1
|
Cáceres-Jiménez S, Pereira-Caro G, Dobani S, Pourshahidi K, Gill CIR, Moreno-Rojas JM, Ordoñez-Díaz JL, Almutairi TM, Clifford MN, Crozier A. Bioavailability of mango (poly)phenols: An evaluation of the impact of the colon, and phenylalanine and tyrosine on the production of phenolic catabolites. Free Radic Biol Med 2024; 225:605-616. [PMID: 39426756 DOI: 10.1016/j.freeradbiomed.2024.10.289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
A mango pulp purée was ingested by ileostomists, whose colon had been removed surgically, and subjects with a full gastrointestinal (GI) tract, after which ileal fluid, urine and feces were collected over a 24 h period and analysed by UHPLC-HR-MS. The main (poly)phenols in the purée were gallotannins (356 μmol) and two hydroxy-methoxy-cinnamoyl glucose esters (43 μmol) together with the aromatic amino acids phenylalanine (22 μmol) and tyrosine (209 μmol). Analysis of ileal fluid revealed almost all the ingested gallotannins appeared to have broken down in the upper GI tract with the released benzoic acids being rapidly absorbed into the circulatory system prior to urinary excretion mainly as phase-2 metabolites. Likewise, the glucose moiety of the cinnamic acid conjugates was cleaved and the released cinnamic acids absorbed efficiently from the proximal GI tract and subjected to phase II metabolism prior to excretion. Among the main phenolics excreted after mango intake were phenylacetic and benzoic acids and hydroxybenzene catabolites which were present in lower, but none-the-less, substantial amounts, in the urine of ileostomists. This indicates that a portion of these phenolics, including the hydroxybenzene derivatives, originate from substrates absorbed in the upper GI tract and are principally products of endogenous metabolism rather than being derived from colonic microbiota-mediated catabolism. 1,2,3-Trihydroxybenzene (aka pyrogallol) was the dominant urinary catabolite in both groups. Hippuric acid excretion exceeded (poly)phenol intake indicating a significant contribution from phenylalanine and tyrosine. The aromatic amino acids, while present in the ingested pulp, can also originate from several sources including breakdown of dietary proteins in the GI tract, and endogenous breakdown of surplus mammalian proteins independent of the GI tract. The trial was registered at clinical trials.gov as NCT06182540.
Collapse
Affiliation(s)
- Salud Cáceres-Jiménez
- Departamento de Bromatología y Tecnología de Los Alimentos, Campus de Rabanales Ed. Darwin-anexo, Universidad de Córdoba, 14071, Córdoba, Spain
| | - Gema Pereira-Caro
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training, Córdoba, Spain; Foods for Health Group, Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.
| | - Sara Dobani
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, BT1 6DN, UK
| | - Kirsty Pourshahidi
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, BT1 6DN, UK
| | - Chris I R Gill
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, BT1 6DN, UK
| | - José Manuel Moreno-Rojas
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training, Córdoba, Spain; Foods for Health Group, Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain
| | - José Luis Ordoñez-Díaz
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training, Córdoba, Spain
| | - Tahani M Almutairi
- Department of Chemistry, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Michael N Clifford
- School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK; Department of Nutrition, Dietetics, and Food, Monash University, Notting Hill, Victoria, Australia
| | - Alan Crozier
- Department of Chemistry, King Saud University, 11451, Riyadh, Saudi Arabia; School of Medicine, Dentistry and Nursing, University of Glasgow, G12 8QQ, Glasgow, UK.
| |
Collapse
|
2
|
Wu S, Wu Y, Hu X, Wu F, Zhao J, Pan F, Liu X, Li Y, Ao Y, Zhuang P, Jiao J, Zheng W, Zhang Y. Fruit but not vegetable consumption is beneficial for low prevalence of colorectal polyps in a high-risk population: findings from a Chinese Lanxi Pre-colorectal Cancer Cohort study. Eur J Nutr 2024; 63:1759-1769. [PMID: 38622294 DOI: 10.1007/s00394-024-03377-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/15/2024] [Indexed: 04/17/2024]
Abstract
PURPOSE The available evidence regarding the role of fruit and vegetable consumption in the development of colorectal polyps remains inconclusive, and there is a lack of data on different histopathologic features of polyps. We aimed to evaluate the associations of fruit and vegetable consumption with the prevalence of colorectal polyps and its subtypes in a high-risk population in China. METHODS We included 6783 Chinese participants aged 40-80 years who were at high risk of colorectal cancer (CRC) in the Lanxi Pre-colorectal Cancer Cohort (LP3C). Dietary information was obtained through a validated food-frequency questionnaire (FFQ), and colonoscopy screening was used to detect colorectal polyps. Dose-response associations of fruit and vegetable intake with the prevalence of polyps were calculated using multivariate-adjusted regression models, which was reported as odds ratios (ORs) with 95% confidence intervals (CIs). RESULTS 2064 cases of colorectal polyps were ascertained in the LP3C during 2018-2019. Upon multivariable adjustments, including the diet quality, fruit consumption was inversely associated with the prevalence of polyps (P trend = 0.02). Participants in the highest tertile of fruit intake had a 25% lower risk (OR: 0.75; 95% CI 0.62‒0.92) compared to non-consumers, while vegetable consumption had no significant association with polyp prevalence (P trend = 0.86). In terms of colorectal histopathology and multiplicity, higher fruit intake was correlated with 24, 23, and 33% lower prevalence of small polyps (OR: 0.76; 95% CI 0.62‒0.94; P trend = 0.05), single polyp (OR: 0.77; 95% CI 0.62‒0.96; P trend = 0.04), and distal colon polyps (OR: 0.67; 95% CI 0.51‒0.87; P trend = 0.003), respectively. CONCLUSIONS Fresh fruit is suggested as a protective factor to prevent colorectal polyps in individuals at high risk of CRC, and should be underscored in dietary recommendations, particularly for high-risk populations.
Collapse
Affiliation(s)
- Shengzhi Wu
- Lanxi Red Cross Hospital, Jinhua, 321000, Zhejiang, China
| | - Yuqi Wu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xiaodong Hu
- Lanxi Red Cross Hospital, Jinhua, 321000, Zhejiang, China
| | - Fei Wu
- Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Jing Zhao
- Lanxi Red Cross Hospital, Jinhua, 321000, Zhejiang, China
| | - Fuzhen Pan
- Lanxi Hospital of Traditional Chinese Medicine, Jinhua, 321100, Zhejiang, China
| | - Xiaohui Liu
- Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Yin Li
- Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Yang Ao
- Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Pan Zhuang
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Weifang Zheng
- Lanxi Hospital of Traditional Chinese Medicine, Jinhua, 321100, Zhejiang, China.
| | - Yu Zhang
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
3
|
Clifford MN, Ludwig IA, Pereira-Caro G, Zeraik L, Borges G, Almutairi TM, Dobani S, Bresciani L, Mena P, Gill CIR, Crozier A. Exploring and disentangling the production of potentially bioactive phenolic catabolites from dietary (poly)phenols, phenylalanine, tyrosine and catecholamines. Redox Biol 2024; 71:103068. [PMID: 38377790 PMCID: PMC10891336 DOI: 10.1016/j.redox.2024.103068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
Following ingestion of fruits, vegetables and derived products, (poly)phenols that are not absorbed in the upper gastrointestinal tract pass to the colon, where they undergo microbiota-mediated ring fission resulting in the production of a diversity of low molecular weight phenolic catabolites, which appear in the circulatory system and are excreted in urine along with their phase II metabolites. There is increasing interest in these catabolites because of their potential bioactivity and their use as biomarkers of (poly)phenol intake. Investigating the fate of dietary (poly)phenolics in the colon has become confounded as a result of the recent realisation that many of the phenolics appearing in biofluids can also be derived from the aromatic amino acids, l-phenylalanine and l-tyrosine, and to a lesser extent catecholamines, in reactions that can be catalysed by both colonic microbiota and endogenous mammalian enzymes. The available evidence, albeit currently rather limited, indicates that substantial amounts of phenolic catabolites originate from phenylalanine and tyrosine, while somewhat smaller quantities are produced from dietary (poly)phenols. This review outlines information on this topic and assesses procedures that can be used to help distinguish between phenolics originating from dietary (poly)phenols, the two aromatic amino acids and catecholamines.
Collapse
Affiliation(s)
- Michael N Clifford
- School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom; Department of Nutrition, Dietetics, and Food, Monash University, Notting Hill, Victoria, Australia
| | - Iziar A Ludwig
- Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Gema Pereira-Caro
- Department of Agroindustry and Food Quality, IFAPA-Alameda Del Obispo, Córdoba, Spain; Foods for Health Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Laila Zeraik
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | | | | | - Sara Dobani
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy; Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, United Kingdom
| | - Letizia Bresciani
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, Parma, Italy
| | - Chris I R Gill
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, United Kingdom
| | - Alan Crozier
- Department of Chemistry, King Saud University, Riyadh, Saudi Arabia; School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
4
|
Vahapoglu B, Erskine E, Gultekin Subasi B, Capanoglu E. Recent Studies on Berry Bioactives and Their Health-Promoting Roles. Molecules 2021; 27:108. [PMID: 35011338 PMCID: PMC8747047 DOI: 10.3390/molecules27010108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Along with the increased knowledge about the positive health effects of food bioactives, the eating habits of many individuals have changed to obtain higher nutritional benefits from foods. Fruits are among the most preferred food materials in this regard. In particular, berry fruits are important sources in the diet in terms of their high nutritional content including vitamins, minerals, and phenolic compounds. Berry fruits have remedial effects on several diseases and these health-promoting impacts are associated with their phenolic compounds which may vary depending on the type and variety of the fruit coupled with other factors including climate, agricultural conditions, etc. Most of the berries have outstanding beneficial roles in many body systems of humans such as gastrointestinal, cardiovascular, immune, and nervous systems. Furthermore, they are effective on some metabolic disorders and several types of cancer. In this review, the health-promoting effects of bioactive compounds in berry fruits are presented and the most recent in vivo, in vitro, and clinical studies are discussed from a food science and nutrition point of view.
Collapse
Affiliation(s)
- Beyza Vahapoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (B.V.); (E.E.); (B.G.S.)
| | - Ezgi Erskine
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (B.V.); (E.E.); (B.G.S.)
| | - Busra Gultekin Subasi
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (B.V.); (E.E.); (B.G.S.)
- Hafik Kamer Ornek Vocational School, Cumhuriyet University, Sivas 58140, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (B.V.); (E.E.); (B.G.S.)
| |
Collapse
|
5
|
Ex vivo fecal fermentation of human ileal fluid collected after raspberry consumption modifies (poly)phenolics and modulates genoprotective effects in colonic epithelial cells. Redox Biol 2021; 40:101862. [PMID: 33486151 PMCID: PMC7823050 DOI: 10.1016/j.redox.2021.101862] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Diets rich in fruit and vegetables are associated with a decreased incidence of colorectal cancer (CRC) due, in part, to the bioactive (poly)phenolic components and their microbiota-mediated metabolites. This study investigated how such compounds, derived from ingested raspberries in the gastrointestinal tract, may exert protective effects by reducing DNA damage. Ileal fluids collected pre- and post-consumption of 300 g of raspberries by ileostomists (n = 11) were subjected to 24 h ex vivo fermentation with fecal inoculum to simulate interaction with colonic microbiota. The impact of fermentation on (poly)phenolics in ileal fluid was determined and the bioactivity of ileal fluids pre- and post fermentation investigated. (Poly)phenolic compounds including sanguiin H-6, sanguiin H-10 and cyanidin-3-O-sophoroside decreased significantly during fermentation while, in contrast, microbial catabolites, including 3-(3′-hydroxyphenyl)propanoic acid, 3-hydroxybenzoic acid and benzoic acid increased significantly. The post-raspberry ileal fermentate from 9 of the 11 ileostomates significantly decreased DNA damage (~30%) in the CCD 841 CoN normal cell line using an oxidative challenge COMET assay. The raspberry ileal fermentates also modulated gene expression of the nuclear factor 2–antioxidant responsive element (Nrf2-ARE) pathway involved in oxidative stress cytoprotection, namely Nrf2, NAD(P)H dehydrogenase, quinone-1 and heme oxygenase-1. Four of the phenolic catabolites were assessed individually, each significantly reducing DNA damage from an oxidative challenge over a physiologically relevant 10–100 μM range. They also induced a differential pattern of expression of key genes in the Nrf2-ARE pathway in CCD 841 CoN cells. The study indicates that the colon-available raspberry (poly)phenols and their microbial-derived catabolites may play a role in protection against CRC in vivo. Health effects of dietary (poly)phenols linked to interactions within the GI tract. Ileostomy-based bioavailability studies allow effective interrogation of the GI tract. Fecal fermentation of raspberry-enriched ileal fluid, increases phenolic content. Raspberry ileal fluid fermentates & phenolic acids reduce DNA damage in colonocytes. Cytoprotective Nrf2-ARE pathway modulated by ileal fluid fermentates & phenolic acids.
Collapse
|
6
|
Oliveira D, Latimer C, Parpot P, Gill CIR, Oliveira R. Antioxidant and antigenotoxic activities of Ginkgo biloba L. leaf extract are retained after in vitro gastrointestinal digestive conditions. Eur J Nutr 2019; 59:465-476. [PMID: 30721412 DOI: 10.1007/s00394-019-01915-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 01/25/2019] [Indexed: 10/27/2022]
Abstract
PURPOSE The recognized biological properties of Ginkgo biloba extracts potentiate their utilization as an ingredient for functional foods. However, the digestive conditions can affect the chemical composition of the extracts and consequently their biological properties, which can lead to food safety problems. Thus, the impact of in vitro-simulated upper gastrointestinal tract digestion on the chemical composition and bioactivity of Ginkgo biloba leaf extract (GBE) was evaluated. METHODS Physicochemical conditions of human digestion were simulated in vitro, and its impact on the chemical composition of GBE was investigated by electrospray ionization-mass spectrometry. The persistence of bioactivity was investigated by subjecting GBE and the in vitro digested extract (DGBE) to the same methodology. Antioxidant properties were assessed using 2',7'-dichlorofluorescein diacetate to measure the intracellular oxidation of Schizosaccharomyces pombe cells pre-incubated with GBE or DGBE and exposed to H2O2. Antigenotoxicity was tested by comet assay in HT-29 colon cancer cells pre-incubated with GBE or DGBE and challenged with H2O2. RESULTS The chemical analysis revealed a considerable change in chemical composition upon digestion. Pre-incubation with GBE or DGBE attenuated the H2O2-imposed intracellular oxidation in wild-type S. pombe cells, unlike the oxidative stress response-affected mutants sty1 and pap1, and decreased H2O2-induced DNA damage in HT-29 cells. The extracts did not induce toxicity in these eukaryotic models. CONCLUSION The chemical composition of GBE was affected by in vitro digestion, but the antioxidant and antigenotoxic activities persisted. Therefore, G. biloba extract may be suitable for use as food additive and contribute to a healthy colon.
Collapse
Affiliation(s)
- Daniela Oliveira
- Department of Biology, Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Cheryl Latimer
- Nutrition Innovation Centre for Food and Health, Centre for Molecular Biosciences, University of Ulster, Cromore Road, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Pier Parpot
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Chris I R Gill
- Nutrition Innovation Centre for Food and Health, Centre for Molecular Biosciences, University of Ulster, Cromore Road, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Rui Oliveira
- Department of Biology, Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal. .,Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
7
|
Agudelo CD, Luzardo-Ocampo I, Campos-Vega R, Loarca-Piña G, Maldonado-Celis ME. Bioaccessibility during In Vitro Digestion and Antiproliferative Effect of Bioactive Compounds from Andean Berry ( Vaccinium meridionale Swartz) Juice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7358-7366. [PMID: 29913068 DOI: 10.1021/acs.jafc.8b01604] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Berry consumption is associated with colorectal-cancer chemoprevention, but digestive conditions can affect this property. The bioaccessibility and apparent permeability coefficients of bioactive compounds from Andean Berry Juice (ABJ) after in vitro gastrointestinal digestion and colonic fermentation were analyzed. The antiproliferative effect of the fermented nondigestible fraction was evaluated against SW480 colon-adenocarcinoma cells. Gallic acid displayed the highest bioaccessibility in the mouth, stomach, small intestine, and colon. However, chlorogenic acid exhibited the highest apparent permeability coefficients (up to 1.98 × 10-4 cm/s). The colonic-fermentation fraction showed an increase of ≥50% antiproliferative activity against SW480 cells (19.32%, v/v), equivalent to those of gallic acid (13.04 μg/g), chlorogenic acid (7.07 μg/g), caffeic acid (0.40 μg/g), ellagic acid (7.32 μg/g), rutin (6.50 μg/g), raffinose (0.14 mg/g), stachyose (0.70 mg/g), and xylose (9.41 mg/g). Bioactive compounds from ABJ are bioaccessible through the gastrointestinal tract and colon fermentation, resulting in antiproliferative activity.
Collapse
Affiliation(s)
- Carlos D Agudelo
- Instituto de Biología, Facultad de Ciencias Exactas y Naturales , Universidad de Antioquia , Calle 67 #53-108 , Medellín AA 1226 , Colombia
| | - Ivan Luzardo-Ocampo
- Programa de Posgrado del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry , Universidad Autónoma de Querétaro , Santiago de Querétaro 76010 , México
| | - Rocio Campos-Vega
- Programa de Posgrado del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry , Universidad Autónoma de Querétaro , Santiago de Querétaro 76010 , México
| | - Guadalupe Loarca-Piña
- Programa de Posgrado del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry , Universidad Autónoma de Querétaro , Santiago de Querétaro 76010 , México
| | - María E Maldonado-Celis
- Escuela de Nutrición y Dietética , Universidad de Antioquia , Ciudadela de Robledo Carrera 75 # 65-87 , Medellín AA 1226 , Colombia
| |
Collapse
|
8
|
Li JM, Lee YC, Li CC, Lo HY, Chen FY, Chen YS, Hsiang CY, Ho TY. Vanillin-Ameliorated Development of Azoxymethane/Dextran Sodium Sulfate-Induced Murine Colorectal Cancer: The Involvement of Proteasome/Nuclear Factor-κB/Mitogen-Activated Protein Kinase Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5563-5573. [PMID: 29790745 DOI: 10.1021/acs.jafc.8b01582] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Vanillin is a natural dietary flavoring widely used in the food industry. Colorectal cancer (CRC) is one of the common malignancies in the world. Chronic intestinal inflammation is a risk factor for the development of CRC. We have previously found that vanillin improves and prevents colitis in mice. Here we evaluated the inhibitory activities of vanillin on a mouse model of colitis-induced CRC. Mice were challenged intraperitoneally with azoxymethane (AOM) and orally with dextran sodium sulfate (DSS). Various dosages of vanillin were orally administered for 13 consecutive weeks. Vanillin alleviated the development of tumors in AOM/DSS-induced mice. The total number of tumors in 100 mg/kg vanillin group was significantly reduced by 57.14 ± 7.67%, compared with sham group. Gene expression analysis showed that vanillin downregulated the expression levels of proteasome genes in colon tissues. Moreover, vanillin at 10 mM significantly suppressed proteasome activities in HCT-116 cells by 41.27 ± 0.41%. Furthermore, vanillin diminished the phosphorylation of mitogen-activated protein kinases (MAPKs) and reduced the number of p65-positive cells, proliferating cells, and granulocytes in colon tissues with statistical significance. In conclusion, our data suggested that vanillin was a bioactive compound that ameliorated the development of AOM/DSS-induced colon cancer in mice. Moreover, the amelioration of vanillin might be associated with the downregulation of proteasome, nuclear factor-κB, and MAPK pathways.
Collapse
Affiliation(s)
- Jung-Miao Li
- Graduate Institute of Chinese Medicine , China Medical University , Taichung 40402 , Taiwan
- Department of Chinese Medicine , Show Chwan Memorial Hospital , Changhua 50008 , Taiwan
| | - Yu-Chen Lee
- Graduate Institute of Acupuncture Science , China Medical University , Taichung 40402 , Taiwan
| | - Chia-Cheng Li
- Graduate Institute of Chinese Medicine , China Medical University , Taichung 40402 , Taiwan
| | - Hsin-Yi Lo
- Graduate Institute of Chinese Medicine , China Medical University , Taichung 40402 , Taiwan
| | - Feng-Yuan Chen
- Graduate Institute of Chinese Medicine , China Medical University , Taichung 40402 , Taiwan
| | - Yi-Siou Chen
- Department of Microbiology , China Medical University , Taichung 40402 , Taiwan
| | - Chien-Yun Hsiang
- Department of Microbiology , China Medical University , Taichung 40402 , Taiwan
| | - Tin-Yun Ho
- Graduate Institute of Chinese Medicine , China Medical University , Taichung 40402 , Taiwan
- Department of Health and Nutrition Biotechnology , Asia University , Taichung 41354 , Taiwan
| |
Collapse
|
9
|
McDougall GJ, Allwood JW, Pereira-Caro G, Brown EM, Latimer C, Dobson G, Stewart D, Ternan NG, Lawther R, O'Connor G, Rowland I, Crozier A, Gill CIR. The composition of potentially bioactive triterpenoid glycosides in red raspberry is influenced by tissue, extraction procedure and genotype. Food Funct 2018; 8:3469-3479. [PMID: 28884768 DOI: 10.1039/c7fo00846e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The beneficial effects of consumption of berry fruits on a range of chronic diseases has been attributed (at least in part) to the presence of unique phytochemicals. Recently, we identified novel ursolic acid-based triterpenoid glycosides (TTPNs) in raspberry fruit and demonstrated their survival in human ileal fluids after feeding which confirmed their colon-availability in vivo. In this paper, in vitro digestion studies demonstrated that certain TTPNs were stable under gastrointestinal conditions and confirmed that these components may have been responsible for bioactivity noted in previous studies. Sequential extractions of raspberry puree, isolated seeds and unseeded puree showed that certain TTPN components (e.g. peak T1 m/z 679, and T2 m/z 1358) had different extractabilities in water/solvent mixes and were differentially associated with the seeds. Purified seed TTPNs (mainly T1 and T2) were shown to be anti-genotoxic in HT29 and CCD841 cell based in vitro colonocyte models. Further work confirmed that the seeds contained a wider range of TTPN-like components which were also differentially extractable in water/solvent mixes. This differential extractability could influence the TTPN composition and potential bioactivity of the extracts. There was considerable variation in total content of TTPNs (∼3-fold) and TTPN composition across 13 Rubus genotypes. Thus, TTPNs are likely to be present in raspberry juices and common extracts used for bioactivity studies and substantial variation exists in both content and composition due to genetics, tissue source or extraction conditions, which may all affect observed bioactivity.
Collapse
Affiliation(s)
- Gordon J McDougall
- Environmental and Biochemical Sciences Group, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Neri-Numa IA, Soriano Sancho RA, Pereira APA, Pastore GM. Small Brazilian wild fruits: Nutrients, bioactive compounds, health-promotion properties and commercial interest. Food Res Int 2018; 103:345-360. [DOI: 10.1016/j.foodres.2017.10.053] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/19/2017] [Accepted: 10/28/2017] [Indexed: 01/19/2023]
|
11
|
Owczarek K, Lewandowska U. The Impact of Dietary Polyphenols on COX-2 Expression in Colorectal Cancer. Nutr Cancer 2017; 69:1105-1118. [PMID: 29068698 DOI: 10.1080/01635581.2017.1367940] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polyphenols are natural compounds with high structural diversity whose common occurrence in plants renders them intrinsic dietary components. They are known to be secondary metabolites characterized by a wide spectrum of biological activities, and a growing body of evidence indicates they have anti-inflammatory potential. It is well known that inflammation plays a key role in many chronic diseases such as circulatory diseases, pulmonary diseases, autoimmune diseases, diabetes, cancer, and neurodegenerative diseases. Polyphenols influence the inflammatory process by controlling and inhibiting pro-inflammatory cytokines such as IL-1β, IL-6, IL-8, and TNF-α, and cyclooxygenase-2 (COX-2) enzyme involved in the metabolism of arachidonic acid. Furthermore, polyphenols exhibit anti-inflammatory activity on many levels via NF-κB inhibition, and MAPK, iNOS, and growth factors regulation. This paper reviews the current state of knowledge concerning the potential of various dietary polyphenols to inhibit the effects of COX-2 in colon cancer, by examining the available evidence regarding the efficacy and safety of these compounds obtained from in vitro and animal studies.
Collapse
Affiliation(s)
- Katarzyna Owczarek
- a Department of Biochemistry , Faculty of Medicine, Medical University of Lodz , Lodz , Poland
| | - Urszula Lewandowska
- a Department of Biochemistry , Faculty of Medicine, Medical University of Lodz , Lodz , Poland
| |
Collapse
|
12
|
McDougall GJ, Allwood JW, Pereira-Caro G, Brown EM, Verrall S, Stewart D, Latimer C, McMullan G, Lawther R, O'Connor G, Rowland I, Crozier A, Gill CIR. Novel colon-available triterpenoids identified in raspberry fruits exhibit antigenotoxic activities in vitro. Mol Nutr Food Res 2016; 61. [PMID: 27613504 DOI: 10.1002/mnfr.201600327] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 12/20/2022]
Abstract
SCOPE Ileostomy studies provide a unique insight into digestion of food, allowing identification of physiologically relevant dietary phytochemicals and their metabolites important to gut health. We previously reported the consistent increase of components in ileal fluids of ileostomates after consumption of raspberries with use of nontargeted LC-MSn techniques and data deconvolution software highlighting two major unknown components (m/z 355 and 679). METHODS AND RESULTS In-depth LC-MSn analyses suggested that the ileal m/z 355 components were p-coumaroyl glucarates. These compounds have not been identified previously and were confirmed in raspberry extracts after partial purification. The major ileal component with m/z 679 was a glycoside with an aglycone of m/z 517 and was present as two peaks in extracts of whole puree, unseeded puree, and isolated seeds. These components were purified using Sephadex LH20 and C18 SPE units and identified as major, novel raspberry triterpenoid glycosides. This triterpenoid-enriched fraction (100 nM) protected against H2 O2 -induced DNA damage in both colon cancer and normal cell lines and altered expression of cytoprotective genes. CONCLUSION The presence of these novel raspberry triterpenoid components in ileal fluids indicates that they would be colon-available in vivo, so confirmation of their anticancer bioactivities is of key physiological relevance.
Collapse
Affiliation(s)
- Gordon J McDougall
- Environmental and Biochemical Sciences Group, Enhancing Crop Productivity and Utilisation Theme, The James Hutton Institute, Dundee, Scotland
| | - J William Allwood
- Environmental and Biochemical Sciences Group, Enhancing Crop Productivity and Utilisation Theme, The James Hutton Institute, Dundee, Scotland
| | - Gema Pereira-Caro
- Postharvest, Technology and Agrifood Industry Area, IFAPA, Córdoba, Spain
| | - Emma M Brown
- Northern Ireland Centre for Food and Health, Centre for Molecular Biosciences, University of Ulster, Coleraine, Northern Ireland, UK
| | - Susan Verrall
- Environmental and Biochemical Sciences Group, Enhancing Crop Productivity and Utilisation Theme, The James Hutton Institute, Dundee, Scotland
| | - Derek Stewart
- Environmental and Biochemical Sciences Group, Enhancing Crop Productivity and Utilisation Theme, The James Hutton Institute, Dundee, Scotland.,NIBIO, Norsk Institut for Bioøkonomi, Bodø, Norway
| | - Cheryl Latimer
- Northern Ireland Centre for Food and Health, Centre for Molecular Biosciences, University of Ulster, Coleraine, Northern Ireland, UK
| | - Geoff McMullan
- Northern Ireland Centre for Food and Health, Centre for Molecular Biosciences, University of Ulster, Coleraine, Northern Ireland, UK
| | - Roger Lawther
- Altnagelvin Area Hospital, Western Health and Social Care Trust, Londonderry, UK
| | - Gloria O'Connor
- Altnagelvin Area Hospital, Western Health and Social Care Trust, Londonderry, UK
| | - Ian Rowland
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Alan Crozier
- Department of Nutrition, University of California, Davis, CA, USA
| | - Chris I R Gill
- Northern Ireland Centre for Food and Health, Centre for Molecular Biosciences, University of Ulster, Coleraine, Northern Ireland, UK
| |
Collapse
|
13
|
da Silva RA, Dihl RR, Dias LP, Costa MP, de Abreu BRR, Cunha KS, Lehmann M. DNA damage protective effect of honey-sweetened cashew apple nectar in Drosophila melanogaster. Genet Mol Biol 2016; 39:431-41. [PMID: 27560988 PMCID: PMC5004822 DOI: 10.1590/1678-4685-gmb-2015-0129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 02/11/2016] [Indexed: 11/25/2022] Open
Abstract
Fruits and derivatives, such as juices, are complex mixtures of chemicals, some of which may have mutagenic and/or carcinogenic potential, while others may have antimutagenic and/or anticancer activities. The modulating effects of honey-sweetened cashew apple nectar (HSCAN), on somatic mutation and recombination induced by ethyl methanesulfonate (EMS) and mitomycin C (MMC) were evaluated with the wing spot test in Drosophila melanogaster using co- and post-treatment protocols. Additionally, the antimutagenic activity of two HSCAN components, cashew apple pulp and honey, in MMC-induced DNA damage was also investigated. HSCAN reduced the mutagenic activity of both EMS and MMC in the co-treatment protocol, but had a co-mutagenic effect when post-administered. Similar results were also observed with honey on MMC mutagenic activity. Cashew apple pulp was effective in exerting protective or enhancing effects on the MMC mutagenicity, depending on the administration protocol and concentration used. Overall, these results indicate that HSCAN, cashew apple and honey seem capable of modulating not only the events that precede the induced DNA damages, but also the Drosophila DNA repair processes involved in the correction of EMS and MMC-induced damages.
Collapse
Affiliation(s)
- Robson Alves da Silva
- Laboratório de Toxicidade Genética (TOXIGEN), Programa de
Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde (PPGBIOSAÚDE),
Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Piauí (IFPI),
Teresina, PI, Brazil
| | - Rafael Rodrigues Dihl
- Laboratório de Toxicidade Genética (TOXIGEN), Programa de
Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde (PPGBIOSAÚDE),
Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil
| | - Lucas Pinheiro Dias
- Instituto Federal de Educação, Ciência e Tecnologia do Piauí (IFPI),
Teresina, PI, Brazil
| | - Maiane Papke Costa
- Laboratório de Toxicidade Genética (TOXIGEN), Programa de
Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde (PPGBIOSAÚDE),
Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil
| | - Bianca Regina Ribas de Abreu
- Laboratório de Toxicidade Genética (TOXIGEN), Programa de
Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde (PPGBIOSAÚDE),
Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil
| | - Kênya Silva Cunha
- Laboratório de Genética Toxicológica, Departamento de Bioquímica e
Biologia Molecular, Instituto de Ciências Biológicas (ICB), Universidade Federal de
Goiás (UFG), Goiânia, GO, Brazil
| | - Mauricio Lehmann
- Laboratório de Toxicidade Genética (TOXIGEN), Programa de
Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde (PPGBIOSAÚDE),
Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil
| |
Collapse
|
14
|
Afrin S, Gasparrini M, Forbes-Hernandez TY, Reboredo-Rodriguez P, Mezzetti B, Varela-López A, Giampieri F, Battino M. Promising Health Benefits of the Strawberry: A Focus on Clinical Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:4435-49. [PMID: 27172913 DOI: 10.1021/acs.jafc.6b00857] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The potential health benefits associated with dietary intake of fruits have attracted increasing interest. Among berries, the strawberry is a rich source of several nutritive and non-nutritive bioactive compounds, which are implicated in various health-promoting and disease preventive effects. A plethora of studies have examined the benefits of strawberry consumption, such as prevention of inflammation disorders and oxidative stress, reduction of obesity related disorders and heart disease risk, and protection against various types of cancer. This review provides an overview of their nutritional and non-nutritional bioactive compounds and which factors affect their content in strawberries. In addition, the bioavailability and metabolism of major strawberry phytochemicals as well as their actions in combating many pathologies, including cancer, metabolic syndrome, cardiovascular disease, obesity, diabetes, neurodegeneration, along with microbial pathogenesis have been reviewed, with a particular attention to human studies.
Collapse
Affiliation(s)
- Sadia Afrin
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche , 60131, Ancona, Italy
| | - Massimiliano Gasparrini
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche , 60131, Ancona, Italy
| | - Tamara Y Forbes-Hernandez
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche , 60131, Ancona, Italy
- Area de Nutrición y Salud, Universidad Internacional Iberoamericana (UNINI) , Campeche, C.P. 24040, Mexico
| | - Patricia Reboredo-Rodriguez
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche , 60131, Ancona, Italy
- Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo , E-32004 Ourense, Spain
| | - Bruno Mezzetti
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche , Via Ranieri 65, 60131 Ancona, Italy
| | - Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada , 18071 Granada, Spain
| | - Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche , 60131, Ancona, Italy
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche , 60131, Ancona, Italy
- Centre for Nutrition & Health, Universidad Europea del Atlantico (UEA) , Santander 39011, Spain
| |
Collapse
|
15
|
Afrin S, Giampieri F, Gasparrini M, Forbes-Hernandez TY, Varela-López A, Quiles JL, Mezzetti B, Battino M. Chemopreventive and Therapeutic Effects of Edible Berries: A Focus on Colon Cancer Prevention and Treatment. Molecules 2016; 21:169. [PMID: 26840292 PMCID: PMC6273426 DOI: 10.3390/molecules21020169] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 01/22/2016] [Accepted: 01/26/2016] [Indexed: 12/15/2022] Open
Abstract
Colon cancer is one of the most prevalent diseases across the world. Numerous epidemiological studies indicate that diets rich in fruit, such as berries, provide significant health benefits against several types of cancer, including colon cancer. The anticancer activities of berries are attributed to their high content of phytochemicals and to their relevant antioxidant properties. In vitro and in vivo studies have demonstrated that berries and their bioactive components exert therapeutic and preventive effects against colon cancer by the suppression of inflammation, oxidative stress, proliferation and angiogenesis, through the modulation of multiple signaling pathways such as NF-κB, Wnt/β-catenin, PI3K/AKT/PKB/mTOR, and ERK/MAPK. Based on the exciting outcomes of preclinical studies, a few berries have advanced to the clinical phase. A limited number of human studies have shown that consumption of berries can prevent colorectal cancer, especially in patients at high risk (familial adenopolyposis or aberrant crypt foci, and inflammatory bowel diseases). In this review, we aim to highlight the findings of berries and their bioactive compounds in colon cancer from in vitro and in vivo studies, both on animals and humans. Thus, this review could be a useful step towards the next phase of berry research in colon cancer.
Collapse
Affiliation(s)
- Sadia Afrin
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
| | - Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
| | - Massimiliano Gasparrini
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
| | - Tamara Y Forbes-Hernandez
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
| | - Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., Armilla 18100, Spain.
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., Armilla 18100, Spain.
| | - Bruno Mezzetti
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Via Ranieri 65, Ancona 60131, Italy.
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
- Centre for Nutrition & Health, Universidad Europea del Atlantico (UEA), Santander 39011, Spain.
| |
Collapse
|
16
|
Novel raspberry triterpenoids with potential anti-cancer effects. Proc Nutr Soc 2016. [DOI: 10.1017/s0029665116000331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Nowak A, Czyżowska A, Stańczyk M. Protective activity of probiotic bacteria against 2-amino-3-methyl-3H-imidazo[4,5-f]quinoline (IQ) and 2-amino-1-methyl-6-phenyl-1H-imidazo[4,5-b]pyridine (PhIP) - an in vitro study. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32:1927-38. [PMID: 26295367 DOI: 10.1080/19440049.2015.1084651] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Heterocyclic aromatic amines (HAAs) are carcinogenic compounds present in a typical Western diet rich in thermally processed meat. These nutritional factors can modulate the cytotoxicity of faecal water (FW) and induce tumours in the human gastrointestinal tract. Supplementation with probiotics is promising in terms of reducing the harmful effects of HAAs in the human body. The aim of the study was in vitro assessment of the protective activity of the probiotic strains Lb. rhamnosus 0900, Lb. rhamnosus 0908, Lb. casei 0919 and Lb. casei DN 114001 against IQ (2-amino-3-methyl-3H-imidazo[4,5-f]quinoline) and PhIP (2-amino-1-methyl-6-phenyl-1H-imidazo[4,5-b]pyridine) after incubation with faeces from 15 persons aged 4 months to 82 years (children, adults and the elderly). The highest mean cytotoxicity of FW was observed for the elderly (63.2% ± 3.7%) and the lowest for children (28.0% ± 9.5%), as estimated by a neutral red uptake assay. The probiotics lowered the average cytotoxicity of FW exposed to IQ or PhIP. The concentration of IQ and PhIP in FW was most effectively reduced by Lb. rhamnosus 0900 (47.5%) and Lb. casei 0919 (45.8%), respectively, as determined by high -performance liquid chromatography. All the tested strains bound PhIP to a higher extent than IQ. In an alkaline comet assay, Lb. casei 0919 and Lb. rhamnosus 0908 displayed the strongest protective effect against IQ and PhIP (up to 80% reduction of DNA damage). Also in a comet assay, Lb. rhamnosus 0908 exhibited antioxidative activity toward H2O2 and PhIP (up to 63% and 69.5% reduction of oxidative DNA damage, respectively). The protective activity of the probiotic strains was specific to a given person's FW, which implies the involvement of intestinal microbiota in the process.
Collapse
Affiliation(s)
- Adriana Nowak
- a Institute of Fermentation Technology and Microbiology , Lodz University of Technology , Lodz , Poland
| | - Agata Czyżowska
- a Institute of Fermentation Technology and Microbiology , Lodz University of Technology , Lodz , Poland
| | | |
Collapse
|
18
|
Strawberry phytochemicals inhibit azoxymethane/dextran sodium sulfate-induced colorectal carcinogenesis in Crj: CD-1 mice. Nutrients 2015; 7:1696-715. [PMID: 25763529 PMCID: PMC4377876 DOI: 10.3390/nu7031696] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 01/16/2015] [Accepted: 02/26/2015] [Indexed: 01/04/2023] Open
Abstract
Human and experimental colon carcinogenesis are enhanced by a pro-inflammatory microenvironment. Pharmacologically driven chemopreventive agents and dietary variables are hypothesized to have future roles in the prevention of colon cancer by targeting these processes. The current study was designed to determine the ability of dietary lyophilized strawberries to inhibit inflammation-promoted colon carcinogenesis in a preclinical animal model. Mice were given a single i.p. injection of azoxymethane (10 mg kg−1 body weight). One week after injection, mice were administered 2% (w/v) dextran sodium sulfate in drinking water for seven days and then an experimental diet containing chemically characterized lyophilized strawberries for the duration of the bioassay. Mice fed control diet, or experimental diet containing 2.5%, 5.0% or 10.0% strawberries displayed tumor incidence of 100%, 64%, 75% and 44%, respectively (p < 0.05). The mechanistic studies demonstrate that strawberries reduced expression of proinflammatory mediators, suppressed nitrosative stress and decreased phosphorylation of phosphatidylinositol 3-kinase, Akt, extracellular signal-regulated kinase and nuclear factor kappa B. In conclusion, strawberries target proinflammatory mediators and oncogenic signaling for the preventive efficacies against colon carcinogenesis in mice. This works supports future development of fully characterized and precisely controlled functional foods for testing in human clinical trials for this disease.
Collapse
|
19
|
Michel P, Dobrowolska A, Kicel A, Owczarek A, Bazylko A, Granica S, Piwowarski JP, Olszewska MA. Polyphenolic Profile, Antioxidant and Anti-Inflammatory Activity of Eastern Teaberry (Gaultheria procumbens L.) Leaf Extracts. Molecules 2014; 19:20498-20520. [PMID: 25493634 PMCID: PMC6271927 DOI: 10.3390/molecules191220498] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 11/28/2014] [Accepted: 12/01/2014] [Indexed: 01/01/2023] Open
Abstract
Dry leaf extracts of eastern teaberry (Gaultheria procumbens L.) were evaluated as a source of bioactive phytocompounds through systematic activity testing and phytochemical profiling. The antioxidant efficiency was tested using five complementary in vitro models (DPPH; FRAP; linoleic acid (LA) peroxidation assay; O2•− and H2O2 scavenging tests) in parallel with standard antioxidants. The 75% methanol extract and its diethyl ether, ethyl acetate (EAF), n-butanol and water fractions exhibited the dose-dependent responses in all assays, with the highest capacities found for EAF (DPPH EC50 = 2.9 μg/mL; FRAP = 12.8 mmol Fe2+/g; IC50 for LA-peroxidation = 123.9 μg/mL; O2•− SC50 = 3.9 μg/mL; H2O2 SC50 = 7.2 μg/mL). The EAF had also the highest anti-inflammatory activity in the inhibition tests of lipoxygenase and hyaluronidase (60.14% and 21.83% effects, respectively, at the concentration of 100 μg/mL). Activity parameters of the extracts correlated strongly with the levels of total phenolics (72.4–270.7 mg GAE/g), procyanidins, and phenolic acids, whereas for flavonoids only moderate effects were observed. Comprehensive UHPLC-PDA-ESI-MS3 and HPLC-PDA studies led to the identification of 35 polyphenols with a procyanidin A-type trimer, quercetin 3-O-glucuronide, isomers of caffeoylquinic acids, and (‒)-epicatechin being the dominant components. Significant activity levels, high phenolic contents and high extraction yields (39.4%–42.5% DW for defatted and crude methanol extracts, respectively) indicate the value of eastern teaberry leaves as bioactive products.
Collapse
Affiliation(s)
- Piotr Michel
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszyńskiego St., Lodz 90-151, Poland.
| | - Anna Dobrowolska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszyńskiego St., Lodz 90-151, Poland.
| | - Agnieszka Kicel
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszyńskiego St., Lodz 90-151, Poland.
| | - Aleksandra Owczarek
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszyńskiego St., Lodz 90-151, Poland.
| | - Agnieszka Bazylko
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Warsaw Medical University, 1 Banacha St., Warsaw 02-097, Poland.
| | - Sebastian Granica
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Warsaw Medical University, 1 Banacha St., Warsaw 02-097, Poland.
| | - Jakub P Piwowarski
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Warsaw Medical University, 1 Banacha St., Warsaw 02-097, Poland.
| | - Monika A Olszewska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszyńskiego St., Lodz 90-151, Poland.
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Intake of dietary phytochemicals has frequently been associated with health benefits. Noninfectious diseases including cardiovascular disease (CVD), cancer and diabetes are major causes of death, whereas dementia cases are also increasing to 'epidemic' proportion. This review will focus on recent progress on mechanisms underlying the potential role of dietary phytochemicals in CVD, diabetes, cancer and dementia, with consideration of the latest clinical data. RECENT FINDINGS The association of tea (Camellia sinensis), particularly catechins, with reported mechanistic effects for CVD, diabetes, cancer and cognition contributes to our understanding of the suggested benefits of tea consumption on health from limited and inconclusive clinical trial and epidemiological data. Resveratrol, which occurs in grapes (Vitis vinifera) and wine, and curcumin, a component of turmeric (Curcuma longa), are also emerging as potentially relevant to health, particularly for CVD and dementia, with some promising data also concluded for curcumin in cancer. Other phytochemicals mechanistically relevant for health include anthocyanins, isoflavones and glucosinolates, which are also discussed. SUMMARY Evidence for the role of phytochemicals in health and disease is growing, but associations between phytochemicals and disease need to be more firmly understood and established from more robust clinical data using preparations that have been phytochemically characterized.
Collapse
|
21
|
Brown EM, Nitecki S, Pereira-Caro G, McDougall GJ, Stewart D, Rowland I, Crozier A, Gill CIR. Comparison of in vivo and in vitro digestion on polyphenol composition in lingonberries: potential impact on colonic health. Biofactors 2014; 40:611-23. [PMID: 25359330 DOI: 10.1002/biof.1173] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/22/2014] [Indexed: 01/27/2023]
Abstract
The composition of polyphenols in ileal fluid samples obtained from an ileostomy subject after lingonberry intake was compared with lingonberry extracts obtained after simulated in vitro digestion (IVDL) and subsequent faecal fermentation (IVFL). HPLC-PDA-MS/MS analysis confirmed similar patterns of lingonberry (poly)phenolic metabolism after the in vivo and in vitro digestion, with reduced recovery of anthocyanins and a similar pattern of recovery for proanthocyanidins observed for both methods of digestion. On the other hand, the IVFL sample contained none of the original (poly)phenolic components but was enriched in simple aromatic components. Digested and fermented extracts exhibited significant (P < 0.05) anti-genotoxic (Comet assay), anti-mutagenic (Mutation Frequency assay), and anti-invasive (Matrigel Invasion assay) effects in human cell culture models of colorectal cancer at physiologically-relevant doses (0-50 μg/mL gallic acid equivalents). The ileal fluid induced significant anti-genotoxic activity (P < 0.05), but at a higher concentration (200 μg/mL gallic acid equivalents) than the IVDL. Despite extensive structural modification following digestion and fermentation, lingonberry extracts retained their bioactivity in vitro. This reinforces the need for studies to consider the impact of digestion when investigating bioactivity of dietary phytochemicals.
Collapse
Affiliation(s)
- Emma M Brown
- Northern Ireland Centre for Food and Health, Centre for Molecular Biosciences, University of Ulster, Coleraine, Northern Ireland, UK
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: an update. Arch Toxicol 2014; 88:1803-53. [PMID: 25182418 DOI: 10.1007/s00204-014-1330-7] [Citation(s) in RCA: 397] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 08/04/2014] [Indexed: 12/17/2022]
Abstract
There is substantial interest in the role of plant secondary metabolites as protective dietary agents. In particular, the involvement of flavonoids and related compounds has become a major topic in human nutrition research. Evidence from epidemiological and human intervention studies is emerging regarding the protective effects of various (poly)phenol-rich foods against several chronic diseases, including neurodegeneration, cancer and cardiovascular diseases. In recent years, the use of HPLC-MS for the analysis of flavonoids and related compounds in foods and biological samples has significantly enhanced our understanding of (poly)phenol bioavailability. These advancements have also led to improvements in the available food composition and metabolomic databases, and consequently in the development of biomarkers of (poly)phenol intake to use in epidemiological studies. Efforts to create adequate standardised materials and well-matched controls to use in randomised controlled trials have also improved the quality of the available data. In vitro investigations using physiologically achievable concentrations of (poly)phenol metabolites and catabolites with appropriate model test systems have provided new and interesting insights on potential mechanisms of actions. This article will summarise recent findings on the bioavailability and biological activity of (poly)phenols, focusing on the epidemiological and clinical evidence of beneficial effects of flavonoids and related compounds on urinary tract infections, cognitive function and age-related cognitive decline, cancer and cardiovascular disease.
Collapse
|
23
|
McDougall GJ, Conner S, Pereira-Caro G, Gonzalez-Barrio R, Brown EM, Verrall S, Stewart D, Moffet T, Ibars M, Lawther R, O'Connor G, Rowland I, Crozier A, Gill CIR. Tracking (Poly)phenol components from raspberries in ileal fluid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:7631-7641. [PMID: 24998385 DOI: 10.1021/jf502259j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The (poly)phenols in ileal fluid after ingestion of raspberries were analyzed by targeted and nontargeted LC-MS(n) approaches. Targeted approaches identified major anthocyanin and ellagitannin components at varying recoveries and with considerable interindividual variation. Nontargeted LC-MS(n) analysis using an orbitrap mass spectrometer gave exact mass MS data which were sifted using a software program to select peaks that changed significantly after supplementation. This method confirmed the recovery of the targeted components but also identified novel raspberry-specific metabolites. Some components (including ellagitannin and previously unidentified proanthocyanidin derivatives) may have arisen from raspberry seeds that survived intact in ileal samples. Other components include potential breakdown products of anthocyanins, unidentified components, and phenolic metabolites formed either in the gut epithelia or after absorption into the circulatory system and efflux back into the gut lumen. The possible physiological roles of the ileal metabolites in the large bowel are discussed.
Collapse
Affiliation(s)
- Gordon J McDougall
- Enhancing Crop Productivity and Utilisation Theme, Environmental and Biochemical Sciences Group, The James Hutton Institute , Invergowrie, Dundee DD2 5DA, Scotland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ternan NG, Jain S, Graham RLJ, McMullan G. Semiquantitative analysis of clinical heat stress in Clostridium difficile strain 630 using a GeLC/MS workflow with emPAI quantitation. PLoS One 2014; 9:e88960. [PMID: 24586458 PMCID: PMC3933415 DOI: 10.1371/journal.pone.0088960] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 01/16/2014] [Indexed: 12/11/2022] Open
Abstract
Clostridium difficile is considered to be the most frequent cause of infectious bacterial diarrhoea in hospitals worldwide yet its adaptive ability remains relatively uncharacterised. Here, we used GeLC/MS and the exponentially modified protein abundance index (emPAI) calculation to determine proteomic changes in response to a clinically relevant heat stress. Reproducibility between both biological and technical replicates was good, and a 37°C proteome of 224 proteins was complemented by a 41°C proteome of 202 proteins at a 1% false discovery rate. Overall, 236 C. difficile proteins were identified and functionally categorised, of which 178 were available for comparative purposes. A total of 65 proteins (37%) were modulated by 1.5-fold or more at 41°C compared to 37°C and we noted changes in the majority of proteins associated with amino acid metabolism, including upregulation of the reductive branch of the leucine fermentation pathway. Motility was reduced at 41°C as evidenced by a 2.7 fold decrease in the flagellar filament protein, FliC, and a global increase in proteins associated with detoxification and adaptation to atypical conditions was observed, concomitant with decreases in proteins mediating transcriptional elongation and the initiation of protein synthesis. Trigger factor was down regulated by almost 5-fold. We propose that under heat stress, titration of the GroESL and dnaJK/grpE chaperones by misfolded proteins will, in the absence of trigger factor, prevent nascent chains from emerging efficiently from the ribosome causing translational stalling and also an increase in secretion. The current work has thus allowed development of a heat stress model for the key cellular processes of protein folding and export.
Collapse
Affiliation(s)
- Nigel G. Ternan
- Northern Ireland Centre for Food and Health (NICHE), School of Biomedical Sciences, University of Ulster, Coleraine, Co. Londonderry, Northern Ireland, United Kingdom
- * E-mail:
| | - Shailesh Jain
- Northern Ireland Centre for Food and Health (NICHE), School of Biomedical Sciences, University of Ulster, Coleraine, Co. Londonderry, Northern Ireland, United Kingdom
| | - Robert L. J. Graham
- School of Medicine, University of Manchester, Manchester, Greater Manchester, United Kingdom
| | - Geoff McMullan
- Northern Ireland Centre for Food and Health (NICHE), School of Biomedical Sciences, University of Ulster, Coleraine, Co. Londonderry, Northern Ireland, United Kingdom
| |
Collapse
|