exposed to a Novaluron concentration of 0.15 mL/L. Following exposure, we analyzed the cytotoxic effects on the epithelial cells of the anterior, middle and posterior regions of the SG of B. mori larvae in the 3rd, 4th, and 5th instars, as well as the quality of the cocoons from larvae in the 5th instar. Cytotoxic effects were observed in the TG, such as the dilation of cells, emission of cytoplasmic protrusions, extreme rarefaction of the cytoplasm and nuclei, dilation of the endoplasmic reticulum, intracellular and intercellular spaces, spacing between the epithelial cells and the basal lamina and detachment of some cells towards the lumen of the SG, and decreased protein in the lumen, with faults in its composition. In addition, we verified ultrastructural changes in the production of fibers and silk cocoons, including a reduction in the weight of the cocoons constructed by both males and females in the TG and the construction of defective cocoons. Novaluron exposure impairs the SG and may affect the physiological functions of this organ; additionally, it compromises the quality of silk cocoons, potentially causing serious damage to sericulture.
Collapse
Affiliation(s)
- Marilucia Santorum
- Laboratory of Insects, Department of Morphology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil
| | - Rose Meire Costa
- Center of Biological Sciences and Health, State University of Western Paraná (UNIOESTE), Cascavel, PR, Brazil
| | | | - Daniela Carvalho Dos Santos
- Laboratory of Insects, Department of Morphology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil; Electron Microscopy Center of the Institute of Biosciences of Botucatu, UNESP, SP, Brazil.
| |
Collapse
|
8
|
Cheng X, Hu J, Li J, Chen J, Wang H, Mao T, Xue B, Li B. The silk gland damage and the transcriptional response to detoxifying enzymes-related genes of Bombyx mori under phoxim exposure. CHEMOSPHERE 2018; 209:964-971. [PMID: 30114747 DOI: 10.1016/j.chemosphere.2018.06.167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 06/08/2023]
Abstract
Silk gland is a major organ of Bombyx mori for the synthesis and secretion of silk protein. Phoxim exposure can be toxic to B. mori and causes a decrease of fibroin synthesis, finally affecting the silk production in industry. To study the mechanism of metabolism and detoxification of silk gland under phoxim exposure, we measured the residual quantity of phoxim in silk gland and hemolymph after phoxim exposure, and the detoxifying enzymes-related genes and enzyme activity were also investigated. Results indicated that the residual amount of phoxim existed up to 24 h in silk gland compared with that in hemolymph, suggesting that phoxim can accumulate in the silk glands within a certain time course. The transcriptional levels of PI3K/Akt genes, including Akt, Tor1, p70s6k and 4e-bp, were up-regulated by 6.919, 1.358, 10.766 and 7.708-fold, respectively. The expression of two downstream genes (CncC and Keap1) was up-regulated by 1.939 and 3.373-fold, respectively. In addition, the transcriptional levels of detoxification-related genes including CYP6AB, CYP306A, CarE2, GST1 and GSTd1 were up-regulated by 1.731, 1.221, 1.366, 1.376 and 6.591-fold, respectively. The enzymatic activity of CYP450, CarE and GST were increased over time. These results provided possible insights into the injury of silk gland and the transcriptional response to detoxifying enzymes-related genes in silkworm after phoxim exposure.
Collapse
Affiliation(s)
- Xiaoyu Cheng
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jiahuan Hu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jinxin Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jian Chen
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Hui Wang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Tingting Mao
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Bin Xue
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
9
|
Xue B, Li FC, Tian JH, Li JX, Cheng XY, Hu JH, Hu JS, Li B. Titanium nanoparticles influence the Akt/Tor signal pathway in the silkworm, Bombyx mori, silk gland. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 99:e21470. [PMID: 29709078 DOI: 10.1002/arch.21470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Various nanoparticles, such as silver nanoparticles (AgNPs) and titanium nanoparticles (TiO2 NPs) are increasingly used in industrial processes. Because they are released into the environment, research into their influence on the biosphere is necessary. Among its other effects, dietary TiO2 NPs promotes silk protein synthesis in silkworms, which prompted our hypothesis that TiO2 NPs influence protein kinase B (Akt)/Target of rapamycin (Tor) signaling pathway (Akt/Tor) signaling in their silk glands. The Akt/Tor signaling pathway is a principle connector integrating cellular reactions to growth factors, metabolites, nutrients, protein synthesis, and stress. We tested our hypothesis by determining the influence of dietary TiO2 NPs (for 72 h) and, separately, of two Akt/Tor pathway inhibitors (LY294002 and rapamycin) on expression of Akt/Tor signaling pathway genes and proteins in the silk glands. TiO2 NPs treatments led to increased accumulation of mRNAs for Akt, Tor1 and Tor2 by 1.6-, 12.1-, and 4.8-fold. Dietary inhibitors led to 2.6- to 4-fold increases in mRNAs encoding Akt and substantial decreases in mRNAs encoding Tor1 and Tor2. Western blot analysis showed that dietary TiO2 NPs increased the phosphorylation of Akt and its downstream proteins. LY294002 treatments led to inhibition of Akt phosphorylation and its downstream proteins and rapamycin treatments similarly inhibited the phosphorylation of Tor-linked downstream proteins. These findings support our hypothesis that TiO2 NPs influence Akt/Tor signaling in silk glands. The significance of this work is identification of specific sites of TiO2 NPs actions.
Collapse
Affiliation(s)
- Bin Xue
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, P.R. China
| | - Fan-Chi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, P.R. China
| | - Jiang-Hai Tian
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, P.R. China
| | - Jin-Xin Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, P.R. China
| | - Xiao-Yu Cheng
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, P.R. China
| | - Jia-Huan Hu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, P.R. China
| | - Jing-Sheng Hu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, P.R. China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, P.R. China
| |
Collapse
|
10
|
Li J, Xue B, Cheng X, Hu J, Hu J, Tian J, Li F, Yu X, Li B. TiO2 NPs Alleviates High-Temperature Induced Oxidative Stress in Silkworms. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:879-884. [PMID: 29474658 DOI: 10.1093/jee/toy002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Silkworm, Bombyx mori (L.; Lepidoptera: Bombycidae), is an economically important insect, which is sensitive to the environment and susceptible to oxidative damages at high temperature. Low concentrations of TiO2 NPs (titanium dioxide nanoparticles) can scavenge reactive oxygen species (ROS) produced by oxidative damages in vivo. To explore whether TiO2 NPs could alleviate oxidative damages of high temperature, the effects of TiO2 NPs treatment on silkworm growth, the levels of ROS and H2O2, as well as the transcription level of antioxidant-related genes were studied at 30°C. These results showed that TiO2 NPs treatment increased silkworm body weight by 6.0% and reduced the occurrence of irregular cocoon at 30°C. TiO2 NPs treatment at 30°C decreased ROS levels in fat body and increased expression of Hsp70, SOD by 5.70-fold at 48 h, TPx by 1.61-fold, CAT by 1.81-fold. These results indicated that TiO2 NPs treatment at 30°C could promote the expression of antioxidant genes and reduce oxidative stress and provide a new method to alleviate high-temperature induced oxidative stress to silkworm.
Collapse
Affiliation(s)
- Jinxin Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Bin Xue
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Xiaoyu Cheng
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Jiahuan Hu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Jinsheng Hu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Jianghai Tian
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Xiaohua Yu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, P.R. China
| |
Collapse
|
11
|
Differentially expressed genes in the silk gland of silkworm ( Bombyx mori ) treated with TiO 2 NPs. Gene 2017; 611:21-26. [DOI: 10.1016/j.gene.2017.02.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 10/20/2022]
|
12
|
Clone and functional analysis of Seryl-tRNA synthetase and Tyrosyl-tRNA synthetase from silkworm, Bombyx mori. Sci Rep 2017; 7:41563. [PMID: 28134300 PMCID: PMC5278501 DOI: 10.1038/srep41563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/21/2016] [Indexed: 11/22/2022] Open
Abstract
Aminoacyl-tRNA synthetases are the key enzymes for protein synthesis. Glycine, alanine, serine and tyrosine are the major amino acids composing fibroin of silkworm. Among them, the genes of alanyl-tRNA synthetase (AlaRS) and glycyl-tRNA synthetase (GlyRS) have been cloned. In this study, the seryl-tRNA synthetase (SerRS) and tyrosyl-tRNA synthetase (TyrRS) genes from silkworm were cloned. Their full length are 1709 bp and 1868 bp and contain open reading frame (ORF) of 1485 bp and 1575 bp, respectively. RT-PCR examination showed that the transcription levels of SerRS, TyrRS, AlaRS and GlyRS are significantly higher in silk gland than in other tissues. In addition, their transcription levels are much higher in middle and posterior silk gland than in anterior silk gland. Moreover, treatment of silkworms with phoxim, an inhibitor of silk protein synthesis, but not TiO2 NP, an enhancer of silk protein synthesis, significantly reduced the transcription levels of aaRS and content of free amino acids in posterior silk gland, therefore affecting silk protein synthesis, which may be the mechanism of phoxim-silking disorders. Furthermore, low concentration of TiO2 NPs showed no effect on the transcription of aaRS and content of free amino acids, suggesting that TiO2 NPs promotes silk protein synthesis possibly by increasing the activity of fibroin synthase in silkworm.
Collapse
|
13
|
Hu JS, Li FC, Xu KZ, Ni M, Wang BB, Tian JH, Li YY, Shen WD, Li B. Mechanisms of TiO2 NPs-induced phoxim metabolism in silkworm (Bombyx mori) fat body. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 129:89-94. [PMID: 27017887 DOI: 10.1016/j.pestbp.2015.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 05/28/2023]
Abstract
Silkworm is an important economic insect. Abuse of organophosphorus pesticides in recent years often leads to poisoning of silkworms, which significantly affects sericulture development by reducing silk production. Previous studies have shown that TiO2 NPs can effectively mitigate the damages caused by organophosphorus pesticides in silk glands and nerve tissues. The fat body is an important metabolic detoxification organ of silkworms, but it is unknown whether TiO2 NPs affect pesticide metabolism in fat body. In this study, we characterized the transcription of antioxidant genes and enzyme activity in fat body after TiO2 NPs and phoxim treatments using transcriptome sequencing, real-time PCR, and enzyme activity assay. Transcriptome sequencing detected 10 720, 10 641, 10 403, and 10 489 genes for control group, TiO2 NPs group, phoxim group, and TiO2 NPs+phoxim group, respectively. The TiO2 NPs+phoxim group had 705 genes with significantly differential expression (FDR<0.001), among which the antioxidant genes thioredoxin reductase 1 and glutathione S-transferase omega 3 were significantly upregulated. In phoxim group, the expression levels of superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase delta (GSTd), and thioredoxin peroxidase (TPx) were increased by 1.365 -fold, 1.335 -fold, 1.642 -fold, and 1.765 -fold, respectively. The level changes of SOD, CAT, GSTd, and TPx were validated by real time PCR. The contents of reactive oxygen species (ROS), malondialdehyde (MDA), and hydrogen peroxide (H2O2) were increased by 1.598 -fold, 1.946 -fold, and 1.506 -fold, respectively, indicating that TiO2 NPs treatment can relieve phoxim-induced oxidative stress. To clarify the mechanism of TiO2 NPs's effect, the transcription levels of P450 gene family were measured for the TiO2 NPs+phoxim group; the expression levels of CYP4M5, CYP6AB4, CYP6A8, and CYP9G3 were elevated by 2.784 -fold, 3.047 -fold, 2.254 -fold, and 4.253 -fold, respectively, suggesting that high expression of P450 family genes can enhance the metabolism of phoxim in the fat body. The results of this study indicated that TiO2 NPs treatment promoted the transcriptional expression of the P450 family genes to improve the fat body's ability to metabolize phoxim and reduce phoxim-induced oxidative stress. This may be the main mechanism of TiO2 NPs' mitigation of phoxim-induced damages in the fat body.
Collapse
Affiliation(s)
- J S Hu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - F C Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - K Z Xu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - M Ni
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - B B Wang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - J H Tian
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Y Y Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - W D Shen
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - B Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
14
|
Wang L, Su M, Zhao X, Hong J, Yu X, Xu B, Sheng L, Liu D, Shen W, Li B, Hong F. Nanoparticulate TiO2 protection of midgut damage in the silkworm (Bombyx mori) following phoxim exposure. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 68:534-542. [PMID: 25552327 DOI: 10.1007/s00244-014-0121-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/10/2014] [Indexed: 06/04/2023]
Abstract
Bombyx mori (B. mori) is often subjected to phoxim poisoning in China due to phoxim exposure, which leads to a decrease in silk production. Nanoparticulate (NP) titanium dioxide (nano-TiO2) has been shown to attenuate damages in B. mori caused by phoxim exposure. However, little is known about the molecular mechanisms of midgut injury due to organophosphorus insecticide exposure and its repair by nano-TiO2 pretreatment. In this study, phoxim exposure for 36 h led to significant decreases in body weight and survival and increased oxidative stress and midgut injury. Pretreatment with nano-TiO2 attenuated the phoxim-induced midgut injury, increased body weight and survival, and decreased oxidative stress in the midgut of B. mori. Digital gene-expression data showed that exposure to phoxim results in significant changes in the expression of 254 genes in the phoxim-exposed midgut and 303 genes in phoxim + nano-TiO2-exposed midgut. Specifically, phoxim exposure led to upregulation of Tpx, α-amylase, trypsin, and glycoside hydrolase genes involved in digestion and absorption. Phoxim exposure also led to the downregulation of Cyp450 and Cyp4C1 genes involved in an antioxidant capacity. In contrast, a combination of both phoxim and nano-TiO2 treatment significantly decreased the change in α-amylase, trypsin, and glycoside hydrolases (GHs), which are involved in digestion and absorption. These results indicated that Tpx, α-amylase, trypsin, GHs, Cyp450, and Cyp4C1 may be potential biomarkers of midgut toxicity caused by phoxim exposure and the attenuation of these toxic impacts by nano-TiO2.
Collapse
Affiliation(s)
- Ling Wang
- Library of Soochow University, Suzhou, 215123, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Xu K, Li F, Ma L, Wang B, Zhang H, Ni M, Hong F, Shen W, Li B. Mechanism of enhanced Bombyx mori nucleopolyhedrovirus-resistance by titanium dioxide nanoparticles in silkworm. PLoS One 2015; 10:e0118222. [PMID: 25692869 PMCID: PMC4333570 DOI: 10.1371/journal.pone.0118222] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/11/2015] [Indexed: 02/07/2023] Open
Abstract
The infection of Bombyx mori nucleopolyhedrovirus (BmNPV) in silkworms is often lethal. It is difficult to prevent, and its lethality is correlated with both viral particle characteristics and silkworm strains. Low doses of titanium dioxide nanoparticles (TiO2 NPs) can promote silkworm growth and improve its resistance to organophosphate pesticides. In this study, TiO2 NPs' effect on BmNPV resistance was investigated by analyzing the characteristics of BmNPV proliferation and transcriptional differences in silkworm midgut and the transcriptional changes of immunity related genes after feeding with TiO2 NPs. We found that low doses of TiO2 NPs improved the resistance of silkworm against BmNPV by 14.88-fold, with the mortalities of the experimental group and control group being 0.56% and 8.33% at 144 h, respectively. The proliferation of BmNPV in the midgut was significantly increased 72 h after infection in both experimental and control groups; the control group reached the peak at 120 h, while the experimental group took 24 more hours to reach the maximal value that was 12.63 times lower than the control, indicating that TiO2 NPs can inhibit BmNPV proliferation in the midgut. Consistently, the expression of the BmNPV-resistant gene Bmlipase-1 had the same increase pattern as the proliferation changes. Immune signaling pathway analysis revealed that TiO2 NPs inhibited the proliferation of silkworm BmNPV to reduce the activation levels of janus kinase/signal transducer and activator of transcription (JAK/STAT) and phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway, while promoting the expression of Bmakt to improve the immunity. Overall, our results demonstrate that TiO2 NPs increase silkworm resistance against BmNPV by inhibiting virus proliferation and improving immunity in silkworms.
Collapse
Affiliation(s)
- Kaizun Xu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Lie Ma
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Binbin Wang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Hua Zhang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Min Ni
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Fashui Hong
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Weide Shen
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
16
|
Xie Y, Wang B, Li F, Ma L, Ni M, Shen W, Hong F, Li B. Molecular mechanisms of reduced nerve toxicity by titanium dioxide nanoparticles in the phoxim-exposed brain of Bombyx mori. PLoS One 2014; 9:e101062. [PMID: 24971466 PMCID: PMC4074129 DOI: 10.1371/journal.pone.0101062] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 06/02/2014] [Indexed: 12/11/2022] Open
Abstract
Bombyx mori (B. mori), silkworm, is one of the most important economic insects in the world, while phoxim, an organophosphorus (OP) pesticide, impact its economic benefits seriously. Phoxim exposure can damage the brain, fatbody, midgut and haemolymph of B. mori. However the metabolism of proteins and carbohydrates in phoxim-exposed B. mori can be improved by Titanium dioxide nanoparticles (TiO2 NPs). In this study, we explored whether TiO2 NPs treatment can reduce the phoxim-induced brain damage of the 5th larval instar of B. mori. We observed that TiO2 NPs pretreatments significantly reduced the mortality of phoxim-exposed larva and relieved severe brain damage and oxidative stress under phoxim exposure in the brain. The treatments also relieved the phoxim-induced increases in the contents of acetylcholine (Ach), glutamate (Glu) and nitric oxide (NO) and the phoxim-induced decreases in the contents of norepinephrine (NE), Dopamine (DA), and 5-hydroxytryptamine (5-HT), and reduced the inhibition of acetylcholinesterase (AChE), Na+/K+-ATPase, Ca2+-ATPase, and Ca2+/Mg2+-ATPase activities and the activation of total nitric oxide synthase (TNOS) in the brain. Furthermore, digital gene expression profile (DGE) analysis and real time quantitative PCR (qRT-PCR) assay revealed that TiO2 NPs pretreatment inhibited the up-regulated expression of ace1, cytochrome c, caspase-9, caspase-3, Bm109 and down-regulated expression of BmIap caused by phoxim; these genes are involved in nerve conduction, oxidative stress and apoptosis. TiO2 NPs pretreatment also inhibited the down-regulated expression of H+ transporting ATP synthase and vacuolar ATP synthase under phoxim exposure, which are involved in ion transport and energy metabolism. These results indicate that TiO2 NPs pretreatment reduced the phoxim-induced nerve toxicity in the brain of B. mori.
Collapse
Affiliation(s)
- Yi Xie
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Binbin Wang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Lie Ma
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Min Ni
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Weide Shen
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Fashui Hong
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, P.R. China
| |
Collapse
|