1
|
Chen Q, Zhou Y, Zhang C, Dong Z, Wang N, Wu H, Xu Q. Pyrolysis kinetic analysis of molten bioplastics based on the combination of real-time characterization and Guassian deconvolution: Case study of poly(lactic acid) materials. Int J Biol Macromol 2024; 282:136954. [PMID: 39486725 DOI: 10.1016/j.ijbiomac.2024.136954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/11/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Pyrolysis remains a promising method for the utilization of biogradable plastics. However, the kinetics and mechanisms of molten polymer pyrolysis are not well understood, and the effect of additives (mainly inorganic nucleating agents) on the reaction pathway has not been widely explored. In this work, we conducted a method using the thermogravimetric analysis-Fourier transform infrared spectrometry (TG-FTIR) combined with a model-fitting method, instead of a traditional method subjectively selecting a reaction model. The FTIR curves provided information for sub-reaction determination, and the detailed parameters were determined using Gaussian deconvolution. The calculation results revealed that the whole process of poly(latic acid) (PLA) pyrolysis is the random nucleation and nuclei growth model. The introduction of inorganic nucleating agents provided nuclei for PLA decomposition, decreasing the initial activation energy (E) from approximately 136 kJ·mol-1 to 88 and 79 kJ·mol-1 at a conversion rate of 0.01. However, the nucleating agent could hinder the generation of nuclei from PLA ontology, which led to the increase of E value after the nucleating agents were occupied.
Collapse
Affiliation(s)
- Qindong Chen
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, China
| | - Yutong Zhou
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, China
| | - Chao Zhang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, China
| | - Zihang Dong
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, China
| | - Ning Wang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, China
| | - Huanan Wu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, China
| | - Qiyong Xu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, China.
| |
Collapse
|
2
|
Protogene M, Murindangabo YT, Frouz J, Brom J. Characterization, fractionation and untapped potential of phosphate-amended sewage sludge biochar in soil-plant systems. CHEMOSPHERE 2024; 367:143565. [PMID: 39442580 DOI: 10.1016/j.chemosphere.2024.143565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/20/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Sewage sludge, a byproduct of wastewater treatment, poses serious environmental and health risks due to its content of organic contaminants, heavy metals, and pathogenic microorganisms. With the growing global production of municipal wastewater, finding effective methods for managing and disposing of sewage sludge has become increasingly urgent. Traditional methods such as land disposal, dumping, and incineration have limitations and environmental drawbacks. However, recent advancements have shown promise in the valorization of sewage sludge, particularly through pyrolysis, which converts it into biochar for use in soil amendment and pollutant mitigation. This study aims to characterize and fractionate phosphate-amended sewage sludge biochar produced at 300 °C, 400 °C, and 500 °C, and to evaluate its potential use in soil-plant systems. It examines nutrient bioavailability in soil after the addition of this biochar and its effects on plant growth. The pyrolysis process resulted in biochar with high alkalinity (7.2-11.1), ash content ranging from 56.9% to 87.3%, and significant phosphorus retention, with phosphorus concentrations increasing with pyrolysis temperature (5.35%-9.38%). Phosphorus fractionation showed a shift toward more stable fractions particularly at 500 °C. Soil incubation experiments indicated increased phosphorus availability with HCl-extractable P showing a high extraction efficiency of up to 94.95%. In plant growth experiments, the amended biochar significantly enhanced growth, with corn showing an increase of up to 28.8% and wheat showing an increase of up to 86% compared to the control in the first four weeks after emergence. These findings indicate that phosphate-amended sewage sludge biochar enhances nutrient availability and supports plant growth, providing a sustainable solution for sewage sludge management, contributing to soil improvement and carbon sequestration, thereby addressing global environmental challenges.
Collapse
Affiliation(s)
- Mbasabire Protogene
- Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentska 1668, 37005, České Budějovice, Czech Republic
| | - Yves Theoneste Murindangabo
- Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentska 1668, 37005, České Budějovice, Czech Republic; Institute of Soil Biology and Biogeochemistry, Biology Centre of the Czech Academy of Sciences, Na Sádkách 7, 37005, České Budějovice, Czech Republic.
| | - Jan Frouz
- Institute of Soil Biology and Biogeochemistry, Biology Centre of the Czech Academy of Sciences, Na Sádkách 7, 37005, České Budějovice, Czech Republic; Institute of Environmental Studies, Faculty of Sciences, Charles University in Prague, Benátská 2, 128 01, Prague, Czech Republic
| | - Jakub Brom
- Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentska 1668, 37005, České Budějovice, Czech Republic
| |
Collapse
|
3
|
Kooij J, Yang PT, Bruun S, Magid J, Gro Nielsen U, Theil Kuhn L, Müller-Stöver D. Phosphorus speciation in different sewage sludges and their biochars and its implications for movement of labile phosphate in two soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122565. [PMID: 39332292 DOI: 10.1016/j.jenvman.2024.122565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/29/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
It is essential to understand the P dynamics of recycled biomaterials, like biochar derived from sewage sludge, especially with potential application as fertilizers. The objective of this study was to understand how pyrolysis affects the speciation of P in sewage sludge and thereby the effect on labile P pools and mobility of P in soil. The P speciation and lability of two sewage sludges (one biologically treated and one iron-precipitated) and their biochars (pyrolyzed at 400 °C and 600 °C) were determined by liquid state 31P nuclear magnetic resonance spectroscopy, X-ray absorption near edge spectroscopy, and sequential chemical extraction. These biomaterials were applied in a concentrated band to two soils, and P lability was studied in the adjacent soil at varying distances. Speciation techniques showed P was more closely associated with Ca and Fe for the iron-precipitated sludge and its biochars than the biologically treated sludge and its biochars. Instead, the P in the biologically treated biochars was found to be largely (40% or more) in polymeric forms (pyro- or poly-phosphates). The relationship between the speciation and the mobility of P in soil (as assessed by incubating biomaterials in a one-dimensional reaction system) was more evident when incubating the sewage sludges than the respective biochars. Particularly, the biologically treated sludge had a high proportion of labile P (56% water-extractable P), as determined by sequential extraction, and upon incubation, it was also the only material where water-extractable P remained significantly above the control soil level up to 3 mm from the biomaterial layer. After pyrolysis, this lability decreased significantly (up to a 25-fold decrease in water-extractable P), and this was reflected in the immobility of P in the biochars during incubation in the two soils. Differences in speciation between biochars were not reflected in the incubation experiment, as the differences in P release and mobility were not significant.
Collapse
Affiliation(s)
- Josephine Kooij
- University of Copenhagen, Department of Plant and Environmental Science, Thorvaldsensvej 40, Frederiksberg, Denmark
| | - Puu-Tai Yang
- Department of Agricultural Chemistry, National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| | - Sander Bruun
- University of Copenhagen, Department of Plant and Environmental Science, Thorvaldsensvej 40, Frederiksberg, Denmark
| | - Jakob Magid
- University of Copenhagen, Department of Plant and Environmental Science, Thorvaldsensvej 40, Frederiksberg, Denmark
| | - Ulla Gro Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Luise Theil Kuhn
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, 310, 2800 Kgs, Lyngby, Denmark
| | - Dorette Müller-Stöver
- University of Copenhagen, Department of Plant and Environmental Science, Thorvaldsensvej 40, Frederiksberg, Denmark.
| |
Collapse
|
4
|
Liu T, Shao T, Jiang J, Ma W, Feng R, Dong D, Wang Y, Bai T, Xu Y. Influence of potassium addition on phosphorus availability and heavy metals immobility of biochar derived from swine manure. Sci Rep 2024; 14:21069. [PMID: 39256459 PMCID: PMC11387754 DOI: 10.1038/s41598-024-69761-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024] Open
Abstract
Pyrolysis of animal manure at high temperature is necessary to effectively immobilize heavy metals, while the available phosphorus (P) level in biochar is relatively low, rendering it unsuitable for use as fertilizer. In this study, the pretreatment of swine manure with different potassium (K) sources (KOH, K2CO3, CH3COOK and C6H5K3O7) was conducted to produce a biochar with enhanced P availability and heavy metals immobility. The addition of all K compounds lowered the peak temperature of decomposition of cellulose in swine manure. The percentage of ammonium citrate and formic acid extractable P in biochar increased with K addition compared to undoped biochar, with CH3COOK and C6H5K3O7 showing greater effectiveness than KOH and K2CO3, however, water- extractable P did not exhibit significant changes. Additionally, the available and dissolved Si increased due to the doping of K, with KOH and K2CO3 having a stronger effect than CH3COOK and C6H5K3O7. X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) analysis revealed that K addition led to the formation of soluble CaKPO4 and silicate. In addition, the incorporation of K promoted the transformation of labile copper (Cu) and znic (Zn) into the stable fraction while simultaneously reducing their environmental risk. Our study suggest that the co-pyrolysis of swine manure and organic K represents an effective and valuable method for producing biochar with optimized P availability and heavy metals immobility.
Collapse
Affiliation(s)
- Tingwu Liu
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake/Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Tianci Shao
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake/Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Jinling Jiang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake/Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Wenge Ma
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake/Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Ranran Feng
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake/Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Dan Dong
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake/Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Yan Wang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake/Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Tianxia Bai
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake/Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Yonggang Xu
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake/Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China.
| |
Collapse
|
5
|
Pantoja F, Beszédes S, Gyulavári T, Illés E, Kozma G, László Z. Impact of Pyrolysis Temperature on the Physical and Chemical Properties of Non-Modified Biochar Produced from Banana Leaves: A Case Study on Ammonium Ion Adsorption. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3180. [PMID: 38998263 PMCID: PMC11242645 DOI: 10.3390/ma17133180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024]
Abstract
Given the current importance of using biochar for water treatment, it is important to study the physical-chemical properties to predict the behavior of the biochar adsorbent in contact with adsorbates. In the present research, the physical and chemical characteristics of three types of biochar derived from banana leaves were investigated, which is a poorly studied raw material and is considered an agricultural waste in some Latin American, Asian, and African countries. The characterization of non-modified biochar samples pyrolyzed at 300, 400, and 500 °C was carried out through pH, scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and specific surface area measurements. The adsorption properties of banana leaf-derived biochar were evaluated by ammonium ion adsorption experiments. The results demonstrated that the pyrolysis temperature has a large impact on the yield, structure, elemental composition, and surface chemistry of the biochar. Biochar prepared at 300 °C is the most efficient for NH4+ adsorption, achieving a capacity of 7.0 mg of adsorbed NH4+ on each gram of biochar used, while biochar samples prepared at 400 and 500 °C show lower values of 6.1 and 5.6 mg/g, respectively. The Harkins-Jura isotherm model fits the experimental data best for all biochar samples, demonstrating that multilayer adsorption occurs on our biochar.
Collapse
Affiliation(s)
- Fernanda Pantoja
- Doctoral School of Environmental Sciences, University of Szeged, H-6720 Szeged, Hungary;
| | - Sándor Beszédes
- Department of Process Engineering, University of Szeged, H-6725 Szeged, Hungary;
| | - Tamás Gyulavári
- Department of Applied and Environmental Chemistry, Institute of Chemistry, University of Szeged, H-6720 Szeged, Hungary; (T.G.); (G.K.)
| | - Erzsébet Illés
- Department of Food Engineering, University of Szeged, H-6725 Szeged, Hungary;
| | - Gábor Kozma
- Department of Applied and Environmental Chemistry, Institute of Chemistry, University of Szeged, H-6720 Szeged, Hungary; (T.G.); (G.K.)
| | - Zsuzsanna László
- Department of Process Engineering, University of Szeged, H-6725 Szeged, Hungary;
| |
Collapse
|
6
|
Jiang TJ, Morgan HM, Tsai WT. Optimization of Vertical Fixed-Bed Pyrolysis for Enhanced Biochar Production from Diverse Agricultural Residues. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3030. [PMID: 38930398 PMCID: PMC11206065 DOI: 10.3390/ma17123030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
This study examines the pyrolysis of agricultural residues, namely, coconut shells, rice husks, and cattle manure, in a vertical fixed-bed reactor at varying temperatures from 300 to 800 degrees Celsius for biochar production. The research aimed to evaluate the potential of biochar as biofuels, adsorbents, and soil amendments. Proximate, ultimate, and elemental analyses were conducted to determine their composition and caloric values. Several analytical techniques were used in the physical and chemical characterization of the biochar (SEM, FTIR, BET). The results indicated that the highest SBET values were achieved under different conditions for each biochar: 89.58 m2/g for BC-CS-700, 202.39 m2/g for BC-RH-600, and 42.45 m2/g for BC-CD-800. Additionally, all three biochars exhibited the highest caloric values at 600 °C. The results showed that 600 °C is the general optimal temperature to produce biochar from an assortment of biomass materials, considering their use for a variety of purposes. BC-CS-800 had the highest elemental carbon content at 93%, accompanied by a relative decrease in oxygen content. The van Krevelen diagram of biochar products shows that biochars derived from coconut shells and rice husks are suitable for use as fuels. Furthermore, FTIR analysis revealed the presence of oxygen-containing functional groups on the biochar surface, enhancing their pollutant adsorption capabilities. This study provides valuable insights into the scalable and environmentally sustainable production of biochar, emphasizing its role in improving soil quality, increasing energy density, and supporting sustainable agricultural practices.
Collapse
Affiliation(s)
- Tasi-Jung Jiang
- Graduate Institute of Bio Resources, National Pingtung University of Science and Technology, Neipu Township, Pingtung 912, Taiwan;
| | - Hervan Marion Morgan
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Neipu Township, Pingtung 912, Taiwan
| | - Wen-Tien Tsai
- Graduate Institute of Bio Resources, National Pingtung University of Science and Technology, Neipu Township, Pingtung 912, Taiwan;
| |
Collapse
|
7
|
Hu X, Ma W, Pasang L, Li J, Chen H. Gel-Embedded Biochar and Hydroxyapatite Composite for the Improvement of Saline-Alkali Soil and Plant Growth Promotion. Gels 2024; 10:222. [PMID: 38667641 PMCID: PMC11048822 DOI: 10.3390/gels10040222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Soil amendments play a crucial role in modern agriculture, as they effectively enhance the planting environment. This study innovatively proposes the use of gel as a crosslinking agent to embed biochar and hydroxyapatite (HAP), thereby preparing a novel soil amendment. Furthermore, this study investigates the soil improvement effects of this amendment as well as its influence on plant growth. This study employed a hydrothermal method to combine corn stalk (CB) or sludge (SB) biochar with HAP at different ratios (0-20%). Subsequently, sodium alginate gel (SA) was utilized to encapsulate the biochar and minerals, successfully forming a ternary composite gel material (corn stalk biochar/sludge biochar-sodium alginate gel-hydroxyapatite: CB/SB-SA-HAP). Finally, the practical effectiveness of this amendment was verified through potted soil experiments. The results indicate that the CB/SB-SA-HAP composite materials exhibited a micrometre-scale spherical structure with well-developed micropores and possess the functional groups of CB/SB, SA, and HAP, along with unique mineral properties. Through pot experiments, it was verified that the composite material effectively enhances multiple soil properties. After 21 days of cultivation, the soil pH values stabilized within the neutral range (pH = 7 ± 0.3) across all treatment groups. Except for the CB0 (CB:HAP = 1:0) and CB2.0 (CB:HAP = 1:2) treatments, the remaining treatments significantly reduced the soil EC values by 3.27% to 47.92%. All treatments significantly increased the contents of alkali-hydrolysable nitrogen (AHN) (34.89~57.91%), available phosphorus (AP) (35.93~56.55%), and available potassium (AK) (36.41~56.80%) in the soil. In comparison, although the SB treatment was more effective in regulating the pH and electrical conductivity (EC) of saline-alkali soil than the CB treatment, it was less effective in promoting plant growth in the short term. Through correlation analysis and redundancy analysis, a significant positive correlation was found between soil pH and ryegrass germination rate and plant height, particularly with the most pronounced impact on soil pH observed in the CB1.0 and SB0 (SB:HAP = 1:0) treatments. This study underscores the potential of CB/SB-SA-HAP composite materials in soil improvement and plant growth promotion, providing valuable insights for soil remediation, enhancement, and plant cultivation advancements in the agricultural sector.
Collapse
Affiliation(s)
| | | | | | - Jiansheng Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (X.H.); (W.M.); (L.P.)
| | - Haoming Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (X.H.); (W.M.); (L.P.)
| |
Collapse
|
8
|
Guo M, He Z, Tian J. Fractionation and Lability of Phosphorus Species in Cottonseed Meal-Derived Biochars as Influenced by Pyrolysis Temperature. Molecules 2024; 29:303. [PMID: 38257216 PMCID: PMC10819703 DOI: 10.3390/molecules29020303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Defatted cottonseed meal (CSM), the residue of cottonseeds after oil extraction, is a major byproduct of the cotton industry. Converting CSM to biochar and utilizing the goods in agricultural and environmental applications may be a value-added, sustainable approach to recycling this byproduct. In this study, raw CSM was transformed into biochar via complete batch slow pyrolysis at 300, 350, 400, 450, 500, 550, and 600 °C. Thermochemical transformation of phosphorus (P) in CSM during pyrolysis was explored. Fractionation, lability, and potential bioavailability of total P (TP) in CSM-derived biochars were evaluated using sequential and batch chemical extraction techniques. The recovery of feed P in biochar was nearly 100% at ≤550 °C and was reduced to <88% at 600 °C. During pyrolysis, the organic P (OP) molecules predominant in CSM were transformed into inorganic P (IP) forms, first to polyphosphates and subsequently to orthophosphates as promoted by a higher pyrolysis temperature. Conversion to biochar greatly reduced the mobility, lability, and bioavailability of TP in CSM. The biochar TP consisted of 9.3-17.9% of readily labile (water-extractable) P, 10.3-24.1% of generally labile (sequentially NaHCO3-extractable) P, 0.5-2.8% of moderately labile (sequentially NaOH-extractable) P, 17.0-53.8% of low labile (sequentially HCl-extractable) P, and 17.8-47.5% of residual (unextractable) P. Mehlich-3 and 1 M HCl were effective batch extraction reagents for estimating the "readily to mid-term" available and the "overall" available P pools of CSM-derived biochars, respectively. The biochar generated at 450 °C exhibited the lowest proportions of readily labile P and residual P compounds, suggesting 450 °C as the optimal pyrolysis temperature to convert CSM to biochar with maximal P bioavailability and minimal runoff risk.
Collapse
Affiliation(s)
- Mingxin Guo
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901, USA
| | - Zhongqi He
- United States Department of Agriculture Agricultural Research Service (USDA-ARS), Southern Regional Research Center, 1100 Allen Toussaint Blvd., New Orleans, LA 70124, USA;
| | - Jing Tian
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China;
| |
Collapse
|
9
|
Robinson JS, Leinweber P. Effects of pyrolysis and incineration on the phosphorus fertiliser potential of bio-waste- and plant-based materials. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 172:358-367. [PMID: 37952467 DOI: 10.1016/j.wasman.2023.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 10/01/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023]
Abstract
Land application of biomass materials and their products of thermal treatment (biochars and ashes) can offset the unsustainable use of soluble P fertilisers. However, few evaluations of P fertiliser potential have systematically addressed diverse biomass types with contrasting P contents. This paper evaluates the relative P fertiliser potential of four P-rich biowastes (animal bone, poultry manure, pig slurry, and a municipal sewage sludge) and three low-P, plant-based materials (reeds [Phragmites australis L.], rice husks [Oryza sativa L.] and cocoa prunings [Theobroma cacao L.]) and their biochars and ashes. We utilised three complementary approaches: P extractability in single solvents (2% formic and citric acids, and 1 M neutral ammonium citrate); sequential chemical P fractionation, and P dissolution/desorption kinetics. In most cases, pyrolysis and incineration of the P-rich biowastes increased P extractability (% TP) in the single solvents, whilst decreasing water-soluble P. For pig slurry, for example, pyrolysis reduced water-soluble P 20-fold, with corresponding increases observed not only in the solvent-extractable P but also in the pool of potentially plant available, NaHCO3-Pi fraction (e.g., 17 to 35% TP). These complementary datasets were also evident for the low-P feedstocks and thermal products; e.g., pyrolysis increased the NaHCO3-Pi fraction in reed feedstock from 6 to 15% TP. For all biomass feedstocks, biochars and ashes, pseudo-second order P-release kinetics provided the best fit with the experimental data. The data demonstrate scope for using pyrolysis to upgrade the P fertiliser value of a wide range of biomass materials whilst reducing their environmental impact.
Collapse
Affiliation(s)
- James Stephen Robinson
- Department of Geography and Environmental Science, University of Reading, Reading RG6 6AB, UK.
| | - Peter Leinweber
- Soil Science, Faculty for Agricultural and Environmental Sciences, University of Rostock, Justus-von-Liebig Weg 6, 18059 Rostock, Germany.
| |
Collapse
|
10
|
Padilla JT, Watts DW, Novak JM, Cerven V, Ippolito JA, Szogi AA, Johnson MG. Magnesium activation affects the properties and phosphate sorption capacity of poultry litter biochar. BIOCHAR 2023; 5:1-14. [PMID: 38269399 PMCID: PMC10805231 DOI: 10.1007/s42773-023-00263-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 01/26/2024]
Abstract
Biochars with a high affinity for phosphorus (P) are promising soil amendments for reducing P in agricultural run-off. Poultry litter (PL) is an abundant biochar feedstock. However, PL-derived biochars are typically high in soluble P and therefore require chemical modification to become effective P sorbents. This study investigated the effect of magnesium (Mg) activation on extractable P (EP) and P sorption capacities of PL-derived biochars. Biochar was produced at 500-900 °C from PL activated with 0-1 M Mg. Three differentially aged PL feedstocks were evaluated (1-, 3-5-, and 7-9-year-old). Increased Mg activation level and pyrolysis temperature both resulted in EP reductions from the biochars. Specifically, biochars produced at temperatures ≥ 700 °C from PL activated with ≥ 0.25 M Mg had negligible EP. X-ray diffractograms indicated that increased Mg loading favored the formation of stable Mg3(PO4)2 phases while increasing temperature favored the formation of both Mg3(PO4)2 and Ca5(PO4)3OH. Maximum P sorption capacities (Pmax) of the biochars were estimated by fitting Langmuir isotherms to batch sorption data and ranged from 0.66-10.35 mg g-1. Average Pmax values were not affected by PL age or pyrolysis temperature; however, biochars produced from 1 M Mg-activated PL did have significantly higher average Pmax values (p < 0.05), likely due to a greater abundance of MgO. Overall, the results demonstrated that Mg activation is an effective strategy for producing PL-derived biochars with the potential ability to reduce P loading into environmentally sensitive ecosystems.
Collapse
Affiliation(s)
- Joshua T. Padilla
- United States Department of Agriculture, Agricultural Research Service, Coastal Plains Soil, Water and Plant Research Center, Florence, SC 29501, USA
| | - Donald W. Watts
- United States Department of Agriculture, Agricultural Research Service, Coastal Plains Soil, Water and Plant Research Center, Florence, SC 29501, USA
| | - Jeffrey M. Novak
- United States Department of Agriculture, Agricultural Research Service, Coastal Plains Soil, Water and Plant Research Center, Florence, SC 29501, USA
| | - Vasile Cerven
- United States Department of Agriculture, Agricultural Research Service, Coastal Plains Soil, Water and Plant Research Center, Florence, SC 29501, USA
| | - James A. Ippolito
- School of Environment and Natural Resources, The Ohio State University, Columbus, OH 43210, USA
| | - Ariel A. Szogi
- United States Department of Agriculture, Agricultural Research Service, Coastal Plains Soil, Water and Plant Research Center, Florence, SC 29501, USA
| | - Mark G. Johnson
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Corvallis, OR 97331, USA
| |
Collapse
|
11
|
Wystalska K, Malińska K, Sobik-Szołtysek J, Dróżdż D, Meers E. Properties of Poultry-Manure-Derived Biochar for Peat Substitution in Growing Media. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6392. [PMID: 37834529 PMCID: PMC10573505 DOI: 10.3390/ma16196392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
Peat is considered a contentious input in horticulture. Therefore, there is a search for suitable alternatives with similar properties that can be used for partial or complete peat substitution in growing media. Poultry-manure-derived biochar (PMB) is considered such an alternative. This study aimed at determining the properties of PMBs obtained through pyrolysis at selected temperatures and assessing their potentials to substitute peat in growing media based on the selected properties. The scope included the laboratory-scale pyrolysis of poultry manure at the temperatures of 425-725 °C; the determination of selected physico-chemical and physical properties of the obtained biochars, including the contaminants; and the assessment of the potentials of produced biochars to be used as peat substitutes. PMBs contained less than 36% of total organic carbon (TOC). The contents of P and K were about 2.03-3.91% and 2.74-5.13%, respectively. PMBs did not retain N. They can be safely used as the concentrations of heavy metals, polycyclic aromatic hydrocarbons (PAHs), polychlorinatd biphenyls (PCBs), dioxins, and furans are within the permissible values (except for Cr). Due to high pH (9.24-12.35), they can have a liming effect. High water holding capacity (WHC) in the range of 158-232% w/w could allow for the maintenance of moisture in the growing media. PMBs obtained at 525 °C, 625 °C, and 725 °C showed required stability (H/Corg < 0.7).
Collapse
Affiliation(s)
- Katarzyna Wystalska
- Faculty of Infrastructure and Environment, Czestochowa University of Technology, Brzeźnicka 60A, 42-200 Częstochowa, Poland; (K.W.); (J.S.-S.); (D.D.)
| | - Krystyna Malińska
- Faculty of Infrastructure and Environment, Czestochowa University of Technology, Brzeźnicka 60A, 42-200 Częstochowa, Poland; (K.W.); (J.S.-S.); (D.D.)
| | - Jolanta Sobik-Szołtysek
- Faculty of Infrastructure and Environment, Czestochowa University of Technology, Brzeźnicka 60A, 42-200 Częstochowa, Poland; (K.W.); (J.S.-S.); (D.D.)
| | - Danuta Dróżdż
- Faculty of Infrastructure and Environment, Czestochowa University of Technology, Brzeźnicka 60A, 42-200 Częstochowa, Poland; (K.W.); (J.S.-S.); (D.D.)
| | - Erik Meers
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium;
| |
Collapse
|
12
|
Fan Y, Lv G, Chen Y, Chang Y, Li Z. Differential effects of cow dung and its biochar on Populus euphratica soil phosphorus effectiveness, bacterial community diversity and functional genes for phosphorus conversion. FRONTIERS IN PLANT SCIENCE 2023; 14:1242469. [PMID: 37780507 PMCID: PMC10538999 DOI: 10.3389/fpls.2023.1242469] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/22/2023] [Indexed: 10/03/2023]
Abstract
Introduction Continuous monoculture leading to soil nutrient depletion may cause a decline in plantation productivity. Cow dung is typically used as a cheap renewable resource to improve soil nutrient status. In this study, our purpose was to compare the effects of different cow dung return methods (direct return and carbonization return) on soil microbial communities and phosphorus availability in the root zone (rhizosphere soil and non-rhizosphere soil) of P.euphratica seedlings in forest gardens and to explore possible chemical and microbial mechanisms. Methods Field experiments were conducted. Two-year-old P.euphratica seedlings were planted in the soil together with 7.5 t hm-2 of cow dung and biochar made from the same amount of cow dung. Results Our findings indicated that the available phosphorus content in soil subjected to biochar treatment was considerably greater than that directly treated with cow dung, leading to an increase in the phosphorus level of both aboveground and underground components of P.euphratica seedlings. The content of Olsen-P in rhizosphere and non-rhizosphere soil increased by 134% and 110%, respectively.This was primarily a result of the direct and indirect impact of biochar on soil characteristics. Biochar increased the biodiversity of rhizosphere and non-rhizosphere soil bacteria compared with the direct return of cow dung. The Shannon diversity index of carbonized cow manure returning to field is 1.11 times and 1.10 times of that of direct cow manure returning to field and control, and the Chao1 diversity index is 1.20 times and 1.15 times of that of direct cow manure returning to field and control.Compared to the direct addition of cow dung, the addition of biochar increased the copy number of the phosphorus functional genes phoC and pqqc in the rhizosphere soil. In the biochar treatment, the abundance of the phosphate-solubilizing bacteria Sphingomonas and Lactobacillus was significantly higher than that in the other treatments, it is relative abundance was 4.83% and 2.62%, respectively, which indirectly improved soil phosphorus availability. Discussion The results indicated that different cow dung return methods may exert different effects on phosphorus availability in rhizosphere and non-rhizosphere soils via chemical and microbial pathways. These findings indicated that, compared to the direct return of cow dung, biochar return may exert a more significant impact on the availability of phosphorus in both rhizosphere and non-rhizosphere soils, as well as on the growth of P.euphratica seedlings and the microbial community.
Collapse
Affiliation(s)
- Yuxian Fan
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| | - Guanghui Lv
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| | - Yudong Chen
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| | - Yaling Chang
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| | - Zhoukang Li
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| |
Collapse
|
13
|
Huang K, Sun X, Sun J, Guo Y, Hu X, Hu C, Tan Q. The role of phosphorus speciation of biochar in reducing available Cd and phytoavailability in mining area soil: Effect and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164868. [PMID: 37343850 DOI: 10.1016/j.scitotenv.2023.164868] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/11/2023] [Accepted: 06/11/2023] [Indexed: 06/23/2023]
Abstract
The effect of phosphorus (P) speciation in biochar on soil available Cd and its mechanism to alleviate plant Cd stress remain largely unknown. Here, ammonium polyphosphate (PABC)-, phosphoric acid (PHBC)-, potassium dihydrogen phosphate (PKBC)-, and ammonium dihydrogen phosphate (PNBC)-modified biochar were used to investigate P speciation. The Cd immobilization mechanism of biochar was analyzed by XPS and 31P NMR, and the soil quality and the mechanism for the biochar to alleviate Cd stress were also determined. The results demonstrated that PBC (pristine biochar), PABC, PHBC, PKBC, and PNBC reduced the content of soil DTPA-Cd by 14.96 % - 32.19 %, 40.44 % - 47.26 %, 17.52 % - 41.78 %, and 21.90 % - 36.64 %, respectively. The XPS and 31P NMR results demonstrated that the orthophosphate on the surface of PABC, PHBC, PKBC, and PNBC accounted for 82.06 %, 62.77 %, 33.1 %, and 54.46 %, respectively, indicating that PABC has the highest passivation efficiency on soil Cd, which was ascribed to the highest orthophosphate content on the biochar surface. Pot experiments revealed that PABC could reduce the Cd content by 4.18, 4.41, 4.43, 2.94, and 2.57 folds in roots, stems, leaves, pods, and grains, respectively, and at the same time increase the dry and fresh weight of soybean and decrease Cd toxicity to soybean by improving the antioxidant system. In addition, application of the P-modified biochars improved the enzyme activity and physicochemical properties of the soil. This study provides a new perspective for studying the effect of P-modified biochars on soil Cd immobilization.
Collapse
Affiliation(s)
- Kan Huang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuecheng Sun
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang 438000, China
| | - Jingguo Sun
- Hubei Academy of Tobacco Science, Wuhan 430030, China
| | - Yali Guo
- Guizhou Provincial Tobacco Company Qianxinan Branch, Xingyi, Guizhou 562400, China
| | - Xiaoming Hu
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang 438000, China
| | - Chengxiao Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiling Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
14
|
Nan H, Yang F, Li D, Cao X, Xu X, Qiu H, Zhao L. Calcium enhances phosphorus reclamation during biochar formation: Mechanisms and potential application as a phosphorus fertilizer in a paddy soil. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 162:83-91. [PMID: 36948116 DOI: 10.1016/j.wasman.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 01/03/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Transformation of phosphorus (P) species during pyrolytic production of biochar from P-rich biowastes with a subsequent soil amendment is important to P reclamation. Aiming at increasing the content of plant-available P and restraining the formation of easily mobile P in pyrolysis product, this study used exogenous calcium ions (20 wt% CaCl2) addition prior to pyrolysis to regulate the pyrolytic transformation of P chemical fractions from sewage sludge and bone dreg. Results showed that active Ca catalyzed the decomposition of organic P to transform into inorganic orthophosphate. Based on Hedley's sequential extraction method, this study found that addition of Ca ions remarkably reduced the content of soluble P, exchange P, Fe/Al bound P, and occluded P in biochar, while increased Ca bound P from 78 to 85% to 85-96%. Liquid 31P NMR indicated that exogenous Ca induced the crack of the P-O-P bond in pyrophosphate to become orthophosphates. It also explained why new orthophosphates including chlorapatite (Ca5(PO4)3Cl) and calcium hydroxyapatite (Ca10(PO4)6(OH)2) appeared in the Ca-composite biochar compared to pristine biochar. Combined with rapid P-release test in paddy soil (pH 6.27) and 30-days rice seedling growth test under flooded condition (10 wt% biochar addition ratio), it was confirmed that compared to pristine biochar, Ca-composite biochar released more P in paddy soil, but also promoted more P to be taken in by rice root and stalk. These results suggested that pretreating biowaste with Ca ion was a friendly approach to enhance P reclamation during biochar formation, making it a promising P fertilizer.
Collapse
Affiliation(s)
- Hongyan Nan
- School of Chemical Engineering, Zhengzhou University, Henan 450001, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fan Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deping Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
15
|
Leite ADA, Melo LCA, Hurtarte LCC, Zuin L, Piccolla CD, Werder D, Shabtai I, Lehmann J. Magnesium-enriched poultry manure enhances phosphorus bioavailability in biochars. CHEMOSPHERE 2023; 331:138759. [PMID: 37088201 DOI: 10.1016/j.chemosphere.2023.138759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Pyrolysis of calcium-rich feedstock (e.g., poultry manure) generates semi-crystalline and crystalline phosphorus (P) species, compromising its short-term availability to plants. However, enriching poultry manure with magnesium (Mg) before pyrolysis may improve the ability of biochar to supply P. This study investigated how increasing the Mg/Ca ratio and pyrolysis temperature of poultry manure affected its P availability and speciation. Mg enrichment by ∼2.1% increased P availability (extracted using 2% citric and formic acid) by 20% in Mg-biochar at pyrolysis temperatures up to 600 °C. Linear combination fitting of P K-edge XANES of biochar, and Mg/Ca stoichiometry, indicate that P species, mainly Ca-P and Mg-P, are altered after pyrolysis. At 300 °C, adding Mg as magnesium hydroxide [Mg(OH)2] created MgNH4PO4 (18%) and Mg3(PO4)2.8H2O (23%) in the biochar, while without addition of Mg Ca3(PO4)2 (11%) predominated, both differing only for pyrophosphate, 33 and 16%, respectively. Similarly, the P L2,3 edge XANES data of biochar made with Mg were indicative of either MgHPO4.3H2O or Mg3(PO4)2.8H2O, in comparison to CaHPO4.2H2O or Ca3(PO4)2 without Mg. More importantly, hydroxyapatite [Ca5(PO4)3(OH)] was not identified with Mg additions, while it was abundant in biochars produced without Mg both at 600 (12%) and 700 °C (32%). The presence of Mg formed Mg-P minerals that could enhance P mobility in soil more than Ca-P, and may have resulted in greater P availability in Mg-enriched biochars. Thus, a relatively low Mg enrichment can be an approach for designing and optimize biochar as a P fertilizer from P-rich excreta, with the potential to improve P availability and contribute to the sustainable use of organic residues.
Collapse
Affiliation(s)
- Aline do Amaral Leite
- Federal University of Lavras/UFLA - Soil Science Dept., 37200-000, Lavras, Brazil; Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14850, USA
| | - Leônidas Carrijo Azevedo Melo
- Federal University of Lavras/UFLA - Soil Science Dept., 37200-000, Lavras, Brazil; Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14850, USA
| | | | - Lucia Zuin
- Canadian Light Source/CLS - Saskatoon, Canada
| | | | - Don Werder
- Cornell Center for Materials Research, Cornell University, Ithaca, NY, 14850, USA
| | - Itamar Shabtai
- Department of Environmental Science and Forestry, The Connecticut Agricultural. Experiment Station, New Haven, CT, 06511, USA
| | - Johannes Lehmann
- Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14850, USA; Department of Global Development, Cornell University, Ithaca, NY, 14850, USA; Cornell Atkinson Center for Sustainability, Cornell University, Ithaca, NY, 14850, USA.
| |
Collapse
|
16
|
Sui L, Tang C, Cheng K, Yang F. Biochar addition regulates soil phosphorus fractions and improves release of available phosphorus under freezing-thawing cycles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157748. [PMID: 35926613 DOI: 10.1016/j.scitotenv.2022.157748] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Currently, the shortage of phosphorus resources is becoming more and more serious. In general, phosphorus fertilizer is poorly utilized in soil and tends to gradually accumulate. Freezing-thawing cycles (FT) are seasonal phenomenon occurring in high latitudes and altitudes regions, which have obvious influence on the form of phosphorus in soil. This study investigates the effect of biochar on soil physicochemical properties, phosphorus form and availability under FT and thermostatic incubation (TH) condition. Compared with treatment without biochar, 4 % biochar addition increased the soil pH value, electrical conductivity, organic matter and Olsen-P of soil by a maximum of 0.76, 285.55 μS/cm, 28.60 g/kg and 139.27 mg/kg, respectively. Moreover, according to Hedley-P classification results, under FT condition, the content of labile phosphorus pool is always higher than those under TH. FT may promote the conversion of phosphorus from other fractions to labile phosphorus pool. Redundancy analysis results show that biochar addition and FT can not only directly change the soil phosphorus pool, but also alter the soil physicochemical properties and microbial community, which further affect the adsorption and mineralization of phosphorus in soil. The results of this study will be devoted to understanding the changes in soil phosphorus fractions under the effects of biochar addition and FT, providing references for agricultural production in areas where FT occur.
Collapse
Affiliation(s)
- Long Sui
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China
| | - Chunyu Tang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China
| | - Kui Cheng
- College of Engineering, Northeast Agricultural University, Harbin 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China
| | - Fan Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China.
| |
Collapse
|
17
|
Huang K, Hu C, Tan Q, Yu M, Shabala S, Yang L, Sun X. Highly efficient removal of cadmium from aqueous solution by ammonium polyphosphate-modified biochar. CHEMOSPHERE 2022; 305:135471. [PMID: 35764111 DOI: 10.1016/j.chemosphere.2022.135471] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Phosphorus-modified biochars are considered as good materials for the removal of heavy metals from wastewater. However, the efficacy of ammonium polyphosphate-modified biochar in cadmium (Cd(II)) adsorption remains largely unknown. In this work, the biochar was respectively modified with ammonium polyphosphate (PABC), phosphoric acid (PHBC) and ammonium dihydrogen phosphate (PNBC) to enhance its adsorption performance for heavy metals from wastewater. The properties of biochar before and after modification and P speciation on the surface of the modified biochar were investigated with FTIR, SEM-EDS, XPS, XRD and 31P NMR, and the adsorption capacity was evaluated by batch adsorption experiments. The results demonstrated that the optimal adsorption performance could be achieved at the solution pH = 4, and the pseudo-second-order and Langmuir models could well describe the Cd(II) adsorption process. The maximum adsorption capacity of PABC, PHBC and PNBC for Cd(II) was 155, 138 and 99 mg g-1, which were 4.84, 4.32 and 3.10 folds that of original biochar, respectively. The 31P NMR showed that orthophosphate accounted for 82.1%, 62.8% and 54.5% of P in PABC, PHBC and PNBC, respectively, which decreased to 28.24%, 33.51% and 29.34% after Cd(II) adsorption, indicating that the orthophosphate ratio in P-modified biochar surface could significantly affect Cd adsorption by forming phosphate precipitate. This work implies that the PABC has greater potential in the removal of Cd from wastewater relative to PHBC and PNBC.
Collapse
Affiliation(s)
- Kan Huang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources & Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chengxiao Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources & Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiling Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources & Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Min Yu
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan 528000, China
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas, 7001, Australia
| | - Lin Yang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Xuecheng Sun
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources & Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
18
|
Chen G, Wang J, Yu F, Wang X, Xiao H, Yan B, Cui X. A review on the production of P-enriched hydro/bio-char from solid waste: Transformation of P and applications of hydro/bio-char. CHEMOSPHERE 2022; 301:134646. [PMID: 35436456 DOI: 10.1016/j.chemosphere.2022.134646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Phosphorus (P) is a necessary element for plant growth and animal health. Most P utilized by anthropogenic activities is released within the generation of various solid wastes such as sewage sludge, animal manure, and wetland plant, which increase the risk of water contamination. (Hydro)thermal treatment could be employed for solid waste treatment with the production of value-added hydro/bio-char, and the behavior of P during the thermochemical treatment process is critical for the further utilization of hydro/bio-char. This study provides a systematic review of the migration and transformation mechanisms of P during thermochemical treatment of various solid wastes, and special emphasis is given to the potential applications of P-enriched hydro/bio-char. Future challenges and perspectives in the thermal treatment of P-enriched solid waste are presented as well. The distribution and speciation of P were affected by feedstock properties, thermal technique, and reaction conditions, correspondingly affecting hydro/bio-char applications. The derived P-enriched hydro/bio-char was mainly applied as an agricultural soil amendment, P recovery source, and heavy metal sorbent, which could be adjusted by varying treatment process parameters. Additionally, potentially toxic substances, such as heavy metals in the solid waste, should be addressed during the production and application of hydro/bio-char. Overall, the production of P-enriched hydro/bio-char from solid waste is a promising route to simultaneously achieve P reclamation and solid waste treatment.
Collapse
Affiliation(s)
- Guanyi Chen
- School of Environmental Science and Engineering/ Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China; School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, 300134, China
| | - Junxia Wang
- School of Environmental Science and Engineering/ Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Fan Yu
- School of Environmental Science and Engineering/ Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Xutong Wang
- School of Environmental Science and Engineering/ Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Hui Xiao
- Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Beibei Yan
- School of Environmental Science and Engineering/ Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Xiaoqiang Cui
- School of Environmental Science and Engineering/ Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
19
|
Buss W, Wurzer C, Bach M, Heberling J, Appel T, Gerber H, Mašek O. Highly efficient phosphorus recovery from sludge and manure biochars using potassium acetate pre-treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 314:115035. [PMID: 35436706 DOI: 10.1016/j.jenvman.2022.115035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Pyrolysis converts nutrient-rich residues (e.g., sewage sludge and manures) into biochar with low levels of organic contaminants and high nutrient contents. However, the availability of phosphorus (P) as one of the key nutrients in such biochar tends to be low and new approaches are needed to enhance P-availability. In this work we tested and optimised one such method, doping biomass prior to pyrolysis with potassium (K) as potassium acetate. The treatment worked effectively in both pyrolysis units tested (microscale and lab-scale, continuous unit) and all three feedstocks (two types of sewage sludges and swine manure). The most dramatic effect was observed in the microscale pyrolysis unit at 400 °C where 5% K doping increased the water-extractable P content 700-fold to 43% of total P. Of the added K, on average 90% was retained in biochar after pyrolysis of which ∼50% was water-extractable. The proposed method enables conversion of low-value residues into valuable resources with agronomically relevant total and available P and K levels. This approach does not require specialised equipment or process modifications and is therefore easy to implement and relatively cheap (∼US$ 60-80 t-1 treated feedstock). It can present an urgently required solution to fulfil regulatory requirements for P-recovery.
Collapse
Affiliation(s)
- Wolfram Buss
- Research School of Biology, Australian National University, 134 Linnaeus Way, 2601, Canberra, Australia; UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Crew Building, Alexander Crum Brown Road, EH9 3FF, Edinburgh, UK; Conversion Technologies of Biobased Resources, University of Hohenheim, Garbenstraße 9, 70599, Stuttgart, Germany.
| | - Christian Wurzer
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Crew Building, Alexander Crum Brown Road, EH9 3FF, Edinburgh, UK
| | | | | | - Thomas Appel
- University of Applied Sciences Bingen, Berlinstraße 109, 55411, Bingen, Germany
| | | | - Ondřej Mašek
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Crew Building, Alexander Crum Brown Road, EH9 3FF, Edinburgh, UK
| |
Collapse
|
20
|
Wang C, Wang G, Xie S, Wang J, Guo Y. Removal behavior and mechanisms of U(VI) in aqueous solution using aloe vera biochar with highly developed porous structure. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08281-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Chen K, Ma D, Yu H, Zhang S, Seyler BC, Chai Z, Peng S. Biosorption of V(V) onto Lantana camara biochar modified by H 3PO 4: Characteristics, mechanism, and regenerative capacity. CHEMOSPHERE 2022; 291:132721. [PMID: 34743869 DOI: 10.1016/j.chemosphere.2021.132721] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Biochar has been widely recognized as an environmentally efficient adsorbent for removing heavy metals. However, considering the weak adsorption performance of the original biochar to the oxygen-containing anion, the adsorption of vanadium by biochar has rarely been investigated. This study proposes that H3PO4 activated biochar made from an invasive plant species growing near mines is a novel material to be investigated for V(V) recovery and reuse. As a noxious, invasive plant, Lantana camara L. (LC) has become widely naturalized around the world. Biochar was prepared from LC by pyrolysis at different conditions (200 °C, 350 °C, 500 °C, and 650 °C). The adsorption effect of biochar with and without P pretreatment on V(V) in aqueous solution was compared. The results show that biochar prepared from LC impregnated with H3PO4 (MLBC) had the highest adsorption capacity at 500 °C, and the maximal adsorption capacity fitted by Langmuir model was 77.38 mg g-1, which was considerably higher than that of untreated biochar (LBC, 5.89 mg g-1). The adsorption procedure was substantially fitted by the Langmuir isotherm and the pseudo-second-order kinetic. Additionally, the interaction of V(V) on MLBC is pH-dependent, and slightly acidic conditions are more favorable for adsorption. The characterization results indicated that electrostatic interaction, complexation reaction, and redox reaction were the primary mechanisms. After three cycles of adsorption, the final maximal adsorption capacity of MLBC remained at 76.03% of that of the virgin sample, demonstrating that MLBC had a recyclable capability to eliminate and restore V(V) from aqueous solutions.
Collapse
Affiliation(s)
- Kexin Chen
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan, 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Danni Ma
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan, 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Haoyang Yu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan, 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Shan Zhang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan, 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Barnabas C Seyler
- Department of Environment, College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Zimo Chai
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan, 610059, China
| | - Shuming Peng
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan, 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu, 610059, Sichuan, China.
| |
Collapse
|
22
|
Lee S, Han J, Ro HM. Mechanistic insights into Cd(II) and As(V) sorption on Miscanthus biochar at different pH values and pyrolysis temperatures. CHEMOSPHERE 2022; 287:132179. [PMID: 34521014 DOI: 10.1016/j.chemosphere.2021.132179] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/13/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Biochar has received great attention as a biosorbent, but explanations of the underlying sorption mechanisms are still unclear. Here, batch sorption of cadmium (Cd(II)) and arsenate (As(V)) to Miscanthus biochar at different pH values and pyrolysis temperatures and the sorption mechanisms were comprehensively investigated. The maximum sorption capacities for both Cd(II) and As(V) were observed under alkaline conditions. Physisorption was identified as a common sorption mechanism for both Cd(II) and As(V) irrespective of pH; however, inner-sphere complexation with acidic functional groups (AFGs) and crystallized precipitation as otavite predominate at higher pH values for Cd(II), while hydrophobic attraction of arsenite and metallic As and electrostatic bridging with multivalent ions at deprotonated AFGs are presumed to be dominant sorption mechanisms for As(V). Inner-sphere complexes of Cd(II) (98.6%) and electrostatic bridging complexes of As(V) (89.5%) were the dominant sorption forms for B400, while inner-sphere complexes (45.9%) and precipitates (50.5%) of Cd(II) and physisorption and hydrophobic interactions of As (63.7%) were abundant. The results challenge the widely held notion that the sorption of anions decreases as pH increases, while that of cations increases with increasing pH. This unexpected phenomenon can be explained by reduction of As(V) and by the difference in the charge densities between As(V) and basic functional groups of the biochar. Such biochar-induced reduction would cause an unexpected risk of exposing human health and ecosystems to reduceable pollutants. These findings contribute to a better explanation for the environmental fate and behavior of inorganic pollutants in biochar applications.
Collapse
Affiliation(s)
- Seoyeon Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Junho Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Hee-Myong Ro
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
23
|
Jiang Y, Wang X, Zhao Y, Zhang C, Jin Z, Shan S, Ping L. Effects of Biochar Application on Enzyme Activities in Tea Garden Soil. Front Bioeng Biotechnol 2021; 9:728530. [PMID: 34621730 PMCID: PMC8490741 DOI: 10.3389/fbioe.2021.728530] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
Animal-manure biochar used as a sustainable amendment to garden soil has been widely applied, and the animal-manure pyrolysis temperatures would also have a regulatory effect on soil functions because of their affections on biochar physio-chemical properties. Here we studied the effects of different dosages of swine-manure biochar on tea garden soil functions, with the swine-manure pyrolysis temperature differed at 350 and 500°C. The results showed that the improvement of soil microbial biomass carbon and nitrogen and enzyme activities was closely related to the addition of 0.5-2% (biochar wt/soil wt) swine-manure biochar. Under different conditions of different carbon application rates and carbon type, the addition of 2% swine-manure biochar pyrolyzed at 350°C showed the best effects on soil enzyme activities and microbial biomass carbon and nitrogen contents. Compared to the control, after the addition of 2% swine-manure biochar, sucrase, phosphatase, catalase, and urease activities increased by 63.3, 23.2, 50.3, and 27.9%, respectively. Microbial biomass carbon and nitrogen contents also increased by 36.4 and 34.3%, respectively. Our study indicated that the effectiveness of using animal-manure swine-manure biochar as a sustainable amendment to soil would provide evidence of tea garden soil improvement and the environmental response to the usage of biochars.
Collapse
Affiliation(s)
- Yunli Jiang
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, China
| | - Xiangjun Wang
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yaming Zhao
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, China
| | - Changai Zhang
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, China
| | - Zewen Jin
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, China
| | - Shengdao Shan
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, China
| | - Lifeng Ping
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, China
| |
Collapse
|
24
|
Zhang H, Ke S, Xia M, Bi X, Shao J, Zhang S, Chen H. Effects of phosphorous precursors and speciation on reducing bioavailability of heavy metal in paddy soil by engineered biochars. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117459. [PMID: 34380211 DOI: 10.1016/j.envpol.2021.117459] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/21/2021] [Accepted: 05/22/2021] [Indexed: 06/13/2023]
Abstract
Ammonium phosphate (AP), phosphoric acid (PC), and potassium phosphate (TKP) were used for the modification of biochar for enhanced heavy metal passivation in soil. The effect of various phosphorus (P) precursors on adsorption-related properties, P speciation distribution pattern, and the passivation mechanism was investigated by BET, FTIR, XRD, XPS, and 31P NMR analysis. The mobility and bio-availability of cadmium (Cd) were studied by extraction experiments, and the P release kinetics was also determined. Results showed that the immobilization efficiency of Cd (II) by biochars followed the order: TKP-BC > PC-BC > AP-BC > BC, and TKP-BC reduced available Cd content by 81% treated with 2% addition. The P speciation shows a significant effect on the P-enriched biochars' passivation performance, especially orthophosphate, which is essential for the immobilization of Cd2+ by forming phosphate precipitation. Pyrophosphate and orthophosphate monoester in AP-BC and PC-BC can promote Cd2+ passivation via the formation of P-Cd complexes or organometallic chelates. It is also shown that PC-BC has the lowest P release rate while TKP-BC has the highest percentage of P (15.50%) remaining in the biochar. The results may contribute to the development of modified biochar for soil remediation based on P-related technologies.
Collapse
Affiliation(s)
- Han Zhang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Shujia Ke
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mingwei Xia
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaotao Bi
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Jingai Shao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; Department of New Energy Science and Engineering, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shihong Zhang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Hanping Chen
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; Department of New Energy Science and Engineering, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
25
|
Soft template assisted hydrothermal synthesis of phosphorus doped porous carbon spheres with tunable microstructure as electrochemical nanozyme sensor for distinguishable detection of two flavonoids coupled with derivative voltammetry. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
26
|
Tesfaye F, Liu X, Zheng J, Cheng K, Bian R, Zhang X, Li L, Drosos M, Joseph S, Pan G. Could biochar amendment be a tool to improve soil availability and plant uptake of phosphorus? A meta-analysis of published experiments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34108-34120. [PMID: 33963990 PMCID: PMC8275515 DOI: 10.1007/s11356-021-14119-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/21/2021] [Indexed: 05/09/2023]
Abstract
As one of the most important nutrients for plant growth, phosphorus was often poorly available in soil. While biochar addition induced improvement of soil structure, nutrient and water retention as well as microbial activity had been well known, and the effect of biochar soil amendment (BSA) on soil phosphorus availability and plant P uptake had been not yet quantitatively assessed. In a review study, data were retrieved from 354 peer-reviewed research articles on soil available P content and P uptake under BSA published by February 2019. Then a database was established of 516 data pairs from 86 studies with and without BSA in agricultural soils. Subsequently, the effect size of biochar application was quantified relative to no application and assessed in terms of biochar conditions, soil conditions, as well as experiment conditions. In grand mean, there was a significant and great effect of BSA on soil available P and plant P uptake by 65% and 55%, respectively. The effects were generally significant under manure biochar, biochar pyrolyzed under 300 °C, soil pH <5 and fine-textured soil, and soils that are very low in available P. Being significantly correlated to soil P availability (R2=0.29), plant P uptake was mostly enhanced with vegetable crops of high biomass yield. Overall, biochar amendment at a dosage up to 10 t ha-1 could be a tool to enhance soil availability and plant uptake of phosphorus, particularly in acid, heavy textured P-poor soils.
Collapse
Affiliation(s)
- Fitsum Tesfaye
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
- Department of Soil Science, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Xiaoyu Liu
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
- Department of Soil Science, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Jufeng Zheng
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
- Department of Soil Science, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Kun Cheng
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
- Department of Soil Science, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Rongjun Bian
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
- Department of Soil Science, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Xuhui Zhang
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
- Department of Soil Science, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Lianqing Li
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
- Department of Soil Science, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Marios Drosos
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
- Department of Soil Science, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Stephen Joseph
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Genxing Pan
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China.
- Department of Soil Science, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China.
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
27
|
Bottezini L, Dick DP, Wisniewski A, Knicker H, Carregosa ISC. Phosphorus species and chemical composition of water hyacinth biochars produced at different pyrolysis temperature. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.biteb.2021.100684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Yang F, Sui L, Tang C, Li J, Cheng K, Xue Q. Sustainable advances on phosphorus utilization in soil via addition of biochar and humic substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:145106. [PMID: 33736348 DOI: 10.1016/j.scitotenv.2021.145106] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
The intervention of human in phosphorus pool seems to be a vicious circle. The rapid population growth leads to the global food shortage, which leads to the massive use of phosphate fertilizer and the continuous exploitation of phosphate rocks. With the massive loss and fixation of phosphate fertilizer in the soil, the unavailable phosphorus in the soil becomes superfluous, while the phosphate mineral resources turn to scarce. Interestingly, exogenous carbonaceous materials, notably, biochar and humic substances, have been widely used as soil conditioners in agricultural production up to date, among other actions to interfere with the balance between the different phosphate species, which offer effective roles for increasing soil available phosphorus. This article reviews the regulation mechanisms of biochar and humic substances on phosphorus availability and circulation, including improving soil physicochemical characteristics, regulating microbial community structure, and directly interacting with phosphorus to affect the fate of phosphorus in soil. Finally, the prospects for future research directions are made, and it is hoped that the review of this article can arouse people's attention to the current plight of agricultural production and provide some methods for improving the efficiency of phosphate fertilizer use in the future.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China.
| | - Long Sui
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Chunyu Tang
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Jiangshan Li
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Kui Cheng
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Qiang Xue
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
29
|
Lian F, Zhang Y, Gu S, Han Y, Cao X, Wang Z, Xing B. Photochemical Transformation and Catalytic Activity of Dissolved Black Nitrogen Released from Environmental Black Carbon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6476-6484. [PMID: 33844909 DOI: 10.1021/acs.est.1c00392] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biomass combustion results in the formation and wide distribution of black carbon (BC) in soils, wherein the dissolved fractions are among the most active components. Although the presence of dissolved black nitrogen (DBN) in BC has been identified, its environmental behavior and implication are not understood. This study investigated the photochemical transformation and catalytic activity of DBN under simulated solar irradiation. DBN is more easily transformed than dissolved BC due to its photoactive heteroaromatic N structure, and the half-life of DBN produced at 500 °C (8.6 h) is two times shorter than that of the dissolved BC counterpart (23 h). Meanwhile, solar irradiation is favorable for the homoaggregation of DBN. During irradiation, DBN generates not only reactive oxygen species (e.g., 1O2, O2-, and •OH) but also reactive nitrogen species (mainly •ON), which account for its higher photocatalytic degradation of bisphenol A than dissolved BC. These findings shed new light on the impact of heteroatoms on the phototransformation and activity of BC as well as cycling of N in terrestrial systems.
Collapse
Affiliation(s)
- Fei Lian
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yikang Zhang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Shiguo Gu
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yaru Han
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
30
|
Yang L, Wu Y, Wang Y, An W, Jin J, Sun K, Wang X. Effects of biochar addition on the abundance, speciation, availability, and leaching loss of soil phosphorus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143657. [PMID: 33250256 DOI: 10.1016/j.scitotenv.2020.143657] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 05/26/2023]
Abstract
As a promising soil amendment, biochar has demonstrated its potential for influencing soil nutrient transformations. The effects of biochar on soil phosphorus (P) transformations have received much less attention than its effects on carbon cycling. A review of the literature reveals that biochar applications to soils may have notable effects on the abundance, speciation, availability, and leaching loss of soil P. However, a comprehensive and systematic understanding of the biochar-induced environmental behavior of soil P has not been obtained so far. Therefore, in this review, we analyzed and identified the known and potential mechanisms through which biochar affects P behavior in soils: (1) biochar as a source of P provides soluble and exchangeable P to soil; (2) biochar enhances the availability of endogenic soil P by influencing P-related complexation and metabolism effects; and (3) biochar affects P leaching losses directly or indirectly by adsorbing P, improving P retention by soil, and facilitating P assimilation by plants. By presenting a broad and detailed illustration of P behaviors in biochar-amended soils, this paper suggests that the application of biochar to soils will help enlarge soil P pools, increase soil P availability, and decrease P leaching losses from soil. Additional studies are needed to further elucidate the long-term effects of biochar addition on soil P transformations, explore how biochar-derived dissolved organic matter (BDOM) affects the mobility and availability of soil mineral-associated P, and examine the transport of particulate P in biochar-amended soils.
Collapse
Affiliation(s)
- Lu Yang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yunchao Wu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yichu Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Weiqi An
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jie Jin
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Ke Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Xiangke Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
31
|
Cheng Y, Luo L, Lv J, Li G, Wen B, Ma Y, Huang R. Copper Speciation Evolution in Swine Manure Induced by Pyrolysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9008-9014. [PMID: 32539362 DOI: 10.1021/acs.est.9b07332] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Swine manures generally contain high levels of copper (Cu) resulting from its use as a growth promoter in feedstuff. Pyrolysis can further concentrate Cu whereas decrease its available fraction in swine manures. Here we investigated the speciation transformation of Cu and associated elements in swine manures induced by pyrolysis using multiple X-ray absorption spectroscopies. Results showed that over 82% of Cu existed as Cu(I)-S and Cu(I)-thiolate complexes in swine manures, which were transformed into stable Cu(I)2S during pyrolysis at a low temperature of 300 °C and partially oxidized and desulfurized into Cu(II) compounds at a high temperature of 500 °C. The speciation evolution of Cu in swine manures was consistent with the speciation distribution of sulfur in feedstuff and its following changes in swine manures during pyrolysis. About 58% of phosphorus existed as CaHPO4 and struvite in swine manures, which were gradually transformed into stable Ca-bound species such as hydroxyapatite during pyrolysis. The formation of stable phosphate, together with concentrated carbonates, significantly decreased the available Cu in pyrolyzed manures. These findings suggested that the high levels of S and P in feedstuff profoundly affected the speciation of Cu in the swine manures and derived biochars. This study has important implications to our understanding of the behaviors of heavy metals in manure-derived biochars once entering soil environments.
Collapse
Affiliation(s)
- Yuan Cheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Gang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bei Wen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yibing Ma
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rixiang Huang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| |
Collapse
|
32
|
Adhikari S, Gascó G, Méndez A, Surapaneni A, Jegatheesan V, Shah K, Paz-Ferreiro J. Influence of pyrolysis parameters on phosphorus fractions of biosolids derived biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133846. [PMID: 31416032 DOI: 10.1016/j.scitotenv.2019.133846] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/22/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
Transforming biosolids into biochar, through pyrolysis, could result in more sustainable waste management. Influence of pyrolysis conditions (temperature, heating rate and residence time) on physico-chemical properties of biosolids (collected at Mount Martha Water Recycling Plant, Melbourne), phosphorus fractions and phosphorus forms was investigated. Twelve different biochar samples were produced at 400, 500 and 600 °C, at two heating rates (5 and 20 °C/min) and at two residence times (30 and 120 min). Biochar yield, pH, electrical conductivity (EC), elements (C, H and N) and BET surface area were analysed. Sequential extraction of P in biosolids and resultant biochars was done using Hedley method. Characterization was completed with SEM images and results from 31P liquid state NMR. Increased temperatures would not only increase the alkalinity, decrease EC and increase the adsorption capacity by increasing the surface area but also convert the readily available P to a less available pool. Therefore, this nutrient might be released to soil slowly over a longer period of time. The results showed that temperature, along with residence time and heating rate, had a significant effect on the characteristics observed. Therefore, all these factors need to be carefully considered when preparing biochar for use as a soil amendment.
Collapse
Affiliation(s)
- S Adhikari
- School of Engineering, RMIT University, GPO Box 2476, 3001 VIC, Melbourne, Australia
| | - G Gascó
- Department of Agricultural Production, Technical University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| | - A Méndez
- Department of Geological and Mining Engineering, Technical University of Madrid, 28040 Madrid, Spain
| | - A Surapaneni
- South East Water Corporation, Waters Edge, 101 Wells Street, Frankston 3199, Victoria, Australia
| | - V Jegatheesan
- School of Engineering, RMIT University, GPO Box 2476, 3001 VIC, Melbourne, Australia
| | - K Shah
- School of Engineering, RMIT University, GPO Box 2476, 3001 VIC, Melbourne, Australia
| | - J Paz-Ferreiro
- School of Engineering, RMIT University, GPO Box 2476, 3001 VIC, Melbourne, Australia.
| |
Collapse
|
33
|
Jiang Y, Ren C, Guo H, Guo M, Li W. Speciation Transformation of Phosphorus in Poultry Litter during Pyrolysis: Insights from X-ray Diffraction, Fourier Transform Infrared, and Solid-State NMR Spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13841-13849. [PMID: 31684726 DOI: 10.1021/acs.est.9b03261] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Converting poultry litter (PL) into biochar by slow pyrolysis is a promising approach for recycling organic waste with enhanced phosphorus (P) utilization efficiency, which needs fundamental knowledge of in situ P speciation transformation for optimizing the biochar conversion conditions. In this study, solid-state NMR spectroscopy was employed to characterize solid-state P and C speciation of raw PL and PL-derived biochars prepared at various pyrolysis temperatures. The NMR analysis indicated that phytates were decomposed while hydroxyapatite (Ca10(PO4)6(OH)2) formed during conversion of PL to PL-derived biochar at a pyrolysis temperature above 300 °C. With increasing pyrolysis temperature to above 500 °C, farringtonite (Mg3(PO4)2) formed. The higher pyrolysis temperature also favored the formation of calcite and provided deeper carbonization (i.e., greater dominance of thermally stable aromatic structures) in the biochar products. Water extractable P decreased significantly from 2.9 g/kg in PL to less than 0.3 g/kg in the PL-derived biochars prepared above 300 °C, indicating the inhibition effect of pyrolysis on the P lability mainly through transformation of labile phosphates in PL into less soluble forms. Overall, this study suggested that different pyrolysis temperatures should be considered for selective conversion of PL to biochar products with distinct agricultural and environmental applications that demand special P release patterns.
Collapse
Affiliation(s)
- Yunbin Jiang
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Chao Ren
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Mingxin Guo
- Department of Agriculture and Natural Resources , Delaware State University , Dover , Delaware 19901 , United States
| | - Wei Li
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering , Nanjing University , Nanjing , Jiangsu 210023 , China
| |
Collapse
|
34
|
Han X, Wang F, Zhou B, Chen H, Yuan R, Liu S, Zhou X, Gao L, Lu Y, Zhang R. Phosphorus complexation of sewage sludge during thermal hydrolysis with different reaction temperature and reaction time by P K-edge XANES and 31P NMR. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:1-9. [PMID: 31229806 DOI: 10.1016/j.scitotenv.2019.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/31/2019] [Accepted: 06/02/2019] [Indexed: 06/09/2023]
Abstract
Thermal hydrolysis pretreatment (THP) can improve sludge disintegration and biogas production. Phosphorus (P) is immobilized on hydrochars of sewage sludge (SS). It is critical to understand changes in P speciation in SS hydrochars under different reaction temperatures and reaction times during THP for reclamation and (re)cycling of P. This study combined sequential extraction, 31P liquid and solid-state nuclear magnetic resonance (NMR), and P K-edge X-ray absorption near edge structure (XANES) spectroscopy to systematically analyze variation in P speciation and related metals in hydrochars. The temperature of the THP has more influence on P extraction content than reaction time; the bioavailability of P from hydrochars declined with increasing temperature. A 31P liquid and solid-state NMR analysis demonstrated that orthophosphate was the most abundant phosphate present small deviations in the chemical shift were observed in different samples under different conditions. The results of XANES demonstrated that CaP was more stable than FeP and AlP. LCF results suggested OcataCa proportion raised under stable CaP ratio in samples when the temperature was above 155 °C and duration was 60 min. This study provides a theoretical basis that can meet the practical application of THP for sludge disposal and P reclamation on subsequent anaerobic digestion.
Collapse
Affiliation(s)
- Xiaomin Han
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Fei Wang
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China.
| | - Beihai Zhou
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Huilun Chen
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Rongfang Yuan
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Shuhu Liu
- Laboratory of Synchrotron Radiation, Institute of High Energy Physics, The Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaoqin Zhou
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Ling Gao
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Yan Lu
- Beijing ENFI Environmental Protection Company Limited, 12 Fuxing Road, 100038 Beijing, China
| | - Ru Zhang
- Beijing ENFI Environmental Protection Company Limited, 12 Fuxing Road, 100038 Beijing, China
| |
Collapse
|
35
|
Meng X, Huang Q, Xu J, Gao H, Yan J. A review of phosphorus recovery from different thermal treatment products of sewage sludge. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42768-019-00007-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
36
|
Xiong Z, Zhang J, Cai P, Chen W, Huang Q. Bio-organic stabilizing agent shows promising prospect for the stabilization of cadmium in contaminated farmland soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:23399-23406. [PMID: 31201703 DOI: 10.1007/s11356-019-05619-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
In situ immobilization of cadmium (Cd) has been considered as a cost-effective and non-disruptive remediation technique for Cd-contaminated soils. In this study, several immobilization approaches were compared in a Cd-contaminated agricultural farmland. The soil was treated with different combinations of the immobilizing agents such as biochar (C), rice straw (RS), lime (L), and engineered bacteria P. putida X4/pIME (B). The plant yield and Cd uptake of lettuce as well as soil Cd fractionations were measured. The Cd content in lettuce leaves and roots decreased by 46.8~67.2% and 36.8~60.2%, respectively. Among the five treatments, combined rice straw, lime, and engineered bacteria treatment showed the lowest Cd concentration in lettuce leaves (0.14 mg/kg) and the highest plant yield (21.5 t/ha). The alleviating effects are assigned to the significant transformation of water soluble and exchangeable Cd to humic substance bound, strong organic bound and residual Cd in the soils. This study suggests that this bio-organic stabilizing agent is more cost-effective than some other immobilization agents reported previously, and shows a great application prospect in improving agriculture production of heavy metal-polluted agricultural soils.
Collapse
Affiliation(s)
- Zhenqian Xiong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junqing Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
37
|
Assessment of Physicochemical and Nutritional Characteristics of Waste Mushroom Substrate Biochar under Various Pyrolysis Temperatures and Times. SUSTAINABILITY 2019. [DOI: 10.3390/su11010277] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The prime objective of biochar production is to contribute to nutrients recycling, reducing waste and converting useful bio-wastes into carbon rich products in the environment. The present study was intended to systematically evaluate the effect of pyrolysis conditions and characteristics of feedstock influencing the generation of biochar. The study revealed the nutritional importance of waste mushroom substrate (WMS) biochar which may elevate soil nutritional status and soil quality. The results showed that the yields and properties of WMS biochar depended principally on the applied temperature where pyrolysis at higher temperatures, that is, 600 °C and 700 °C produced biochar having high ash, P and K contents. Moreover, numerous useful macro and micro nutrients such as Ca, Mg, Fe and Zn were observed to positively correlate with the increase in temperature. The WMS biochar in our study is highly alkaline which can be used to rectify acidic soil pH. Overall our results suggest that WMS biochar being a rich source of nutrients can be the best remedy to maintain and further enhance the soil nutritional status. Thus by interpreting biochar feedstock characteristics and pyrolysis conditions, the regulation of tailored WMS biochar manufacturing and application in soil can be facilitated.
Collapse
|
38
|
Li M, Tang Y, Lu XY, Zhang Z, Cao Y. Phosphorus speciation in sewage sludge and the sludge-derived biochar by a combination of experimental methods and theoretical simulation. WATER RESEARCH 2018; 140:90-99. [PMID: 29702376 DOI: 10.1016/j.watres.2018.04.039] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/31/2018] [Accepted: 04/17/2018] [Indexed: 06/08/2023]
Abstract
Sewage sludge is an inevitable byproduct from municipal wastewater treatment processes and conversion of sewage sludge into high value-added biochar is an effective strategy for resource utilization of sewage sludge. The characterization on P speciation is important to control the practical applications and environmental behavior of the sewage sludge and its derived biochar. The mobility and bioavailability of P is closely related to its speciation, but knowledge gap in P speciation is still existed which needs to be narrowed by a systematic study including existing experimental methods and techniques as well as theoretical prediction. To achieve a comprehensive understanding of P speciation, this study conducted a series of research combining conventional fractionation of P with consideration of major concomitant elements (Al, Ca, Fe), advanced analytical techniques (solution and solid-state 31P nuclear magnetic resonance (NMR), X-ray diffraction (XRD)), and theoretical simulation with respect to solubility of major elements in different acid-base extractants. Results showed that Ca and Fe were dominantly extracted by HCl whereas P and Al were both NaOH- and HCl-soluble. Inorganic orthophosphates were detected as predominant molecular configurations of P from solution 31P NMR spectra, while the existence of calcium and aluminum orthophosphates was revealed by solid-state 31P NMR. Moreover, the poor-crystalline AlPO4 mineral was further evidenced by XRD patterns of the sewage sludge and biochar. Finally, a theoretical simulation of P-containing minerals was performed on the basis of results above, which suggested the existence of variscite/berlinite and amorphous Ca3(PO4)2 in the sludge and biochar. This study does not only explore the P speciation in the sewage sludge and its derived biochar, but also provides a methodology for further research on P speciation. Through the intensive study on the environmental behavior of P, this work might further contribute to the fundamental knowledge basis for the recycle of P during integrate waste management.
Collapse
Affiliation(s)
- Mi Li
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen 518055, China; Laboratory of Advanced Chemical Engineering, Dalian Institute of Chemical Physics(DICP), Chinese of Academy Sciences, No.457 Zhongshan Road, Dalian, China
| | - Yuanyuan Tang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen 518055, China; Key Laboratory of Municipal Solid Waste Recycling Technology and Management of Shenzhen City, Shenzhen 518055, China.
| | - Xiao-Ying Lu
- Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong, Hong Kong, China
| | - Zuotai Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen 518055, China; Key Laboratory of Municipal Solid Waste Recycling Technology and Management of Shenzhen City, Shenzhen 518055, China
| | - Yiming Cao
- Laboratory of Advanced Chemical Engineering, Dalian Institute of Chemical Physics(DICP), Chinese of Academy Sciences, No.457 Zhongshan Road, Dalian, China
| |
Collapse
|
39
|
Liang X, Jin Y, He M, Niyungeko C, Zhang J, Liu C, Tian G, Arai Y. Phosphorus speciation and release kinetics of swine manure biochar under various pyrolysis temperatures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:25780-25788. [PMID: 29164458 DOI: 10.1007/s11356-017-0640-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Converting swine manure to biochar is an effective way to recycle valuable nutrients, but there are few reports on its feasibility as a phosphorus (P) source. The objective of this study was to clarify the unique nature, including P speciation, of manure biochar products under various pyrolysis temperatures. We used solution 31P nuclear magnetic resonance and P K-edge X-ray adsorption near-edge spectroscopy (P XANES) to characterize P species in swine manure biochar. For every 100 °C increment starting from 300 °C, the P content in manure biochar increased by 2.16 to 3.37 g kg-1. However, above 400 °C, organic P species did not appear anymore, and only inorganic P, including orthophosphate and pyrophosphate, existed. P K-edge XANES spectra further showed all biochar samples had higher percentages of Ca3 (PO4)2 and NaP2O7, and lower percentages of FePO4, AlPO4, and inositol hexaphosphate compared to manure. Interestingly, percentages of Ca3(PO4)2, FePO4, and AlPO4 in MB400 (indicating manure pyrolysed at 400 °C) were comparable with those in MB700 while the percentage of NaP2O7 was higher in MB400. Phosphorus release from MB400 maintained a relatively high level at 0.33 g kg-1 during the whole 300-h observation period. These results suggest that with a suitable pyrolysis temperature, it was feasible for manure biochar to be a P source alternative. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Xinqiang Liang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yi Jin
- Power China HuaDong Engineering Corporation Limited, Hangzhou, 311122, China
| | - Miaomiao He
- Department of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, China
| | - Christophe Niyungeko
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jin Zhang
- School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Chunlong Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Guangming Tian
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuji Arai
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
40
|
Sun K, Qiu M, Han L, Jin J, Wang Z, Pan Z, Xing B. Speciation of phosphorus in plant- and manure-derived biochars and its dissolution under various aqueous conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:1300-1307. [PMID: 29710629 DOI: 10.1016/j.scitotenv.2018.04.099] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
Phosphorus (P) in biochar serves as both a P source for plant growth and a contributor to water eutrophication, thus prioritizing the efficient management of P in biochar. This study employed solid- and solution- state 31P-nuclear magnetic resonance and X-ray diffraction analyses to explore the impact of feedstock and heating treatment temperature (HTT) on P species of biochars. The effects of ambient temperature, coexisting anions, pH and nutrient solution on P release were also investigated to study the effect of various environmental factors on P release from biochars. P species in both plant- and manure- derived biochars were dominated by inorganic orthophosphate and pyrophosphate (mainly calcium-bound-phosphates). The HTT of biochar showed a negative impact upon its pyrophosphate content. Compared with plant biochars, manure biochars contained higher P but had a lower release degree. Release of P from biochars was controlled by diffusion-dissolution process and was enhanced by higher ambient temperature, co-existing anions, and both acidic and alkaline conditions but inhibited by coexisting Hoagland nutrients. Anion-induced increase in P release was more significant for plant biochars than manure biochars. These findings help to adjust favorable environmental conditions for the full utilization of P in biochars.
Collapse
Affiliation(s)
- Ke Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Mengyi Qiu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Lanfang Han
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | - Jie Jin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ziying Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zezhen Pan
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
41
|
Gascó G, Paz-Ferreiro J, Álvarez ML, Saa A, Méndez A. Biochars and hydrochars prepared by pyrolysis and hydrothermal carbonisation of pig manure. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 79:395-403. [PMID: 30343769 DOI: 10.1016/j.wasman.2018.08.015] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 07/19/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
Pyrolysis of organic wastes for biochar preparation has been proved as a useful way of waste management. However, the elevated water content of some organic wastes precludes its use without a drying step before pyrolysis treatment. For this reason, hydrothermal carbonization (HTC) of wet biomass could be an inexpensive alternative management method. The main objective of the present work is to compare the properties of biochars and hydrochars obtained from thermal treatment of pig manure. Biochars were prepared at 300 °C (BPM300), 450 °C (BPM450) and 600 °C (BPM600) and hydrochars were obtained using a pig manure solution (ratio 30:70) that was heated at 200 °C (HPM200), 220 °C (HPM220) and 240 °C (HPM240) during 2 h. Characterization of biochar and hydrochar samples showed that pyrolysis led to chars with more aromatic structures and high thermal stability while HTC process originated chars with more aliphatic structures. HPM220 and HPM240 showed the highest values of field capacity water content and available water probably due to their higher O/C ratios and the macroporosity development in the range from 200 to 30,000 nm. These results suggested that HTC could be an interesting method to obtain soil growing media or green roof materials with adequate hydrophysical properties.
Collapse
Affiliation(s)
- G Gascó
- Dpto. de Producción Agraria, E.T.S.I. Agrónomica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, 28004 Madrid, Spain.
| | - J Paz-Ferreiro
- Chemical and Environmental Department, School of Engineering, RMIT University, GPO Box 2476, Melbourne, 3001, VIC, Australia
| | - M L Álvarez
- Dpto. de Producción Agraria, E.T.S.I. Agrónomica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, 28004 Madrid, Spain
| | - A Saa
- Dpto. de Producción Agraria, E.T.S.I. Agrónomica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, 28004 Madrid, Spain
| | - A Méndez
- Dpto. de Ingeniería Geológica y Minera, E.T.S.I. Minas y Energía, Universidad Politécnica de Madrid, C/Ríos Rosas n°21, 28003 Madrid, Spain
| |
Collapse
|
42
|
Novais SV, Zenero MDO, Barreto MSC, Montes CR, Cerri CEP. Phosphorus removal from eutrophic water using modified biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 633:825-835. [PMID: 29602120 DOI: 10.1016/j.scitotenv.2018.03.246] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/27/2018] [Accepted: 03/21/2018] [Indexed: 05/28/2023]
Abstract
Increasing problems related to water eutrophication, commonly caused by the high concentration of phosphorus (P), are stimulating studies aimed at an environmentally safe solution. Moreover, some research has focused on the reuse of P due to concerns about the end of its natural reserves. Biochar appears to be a solution to both problems and may act as a recovery of eutrophic/residual water with the subsequent reuse of P in agriculture, the purpose of which is to test such an assertion. Samples of biochar from poultry manure (BPM) and sugarcane straw (BCS) had their maximum adsorption capacities of Al obtained by Langmuir isotherm. These values were used to conduct the so-called post-doping process, conferring P adsorption capacity to the pyrolysed materials. Langmuir and Freundlich isotherms were adjusted for the same biochar types (Al-doped) at increasing P concentrations, in order to obtain their maximum P adsorption capacities (MPAC) and their parameters. The desorption of the adsorbed P in its MPAC was tested by three extractors: H2SO4, NaHCO3, and H2O. Finally, these biochars were used in competitive adsorption assays of phosphate, sulfate, chloride and nitrate anions and applied in a synthetic eutrophic water. The high values of MPAC of the powder materials (701.65 and 758.96mgg-1 of P for BPM and BCS, respectively) are reduced by almost half for the fragment materials (356.04 and 468.84mgg-1 of P for BPM and BCS, respectively), these values being almost entirely extracted the extractors. Its application in eutrophic/residual water, in addition to presenting a good MPAC, these materials adsorbed, in equal proportions, phosphates and sulfates, as well as to a lesser extent, nitrates and chlorides. Thus, biochar from poultry manure and sugarcane straw, after post-doping with Al, have high MPAC, being excellent materials for the recovery of waters and subsequent reuse in agriculture.
Collapse
Affiliation(s)
- Sarah Vieira Novais
- Department of Soil Science, Escola Superior de Agricultura Luiz de Queiroz, São Paulo University, Piracicaba, São Paulo, Brazil.
| | | | | | - Célia Regina Montes
- Center for Nuclear Energy in Agriculture, CENA-USP, São Paulo University, NUPEGEL, Piracicaba, São Paulo, Brazil
| | - Carlos Eduardo Pelegrino Cerri
- Department of Soil Science, Escola Superior de Agricultura Luiz de Queiroz, São Paulo University, Piracicaba, São Paulo, Brazil
| |
Collapse
|
43
|
Bornø ML, Müller-Stöver DS, Liu F. Contrasting effects of biochar on phosphorus dynamics and bioavailability in different soil types. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:963-974. [PMID: 29426221 DOI: 10.1016/j.scitotenv.2018.01.283] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/25/2018] [Accepted: 01/28/2018] [Indexed: 05/16/2023]
Abstract
We investigated how two different biochars (wood biochar - WBC and straw biochar - SBC) affected P dynamics and bioavailability in five different soils differing in pH, C%, texture, Fe, Al, Ca, and Mg giving a range of soils with low (S1 and S2), intermediate (S4), and high (S3 and S5) P sorption capacities. Langmuir and Freundlich equations were fitted to the sorption data of soil and soil/biochar mixtures. P fertilizer applied to all treatments was fractioned into strongly sorbed P (qS), easily available sorbed P (qA) and solution P (c) by determining the anion exchange resin (AER)-extractable P in samples from the sorption experiment. A pot experiment was conducted to measure P uptake by maize grown in S1, S2 and S3 amended with WBC or SBC at two P fertilizer levels (0 or 70mgPkg-1). Only WBC could sorb P from solution partly due to a high content of calcite. SBC did not have any effect on P sorption isotherms, whereas WBC increased the P sorption in S1, S2, and S4, yet decreased P sorption in acidic soil S5. qS increased in S1, S2, and S4, and decreased in S5 in WBC treatments, whereas, qS decreased in SBC treatments in soils S2, S4, and S5. Accordingly, there was a significant interaction between soil type and biochar on maize growth and P uptake. Biochar had no effect in an alkaline soil (S3), whereas, WBC and SBC had positive effects on maize growth in slightly acidic soils S1 and S2, depending on the soil P status, however, the P uptake was lower in WBC compared to SBC treatments. Biochar and soil properties and the P status of the soil affect P bioavailability. The study provides useful information for optimizing the use of biochar in agricultural P management.
Collapse
Affiliation(s)
- Marie Louise Bornø
- University of Copenhagen, Department of Plant & Environmental Sciences, Højbakkegård allé 13, DK-2630 Tåstrup, Denmark; Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, 380 Huaibeizhuang, Huairou district, Beijing, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Dorette Sophie Müller-Stöver
- University of Copenhagen, Department of Plant & Environmental Sciences, Thorvaldsensvej 40, DK-1821 Frederiksberg, Denmark.
| | - Fulai Liu
- University of Copenhagen, Department of Plant & Environmental Sciences, Højbakkegård allé 13, DK-2630 Tåstrup, Denmark; Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, 380 Huaibeizhuang, Huairou district, Beijing, China.
| |
Collapse
|
44
|
Xiao X, Chen B, Chen Z, Zhu L, Schnoor JL. Insight into Multiple and Multilevel Structures of Biochars and Their Potential Environmental Applications: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5027-5047. [PMID: 29634904 PMCID: PMC6402350 DOI: 10.1021/acs.est.7b06487] [Citation(s) in RCA: 341] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Biochar is the carbon-rich product of the pyrolysis of biomass under oxygen-limited conditions, and it has received increasing attention due to its multiple functions in the fields of climate change mitigation, sustainable agriculture, environmental control, and novel materials. To design a "smart" biochar for environmentally sustainable applications, one must understand recent advances in biochar molecular structures and explore potential applications to generalize upon structure-application relationships. In this review, multiple and multilevel structures of biochars are interpreted based on their elemental compositions, phase components, surface properties, and molecular structures. Applications such as carbon fixators, fertilizers, sorbents, and carbon-based materials are highlighted based on the biochar multilevel structures as well as their structure-application relationships. Further studies are suggested for more detailed biochar structural analysis and separation and for the combination of macroscopic and microscopic information to develop a higher-level biochar structural design for selective applications.
Collapse
Affiliation(s)
- Xin Xiao
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
- Corresponding Author: B. Chen. Phone: 0086-571-88982587; fax: 0086-571-88982587;
| | - Zaiming Chen
- Department of Environmental Engineering, Ningbo University, Ningbo 315211, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Jerald L. Schnoor
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
45
|
Huang R, Fang C, Zhang B, Tang Y. Transformations of Phosphorus Speciation during (Hydro)thermal Treatments of Animal Manures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3016-3026. [PMID: 29431994 DOI: 10.1021/acs.est.7b05203] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phosphorus (P) in animal manures is an important P pool for P recycling and reclamation. In recent years, thermochemical techniques have gained much interests for effective waste treatment and P recycling. This study comparatively characterized the transformation of P during two representative thermochemical treatments (pyrolysis and hydrothermal carbonization, HTC) of four animal manures (swine, chicken, beef, and dairy manures) by combining nuclear magnetic resonance spectroscopy, X-ray absorption spectroscopy, and sequential extraction. For both pyrolysis and HTC treatments, degradation of organic phosphate and crystallization of Ca phosphate minerals were observed and were highly dependent on treatment temperature. Extensive crystallization of Ca phosphate minerals occurred at temperatures above 450 °C during pyrolysis, compared to the lower temperature (175 and 225 °C) requirements during HTC. As a result, P was immobilized in the hydrochars and high temperature pyrochars, and was extracted primarily by HCl. Because Ca is the dominating P-complexing cation in all four manures, all manures showed similar P speciation and transformation behaviors during the treatments. Results from this work provided deeper insights into the thermochemical processes occurred during the pyrolysis and HTC treatments of biological wastes, as well as guidance for P reclamation and recycling from these wastes.
Collapse
Affiliation(s)
- Rixiang Huang
- School of Earth and Atmospheric Sciences , Georgia Institute of Technology , 311 Ferst Drive , Atlanta , Georgia 30324-0340 , United States
| | - Ci Fang
- School of Earth and Atmospheric Sciences , Georgia Institute of Technology , 311 Ferst Drive , Atlanta , Georgia 30324-0340 , United States
- College of Resources and Environmental Sciences , China Agricultural University , Beijing 100193 , China
| | - Bei Zhang
- School of Earth and Atmospheric Sciences , Georgia Institute of Technology , 311 Ferst Drive , Atlanta , Georgia 30324-0340 , United States
| | - Yuanzhi Tang
- School of Earth and Atmospheric Sciences , Georgia Institute of Technology , 311 Ferst Drive , Atlanta , Georgia 30324-0340 , United States
| |
Collapse
|
46
|
Vikrant K, Kim KH, Ok YS, Tsang DCW, Tsang YF, Giri BS, Singh RS. Engineered/designer biochar for the removal of phosphate in water and wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:1242-1260. [PMID: 29107379 DOI: 10.1016/j.scitotenv.2017.10.193] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 06/07/2023]
Abstract
During the past decade, biochar has attracted immense scientific interest for agricultural and environmental applications. A broad range of biochars with advantageous properties (e.g., high surface area, flexible architecture, and high porosity) has been developed for pollution abatement. Nevertheless, biochar suffers from certain drawbacks (e.g., limited sorption capacity for anions and poor mechanical properties) that limit their practical applicability. This review focuses on recent advancements in biochar technology, especially with respect to its technical aspects, the variables associated with removing phosphates from water, and the challenges for such abatement. The attention paid to the specific remediation of phosphate from water using biochar is limited (n=1114 - Scopus) compared to the application of biochar to other common water pollutants (n=3998 - Scopus). The subject warrants immediate rigorous research because of the undesirable effects of excess phosphate in water bodies. This review will thus facilitate the construction of a roadmap for further developments and the expansion of this challenging area of research.
Collapse
Affiliation(s)
- Kumar Vikrant
- Department of Chemical Engineering and Technology, Centre of Advanced Study, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| | - Yong Sik Ok
- Korea Biochar Research Center, Divison of Environmental Science and Ecological Engineering Korea University, Seoul, 02841, Republic of Korea.
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong, China
| | - Balendu Shekhar Giri
- Department of Chemical Engineering and Technology, Centre of Advanced Study, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Ram Sharan Singh
- Department of Chemical Engineering and Technology, Centre of Advanced Study, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
47
|
Sun D, Hale L, Kar G, Soolanayakanahally R, Adl S. Phosphorus recovery and reuse by pyrolysis: Applications for agriculture and environment. CHEMOSPHERE 2018; 194:682-691. [PMID: 29245134 DOI: 10.1016/j.chemosphere.2017.12.035] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/29/2017] [Accepted: 12/06/2017] [Indexed: 06/07/2023]
Abstract
Phosphorus ore extraction for soil fertilization supports the demand of modern agriculture, but extractable resource limitations, due to scarcity, impose a P reuse and recycling research agenda. Here we propose to integrate biochar production (pyrogenic carbon) with municipal and agricultural waste management systems, to recover and reuse phosphorous that would otherwise be lost from the ecological food web. A meta-analysis and available data on total P in biochar indicated that P-enriched feedstocks include animal manure, human excreta, and plant-biomass collected from P-polluted sites. Phosphorus in biochar could participate in P equilibriums in soils and is expected to supply P. The release, sorption and desorption of P by biochar will codetermine the potential of P replenishment by biochar and P loss from biochar-amended soils. Abiotic and biotic factors are expected to affect sorption/desorption of P between biochar and soil aggregates, and P acquisition by plants. Chemical extraction, using acid or alkaline solutions, is considered as a means for P retrieval from high P biochar, especially for biochar with high heavy metal contents. To bridge the gap between academia and practice, this paper proposes future development for phosphorus acclamation by pyrolysis: 1) identification of high-P bio-waste for pyrolysis; 2) retrieval of P by using biochar as soil amendment or by chemical leaching; 3) biochar modification by inorganic nutrients, P solubilizing microorganisms and other organic matter; and 4) compatible pyrolysis equipment fit to the current waste management context, such as households, and waste water treatment plants.
Collapse
Affiliation(s)
- Daquan Sun
- Department of Soil Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N5A8, Canada.
| | - Lauren Hale
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Gourango Kar
- Department of Soil Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N5A8, Canada
| | - Raju Soolanayakanahally
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon SK, S7N 0X2, Canada
| | - Sina Adl
- Department of Soil Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N5A8, Canada
| |
Collapse
|
48
|
Robinson JS, Baumann K, Hu Y, Hagemann P, Kebelmann L, Leinweber P. Phosphorus transformations in plant-based and bio-waste materials induced by pyrolysis. AMBIO 2018; 47:73-82. [PMID: 29159454 PMCID: PMC5722748 DOI: 10.1007/s13280-017-0990-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Strategies are needed to increase the sustainability of phosphorus (P) fertiliser management in agriculture. This paper reports on the potential of pyrolysis treatment to recycle P from renewable materials previously regarded as wastes. The study used K-edge X-ray absorption near-edge structure (XANES) spectroscopy to examine chemical forms of P in the waste feedstock materials and corresponding biochars (pyrolysis at 480-500 °C) of four ligno-cellulosic, plant-based residues and five relatively P-rich livestock and water-treatment by-products, to acquire information on changes in potential P fertiliser value. Pyrolysis enriched P in the biochars by factors of 1.3-4.3, thus offering wide-ranging P fertiliser potential. XANES spectroscopy revealed hydroxyapatite (HAP) as one of the dominant chemical P compounds in the feedstocks, ranging from 14% (rice husks) to 98% (animal bone) of total P. For most materials, pyrolysis increased the proportion of HAP, and pyrophosphates were generated in several cases. These alterations possibly lead to diversity in the P solubility characteristics of the biochars if used as soil amendments; this is an important property of environmentally sound P fertilisers.
Collapse
Affiliation(s)
- James Stephen Robinson
- Department of Geography and Environmental Science, University of Reading, Reading, RG6 6AB UK
| | - Karen Baumann
- Soil Science, Faculty for Agricultural and Environmental Sciences, University of Rostock, Justus-von-Liebig Weg 6, 18059 Rostock, Germany
| | - Yongfeng Hu
- Canadian Light Source, Inc., University of Saskatchewan, 44 Innovation Boulevard, Saskatoon, SK S7N 2V3 Canada
| | | | | | - Peter Leinweber
- Soil Science, Faculty for Agricultural and Environmental Sciences, University of Rostock, Justus-von-Liebig Weg 6, 18059 Rostock, Germany
| |
Collapse
|
49
|
Huang W, Zhao Z, Yuan T, Huang W, Lei Z, Zhang Z. Low-temperature hydrothermal pretreatment followed by dry anaerobic digestion: A sustainable strategy for manure waste management regarding energy recovery and nutrients availability. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 70:255-262. [PMID: 28927851 DOI: 10.1016/j.wasman.2017.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 08/02/2017] [Accepted: 09/11/2017] [Indexed: 06/07/2023]
Abstract
This study evaluated the feasibility of low-temperature hydrothermal (HT) pretreatment for improving dry anaerobic digestion (AD) of swine manure (SM) and nutrient elements reclamation, with specific goals to minimize the drawbacks of conventional HT process including high energy consumption, inhibitory compounds formation and unfavorable pH/alkalinity decrease. Pretreatment at 110-130°C for holding 30min increased the soluble organic carbon (SOC) concentration in SM by 13-26%. After being mixed with inocula, the pretreated SM was applied for dry AD tests successfully without initial pH adjustment, achieving a CH4 yield of 280.18-328.93ml/g-VSfed (14-34% increase compared to that from raw SM). Energy assessment indicated a positive net gain of 0.95kJ/g-VS by adopting HT pretreatment at 130°C. Except for increment in CH4 yield, low-temperature HT pretreatment also promoted organic-N mineralization, increasing N fractions in the digestate available for plants. After 70days' dry AD, a high ammonia-N to total nitrogen (TN) ratio of 71% was obtained for the SM sample pretreated at 130°C, in sharp contrast to that of 38% in raw SM. P bioavailability in the final digestate was not greatly affected by the HT pretreatment since the labile organics were mostly degraded after AD, in which P existing forms were influenced by the multivalent metals content in SM. Overall, 23-27% of the total P was potentially bioavailable in all digestates.
Collapse
Affiliation(s)
- Weiwei Huang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Key Laboratory of Coal Gasification and Energy Chemical Engineering of Ministry of Education, East China University of Science and Technology, No. 130 Meilong Road, Xuhui District, Shanghai 200237, China
| | - Ziwen Zhao
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Tian Yuan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Wenli Huang
- MOE Key Laboratory of Pollution Process and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, China
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
50
|
Huang R, Fang C, Lu X, Jiang R, Tang Y. Transformation of Phosphorus during (Hydro)thermal Treatments of Solid Biowastes: Reaction Mechanisms and Implications for P Reclamation and Recycling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10284-10298. [PMID: 28876917 DOI: 10.1021/acs.est.7b02011] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Phosphorus (P) is an essential nutrient for all organisms, thus playing unique and critical roles at the food-energy-water nexus. Most P utilized by human activities eventually converges into various solid biowastes, such as crop biomass, animal manures, and sewage sludges. Therefore, integration of efficient P recovery practices into solid biowaste management will not only significantly reduce the dependence on limited geological P resources but also reduce P runoff and related water contamination issues associated with traditional waste management strategies. This study reviews the applications of (hydro)thermal techniques for the treatment of solid biowastes, which can greatly facilitate P recovery in addition to waste volume reduction, decontamination, and energy recovery. Research showed that P speciation (including molecular moiety, complexation state, and mineralogy) can experience significant changes during (hydro)thermal treatments, and are impacted by treatment techniques and conditions. Changes in P speciation and overall properties of the products can alter the mobility and bioavailability of P, and subsequent P reclamation and recycling efficiency of the treatment products. This review summarizes recent progresses in this direction, identifies the challenges and knowledge gaps, and provides a foundation for future research efforts targeting at sustainable management of nutrient-rich biowastes.
Collapse
Affiliation(s)
- Rixiang Huang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology , 311 Ferst Drive, Atlanta, Georgia 30332-0340, United States
| | - Ci Fang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology , 311 Ferst Drive, Atlanta, Georgia 30332-0340, United States
- College of Resources and Environmental Sciences, China Agricultural University , Beijing 100193, China
| | - Xiaowei Lu
- School of Civil and Environmental Engineering, University of South Carolina , Columbia, South Carolina 29208, United States
| | - Rongfeng Jiang
- College of Resources and Environmental Sciences, China Agricultural University , Beijing 100193, China
| | - Yuanzhi Tang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology , 311 Ferst Drive, Atlanta, Georgia 30332-0340, United States
| |
Collapse
|