1
|
Schytz Andersen-Civil AI, Arora P, Zhu L, Myhill LJ, Büdeyri Gökgöz N, Castro-Mejia JL, Leppä MM, Hansen LH, Lessard-Lord J, Salminen JP, Thamsborg SM, Sandris Nielsen D, Desjardins Y, Williams AR. Gut microbiota-mediated polyphenol metabolism is restrained by parasitic whipworm infection and associated with altered immune function in mice. Gut Microbes 2024; 16:2370917. [PMID: 38944838 PMCID: PMC11216105 DOI: 10.1080/19490976.2024.2370917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024] Open
Abstract
Polyphenols are phytochemicals commonly found in plant-based diets which have demonstrated immunomodulatory and anti-inflammatory properties. However, the interplay between polyphenols and pathogens at mucosal barrier surfaces has not yet been elucidated in detail. Here, we show that proanthocyanidin (PAC) polyphenols interact with gut parasites to influence immune function and gut microbial-derived metabolites in mice. PAC intake inhibited mastocytosis during infection with the small intestinal roundworm Heligmosomoides polygyrus, and altered the host tissue transcriptome at the site of infection with the large intestinal whipworm Trichuris muris, with a notable enhancement of type-1 inflammatory and interferon-driven gene pathways. In the absence of infection, PAC intake promoted the expansion of Turicibacter within the gut microbiota, increased fecal short chain fatty acids, and enriched phenolic metabolites such as phenyl-γ-valerolactones in the cecum. However, these putatively beneficial effects were reduced in PAC-fed mice infected with T. muris, suggesting concomitant parasite infection can attenuate gut microbial-mediated PAC catabolism. Collectively, our results suggest an inter-relationship between a phytonutrient and infection, whereby PAC may augment parasite-induced inflammation (most prominently with the cecum dwelling T. muris), and infection may abrogate the beneficial effects of health-promoting phytochemicals.
Collapse
Affiliation(s)
| | - Pankaj Arora
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ling Zhu
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Laura J. Myhill
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | | | - Milla M. Leppä
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, Turku, Finland
| | - Lars H. Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jacob Lessard-Lord
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
| | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, Turku, Finland
| | - Stig M. Thamsborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
| | - Andrew R. Williams
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
2
|
Dufour C, Villa-Rodriguez JA, Furger C, Lessard-Lord J, Gironde C, Rigal M, Badr A, Desjardins Y, Guyonnet D. Cellular Antioxidant Effect of an Aronia Extract and Its Polyphenolic Fractions Enriched in Proanthocyanidins, Phenolic Acids, and Anthocyanins. Antioxidants (Basel) 2022; 11:antiox11081561. [PMID: 36009281 PMCID: PMC9405024 DOI: 10.3390/antiox11081561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress and chronic inflammation contribute to some chronic diseases. Aronia berries are rich in polyphenols. The aim of the present study was to characterize the cellular antioxidant effect of an aronia extract to reflect the potential physiological in vivo effect. Cellular in vitro assays in three cell lines (Caco-2, HepG2, and SH-SY5Y) were used to measure the antioxidant effect of AE, in three enriched polyphenolic fractions (A1: anthocyanins and phenolic acids; A2: oligomeric proanthocyanidins; A3: polymeric proanthocyanidins), pure polyphenols and microbial metabolites. Both direct (intracellular and membrane radical scavenging, catalase-like effect) and indirect (NRF2/ARE) antioxidant effects were assessed. AE exerted an intracellular free radical scavenging activity in the three cell lines, and A2 and A3 fractions showed a higher effect in HepG2 and Caco-2 cells. AE also exhibited a catalase-like activity, with the A3 fraction having a significant higher activity. Only A1 fraction activated the NRF2/ARE pathway. Quercetin and caffeic acid are the most potent antioxidant polyphenols, whereas cyanidin and 5-(3',4'-dihydroxyphenyl)-γ-valerolactone showed the highest antioxidant effect among polyphenol metabolites. AE rich in polyphenols possesses broad cellular antioxidant effects, and proanthocyanidins are major contributors. Polyphenol metabolites may contribute to the overall antioxidant effect of such extract in vivo.
Collapse
Affiliation(s)
- Cécile Dufour
- Anti Oxidant Power AOP/MH2F-LAAS/CNRS, 7 Avenue du Colonel Roche, BP 54200, 31031 Toulouse, France
| | - Jose A. Villa-Rodriguez
- Business Incubation Group, Symrise Taste, Nutrition & Health, 1E Allée Ermengarde d’Anjou, 35000 Rennes, France
- Correspondence: ; Tel.: +33-02-56-01-64-60
| | - Christophe Furger
- Anti Oxidant Power AOP/MH2F-LAAS/CNRS, 7 Avenue du Colonel Roche, BP 54200, 31031 Toulouse, France
| | - Jacob Lessard-Lord
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada
| | - Camille Gironde
- Anti Oxidant Power AOP/MH2F-LAAS/CNRS, 7 Avenue du Colonel Roche, BP 54200, 31031 Toulouse, France
| | - Mylène Rigal
- Anti Oxidant Power AOP/MH2F-LAAS/CNRS, 7 Avenue du Colonel Roche, BP 54200, 31031 Toulouse, France
| | - Ashraf Badr
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada
| | - Denis Guyonnet
- Business Incubation Group, Symrise Taste, Nutrition & Health, 1E Allée Ermengarde d’Anjou, 35000 Rennes, France
| |
Collapse
|
3
|
Sharifi-Rad J, Quispe C, Zam W, Kumar M, Cardoso SM, Pereira OR, Ademiluyi AO, Adeleke O, Moreira AC, Živković J, Noriega F, Ayatollahi SA, Kobarfard F, Faizi M, Martorell M, Cruz-Martins N, Butnariu M, Bagiu IC, Bagiu RV, Alshehri MM, Cho WC. Phenolic Bioactives as Antiplatelet Aggregation Factors: The Pivotal Ingredients in Maintaining Cardiovascular Health. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2195902. [PMID: 34447485 PMCID: PMC8384526 DOI: 10.1155/2021/2195902] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/28/2021] [Indexed: 01/22/2023]
Abstract
Cardiovascular diseases (CVD) are one of the main causes of mortality in the world. The development of these diseases has a specific factor-alteration in blood platelet activation. It has been shown that phenolic compounds have antiplatelet aggregation abilities and a positive impact in the management of CVD, exerting prominent antioxidant, anti-inflammatory, antitumor, cardioprotective, antihyperglycemic, and antimicrobial effects. Thus, this review is intended to address the antiplatelet activity of phenolic compounds with special emphasis in preventing CVD, along with the mechanisms of action through which they are able to prevent and treat CVD. In vitro and in vivo studies have shown beneficial effects of phenolic compound-rich plant extracts and isolated compounds against CVD, despite that the scientific literature available on the antiplatelet aggregation ability of phenolic compounds in vivo is scarce. Thus, despite the current advances, further studies are needed to confirm the cardioprotective potential of phenolic compounds towards their use alone or in combination with conventional drugs for effective therapeutic interventions.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Wissam Zam
- Department of Analytical and Food Chemistry, Faculty of Pharmacy, Al-Andalus University for Medical Sciences, Tartous, Syria
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Olivia R. Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Adedayo O. Ademiluyi
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Oluwakemi Adeleke
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
- Department of Science Laboratory Technology, Ekiti State University, Ado-Ekiti, Nigeria
| | | | - Jelena Živković
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Felipe Noriega
- Department of Plant Production, Faculty of Agronomy, Universidad de Concepción, Chillan 4070386, Chile
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Iulia Cristina Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara, Department of Microbiology, Timisoara, Romania
- Multidisciplinary Research Center on Antimicrobial Resistance, Timisoara, Romania
| | - Radu Vasile Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara, Department of Microbiology, Timisoara, Romania
- Preventive Medicine Study Center, Timisoara, Romania
| | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
4
|
Ben Lagha A, Maquera Huacho P, Grenier D. A cocoa (Theobroma cacao L.) extract impairs the growth, virulence properties, and inflammatory potential of Fusobacterium nucleatum and improves oral epithelial barrier function. PLoS One 2021; 16:e0252029. [PMID: 34029354 PMCID: PMC8143394 DOI: 10.1371/journal.pone.0252029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/08/2021] [Indexed: 12/15/2022] Open
Abstract
Fusobacterium nucleatum is associated with many conditions and diseases, including periodontal diseases that affect tooth-supporting tissues. The aim of the present study was to investigate the effects of a cocoa extract (Theobroma cacao L.) on F. nucleatum with respect to growth, biofilm formation, adherence, and hydrogen sulfide (H2S) production. The anti-inflammatory properties and the effect on epithelial barrier function of the cocoa extract were also assessed. The cocoa extract, whose major phenolic compound is epicatechin, dose-dependently inhibited the growth, biofilm formation, adherence properties (basement membrane matrix, oral epithelial cells), and H2S production of F. nucleatum. It also decreased IL-6 and IL-8 production by F. nucleatum-stimulated oral epithelial cells and inhibited F. nucleatum-induced NF-κB activation in monocytes. Lastly, the cocoa extract enhanced the barrier function of an oral epithelial model by increasing the transepithelial electrical resistance. We provide evidence that the beneficial properties of an epicatechin-rich cocoa extract may be useful for preventing and/or treating periodontal diseases.
Collapse
Affiliation(s)
- Amel Ben Lagha
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC, Canada
| | - Patricia Maquera Huacho
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC, Canada
| | - Daniel Grenier
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC, Canada
- * E-mail:
| |
Collapse
|
5
|
Teixeira LDL, Pilon G, Coutinho CP, Dudonné S, Dube P, Houde V, Desjardins Y, Lajolo FM, Marette A, Hassimotto NMA. Purple grumixama anthocyanins (Eugenia brasiliensis Lam.) attenuate obesity and insulin resistance in high-fat diet mice. Food Funct 2021; 12:3680-3691. [PMID: 33900317 DOI: 10.1039/d0fo03245j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Some polyphenols have been reported to modulate the expression of several genes related to lipid metabolism and insulin signaling, ameliorating metabolic disorders. We investigated the potential for the polyphenols of two varieties of grumixama, the purple fruit rich in anthocyanins and the yellow fruit, both also rich in ellagitannins, to attenuate obesity-associated metabolic disorders. Mice were fed a high fat and high sucrose diet, supplemented daily with yellow and purple extracts (200 mg per kg of body weight) for eight weeks. Purple grumixama supplementation was found to decrease body weight gain, improve insulin sensitivity and glucose-induced hyperinsulinemia, and reduce hepatic triglyceride accumulation. A decrease in intrahepatic lipids in mice treated with the purple grumixama extract was associated with lipid metabolism modulation by the PPAR signaling pathway. LPL, ApoE, and LDLr were found to be down-regulated, while Acox1 and ApoB were found to be upregulated. Some of these genes were also modulated by the yellow extract. In addition, both extracts decreased oGTT and plasma LPS. The results were associated with the presence of phenolic acids and urolithins. In conclusion, most likely the anthocyanins from the purple grumixama phenolic extract is responsible for reducing obesity and insulin resistance.
Collapse
Affiliation(s)
- Luciane de L Teixeira
- Food Research Center-(FoRC-CEPID) and Department of Food Science and Experimental Nutrition, School of Pharmaceutical Science, University of São Paulo, São Paulo, SP, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Leclerc M, Dudonné S, Calon F. Can Natural Products Exert Neuroprotection without Crossing the Blood-Brain Barrier? Int J Mol Sci 2021; 22:ijms22073356. [PMID: 33805947 PMCID: PMC8037419 DOI: 10.3390/ijms22073356] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/17/2022] Open
Abstract
The scope of evidence on the neuroprotective impact of natural products has been greatly extended in recent years. However, a key question that remains to be answered is whether natural products act directly on targets located in the central nervous system (CNS), or whether they act indirectly through other mechanisms in the periphery. While molecules utilized for brain diseases are typically bestowed with a capacity to cross the blood–brain barrier, it has been recently uncovered that peripheral metabolism impacts brain functions, including cognition. The gut–microbiota–brain axis is receiving increasing attention as another indirect pathway for orally administered compounds to act on the CNS. In this review, we will briefly explore these possibilities focusing on two classes of natural products: omega-3 polyunsaturated fatty acids (n-3 PUFAs) from marine sources and polyphenols from plants. The former will be used as an example of a natural product with relatively high brain bioavailability but with tightly regulated transport and metabolism, and the latter as an example of natural compounds with low brain bioavailability, yet with a growing amount of preclinical and clinical evidence of efficacy. In conclusion, it is proposed that bioavailability data should be sought early in the development of natural products to help identifying relevant mechanisms and potential impact on prevalent CNS disorders, such as Alzheimer’s disease.
Collapse
Affiliation(s)
- Manon Leclerc
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada;
- Axe Neurosciences, Centre de Recherche du CHU de Québec–Université Laval, Québec, QC G1V 4G2, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada;
- OptiNutriBrain-Laboratoire International Associé (NutriNeuro France-INAF Canada), Québec, QC G1V 0A6, Canada
| | - Stéphanie Dudonné
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada;
- OptiNutriBrain-Laboratoire International Associé (NutriNeuro France-INAF Canada), Québec, QC G1V 0A6, Canada
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada;
- Axe Neurosciences, Centre de Recherche du CHU de Québec–Université Laval, Québec, QC G1V 4G2, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada;
- OptiNutriBrain-Laboratoire International Associé (NutriNeuro France-INAF Canada), Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-(418)-525-4444 (ext. 48697); Fax: +1-(418)-654-2761
| |
Collapse
|
7
|
Ben Lagha A, Azelmat J, Vaillancourt K, Grenier D. A polyphenolic cinnamon fraction exhibits anti-inflammatory properties in a monocyte/macrophage model. PLoS One 2021; 16:e0244805. [PMID: 33439867 PMCID: PMC7806150 DOI: 10.1371/journal.pone.0244805] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/16/2020] [Indexed: 11/19/2022] Open
Abstract
Periodontal diseases are bacteria-induced inflammatory disorders that lead to the destruction of the tooth-supporting tissues. Active compounds endowed with a capacity to regulate the inflammatory response are regarded as potential therapeutic agents for the treatment of periodontal diseases. The aim of this study was to characterize the anti-inflammatory properties of a polyphenolic cinnamon fraction. Chromatographic and mass spectrometry analyses of the polyphenolic composition of the cinnamon fraction revealed that phenolic acids, flavonoids (flavonols, anthocyanins, flavan-3-ols), and procyanidins make up 9.22%, 0.72%, and 10.63% of the cinnamon fraction, respectively. We used a macrophage model stimulated with lipopolysaccharides (LPS) from either Aggregatibacter actinomycetemcomitans or Escherichia coli to show that the cinnamon fraction dose-dependently reduced IL-6, IL-8, and TNF-α secretion. Evidence was brought that this inhibition of cytokine secretion may result from the ability of the fraction to prevent LPS-induced NF-κB activation. We also showed that the cinnamon fraction reduces LPS binding to monocytes, which may contribute to its anti-inflammatory properties. Lastly, using a competitor assay, it was found that the cinnamon fraction may represent a natural PPAR-γ ligand. Within the limitations of this in vitro study, the cinnamon fraction was shown to exhibit a therapeutic potential for the treatment of periodontal diseases due to its anti-inflammatory properties.
Collapse
Affiliation(s)
- Amel Ben Lagha
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC, Canada
| | - Jabrane Azelmat
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC, Canada
| | - Katy Vaillancourt
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC, Canada
| | - Daniel Grenier
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC, Canada
- * E-mail:
| |
Collapse
|
8
|
Souissi M, Ben Lagha A, Chaieb K, Grenier D. Effect of a Berry Polyphenolic Fraction on Biofilm Formation, Adherence Properties and Gene Expression of Streptococcus mutans and Its Biocompatibility with Oral Epithelial Cells. Antibiotics (Basel) 2021; 10:antibiotics10010046. [PMID: 33466319 PMCID: PMC7824760 DOI: 10.3390/antibiotics10010046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 02/02/2023] Open
Abstract
The ability of Streptococcus mutans to adhere to oral surfaces and form biofilm is a key step in the tooth decay process. The aim of this study was to investigate a berry (wild blueberry, cranberry, and strawberry) polyphenolic fraction, commercialized as Orophenol®, for its antibacterial, anti-biofilm, and anti-adhesion properties on S. mutans. Moreover, the biocompatibility of the fraction with human oral epithelial cells was assessed. Phenolic acids, flavonoids (flavonols, anthocyanins, flavan-3-ols), and procyanidins made up 10.71%, 19.76%, and 5.29% of the berry polyphenolic fraction, respectively, as determined by chromatography and mass spectrometry. The berry polyphenolic preparation dose-dependently inhibited S. mutans biofilm formation while not reducing bacterial growth. At concentrations ranging from 250 to 1000 µg/mL, the fraction inhibited the adhesion of S. mutans to both saliva-coated hydroxyapatite and saliva-coated nickel-chrome alloy. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis showed that incubating S. mutans with the berry polyphenolic fraction was associated with a reduced expression of luxS gene, which regulates quorum sensing in S. mutans. The berry fraction did not show any significant cytotoxicity in an oral epithelial cell model. In conclusion, Orophenol®, which is a mixture of polyphenols from wild blueberry, cranberry and strawberry, possesses interesting anti-caries properties while being compatible with oral epithelial cells.
Collapse
Affiliation(s)
- Mariem Souissi
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia; (M.S.); (K.C.)
- Faculty of Sciences of Bizerta, University of Carthage, Zarzouna 7021, Tunisia
| | - Amel Ben Lagha
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC G1V 0A6, Canada;
| | - Kamel Chaieb
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia; (M.S.); (K.C.)
| | - Daniel Grenier
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC G1V 0A6, Canada;
- Correspondence:
| |
Collapse
|
9
|
Koudoufio M, Desjardins Y, Feldman F, Spahis S, Delvin E, Levy E. Insight into Polyphenol and Gut Microbiota Crosstalk: Are Their Metabolites the Key to Understand Protective Effects against Metabolic Disorders? Antioxidants (Basel) 2020; 9:E982. [PMID: 33066106 PMCID: PMC7601951 DOI: 10.3390/antiox9100982] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Lifestyle factors, especially diet and nutrition, are currently regarded as essential avenues to decrease modern-day cardiometabolic disorders (CMD), including obesity, metabolic syndrome, type 2 diabetes, and atherosclerosis. Many groups around the world attribute these trends, at least partially, to bioactive plant polyphenols given their anti-oxidant and anti-inflammatory actions. In fact, polyphenols can prevent or reverse the progression of disease processes through many distinct mechanisms. In particular, the crosstalk between polyphenols and gut microbiota, recently unveiled thanks to DNA-based tools and next generation sequencing, unravelled the central regulatory role of dietary polyphenols and their intestinal micro-ecology metabolites on the host energy metabolism and related illnesses. The objectives of this review are to: (1) provide an understanding of classification, structure, and bioavailability of dietary polyphenols; (2) underline their metabolism by gut microbiota; (3) highlight their prebiotic effects on microflora; (4) discuss the multifaceted roles of their metabolites in CMD while shedding light on the mechanisms of action; and (5) underscore their ability to initiate host epigenetic regulation. In sum, the review clearly documents whether dietary polyphenols and micro-ecology favorably interact to promote multiple physiological functions on human organism.
Collapse
Affiliation(s)
- Mireille Koudoufio
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada; (M.K.); (F.F.); (S.S.); (E.D.)
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Francis Feldman
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada; (M.K.); (F.F.); (S.S.); (E.D.)
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Schohraya Spahis
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada; (M.K.); (F.F.); (S.S.); (E.D.)
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Edgard Delvin
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada; (M.K.); (F.F.); (S.S.); (E.D.)
- Department of Biochemistry, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Emile Levy
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada; (M.K.); (F.F.); (S.S.); (E.D.)
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada;
- Department of Pediatrics, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
10
|
Káňová K, Petrásková L, Pelantová H, Rybková Z, Malachová K, Cvačka J, Křen V, Valentová K. Sulfated Metabolites of Luteolin, Myricetin, and Ampelopsin: Chemoenzymatic Preparation and Biophysical Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11197-11206. [PMID: 32910657 DOI: 10.1021/acs.jafc.0c03997] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Authentic standards of food flavonoids are important for human metabolic studies. Their isolation from biological materials is impracticable; however, they can be prepared in vitro. Twelve sulfated metabolites of luteolin, myricetin, and ampelopsin were obtained with arylsulfotransferase from Desulfitobacterium hafniense and fully characterized by high-performance liquid chromatography, MS, and NMR. The compounds were tested for their ability to scavenge 1,1-diphenyl-2-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid), and N,N-dimethyl-p-phenylenediamine radicals, to reduce ferric ions and Folin-Ciocalteu reagent, and to inhibit tert-butyl hydroperoxide-induced lipid peroxidation of rat liver microsomes. The activity differed considerably even between monosulfate isomers. The parent compounds and myricetin-3'-O-sulfate were the most active while other compounds displayed significantly lower activity, particularly luteolin sulfates. No mutagenic activity of the parent compounds and their main metabolites was observed; only myricetin showed minor pro-mutagenicity. The prepared sulfated metabolites are now available as authentic standards for future in vitro and in vivo metabolic studies.
Collapse
Affiliation(s)
- Kristýna Káňová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague, Czech Republic
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, CZ 166 28 Prague, Czech Republic
| | - Lucie Petrásková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague, Czech Republic
| | - Helena Pelantová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague, Czech Republic
| | - Zuzana Rybková
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, CZ 710 00 Ostrava, Czech Republic
| | - Kateřina Malachová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, CZ 710 00 Ostrava, Czech Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, CZ-16610 Prague, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague, Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague, Czech Republic
| |
Collapse
|
11
|
Scharf B, Schmidt TJ, Rabbani S, Stork C, Dobrindt U, Sendker J, Ernst B, Hensel A. Antiadhesive natural products against uropathogenic E. coli: What can we learn from cranberry extract? JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112889. [PMID: 32311481 DOI: 10.1016/j.jep.2020.112889] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Extracts from Cranberry fruits (Vaccinium macrocarpon) are traditionally used against urinary tract infections, mainly due to antiadhesive activity against uropathogenic E. coli (UPEC), but the exact mode of action and compounds, responsible for the activity, are unknown. AIM OF THE STUDY i. To investigate if cranberry extract acts only by a single component or must be assessed as a multi-active-compound preparation; ii to screen isolated cranberry-related natural products under in vitro conditions to pinpoint natural products with antiadhesive effects against UPEC, followed by in silico calculations (QSAR) to predict potential antiadhesive compounds; iii. investigations by using urine samples from cranberry treated volunteers for evaluation on the bacterial transcriptome and the mannose-binding side of FimH, iv. to investigate if besides Tamm Horsfall Protein induction in the kidney, the extract acts also directly against UPEC. MATERIAL AND METHODS Antiadhesive activity of 105 compounds was determined by flow cytometric adhesion assay (UPEC UTI89 on T24 bladder cells). Urine samples from 16 volunteers treated with cranberry extract (p.o., 7 days, 900 mg/day) were used for ex vivo testing concerning influence on the bacterial transcriptome (Illumina RNA-seq) and interaction with the mannose binding domain of type-1 fimbriae. RESULTS i. The antiadhesive effect of cranberry extract cannot be attributed to a single compound or to a single fraction. ii. Unglycosylated flavones and flavonols with bulky substitution of the B ring contribute to the antiadhesive activity. 3'-8″-biflavones and flavolignans (not related to cranberry fruits) were identified as potent antiadhesive compounds against UPEC. iii. QSAR yielded a model with good statistical performance and sufficient internal and external predictive ability. iv. Urine samples from male cranberry-treated volunteers indicated significant interaction with the mannose binding domain of type-1 fimbriae, which correlated with the amount of Tamm-Horsfall Protein in the test samples. v Cranberry extract did not influence the UPEC transcriptome; gene expression of bacterial adhesins (P-, S-fimbrae, curli) was not influenced by the urine samples, while a slight, but non-significant upregulation of type 1 fimbriae was observed. CONCLUSIONS B-ring substituted flavones and flavonols from cranberry contribute to the antiadhesive activity against UPEC by inhibition of the FimH-mediated interaction with the host cell bladder epithelium.
Collapse
Affiliation(s)
- Birte Scharf
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Münster, Germany
| | - Thomas J Schmidt
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Münster, Germany
| | - Said Rabbani
- University of Basel, Department Pharmaceutical Sciences, Molecular Pharmacy, Basel, Switzerland
| | - Christoph Stork
- University Hospital Münster, Institute of Hygiene, Münster, Germany
| | - Ulrich Dobrindt
- University Hospital Münster, Institute of Hygiene, Münster, Germany
| | - Jandirk Sendker
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Münster, Germany
| | - Beat Ernst
- University of Basel, Department Pharmaceutical Sciences, Molecular Pharmacy, Basel, Switzerland
| | - Andreas Hensel
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Münster, Germany.
| |
Collapse
|
12
|
Morissette A, Kropp C, Songpadith JP, Junges Moreira R, Costa J, Mariné-Casadó R, Pilon G, Varin TV, Dudonné S, Boutekrabt L, St-Pierre P, Levy E, Roy D, Desjardins Y, Raymond F, Houde VP, Marette A. Blueberry proanthocyanidins and anthocyanins improve metabolic health through a gut microbiota-dependent mechanism in diet-induced obese mice. Am J Physiol Endocrinol Metab 2020; 318:E965-E980. [PMID: 32228321 DOI: 10.1152/ajpendo.00560.2019] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Blueberry consumption can prevent obesity-linked metabolic diseases, and it has been proposed that the polyphenol content of blueberries may contribute to these effects. Polyphenols have been shown to favorably impact metabolic health, but the role of specific polyphenol classes and whether the gut microbiota is linked to these effects remain unclear. We aimed to evaluate the impact of whole blueberry powder and blueberry polyphenols on the development of obesity and insulin resistance and to determine the potential role of gut microbes in these effects by using fecal microbiota transplantation (FMT). Sixty-eight C57BL/6 male mice were assigned to one of the following diets for 12 wk: balanced diet (Chow); high-fat, high-sucrose diet (HFHS); or HFHS supplemented with whole blueberry powder (BB), anthocyanidin (ANT)-rich extract, or proanthocyanidin (PAC)-rich extract. After 8 wk, mice were housed in metabolic cages, and an oral glucose tolerance test (OGTT) was performed. Sixty germ-free mice fed HFHS diet received FMT from one of the above groups biweekly for 8 wk, followed by an OGTT. PAC-treated mice were leaner than HFHS controls although they had the same energy intake and were more physically active. This observation was reproduced in germ-free mice receiving FMT from PAC-treated mice. PAC- and ANT-treated mice showed improved insulin responses during OGTT, and this finding was also reproduced in germ-free mice following FMT. These results show that blueberry PAC and ANT polyphenols can reduce diet-induced body weight and improve insulin sensitivity and that at least part of these beneficial effects are explained by modulation of the gut microbiota.
Collapse
Affiliation(s)
- Arianne Morissette
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Laval University, Hôpital Laval, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Camille Kropp
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Laval University, Hôpital Laval, Quebec City, Quebec, Canada
| | - Jean-Philippe Songpadith
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Laval University, Hôpital Laval, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Rafael Junges Moreira
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Laval University, Hôpital Laval, Quebec City, Quebec, Canada
| | - Janice Costa
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Laval University, Hôpital Laval, Quebec City, Quebec, Canada
| | - Roger Mariné-Casadó
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Laval University, Hôpital Laval, Quebec City, Quebec, Canada
| | - Geneviève Pilon
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Laval University, Hôpital Laval, Quebec City, Quebec, Canada
| | - Thibault V Varin
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Stéphanie Dudonné
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Lemia Boutekrabt
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Philippe St-Pierre
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Laval University, Hôpital Laval, Quebec City, Quebec, Canada
| | - Emile Levy
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
- Research Centre, CHU-Sainte-Justine, Montreal, Quebec, Canada
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Denis Roy
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Frédéric Raymond
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Vanessa P Houde
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Laval University, Hôpital Laval, Quebec City, Quebec, Canada
| | - André Marette
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Laval University, Hôpital Laval, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
13
|
Rodríguez-Daza MC, Daoust L, Boutkrabt L, Pilon G, Varin T, Dudonné S, Levy É, Marette A, Roy D, Desjardins Y. Wild blueberry proanthocyanidins shape distinct gut microbiota profile and influence glucose homeostasis and intestinal phenotypes in high-fat high-sucrose fed mice. Sci Rep 2020; 10:2217. [PMID: 32041991 PMCID: PMC7010699 DOI: 10.1038/s41598-020-58863-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Blueberries are a rich source of polyphenols, widely studied for the prevention or attenuation of metabolic diseases. However, the health contribution and mechanisms of action of polyphenols depend on their type and structure. Here, we evaluated the effects of a wild blueberry polyphenolic extract (WBE) (Vaccinium angustifolium Aiton) on cardiometabolic parameters, gut microbiota composition and gut epithelium histology of high-fat high-sucrose (HFHS) diet-induced obese mice and determined which constitutive polyphenolic fractions (BPF) was responsible for the observed effects. To do so, the whole extract was separated in three fractions, F1) Anthocyanins and phenolic acids, F2) oligomeric proanthocyanidins (PACs), phenolic acids and flavonols (PACs degree of polymerization DP < 4), and F3) PACs polymers (PACs DP > 4) and supplied at their respective concentration in the whole extract. After 8 weeks, WBE reduced OGTT AUC by 18.3% compared to the HFHS treated rodents and the F3 fraction contributed the most to this effect. The anthocyanin rich F1 fraction did not reproduce this response. WBE and the BPF restored the colonic mucus layer. Particularly, the polymeric PACs-rich F3 fraction increased the mucin-secreting goblet cells number. WBE caused a significant 2-fold higher proportion of Adlercreutzia equolifaciens whereas oligomeric PACs-rich F2 fraction increased by 2.5-fold the proportion of Akkermansia muciniphila. This study reveals the key role of WBE PACs in modulating the gut microbiota and restoring colonic epithelial mucus layer, providing a suitable ecological niche for mucosa-associated symbiotic bacteria, which may be crucial in triggering health effects of blueberry polyphenols.
Collapse
Affiliation(s)
- Maria-Carolina Rodríguez-Daza
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Food Science Department, Faculty of Agriculture and Food, Laval University, Québec, QC, Canada
| | - Laurence Daoust
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Food Science Department, Faculty of Agriculture and Food, Laval University, Québec, QC, Canada
| | - Lemia Boutkrabt
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
| | - Geneviève Pilon
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, Québec, QC, Canada
| | - Thibault Varin
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
| | - Stéphanie Dudonné
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
| | - Émile Levy
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
| | - André Marette
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, Québec, QC, Canada
| | - Denis Roy
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Food Science Department, Faculty of Agriculture and Food, Laval University, Québec, QC, Canada
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada. .,Food Science Department, Faculty of Agriculture and Food, Laval University, Québec, QC, Canada.
| |
Collapse
|
14
|
Ben Lagha A, LeBel G, Grenier D. Tart cherry (Prunus cerasus L.) fractions inhibit biofilm formation and adherence properties of oral pathogens and enhance oral epithelial barrier function. Phytother Res 2019; 34:886-895. [PMID: 31846135 DOI: 10.1002/ptr.6574] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/07/2019] [Accepted: 10/17/2019] [Indexed: 12/24/2022]
Abstract
Dental caries, candidiasis, and periodontal disease are the most common oral infections affecting a wide range of the population worldwide. The present study investigated the effects of two tart cherry (Prunus cerasus L.) fractions on important oral pathogens, including Candida albicans, Streptococcus mutans, and Fusobacterium nucleatum, as well as on the barrier function of oral epithelial cells. Procyanidins and quercetin and its derivatives were the most important constituents found in the tart cherry fractions. Although the fractions showed poor antimicrobial activity, they inhibited biofilm formation by the three oral pathogens in a dose-dependent manner. The tart cherry fractions also attenuated the adherence of C. albicans and S. mutans to a hydroxylapatite surface as well as the adherence of F. nucleatum to oral epithelial cells. Treating oral epithelial cells with the tart cherry fractions significantly enhanced the barrier function as determined by monitoring the transepithelial electrical resistance. In conclusion, this study showed that the tart cherry fractions and their bioactive constituents could be promising antiplaque compounds by targeting biofilm formation and adherence properties of oral pathogens. Furthermore, its property of increasing the epithelial barrier function may protect against microbial invasion of the underlying connective tissue.
Collapse
Affiliation(s)
- Amel Ben Lagha
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, Canada
| | - Geneviève LeBel
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, Canada
| | - Daniel Grenier
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, Canada
| |
Collapse
|
15
|
Kim JS, Kim JH, Palaniyandi SA, Lee CC, You JW, Yang H, Yoon Park JH, Yang SH, Lee KW. Yak-Kong Soybean ( Glycine max) Fermented by a Novel Pediococcus pentosaceus Inhibits the Oxidative Stress-Induced Monocyte-Endothelial Cell Adhesion. Nutrients 2019; 11:E1380. [PMID: 31248152 PMCID: PMC6627370 DOI: 10.3390/nu11061380] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/09/2019] [Accepted: 06/17/2019] [Indexed: 11/16/2022] Open
Abstract
Yak-Kong (YK), a small black soybean (Glycine max) in Korea, contained higher concentrations of antioxidants than ordinary black soybean or yellow soybean in our previous study. We prepared the fermented YK extract by using a novel lactic acid bacterium, Pediococcus pentosaceus AOA2017 (AOA2017) isolated from Eleusine coracana, and found that the antioxidant ability was enhanced after fermentation. In order to investigate the cause of the enhanced antioxidant ability in the fermented YK extract, we conducted a phenolic composition analysis. The results show that proanthocyanidin decreased and phenolic acids increased with a statistical significance after fermentation. Among the phenolic acids, p-coumaric acid was newly produced at about 11.7 mg/100 g, which did not exist before the fermentation. Further, the fermented YK extract with increased p-coumaric acid significantly inhibited the lipopolysaccharide-induced THP-1 monocyte-endothelial cell adhesion compared to the unfermented YK extract. The fermented YK extract also suppressed the protein expression levels of vascular cell adhesion molecule (VCAM)-1 in human umbilical vein endothelial cells (HUVECs). Together with the previous studies, our results suggest that the extract of YK fermented by AOA2017 has potential to be a new functional food material with its enhanced bioactive compounds which may help to prevent atherosclerosis caused by oxidative stress.
Collapse
Affiliation(s)
- Ji Seung Kim
- Major in Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea.
| | - Jong Hun Kim
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
- Department of Food Science and Biotechnology, Sungshin University, Seoul 01133, Korea.
| | | | - Charles C Lee
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
| | - Ji Woo You
- Major in Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea.
| | - Hee Yang
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - Jung Han Yoon Park
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Korea.
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam 59626, Korea.
| | - Ki Won Lee
- Major in Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Korea.
| |
Collapse
|
16
|
Koné AP, Desjardins Y, Gosselin A, Cinq-Mars D, Guay F, Saucier L. Plant extracts and essential oil product as feed additives to control rabbit meat microbial quality. Meat Sci 2019; 150:111-121. [DOI: 10.1016/j.meatsci.2018.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 01/13/2023]
|
17
|
Vallejo CV, Delgado OD, Rollán GC, Rodríguez-Vaquero MJ. Control of Hanseniaspora osmophila and Starmerella bacillaris in strawberry juice using blueberry polyphenols. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
18
|
Dal-Pan A, Dudonné S, Bourassa P, Bourdoulous M, Tremblay C, Desjardins Y, Calon F. Cognitive-Enhancing Effects of a Polyphenols-Rich Extract from Fruits without Changes in Neuropathology in an Animal Model of Alzheimer's Disease. J Alzheimers Dis 2018; 55:115-135. [PMID: 27662290 DOI: 10.3233/jad-160281] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
No effective preventive treatment is available for age-related cognitive decline and Alzheimer's disease (AD). Epidemiological studies indicate that a diet rich in fruit is associated with cognitive improvement. It was thus proposed that high polyphenol concentrations found in berries can prevent cognitive impairment associated with aging and AD. Therefore, the Neurophenols project aimed at investigating the effects of a polyphenolic extract from blueberries and grapes (PEBG) in the triple-transgenic (3xTg-AD) mouse model of AD, which develops AD neuropathological markers, including amyloid-β plaques and neurofibrillary tangles, leading to memory deficits. In this study, 12-month-old 3xTg-AD and NonTg mice were fed a diet supplemented with standardized PEBG (500 or 2500 mg/kg) for 4 months (n = 15-20/group). A cognitive evaluation with the novel object recognition test was performed at 15 months of age and mice were sacrificed at 16 months of age. We observed that PEBG supplementation with doses of 500 or 2500 mg/kg prevented the decrease in novel object recognition observed in both 15-month-old 3xTg-AD mice and NonTg mice fed a control diet. Although PEBG treatment did not reduce Aβ and tau pathologies, it prevented the decrease in mature BDNF observed in 16-month-old 3xTg-AD mice. Finally, plasma concentrations of phenolic metabolites, such as dihydroxyphenyl valerolactone, a microbial metabolite of epicatechin, positively correlated with memory performances in supplemented mice. The improvement in object recognition observed in 3xTg-AD mice after PEBG administration supports the consumption of polyphenols-rich extracts to prevent memory impairment associated with age-related disease, without significant effects on classical AD neuropathology.
Collapse
Affiliation(s)
- Alexandre Dal-Pan
- CHU de Québec Research Center, Quebec, QC, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec, QC, Canada.,OptiNutriBrain International Associated Laboratory (NutriNeuro France-INAF Canada).,http://www.neurophenols.org
| | - Stéphanie Dudonné
- Institute of Nutrition and Functional Foods, Laval University, Quebec, QC, Canada.,http://www.neurophenols.org
| | - Philippe Bourassa
- CHU de Québec Research Center, Quebec, QC, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec, QC, Canada.,Faculty of Pharmacy, Laval University, Quebec, QC, Canada.,OptiNutriBrain International Associated Laboratory (NutriNeuro France-INAF Canada)
| | | | | | - Yves Desjardins
- Institute of Nutrition and Functional Foods, Laval University, Quebec, QC, Canada.,http://www.neurophenols.org
| | - Frédéric Calon
- CHU de Québec Research Center, Quebec, QC, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec, QC, Canada.,Faculty of Pharmacy, Laval University, Quebec, QC, Canada.,OptiNutriBrain International Associated Laboratory (NutriNeuro France-INAF Canada)
| | | |
Collapse
|
19
|
Lee CC, Dudonné S, Kim JH, Kim JS, Dubé P, Kim JE, Desjardins Y, Park JHY, Lee KW, Lee CY. A major daidzin metabolite 7,8,4'-trihydroxyisoflavone found in the plasma of soybean extract-fed rats attenuates monocyte-endothelial cell adhesion. Food Chem 2018; 240:607-614. [PMID: 28946319 DOI: 10.1016/j.foodchem.2017.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/30/2017] [Accepted: 08/01/2017] [Indexed: 11/20/2022]
Abstract
Among many functional foods and their phytochemicals, ingestion of soybean (Glycine max) is highly correlated to reduced risk of cardiovascular diseases. Validation of potential health benefits of functional foods requires information about the bioavailability and metabolism of bioactive compounds. In this context, several phase I and II metabolites of isoflavones were target-analyzed in the plasma of rats acutely supplemented with soybean embryo extract. A daidzein metabolite, 7,8,4'-trihydroxyisoflavone (7,8,4'-THI), was found to have the highest average area under curve value (574.3±112.8). Therefore, its potential prevention effect on atherosclerosis was investigated using monocyte-endothelial cell adhesion assay. Different from its precursor daidzein or daidzin, 7,8,4'-THI attenuated adhesion of THP-1 monocytes to tumor necrosis factor-alpha (TNF-α) stimulated human umbilical vein endothelial cells (HUVECs). In addition, 7,8,4'-THI significantly downregulated TNF-α stimulated the expression of vascular cell adhesion molecule-1 and monocyte chemotactic protein-1 and phosphorylation of IκB kinase and IκBα involved in the initiation of atherosclerosis in HUVECs. Therefore, 7,8,4'-THI, a highly bioavailable hydroxylated isoflavone metabolite, has potential anti-atherosclerotic effect via inhibiting monocyte-endothelial adhesion.
Collapse
Affiliation(s)
- Charles C Lee
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
| | - Stéphanie Dudonné
- Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Boulevard Hochelaga, Québec, QC G1V0A6, Canada.
| | - Jong Hun Kim
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea.
| | - Ji Seung Kim
- Major in Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea.
| | - Pascal Dubé
- Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Boulevard Hochelaga, Québec, QC G1V0A6, Canada.
| | - Jong-Eun Kim
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea.
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Boulevard Hochelaga, Québec, QC G1V0A6, Canada.
| | - Jung Han Yoon Park
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea.
| | - Ki Won Lee
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea; Major in Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea.
| | - Chang Yong Lee
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
20
|
Lee CC, Dudonné S, Dubé P, Desjardins Y, Kim JH, Kim JS, Kim JE, Park JHY, Lee KW, Lee CY. Comprehensive phenolic composition analysis and evaluation of Yak-Kong soybean (Glycine max) for the prevention of atherosclerosis. Food Chem 2017; 234:486-493. [PMID: 28551265 DOI: 10.1016/j.foodchem.2017.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/01/2017] [Accepted: 05/02/2017] [Indexed: 12/16/2022]
Abstract
Yak-Kong (YK) (Glycine max), a small black soybean cultivar with a green embryo, was evaluated for functional constituents with a focus on atherosclerosis prevention. In comparison to common yellow and black soybean cultivars, YK contains significantly higher concentrations of antioxidants, particularly in its seed coat. A comprehensive phenolic composition analysis revealed that proanthocyanidins were the major phenolic group in YK. In contrast to other proanthocyanidin-rich foods, YK was rich in bioavailable proanthocyanidins (with a degree of polymerization ≤3) specifically with A-type dimers. Significant concentrations of phloridzin and coumestrol were also exclusively found in YK seed coat and the embryo, respectively. Extracts of both the proanthocyanidin-rich seed coat and isoflavonoid-rich embryo of YK attenuated adhesion of THP-1 to LPS-stimulated human umbilical vascular endothelial cells, suggesting that they are important sources of coronary heart disease-preventive phenolics. YK has promising potential for further development as a functional food source targeted at atherosclerosis prevention.
Collapse
Affiliation(s)
- Charles C Lee
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
| | - Stéphanie Dudonné
- Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Boulevard Hochelaga, Québec, QC G1V0A6, Canada.
| | - Pascal Dubé
- Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Boulevard Hochelaga, Québec, QC G1V0A6, Canada.
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Boulevard Hochelaga, Québec, QC G1V0A6, Canada.
| | - Jong Hun Kim
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Ji Seung Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jong-Eun Kim
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea.
| | - Jung Han Yoon Park
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea.
| | - Ki Won Lee
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea.
| | - Chang Yong Lee
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
21
|
Paquette M, Medina Larqué AS, Weisnagel SJ, Desjardins Y, Marois J, Pilon G, Dudonné S, Marette A, Jacques H. Strawberry and cranberry polyphenols improve insulin sensitivity in insulin-resistant, non-diabetic adults: a parallel, double-blind, controlled and randomised clinical trial. Br J Nutr 2017; 117:519-531. [PMID: 28290272 PMCID: PMC5426341 DOI: 10.1017/s0007114517000393] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 01/13/2017] [Accepted: 01/28/2017] [Indexed: 12/18/2022]
Abstract
Plant-derived foods rich in polyphenols are associated with several cardiometabolic health benefits, such as reduced postprandial hyperglycaemia. However, their impact on whole-body insulin sensitivity using the hyperinsulinaemic-euglycaemic clamp technique remains under-studied. We aimed to determine the effects of strawberry and cranberry polyphenols (SCP) on insulin sensitivity, glucose tolerance, insulin secretion, lipid profile, inflammation and oxidative stress markers in free-living insulin-resistant overweight or obese human subjects (n 41) in a parallel, double-blind, controlled and randomised clinical trial. The experimental group consumed an SCP beverage (333 mg SCP) daily for 6 weeks, whereas the Control group received a flavour-matched Control beverage that contained 0 mg SCP. At the beginning and at the end of the experimental period, insulin sensitivity was assessed by a hyperinsulinaemic-euglycaemic clamp, and glucose tolerance and insulin secretion by a 2-h oral glucose tolerance test (OGTT). Insulin sensitivity increased in the SCP group as compared with the Control group (+0·9 (sem 0·5)×10-3 v. -0·5 (sem 0·5)×10-3 mg/kg per min per pmol, respectively, P=0·03). Compared with the Control group, the SCP group had a lower first-phase insulin secretion response as measured by C-peptide levels during the first 30 min of the OGTT (P=0·002). No differences were detected between the two groups for lipids and markers of inflammation and oxidative stress. A 6-week dietary intervention with 333 mg of polyphenols from strawberries and cranberries improved insulin sensitivity in overweight and obese non-diabetic, insulin-resistant human subjects but was not effective in improving other cardiometabolic risk factors.
Collapse
Affiliation(s)
- Martine Paquette
- Institute of Nutrition and Functional Foods, Laval
University, Quebec, Canada, G1V
0A6
- School of Nutrition, Laval University,
Quebec, Canada, G1V 0A6
| | - Ana S. Medina Larqué
- Institute of Nutrition and Functional Foods, Laval
University, Quebec, Canada, G1V
0A6
- School of Nutrition, Laval University,
Quebec, Canada, G1V 0A6
| | - S. J. Weisnagel
- School of Nutrition, Laval University,
Quebec, Canada, G1V 0A6
- Diabetes Research Unit, Endocrinology and Nephrology
Axis, Research Centre, Laval University
Health Center of Quebec, Quebec, Canada, G1V
4G2
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods, Laval
University, Quebec, Canada, G1V
0A6
| | - Julie Marois
- Institute of Nutrition and Functional Foods, Laval
University, Quebec, Canada, G1V
0A6
- School of Nutrition, Laval University,
Quebec, Canada, G1V 0A6
| | - Geneviève Pilon
- Institute of Nutrition and Functional Foods, Laval
University, Quebec, Canada, G1V
0A6
- Quebec Heart and Lung Institute, Quebec,
Canada, G1V 4G5
| | - Stéphanie Dudonné
- Institute of Nutrition and Functional Foods, Laval
University, Quebec, Canada, G1V
0A6
| | - André Marette
- Institute of Nutrition and Functional Foods, Laval
University, Quebec, Canada, G1V
0A6
- Quebec Heart and Lung Institute, Quebec,
Canada, G1V 4G5
| | - Hélène Jacques
- Institute of Nutrition and Functional Foods, Laval
University, Quebec, Canada, G1V
0A6
- School of Nutrition, Laval University,
Quebec, Canada, G1V 0A6
| |
Collapse
|
22
|
Topal F, Gulcin I, Dastan A, Guney M. Novel eugenol derivatives: Potent acetylcholinesterase and carbonic anhydrase inhibitors. Int J Biol Macromol 2016; 94:845-851. [PMID: 27984137 DOI: 10.1016/j.ijbiomac.2016.10.096] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 11/27/2022]
Abstract
Eugenol was used as starting material to obtain some phenolic compounds. The synthesis of these phenolic compounds was performed in a two-step procedure. The structures of the formed products (novel eugenol derivatives 1-6) have been determined on the basis of NMR spectroscopy and other spectroscopic methods. The compounds were tested in terms of carbonic anhydrase (CA) inhibition potency. Carbonic anhydrases (CAs, EC 4.2.1.1) are metalloenzymes, which catalyse the reaction between carbon dioxide (CO2) and water (H2O), to generate bicarbonate (HCO3-) and protons (H+). CO2, HCO3- and H+ are essential molecules and ions for many important physiologic processes occurring in all living organisms. Acetylcholinesterase (AChE, E.C.3.1.1.7) is found in high concentrations in the red blood cells and brain. Novel eugenol derivatives (1-6) were tested for the inhibition of two cytosolic CA isoforms I, and II (hCA I, and II) and AChE. These compounds demonstrated effective inhibitory profiles with Ki values in ranging of 113.48-738.69nM against hCA I, 92.35-530.81nM against hCA II, and 90.10-379.57nM against AChE, respectively. On the other hand, acetazolamide clinically used as CA inhibitor, shoed Ki value of 594.11nM against hCA I, and 120.68nM against hCA II, respectively. Also, AChE was inhibited by tacrine as an AChE inhibitor at the 71.18nM level.
Collapse
Affiliation(s)
- Fevzi Topal
- Gumushane University, Gumushane Vocational School, Department of Laboratory Technologies, Gumushane, Turkey
| | - Ilhami Gulcin
- Atatürk University, Faculty of Sciences, Department of Chemistry, Erzurum, Turkey; King Saud University, Department of Zoology, College of Science, Riyadh, Saudi Arabia.
| | - Arif Dastan
- Atatürk University, Faculty of Sciences, Department of Chemistry, Erzurum, Turkey
| | - Murat Guney
- Department of Chemistry, Faculty of Science and Arts, Agri Ibrahim Cecen University, Agri, Turkey
| |
Collapse
|
23
|
Dudonné S, Dal-Pan A, Dubé P, Varin TV, Calon F, Desjardins Y. Potentiation of the bioavailability of blueberry phenolic compounds by co-ingested grape phenolic compounds in mice, revealed by targeted metabolomic profiling in plasma and feces. Food Funct 2016; 7:3421-30. [PMID: 27443888 DOI: 10.1039/c6fo00902f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The low bioavailability of dietary phenolic compounds, resulting from poor absorption and high rates of metabolism and excretion, is a concern as it can limit their potential beneficial effects on health. Targeted metabolomic profiling in plasma and feces of mice supplemented for 15 days with a blueberry extract, a grape extract or their combination revealed significantly increased plasma concentrations (3-5 fold) of blueberry phenolic metabolites in the presence of a co-ingested grape extract, associated with an equivalent decrease in their appearance in feces. Additionally, the repeated daily administration of the blueberry-grape combination significantly increased plasma phenolic concentrations (2-3-fold) compared to animals receiving only a single acute dose, with no such increase being observed with individual extracts. These findings highlight a positive interaction between blueberry and grape constituents, in which the grape extract enhanced the absorption of blueberry phenolic compounds. This study provides for the first time in vivo evidence of such an interaction occurring between co-ingested phenolic compounds from fruit extracts leading to their improved bioavailability.
Collapse
Affiliation(s)
- Stéphanie Dudonné
- Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 boulevard Hochelaga, Québec (QC) G1V0A6, Canada.
| | | | | | | | | | | |
Collapse
|
24
|
Dudonné S, Dubé P, Anhê FF, Pilon G, Marette A, Lemire M, Harris C, Dewailly E, Desjardins Y. Comprehensive analysis of phenolic compounds and abscisic acid profiles of twelve native Canadian berries. J Food Compost Anal 2015. [DOI: 10.1016/j.jfca.2015.09.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Dudonné S, Varin TV, Forato Anhê F, Dubé P, Roy D, Pilon G, Marette A, Levy É, Jacquot C, Urdaci M, Desjardins Y. Modulatory effects of a cranberry extract co-supplementation with Bacillus subtilis CU1 probiotic on phenolic compounds bioavailability and gut microbiota composition in high-fat diet-fed mice. PHARMANUTRITION 2015. [DOI: 10.1016/j.phanu.2015.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|