1
|
Li Z, Wang Y, Wang Z, Wu D, Zhao Y, Gong X, Jiang Q, Xia C. Study on biotransformation and absorption of genistin based on fecal microbiota and Caco-2 cell. Front Pharmacol 2024; 15:1437020. [PMID: 39444613 PMCID: PMC11496136 DOI: 10.3389/fphar.2024.1437020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Genistin, as a kind of natural isoflavone glycoside, has good biological activity, and its weak absorption makes it closely related to intestinal flora. However, the role of the intestinal flora is still unclear and whether the metabolites produced by the intestinal flora are absorbed systemically is also variable. Methods Genistin was fermented for 24 h based on fecal bacteria fermentation technology. The components were qualitatively and quantitatively analyzed by HPLC and UHPLC-Q-Exactive Orbitrap Mass spectrometry. The composition of intestinal flora in fermentation samples from fecal bacteria was detected by 16S rRNA sequencing. Five representative probiotics were cultured in vitro and fermented with genistin to determine similarities and differences in genistin metabolites by different bacteria at different times. Finally, the absorption results of metabolites by fermentation were verified by a Caco-2 cell monolayer. Results The HPLC results of fecal fermentation showed that genistein levels increased from 0.0139 ± 0.0057 mg/mL to 0.0426 ± 0.0251 mg/mL and two new metabolites were produced. A total of 46 metabolites following fecal fermentation were identified, resulting from various biotransformation reaction products, such as decarbonylation, hydroxylation, and methylation. Simultaneously, the 16S rRNA results showed that the intestinal flora changed significantly before and after fermentation and that the intestinal microorganisms in the control (Con) group and the fermentation (Fer) group showed a significant separation trend. Five genera, Lactobacillus, Bifidobacterium, Parabacteroides, Sutterella, and Dorea, were considered the dominant flora for genistin fermentation. The qualitative results of fermentation of genistin by five probiotics at different times showed that there were significant differences in small molecule metabolites by fermentation of different bacteria. Meanwhile, most metabolites could be identified following fecal bacteria fermentation, which verified the importance of the dominant bacteria in the feces for the biotransformation of components. Finally, the absorption results of the metabolites based on the Caco-2 cell monolayer showed that 14 metabolites could be absorbed into the circulation in vivo through the mesentery. Discussion The small molecule metabolites of genistin by fermentation of fecal bacteria can be well absorbed systemically by the body. These studies provide a reference value for explaining the transformation and absorption of flavonoid glycosides in the intestine.
Collapse
Affiliation(s)
- Zhe Li
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuqing Wang
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zicheng Wang
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Dongxue Wu
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuhao Zhao
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Xun Gong
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Quan Jiang
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Congmin Xia
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Cao S, Pan Y, Zheng W, Chen S, Yin T, Liu R, You J. Effect of ozone oxidation on gastrointestinal digestion and absorption characteristics of silver carp (Hypophthalmichthys molitrix) surimi gels in vitro. Food Res Int 2024; 192:114759. [PMID: 39147534 DOI: 10.1016/j.foodres.2024.114759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/30/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024]
Abstract
To investigate the quality of different ozone-oxidized surimi gels and their in vitro digestion and absorption characteristics, surimi rinsed with different concentrations of ozonated water (0, 8, 26 mg/L) were prepared. Then, the degree of oxidation and gel structure of surimi were determined, the in vitro digestion and absorption of the gels were simulated, and the digestion and absorption products were analyzed by LC-MS/MS. The results showed that the quality of surimi gels was improved after proper ozone oxidation. After ozone water rinsing, the dry matter digestibility, peptide, and amino acid content increased, and the changes of all three were in line with the Logistic kinetic model (R2 = 0.95-0.99). Caco-2 cell absorption experiments showed that the absorption rate of peptides and amino acids decreased after ozone water rinsing. In summary, ozone oxidation can promote the digestion of surimi gels, but it also reduces the absorption of peptides and amino acids by Caco-2 cells. This study provides a reference for the application of ozone in the food field.
Collapse
Affiliation(s)
- Shuning Cao
- College of Food Science and Technology, Huazhong Agricultural University/Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, Hubei Province 430070, China.
| | - Yuping Pan
- College of Food Science and Technology, Huazhong Agricultural University/Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, Hubei Province 430070, China.
| | - Wendong Zheng
- College of Food Science and Technology, Huazhong Agricultural University/Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, Hubei Province 430070, China.
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| | - Tao Yin
- College of Food Science and Technology, Huazhong Agricultural University/Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, Hubei Province 430070, China; National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei 430070, China.
| | - Ru Liu
- College of Food Science and Technology, Huazhong Agricultural University/Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, Hubei Province 430070, China; National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei 430070, China.
| | - Juan You
- College of Food Science and Technology, Huazhong Agricultural University/Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, Hubei Province 430070, China; National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei 430070, China.
| |
Collapse
|
3
|
Bu G, Zhao X, Wang M, Ti G, Chen F, Duan X, Huang Y, Li P. Identification of calcium chelating peptides from peanut protein hydrolysate and absorption activity of peptide-calcium complex. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6676-6686. [PMID: 38545944 DOI: 10.1002/jsfa.13493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Peanut peptides have good chelating ability with metal ions. However, there are few studies on the chelation mechanism of peanut peptides with calcium and absorption properties of peptide-calcium complex. RESULTS Peptides with high calcium chelating rate were isolated and purified from peanut protein hydrolysate (PPH), and the chelation rate of component F21 was higher (81.4 ± 0.8%). Six peptides were identified from component F21 by liquid chromatography-tandem mass spectrometry, and the frequency of acidic amino acids and arginine in the amino acid sequence was higher in all six peptides. Peanut peptide-calcium complex (PPH21-Ca) was prepared by selecting component F21 (PPH21). Ultraviolet analysis indicated that the chelate reaction occurred between peanut peptide and calcium ions. Fourier transform infrared analysis showed that the chelating sites were carboxyl and amino groups on the amino acid residues of peptides. Scanning electron microscopy revealed that the surface of peanut peptide had a smooth block structure, but the surface of the complex had a granular morphology. Caco-2 cell model tests revealed that the bioavailability of PPH21-Ca was 58.4 ± 0.5%, which was significantly higher than that of inorganic calcium at 37.0 ± 0.4%. CONCLUSION Peanut peptides can chelate calcium ions by carboxyl and amino groups, and the peptide-calcium complex had higher bioavailability. This study provides a theoretical basis for the development of new calcium supplement products that are absorbed easily. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guanhao Bu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Xiaoling Zhao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Mengli Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Guanghui Ti
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Xiaojie Duan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Yanan Huang
- Henan Province Nanjie Village (Group) Co., Ltd, Luohe, China
| | - Panxin Li
- Henan Province Nanjie Village (Group) Co., Ltd, Luohe, China
| |
Collapse
|
4
|
Yu T, Hu T, Na K, Zhang L, Lu S, Guo X. Glutamine-derived peptides: Current progress and future directions. Compr Rev Food Sci Food Saf 2024; 23:e13386. [PMID: 38847753 DOI: 10.1111/1541-4337.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/25/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
Glutamine, the most abundant amino acid in the body, plays a critical role in preserving immune function, nitrogen balance, intestinal integrity, and resistance to infection. However, its limited solubility and instability present challenges for its use a functional nutrient. Consequently, there is a preference for utilizing glutamine-derived peptides as an alternative to achieve enhanced functionality. This article aims to review the applications of glutamine monomers in clinical, sports, and enteral nutrition. It compares the functional effectiveness of monomers and glutamine-derived peptides and provides a comprehensive assessment of glutamine-derived peptides in terms of their classification, preparation, mechanism of absorption, and biological activity. Furthermore, this study explores the potential integration of artificial intelligence (AI)-based peptidomics and synthetic biology in the de novo design and large-scale production of these peptides. The findings reveal that glutamine-derived peptides possess significant structure-related bioactivities, with the smaller molecular weight fraction serving as the primary active ingredient. These peptides possess the ability to promote intestinal homeostasis, exert hypotensive and hypoglycemic effects, and display antioxidant properties. However, our understanding of the structure-function relationships of glutamine-derived peptides remains largely exploratory at current stage. The combination of AI based peptidomics and synthetic biology presents an opportunity to explore the untapped resources of glutamine-derived peptides as functional food ingredients. Additionally, the utilization and bioavailability of these peptides can be enhanced through the use of delivery systems in vivo. This review serves as a valuable reference for future investigations of and developments in the discovery, functional validation, and biomanufacturing of glutamine-derived peptides in food science.
Collapse
Affiliation(s)
- Tianfei Yu
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Tianshuo Hu
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Kai Na
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Li Zhang
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Shuang Lu
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Xiaohua Guo
- College of Life Science, South-Central Minzu University, Wuhan City, China
| |
Collapse
|
5
|
Yu Z, Liu D, Wu C, Zhao W. Intestinal absorption of bioactive oligopeptides: paracellular transport and tight junction modulation. Food Funct 2024; 15:6274-6288. [PMID: 38787733 DOI: 10.1039/d4fo00529e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Bioactive oligopeptides have gained increasing attention due to their diverse physiological functions, and these can be transported into the vasculature via transcellular and paracellular pathways. Among these, paracellular transport through the intercellular space is a passive diffusion process without energy consumption. It is currently the most frequently reported absorption route for food-derived bioactive oligopeptides. Previous work has demonstrated that paracellular pathways are mainly controlled by tight junctions, but the mechanism by which they regulate paracellular absorption of bioactive oligopeptides remains unclear. In this review, we summarized the composition of paracellular pathways across the intercellular space and elaborated on the paracellular transport mechanism of bioactive oligopeptides in terms of the interaction between oligopeptides and tight junction proteins, the protein expression level of tight junctions, the signaling pathways regulating intestinal permeability, and the properties of oligopeptides themselves. These findings contribute to a more profound understanding of the paracellular absorption of bioactive oligopeptides.
Collapse
Affiliation(s)
- Zhipeng Yu
- School of Food Science and Engineering, Hainan University, Haikou 570228, P.R. China.
| | - Di Liu
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, P.R. China
| | - Chunjian Wu
- School of Food Science and Engineering, Hainan University, Haikou 570228, P.R. China.
| | - Wenzhu Zhao
- School of Food Science and Engineering, Hainan University, Haikou 570228, P.R. China.
| |
Collapse
|
6
|
Nakatani E, Sasai M, Miyazaki H, Tanaka S, Hirota T, Okura T. Investigating the Transepithelial Transport and Enzymatic Stability of Lactononadecapeptide (NIPPLTQTPVVVPPFLQPE), a 19-Amino Acid Casein-Derived Peptide in Caco-2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12719-12724. [PMID: 38789103 PMCID: PMC11157532 DOI: 10.1021/acs.jafc.4c00974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/26/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024]
Abstract
Lactononadecapeptide (LNDP; NIPPLTQTPVVVPPFLQPE), a casein-derived peptide comprising 19 residues, is known for its capacity to enhance cognitive function. This study aimed to explore the transepithelial transport and stability of LNDP. Results showed that LNDP retained over 90% stability after 2 h of treatment with gastrointestinal enzymes. The stability of LNDP on Caco-2 cell monolayers ranged from 93.4% ± 0.9% to 101.1% ± 1.2% over a period of 15-60 min, with no significant differences at each time point. The permeability of LNDP across an artificial lipid membrane was very low with the effective permeability of 3.6 × 10-11 cm/s. The Caco-2 assay demonstrated that LNDP could traverse the intestinal epithelium, with an apparent permeability of 1.22 × 10-6 cm/s. Its transport was significantly inhibited to 67.9% ± 5.0% of the control by Gly-Pro, a competitor of peptide transporter 1 (PEPT1). Furthermore, PEPT1 knockdown using siRNA significantly inhibited LNDP transport by 77.6% ± 1.9% in Caco-2 cell monolayers. The LNDP uptake in PEPT1-expressing HEK293 cells was significantly higher (54.5% ± 14.6%) than that in mock cells. These findings suggest that PEPT1 plays a crucial role in LNDP transport, and LNDP exhibits good resistance to gastrointestinal enzymes.
Collapse
Affiliation(s)
- Eriko Nakatani
- Laboratory
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Masaki Sasai
- Core
Technology Laboratories, Asahi Quality and
Innovations, Ltd., 1-1-21
Midori, Moriya, Ibaraki 302-0106, Japan
| | - Hidetoshi Miyazaki
- Core
Technology Laboratories, Asahi Quality and
Innovations, Ltd., 1-1-21
Midori, Moriya, Ibaraki 302-0106, Japan
| | - Shimako Tanaka
- Laboratory
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Tatsuhiko Hirota
- Core
Technology Laboratories, Asahi Quality and
Innovations, Ltd., 1-1-21
Midori, Moriya, Ibaraki 302-0106, Japan
| | - Takashi Okura
- Laboratory
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| |
Collapse
|
7
|
Hu YY, Xiao S, Zhou GC, Chen X, Wang B, Wang JH. Bioactive peptides in dry-cured ham: A comprehensive review of preparation methods, metabolic stability, safety, health benefits, and regulatory frameworks. Food Res Int 2024; 186:114367. [PMID: 38729727 DOI: 10.1016/j.foodres.2024.114367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/29/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Dry-cured hams contain abundant bioactive peptides with significant potential for the development of functional foods. However, the limited bioavailability of food-derived bioactive peptides has hindered their utilization in health food development. Moreover, there is insufficient regulatory information regarding bioactive peptides and related products globally. This review summarizes diverse bioactive peptides derived from dry-cured ham and by-products originating from various countries and regions. The bioactivity, preparation techniques, bioavailability, and metabolic stability of these bioactive peptides are described, as well as the legal and regulatory frameworks in various countries. The primary objectives of this review are to dig deeper into the functionality of dry-cured ham and provide theoretical support for the commercialization of bioactive peptides from food sources, especially the dry-cured ham.
Collapse
Affiliation(s)
- Yao-Yao Hu
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China; College of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Shan Xiao
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China; College of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Gui-Cheng Zhou
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China; College of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xuan Chen
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Bo Wang
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China; Regional Brand Innovation & Development Institute of Dongguan Prepared Dishes
| | - Ji-Hui Wang
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China; College of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; Regional Brand Innovation & Development Institute of Dongguan Prepared Dishes
| |
Collapse
|
8
|
Yang W, He Y, Tian Y, Xiong H, Zhang C, Sun Y. Characterization and Mechanism of a Novel Rice Protein Peptide (AHVGMSGEEPE) Calcium Chelate in Enhancing Calcium Absorption in Caco-2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8569-8580. [PMID: 38563891 DOI: 10.1021/acs.jafc.3c09916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Rice protein peptides (RPP) are a potentially valuable source of high-quality calcium chelating properties. However, there is a lack of information regarding the calcium-absorption-promoting effect of RPP and its underlying mechanism. The present study adopted molecular docking methodologies to analyze the 10 most potent peptide segments from RPP. Results revealed that the peptide AHVGMSGEEPE (AHV) displayed optimal calcium binding properties (calcium-chelating capacity 55.69 ± 0.66 mg/g). Quantum chemistry analysis revealed that the AHV peptide effectively binds and forms stable complexes with calcium via the carbonyl oxygen atoms in valine at position 3 and the carbonyl of the C-terminal carboxyl group of glutamate at position 11. The spectral analysis results indicated that AHV may bind to calcium through carboxyl oxygen atoms, resulting in a transition from a smooth surface block-like structure to a dense granular structure. Furthermore, this study demonstrated that the 4 mmol/L AHV-Ca chelate (61.75 ± 13.23 μg/well) significantly increases calcium absorption compared to 1 mM CaCl2 (28.57 ± 8.59 μg/well) in the Caco-2 cell monolayer. In terms of mechanisms, the novel peptide-calcium chelate AHV-Ca derived from RPP exerts a cell-level effect by upregulating the expression of TRPV6 calcium-ion-channel-related genes and proteins (TRPV6 and Calbindin-D9k). This study provides a theoretical basis for developing functional foods with the AHV peptide as ingredients to improve calcium absorption.
Collapse
Affiliation(s)
- Wenting Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Yangzheng He
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Yue Tian
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Chunbo Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Yong Sun
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
| |
Collapse
|
9
|
Yang M, Su S, Cheng S, Wang Z, Du M. Absorption and transport properties of a codfish-derived peptide and its protective effect on bone loss in ovariectomized mice. Food Funct 2024; 15:3496-3506. [PMID: 38463011 DOI: 10.1039/d3fo04819e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
A potential osteogenic tetradecapeptide with the amino acid sequence GETNPADSKPGSIR (P-GM-2) was identified from Gadus morhua. The present study aimed to elucidate its absorption and transport properties using Caco-2/HT29-MTX co-culture monolayers and to evaluate its osteogenic activity using an ovariectomized mouse model. The results showed that P-GM-2 could cross Caco-2/HT29-MTX co-culture barriers intactly with an apparent permeability coefficient of 4.02 × 10-6 cm s-1via the TJ-mediated passive paracellular pathway. Pharmacokinetic results revealed that P-GM-2 was detectable in the blood of mice within 5 min of oral administration and reached its maximum concentration at 30 min. Furthermore, the oral administration of P-GM-2 for a duration of three months has been found to effectively regulate the secretion of key markers of bone turnover, thereby protecting against bone microstructure degeneration and bone loss in ovariectomized mice. Importantly, no toxicity related to the treatment was observed. Taken together, these findings offer valuable insights into the absorption and transport mechanisms of P-GM-2, highlighting its potential as a safe and effective active ingredient for preventing osteoporosis.
Collapse
Affiliation(s)
- Meilian Yang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China.
| | - Shengpeng Su
- Inner Mongolia Enterprise Key Laboratory of Dairy Nutrition, Health & Safety, Inner Mongolia Mengniu Dairy (Group) Co., Ltd, Huhhot 011500, P.R. China
| | - Shuzhen Cheng
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China.
| | - Zhenyu Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China.
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
10
|
Wang S, Zhang L, Wang H, Hu Z, Xie X, Chen H, Tu Z. Identification of novel angiotensin converting enzyme (ACE) inhibitory peptides from Pacific saury: In vivo antihypertensive effect and transport route. Int J Biol Macromol 2024; 254:127196. [PMID: 37793525 DOI: 10.1016/j.ijbiomac.2023.127196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/03/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
Nature food-derived angiotensin converting enzyme inhibitory peptides (ACEIPs) can be potent and safe therapeutics for many medical illnesses, particularly hypertension. In this study, novel ACEIPs were screened and identified from Pacific saury by bio-activity guided approach through ultrafiltration membrane, Sephadex G-25 and RP-HPLC. The antihypertensive effect of ultrafiltration fraction was confirmed with spontaneous hypertensive rats' (SHRs) model. The peptides sequences of which gave the best activity was identified by Q-Orbitrap-MS/MS and selectively synthesized based on the binding energy of molecular docking. Five peptides VVLASLK, LTLK, LEPWR, ELPPK and LPTEK were synthesized, and the peptide LEPWR (IC50 = 99.5 μM) showed the best ACE inhibitory ability. Furthermore, LEPWR against ACE in a mixed competitive pattern and formed six hydrogen bonds with ACE. Additionally, the apparent permeability coefficient (Papp) of LEPWR was 3.56 ± 0.14 × 10-6 cm/s and paracellular transport across tight junctions was the main pathway across the Caco-2 monolayer. Therefore, the Pacific saury is a good material to prepare ACEIPs, but antihypertensive mechanism of peptide LEPWR on SHRs needs further investigation.
Collapse
Affiliation(s)
- Shu Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Lu Zhang
- National R&D Center for conventional Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Hui Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Zizi Hu
- National R&D Center for conventional Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Xing Xie
- National R&D Center for conventional Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Haiqi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Zongcai Tu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; National R&D Center for conventional Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| |
Collapse
|
11
|
Yu X, Liu X, Zhou D. A critical review of a typical research system for food-derived metal-chelating peptides: Production, characterization, identification, digestion, and absorption. Compr Rev Food Sci Food Saf 2024; 23:e13277. [PMID: 38284607 DOI: 10.1111/1541-4337.13277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 01/30/2024]
Abstract
In the past decade, food-derived metal-chelating peptides (MCPs) have attracted significant attention from researchers working towards the prevention of metal (viz., iron, zinc, and calcium) deficiency phenomenon by primarily inhibiting the precipitation of metals caused by the gastrointestinal environment and exogenous substances (including phytic and oxalic acids). However, for the improvement of limits of current knowledge foundations and future investigation directions of MCP or their derivatives, several review categories should be improved and emphasized. The species' uniqueness and differences in MCP productions highly contribute to the different values of chelating ability with particular metal ions, whereas comprehensive reviews of chelation characterization determined by various kinds of technique support different horizons for explaining the chelation and offer options for the selection of characterization methods. The reviews of chelation mechanism clearly demonstrate the involvement of potential groups and atoms in chelating metal ions. The discussions of digestive stability and absorption in various kinds of absorption model in vitro and in vivo as well as the theory of involved cellular absorption channels and pathways are systematically reviewed and highlighted compared with previous reports as well. Meanwhile, the chelation mechanism on the molecular docking level, the binding mechanism in amino acid identification level, the utilizations of everted rat gut sac model for absorption, and the involvement of cellular absorption channels and pathway are strongly recommended as novelty in this review. This review makes a novel contribution to the literature by the comprehensive prospects for the research and development of food-derived mineral supplements.
Collapse
Affiliation(s)
- Xuening Yu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xiaoyang Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Dayong Zhou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
12
|
You H, Li J, Li Y, Wang W, Yu Z, Liu J, Liu X, Ding L. Absorption of egg white hydrolysate in the intestine: Clathrin-dependent endocytosis as the main transport route. Food Res Int 2023; 173:113480. [PMID: 37803802 DOI: 10.1016/j.foodres.2023.113480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/20/2023] [Accepted: 09/13/2023] [Indexed: 10/08/2023]
Abstract
This paper aimed to investigate the in vivo absorption of egg white hydrolysate (EWH) in rats and the transport route across the intestinal epithelium. Results showed that the level of plasma peptide-bound amino acid (PAA) of the EWH-supplemented rats (EWH-R) was determined to be 2012.18 ± 300.98 μmol/L, 10.72% higher than that of the control group, and was significantly positively correlated to that of EWH. Thirty-three egg white-derived peptides were successfully identified from the plasma of EWH-R, and 20 of them were found in both EWH-R plasma and EWH, indicating that these peptides tend to be absorbed through the intestinal epithelium in intact forms into the blood circulation. In addition, 637 up-regulated and 577 down-regulated genes in Caco-2 cells incubated with EWH were detected by RNA-sequencing and the clathrin-dependent endocytosis was the most enriched pathway in KEGG analysis. EWH significantly increased the mRNA levels of the key genes involved in the clathrin-dependent endocytosis but these changes would be inhibited by the clathrin-dependent endocytosis inhibitor of chlorpromazine. Moreover, the transepithelial transport of EWH across Caco-2 cell monolayers was significantly reduced by chlorpromazine. This study provided molecular-level evidence for the first time that clathrin-dependent endocytosis might be the main transport route of EWH in the intestinal epithelium.
Collapse
Affiliation(s)
- Haixi You
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Juanrui Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Yiju Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Wei Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Zhipeng Yu
- College of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Jingbo Liu
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Long Ding
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
13
|
Yu Z, Ma W, Ji H, Fan Y, Zhao W. Interaction mechanism of egg derived peptides RVPSL and QIGLF with dipalmitoyl phosphatidylcholine membrane: microcalorimetric and molecular dynamics simulation studies. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6383-6393. [PMID: 37205773 DOI: 10.1002/jsfa.12714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/03/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Egg-derived peptides are becoming increasingly popular due to their biological activity and non-toxic effects. The egg-derived peptides Arg-Val-Pro-Ser-Leu (RVPSL) and Gln-Ile-Gly-Leu-Phe (QIGLF) display strong angiotensin-converting enzyme inhibitory activity and they can be taken up by intestinal epithelial cells. The interaction of the egg-derived peptides RVPSL and QIGLF with the membrane remains unclear. RESULTS The position and structure of the peptides in the membrane were calculated. The maximum density values of RVPSL and QIGLF were 2.27 and 1.22 nm from the center of the 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) membrane, respectively, indicating that peptides penetrated the membrane-water interface and were embedded in the membrane. The interaction of RVPSL and QIGLF with the DPPC membrane did not affect the average area per lipid or the lipid sequence parameters. The thermodynamic parameters ΔH, ΔG, and ΔS of the interaction between the peptide RVPSL with the DPPC membrane were 17.91 kJ mol-1 , -17.63 kJ mol-1 , 187.5 J mol-1 ·k-1 , respectively. The thermodynamic parameters ΔH, ΔG, and ΔS of the interaction between peptide QIGLF with DPPC membrane were 17.10 kJ mol-1 , -17.12 kJ mol-1 , 114.8 J mol-1 ·k-1 , respectively. CONCLUSION The results indicated that the binding of peptides RVPSL and QIGLF to DPPC is an endothermic, spontaneous, and entropy-driven reaction. The results of the study are relevant to the problem of the low bioavailability of bioactive peptides (BP). © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhipeng Yu
- School of Food Science and Engineering, Hainan University, Haikou, P. R. China
| | - Wenhao Ma
- College of Food Science and Engineering, Bohai University, Jinzhou, P. R. China
| | - Huizhuo Ji
- College of Food Science and Engineering, Bohai University, Jinzhou, P. R. China
| | - Yue Fan
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xian, P. R. China
| | - Wenzhu Zhao
- School of Food Science and Engineering, Hainan University, Haikou, P. R. China
| |
Collapse
|
14
|
Yang Q, Liu J, Li T, Lyu S, Liu X, Du Z, Shang X, Zhang T. Integrated Microbiome and Metabolomic Analysis Reveal the Repair Mechanisms of Ovalbumin on the Intestine Barrier of Colitis Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37161945 DOI: 10.1021/acs.jafc.2c08897] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The development and progression of colitis would detrimentally destroy the intestine barrier. However, there remains a paucity of evidence on whether ovalbumin (OVA) can be used as a nutritional food protein to repair the intestinal barrier. In this study, the repairing mechanism of OVA on intestinal barrier was thoroughly investigated by gut microbiota and untargeted metabolomics techniques. The findings demonstrated that OVA reduced intestinal permeability and restored mucin (0.75 ± 0.06) and tight junction (TJ) protein (0.67 ± 0.14) expression in colitis mice caused by 3% dextran sulfate sodium (DSS). In addition, the inflammation response and oxidative stress were also attenuated. The intake of OVA upregulated the abundance of Lactobacillaceae (7.60 ± 3.34%) and Akkermansiaceae (10.39 ± 5.97%). Furthermore, OVA upregulated the abundance of inosine (6.06 ± 0.36%), putrescine (4.14 ± 0.20%), and glycocholic acid (5.59 ± 0.23%) in colitis mice through ATP binding cassette (ABC) transporters and bile secretion pathways. In summary, our findings revealed that OVA could maintain intestinal health, which may provide crucial insights for preventing and treating intestinal diseases.
Collapse
Affiliation(s)
- Qi Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, People's Republic of China
- College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, People's Republic of China
- College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Ting Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, People's Republic of China
- College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Siwen Lyu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, People's Republic of China
- College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, People's Republic of China
- College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, People's Republic of China
- College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, People's Republic of China
- College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, People's Republic of China
- College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| |
Collapse
|
15
|
Effect of radiofrequency processing on the structural and bio-functional properties of egg white proteins. Food Chem 2023; 404:134533. [DOI: 10.1016/j.foodchem.2022.134533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/18/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022]
|
16
|
Digestion, absorption, and transport properties of soy-fermented douchi hypoglycemic peptides VY and SFLLR under simulated gastrointestinal digestion and Caco-2 cell monolayers. Food Res Int 2023; 164:112340. [PMID: 36737933 DOI: 10.1016/j.foodres.2022.112340] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/21/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Two novel hypoglycemic peptides VY and SFLLR were identified from douchi as the major peptides responsible for the glucose uptake activity. The present work aimed to elucidate their digestion, absorption and transport properties using simulated digestion and Caco-2 cell monolayers transport models. Besides, the effects of digestion and absorption on the structure and activity were also studied. The results showed that VY was resistant to gastrointestinal tract digestion and could cross Caco-2 cell monolayers intactly via both TJs-mediated passive paracellular pathway and PepT1-mediated active route. In comparison, SFLLR was partially degraded into small fragments of SFLL, SFL, and SF by the digestive system, leading to increased glucose uptake activity. Notably, SFLLR, SFLL, and SFL were partly hydrolyzed by aminopeptidase N or dipeptidyl peptidase IV during transport, but they were transported intact. SFL was transported via both paracellular diffusion and PepT1-mediated routes, while SFLLR and SFLL were via paracellular route only.
Collapse
|
17
|
Use of Tuna Visceral Pepsin in Combination with Trypsin as Digestion Aid: Enhanced Protein Hydrolysis and Bioavailability. Foods 2022; 12:foods12010125. [PMID: 36613341 PMCID: PMC9818428 DOI: 10.3390/foods12010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Freeze-dried tuna pepsin powder (TPP) was prepared using maltodextrin (10%) and trehalose (5%), while trypsin-loaded beads (TLB) with 5% glycerol were obtained via chitosan/alginate ionotropic gelation. The storage stability of TPP and TLB and their proteolytic activity toward red kidney bean protein (RKB), threadfin bream surimi (TBS) and egg white protein (EWP) in varying simulated in vitro gastrointestinal (GI) tract conditions were studied. The intestinal transepithelial transportation of generated peptides was also carried out through Caco-2 cell monolayers after the cytotoxicity test. Enzyme activity was dropped when TPP and TLB in blister packs were kept for 10 weeks of storage at room (28 °C) and refrigerated (4 °C) temperatures. TPP and TLB at a level of 50% (w/w of proteins) effectively hydrolyzed RKB, TBS and EWP in a simulated in vitro GI tract, as indicated by marked protein degradation and increased degree of hydrolysis. Some peptides generated after GI digestion could transport through Caco-2 cell monolayers. Those peptides had different molecular size distribution and antioxidant activities. The highest antioxidant activity was observed for RKB hydrolysate after passing through the Caco-2 cell monolayer. Therefore, TPP and TLB from skipjack tuna viscera could potentially be used for enzyme supplementation to help digest food proteins. Food-derived bioactive peptides generated after GI digestion could assist in improving human health due to their antioxidant activity.
Collapse
|
18
|
Pei J, Gao X, Pan D, Hua Y, He J, Liu Z, Dang Y. Advances in the stability challenges of bioactive peptides and improvement strategies. Curr Res Food Sci 2022; 5:2162-2170. [PMID: 36387592 PMCID: PMC9664347 DOI: 10.1016/j.crfs.2022.10.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 11/08/2022] Open
Abstract
Bioactive peptides are widely used in functional foods due to their remarkable efficacy, selectivity, and low toxicity. However, commercially produced bioactive peptides lack quality stability between batches. Furthermore, the efficacies of bioactive peptides cannot be guaranteed in vivo due to gastrointestinal digestion and rapid plasma, liver, and kidney metabolism. The problem of poor stability has restricted the development of peptides. Bioactive peptide stability assessments use different stability assays, so the results of different studies are not always comparable. This review summarizes the quality stability challenges in the enzymatic hydrolysis production of bioactive peptides and the metabolism stability challenges after oral administration. Future directions on the strategies for improving their stability are provided. It was proposed that we use fingerprinting as a quality control measure using qualitative and quantitative characteristic functional peptide sequences. The chemical modification and encapsulation of bioactive peptides in microcapsules and liposomes are widely used to improve the digestive and metabolic stability of bioactive peptides. Additionally, the establishment of a universal stability test and a unified index would greatly improve uniformity and comparability in research into bioactive peptides. In summary, the reliable evaluation of stability is an essential component of peptide characterization, and these ideas may facilitate further development and utilization of bioactive peptides. Stability challenges encountered by bioactive peptides were summarized. Strategies to improve the stability of bioactive peptides were provided. A universal stability test and unified index would improve uniformity and comparability in research into bioactive peptides. It was proposed that we use a method of traditional Chinese medicine fingerprinting as a quality control measure.
Collapse
Affiliation(s)
- Jingyan Pei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroProducts, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Xinchang Gao
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Corresponding author.
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroProducts, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China
| | - Ying Hua
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Jun He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroProducts, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Zhu Liu
- Zhejiang Institute for Food and Drug Control, Hangzhou, 310052, Zhejiang, China
- Corresponding author.
| | - Yali Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroProducts, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
- Corresponding author. School of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
19
|
Shirai I, Karasawa K, Kodaira Y, Iwasaki Y, Shigemura Y, Makabe H, Katayama S. Intestinal permeability of agaro-oligosaccharides: Transport across Caco-2 cell monolayers and pharmacokinetics in rats. Front Nutr 2022; 9:996607. [PMID: 36185657 PMCID: PMC9525106 DOI: 10.3389/fnut.2022.996607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
Agaro-oligosaccharides (AOSs), even-numbered oligosaccharides prepared from agar, are applied to various food, including supplements, drinks, and jellies because of their biological activities. This study aimed to evaluate the AOS permeation in the gastrointestinal tract in vivo and in vitro. Agarobiose (Abi), agarotetraose (Ate), and agarohexaose (Ahe) were detected in rat plasma after oral administration of AOSs. The detection level of agarobiose in the plasma was higher than that of agarohexaose, which was consistent with the permeation study using Caco-2 cell monolayers. Further, the adenosine triphosphate inhibitor (sodium azide) or endocytosis inhibitor (colchicine) did not inhibit AOS permeation through Caco-2 cell monolayers. Conversely, AOS permeation enhanced upon treatment with cytochalasin B, a tight junction disrupter, suggesting that AOSs might have passed mainly through the tight junctions between the intestinal epithelial cells. These results indicate that AOSs, especially agarobiose, can be absorbed as an intact form via the gastrointestinal tract across the intestinal epithelium through the paracellular pathway.
Collapse
Affiliation(s)
- Ikuya Shirai
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan
- Ina Food Industry Co., Ltd., Ina, Japan
| | | | - Yusuke Kodaira
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Yu Iwasaki
- Faculty of Domestic Science, Tokyo Kasei University, Tokyo, Japan
| | | | - Hidefumi Makabe
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Shigeru Katayama
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| |
Collapse
|
20
|
Wang Z, Sun J, Ma X, Liu X, Yin F, Li D, Nakamura Y, Yu C, Zhou D. Characterization of a synthetic zinc-chelating peptide from sea cucumber (Stichopus japonicus) and its gastrointestinal digestion and absorption in vitro. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4542-4550. [PMID: 35137406 DOI: 10.1002/jsfa.11811] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Zinc absorption in intestinal system could be strongly affected by the gastrointestinal digestion and absorption of zinc-chelating peptides serving as zinc carriers. In this study, a novel zinc-chelating sea cucumber synthetic peptide (SCSP) was synthesized to estimate its gastrointestinal digestion and promotive effect of zinc absorption in vitro. RESULTS Analysis of isothermal titration calorimetry suggested that the binding of SCSP and zinc (N ≈ 1) was exothermic, with relatively weak binding affinity (K = 1.0 × 10-3 mol L-1 ). The formation of SCSP-Zn complexes brought morphological changes to the peptides confirmed by scanning electron microscopy (SEM), which also indicated 6.88% of the existence of zinc element. In addition, the SCSP-Zn complexes remained stable under simulated human gastrointestinal digestion. In an in vitro study, the SCSP-Zn complex could successfully transport through the intestinal membrane in the model of everted rat gut sacs (nearly 7.5 μM cm-2 ) as well as Caco-2 cells where the zinc transport reached 0.0014 mg mL-1 carried by SCSP. Fluorescence staining experiments revealed free zinc accumulation inside the tissues and cells treated with the SCSP-Zn complex. CONCLUSIONS The chelation SCSP-Zn had the promotion ability of zinc absorption in vitro and ex vivo experiments, which suggested a theoretical basis for the design and production of effective zinc chelating peptides as zinc carriers to improve zinc bioavailability. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zixu Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Jiatong Sun
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xiaoyu Ma
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xiaoyang Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Dalian, China
| | - Fawen Yin
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Dalian, China
| | - Deyang Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Dalian, China
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Chenxu Yu
- National Engineering Research Center of Seafood, Dalian, China
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, USA
| | - Dayong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Dalian, China
| |
Collapse
|
21
|
Wei K, Wei Y, Xu W, Lu F, Ma H. Corn peptides improved obesity-induced non-alcoholic fatty liver disease through relieving lipid metabolism, insulin resistance and oxidative stress. Food Funct 2022; 13:5782-5793. [PMID: 35537139 DOI: 10.1039/d2fo00199c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is increasingly threatening human health. The remarkable effects of corn peptides (CPs) as bioactive peptides on liver protection have attracted much attention. Nevertheless, the specific effect of CPs on NAFLD remains unclear. The present study was designed to investigate the efficacy of CPs in the prevention and auxiliary treatment of high-fat diet (HFD)-induced NAFLD in SD rats, and puerarin was used as the positive control. SD rats were fed a high-fat diet to establish the NAFLD rat model, and LO2 cells were treated with a high concentration of fructose to simulate the NAFLD cell model. NAFLD was comprehensively examined in terms of body weight, liver function markers, serum biochemistry and liver histology. Protein expression was determined using western blot analysis. The results of animal experiments showed that CPs could effectively inhibit the rate of weight gain, reduce the blood lipid level and liver index, and enhance glucose tolerance. The results of cell experiments showed that CPs could effectively reduce the accumulation of lipids in LO2 cells and inhibit the accumulation of reactive oxygen species (ROS). In addition, CPs could markedly reduce liver lipid accumulation in the liver cell and liver tissue, as further evidenced by the reduced expression of SREBP-1c in human non-tumour hepatic (LO2) cells. Meanwhile, the increased expression of SIRT1/PPAR-α and Nrf2/HO-1 pathways under the pretreatment of CPs in LO2 cells indicated that CPs could markedly relieve high fat-induced fatty liver injury, regulate insulin sensitivity, and reduce production of ROS. The results of in vivo and in vitro experiments demonstrated that CPs provided potential prevention and auxiliary treatment for NAFLD through reducing lipid accumulation, alleviating insulin resistance, and inhibiting oxidative stress. This study investigated the biological activity of CPs and laid the theoretical basis for the development of CP-based functional foods and dietary supplements.
Collapse
Affiliation(s)
- Kang Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | - Yang Wei
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200204, P. R. China
| | - Weidong Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | - Feng Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
| |
Collapse
|
22
|
Encapsulation of selenium-containing peptides in xanthan gum-lysozyme nanoparticles as a powerful gastrointestinal delivery system. Food Res Int 2022; 156:111351. [DOI: 10.1016/j.foodres.2022.111351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/24/2022] [Accepted: 05/04/2022] [Indexed: 11/19/2022]
|
23
|
Pei J, Liu Z, Pan D, Zhao Y, Dang Y, Gao X. Transport, Stability, and In Vivo Hypoglycemic Effect of a Broccoli-Derived DPP-IV Inhibitory Peptide VPLVM. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4934-4941. [PMID: 35436096 DOI: 10.1021/acs.jafc.1c08191] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Diabetes is a major metabolic disease that requires long-term pharmacotherapy. Bioactive peptides have unique advantages such as higher potency, selectivity, and safety over small molecules and have achieved great success in the treatment of diabetes. We previously isolated a dipeptidyl peptidase-IV (DPP-IV) inhibitory peptide VPLVM with IC50 = 99.68 μM from the protein hydrolysates of broccoli stems and leaves. Here, we evaluated the interaction with DPP-IV, transport, stability, and in vivo hypoglycemic effects of VPLVM. VPLVM interacted closely and steadily with DPP-IV at S1 and S2 pockets. VPLVM had a good gastrointestinal enzyme resistance and was transported through the Caco-2 cell monolayer via paracellular diffusion and by the PepT1 with a Papp of 6.96 × 10-7 cm/s. VPLVM has a t1/2 of 12.56 ± 0.41 min in vitro plasma stability. In the oral glucose tolerance test, VPLVM showed an excellent hypoglycemic effect at 30 min after administration. VPLVM has potential as a candidate for the treatment of hyperglycemia.
Collapse
Affiliation(s)
- Jingyan Pei
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Zhu Liu
- Zhejiang Institute for Food and Drug Control, Hangzhou 310004, China
| | - Daodong Pan
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Yufen Zhao
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Yali Dang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Xinchang Gao
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
24
|
Yang M, Liu J, Li Y, Yang Q, Liu C, Liu X, Zhang B, Zhang H, Zhang T, Du Z. Co-encapsulation of Egg-White-Derived Peptides (EWDP) and Curcumin within the Polysaccharide-Based Amphiphilic Nanoparticles for Promising Oral Bioavailability Enhancement: Role of EWDP. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5126-5136. [PMID: 35412315 DOI: 10.1021/acs.jafc.1c08186] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The comprehensive utilization of food-derived nutraceuticals with different polarities has been extremely restricted by their poor bioavailability and coexistence in a single system. This study aimed to fabricate a self-assembly of amphiphilic nanoparticles (NPs) for the hydrophilic EWDP and hydrophobic curcumin based on the carboxymethyl chitosan (CMCS) shell and γ-cyclodextrin (γ-CD) core. Notably, EWDP could cooperate with CMCS to yield superior colloidal properties with an excellent curcumin aqueous solubility and co-encapsulation capacity (>10%) for the NPs (pH 2.0-7.0). This phenomenon was mainly ascribed to the additional hydrogen-bonding network and hydrophobic interaction introduced by EWDP. Besides, the overall antioxidant activity, bioaccessibility, gastrointestinal stability, and Caco-2 cell absorption properties were significantly improved in the presence of EWDP (>20% increase). Therefore, EWDP could function as both a potential affinity agent and a nutrition enhancer to expand the co-delivery applications for diverse nutraceuticals with promising oral bioavailability enhancement in food and pharmaceutical areas.
Collapse
Affiliation(s)
- Meng Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yajuan Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Qi Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chunmei Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Biying Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Hui Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
25
|
Peng S, Song H, Chen Y, Li S, Guan X. Oral Delivery of Food-derived Bioactive Peptides: Challenges and Strategies. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2062772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Shiyu Peng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| | - Yaqiong Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
26
|
Xu Z, Han S, Chen H, Zhu Z, Han L, Dong X, Du M, Li T. Characterization of Chelation and Absorption of Calcium by a Mytilus edulis Derived Osteogenic Peptide. Front Nutr 2022; 9:840638. [PMID: 35449539 PMCID: PMC9016177 DOI: 10.3389/fnut.2022.840638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
In a previous study, the peptide LGKDQVRT, which was identified by enzymatic hydrolysis, released during the proteolysis of Mytilus edulis, had potential osteogenic activity. In this study, the octapeptide LGKDQVRT was able to spontaneously bind calcium in a 1:1 stoichiometric ratio, and the calcium-binding site likely involves calcium and amino acid VAL6 in the LGKDQVRT peptide to form a metal-donor to metal acceptor complex. The peptide LGKDQVRT has the activity of promoting the proliferation and differentiation of osteoblasts. The results of this study suggest that hydrolyzed peptides from Mytilus edulis protein can be used as a dietary supplement to improve calcium absorption and prevent osteoporosis.
Collapse
Affiliation(s)
- Zhe Xu
- Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Sciences, Dalian Minzu University, Ministry of Education, Dalian, China
| | - Shiying Han
- Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Sciences, Dalian Minzu University, Ministry of Education, Dalian, China
| | - Hui Chen
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Zhixuan Zhu
- Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Sciences, Dalian Minzu University, Ministry of Education, Dalian, China
| | - Lingyu Han
- Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Sciences, Dalian Minzu University, Ministry of Education, Dalian, China
| | - Xiufang Dong
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Ming Du
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Sciences, Dalian Minzu University, Ministry of Education, Dalian, China
| |
Collapse
|
27
|
Zhou N, Zhao Y, Yao Y, Wu N, Xu M, Du H, Wu J, Tu Y. Antioxidant Stress and Anti-Inflammatory Activities of Egg White Proteins and Their Derived Peptides: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5-20. [PMID: 34962122 DOI: 10.1021/acs.jafc.1c04742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Oxidative stress and chronic inflammation are the common pathological bases of chronic diseases such as atherosclerosis, cancer, and cardiovascular diseases, but most of the treatment drugs for chronic diseases have side effects. There is an increasing interest to identify food-derived bioactive compounds that can mitigate the pathological pathways associated with oxidative stress and chronic inflammation. Egg white contain a variety of biologically active proteins, many of which have antioxidant and anti-inflammatory activities and usually show better activity after enzymatic hydrolysis. This review covers the antioxidative stress and anti-inflammatory activities of egg white proteins and their derived peptides and clarifies their mechanism of action in vivo and in vitro. In addition, the link between oxidative stress and inflammation as well as their markers are reviewed. It suggests the potential application of egg white proteins and their derived peptides and puts forward further research prospects.
Collapse
Affiliation(s)
- Na Zhou
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mingsheng Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huaying Du
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jianping Wu
- Department of Agricultural Food and Nutritional Science, Faculty of Agricultural Life and Environmental Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
28
|
LI H, CHEN X, GUO Y, HOU T, HU J. A pivotal peptide (Ile-Leu-Lys-Pro) with high ACE- inhibitory activity from duck egg white: identification and molecular docking. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.66121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Haitao LI
- Zhejiang Pharmaceutical College, China
| | | | - Yan GUO
- Zhejiang Pharmaceutical College, China
| | - Tao HOU
- Huazhong Agricultural University, China
| | - Jun HU
- Huazhong Agricultural University, China
| |
Collapse
|
29
|
Zhang X, Noisa P, Yongsawatdigul J. Identification and characterization of tilapia antioxidant peptides that protect AAPH-induced HepG2 cell oxidative stress. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104662] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
30
|
Yang M, Liu J, Li Y, Yang Q, Liu X, Liu C, Ma S, Liu B, Zhang T, Xiao H, Du Z. A self-assembled amphiphilic polysaccharide-based co-delivery system for egg white derived peptides and curcumin with oral bioavailability enhancement. Food Funct 2021; 12:10512-10523. [PMID: 34568882 DOI: 10.1039/d1fo01649k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Egg white derived peptides (EWDP) and curcumin are well known for diverse biological activities, but the combinational usage of the two natural nutraceuticals is extremely limited by their low oral bioavailability and distinctly different polarities. Therefore, this study aimed to exploit a facile self-assembled amphiphilic system for oral co-delivery of hydrophilic egg white derived peptides (EWDP) and hydrophobic curcumin. The hydrophobic curcumin was first loaded into the hydrophobic cavity of β-cyclodextrin (β-CD) as a core. Then, the hydrophilic EWDP was absorbed into the region between the core and the N-[(2-hydroxy-3-trimethyl ammonium) propyl] chitosan (HTCC) shell to form the amphiphilic nanoparticles (NPs) via layer-by-layer self-assembly. The resulting NPs showed ideal oral applicability with excellent colloidal properties and encapsulation capacity for EWDP and curcumin at pH 2.0-7.0. X-ray Photoelectron Spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (1H NMR), X-ray diffraction (XRD) and differential scanning calorimetry (DSC) results indicated that hydrogen bonding and hydrophobic interaction were the main driving force for the formation of amphiphilic NPs. Upon combination with HTCC, EWDP (both shell material and core nutraceuticals) could facilitate curcumin loading into the deeper β-CD cavity site with admirable solubility improvement. Moreover, EWDP and curcumin after co-delivery exhibited superior bioavailability (especially for bioactivity and cellular absorption) than the simple mixture and conventional curcumin inclusion complex. Overall, these findings are enlightening for the rational peptide based oral co-delivery system formulations for a broader range of hydrophilic and hydrophobic nutraceuticals (initially synergistic or not) in the food and related health-promoting fields.
Collapse
Affiliation(s)
- Meng Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Yajuan Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Qi Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Chunmei Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Sitong Ma
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Boqun Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
31
|
Katimba HA, Wang R, Cheng C. Current findings support the potential use of bioactive peptides in enhancing zinc absorption in humans. Crit Rev Food Sci Nutr 2021:1-21. [PMID: 34708681 DOI: 10.1080/10408398.2021.1996328] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
More than two billion people around the world are affected by zinc deficiency, mainly due to the inadequate intake and absorption of zinc. Based on recent research findings, the bioactive peptides could potentially be used to combat zinc deficiency particularly due to their Zinc chelating ability. The main aim of this review was to present current findings, supporting the potential use of bioactive peptides based on their ability to enhance zinc absorption. In-vivo, in-vitro, and ex-vivo studies have demonstrated that zinc chelating peptides can enhance the retention, transportation, and absorption of zinc. Comparative studies on zinc bioavailability from protein hydrolysates and zinc salts have demonstrated that the protein hydrolysates-zinc complexes are more bioavailable than the zinc salts. Data from the structure-function relationship of zinc chelating peptides suggest that the zinc chelating capacities of peptides increase in the following order; the position of zinc chelator > zinc chelator strength > abundance of zinc chelators > net charge > molecular weight. In addition, the transport mechanism of peptide-zinc complex is hypothesized, and the potential use of bioactive peptides based on their safety and taste and limitations to their commercialization are also discussed.
Collapse
Affiliation(s)
- Hija Athman Katimba
- Department of Food Science and Engineering, Harbin Institute of Technology, Harbin, China.,Department of Food Science and Engineering, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Rongchun Wang
- Department of Food Science and Engineering, Harbin Institute of Technology, Harbin, China
| | - Cuilin Cheng
- Department of Food Science and Engineering, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
32
|
Ma K, Wang Y, Wang M, Wang Z, Wang X, Ju X, He R. Antihypertensive activity of the ACE-renin inhibitory peptide derived from Moringa oleifera protein. Food Funct 2021; 12:8994-9006. [PMID: 34382048 DOI: 10.1039/d1fo01103k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Moringa oleifera (MO) leaf is a potential plant protein resource with high nutritional and medicinal value. The study aims to investigate the hypotensive activity and stability of MO leaf peptides. MO leaf protein was extracted and then hydrolyzed with Alcalase to produce the MO leaf protein hydrolysate (MOPH). The MOPH was separated into peptide fractions with different molecular weights by membrane ultrafiltration. The MOPH and ultrafiltration fractions were evaluated for antihypertensive activity. Inhibition of the angiotensin-converting enzyme (84.71 ± 0.07%) and renin (43.72 ± 0.02%) was significantly higher for <1 kDa peptides when compared to other fractions. Oral administration of the <1 kDa component in spontaneously hypertensive rats positively lowers the blood pressure (∼17 mmHg). The <1 kDa component was isolated and purified subsequently; the final active component was identified by mass spectrometry and amino acid sequence analysis. Two highly active ACE (angiotensin-converting enzyme) and renin dual inhibitory peptides Leu-Gly-Phe-Phe (LGF) and Gly-Leu-Phe-Phe (GLFF) were obtained. The two peptides exhibited a good dual inhibitory activity of ACE and renin with IC50 values of LGF (0.29 ± 0.13 mM, 1.88 ± 0.08 mM) and GLFF (0.31 ± 0.04 mM, 2.80 ± 0.08 mM). Furthermore, in vivo models, LGF and GLFF significantly reduced the systolic blood pressure (19.4 mmHg; 18.2 mmHg) and diastolic blood pressure (12 mmHg; 13.8 mmHg) of SHRs (spontaneously hypertensive rats). The peptide transmembrane transport experiments and simulated gastrointestinal digestion experiments with LGF and GLFF showed that they can resist gastrointestinal digestion in a complete form. Thus, bioactive peptides from MO leaf may possess the potential to be used for treating hypertension in humans.
Collapse
Affiliation(s)
- Keer Ma
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Yujiao Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Mingjie Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Zhigao Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Xuefeng Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| | - Xingrong Ju
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Rong He
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
33
|
Xiang L, Qiu Z, Zhao R, Zheng Z, Qiao X. Advancement and prospects of production, transport, functional activity and structure-activity relationship of food-derived angiotensin converting enzyme (ACE) inhibitory peptides. Crit Rev Food Sci Nutr 2021; 63:1437-1463. [PMID: 34521280 DOI: 10.1080/10408398.2021.1964433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Food-derived antihypertensive peptides have attracted increasing attention in functional foods for health promotion, due to their high biological activity, low toxicity and easy metabolism in the human body. Angiotensin converting enzyme (ACE) is a key enzyme that causes the increase in blood pressure in mammals. However, few reviews have summarized the current understanding of ACE inhibitory peptides and their knowledge gaps. This paper focuses on the food origins and production methods of ACE inhibitory peptides. Compared with conventional methods, the advanced technologies and emerging bioinformatics approaches have recently been applied for efficient and targeted release of ACE inhibitory peptides from food proteins. Furthermore, the transport and underlying mechanisms of ACE inhibitory peptides are emphatically described. Molecular modeling and the Michaelis-Menten equation can provide information on how ACE inhibitors function. Finally, we discuss the structure-activity relationships and other bio-functional properties of ACE inhibitory peptides. Molecular weight, hydrophobic amino acid residues, charge, amino acid composition and sequence (especially at the C-terminal and N-terminal) have a significant influence on ACE inhibitory activity. Some studies are required to increase productivity, improve bioavailability of peptides, evaluate their bio-accessibility and efficiency on reducing blood pressure to provide a reference for the development and application of health products and auxiliary treatment drugs.
Collapse
Affiliation(s)
- Lu Xiang
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zhichang Qiu
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Tai'an, Shandong, China
| | - Renjie Zhao
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zhenjia Zheng
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xuguang Qiao
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
34
|
Nakao R, Shen W, Shimajiri Y, Kainou K, Sato Y, Ulla A, Ohnishi K, Ninomiya M, Ohno A, Uchida T, Tanaka M, Akama K, Matsui T, Nikawa T. Oral intake of rice overexpressing ubiquitin ligase inhibitory pentapeptide prevents atrophy in denervated skeletal muscle. NPJ Sci Food 2021; 5:25. [PMID: 34504092 PMCID: PMC8429733 DOI: 10.1038/s41538-021-00108-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
We previously reported that intramuscular injections of ubiquitin ligase CBLB inhibitory pentapeptide (Cblin; Asp-Gly-pTyr-Met-Pro) restored lost muscle mass caused by sciatic denervation. Here, we detected Cblin on the basolateral side of Caco-2 cells after being placed on the apical side, and found that cytochalasin D, a tight junction opener, enhanced Cblin transport. Orally administered Cblin was found in rat plasma, indicating that intact Cblin was absorbed in vitro and in vivo. Furthermore, transgenic Cblin peptide-enriched rice (CbR) prevented the denervation-induced loss of muscle mass and the upregulation of muscle atrophy-related ubiquitin ligases in mice. These findings indicated that CbR could serve as an alternative treatment for muscle atrophy.
Collapse
Affiliation(s)
- Reiko Nakao
- grid.267335.60000 0001 1092 3579Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Weilin Shen
- grid.177174.30000 0001 2242 4849Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Yasuka Shimajiri
- grid.411621.10000 0000 8661 1590Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane Japan ,EditForce, Fukuoka, Japan
| | - Kumiko Kainou
- grid.411621.10000 0000 8661 1590Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane Japan
| | - Yuki Sato
- grid.267335.60000 0001 1092 3579Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Anayt Ulla
- grid.267335.60000 0001 1092 3579Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kohta Ohnishi
- grid.267335.60000 0001 1092 3579Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Miyuki Ninomiya
- grid.267335.60000 0001 1092 3579Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Ayako Ohno
- grid.267335.60000 0001 1092 3579Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takayuki Uchida
- grid.267335.60000 0001 1092 3579Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Mitsuru Tanaka
- grid.177174.30000 0001 2242 4849Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Kazuhito Akama
- grid.411621.10000 0000 8661 1590Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane Japan
| | - Toshiro Matsui
- grid.177174.30000 0001 2242 4849Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Takeshi Nikawa
- grid.267335.60000 0001 1092 3579Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
35
|
Ke X, Hu X, Li L, Yang X, Chen S, Wu Y, Xue C. A novel zinc-binding peptide identified from tilapia (Oreochromis niloticus) skin collagen and transport pathway across Caco-2 monolayers. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
36
|
Lu Y, Wang Y, Huang D, Bian Z, Lu P, Fan D, Wang X. Inhibitory mechanism of angiotensin-converting enzyme inhibitory peptides from black tea. J Zhejiang Univ Sci B 2021; 22:575-589. [PMID: 34269010 DOI: 10.1631/jzus.b2000520] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of this work is to discover the inhibitory mechanism of tea peptides and to analyse the affinities between the peptides and the angiotensin-converting enzyme (ACE) as well as the stability of the complexes using in vitro and in silico methods. Four peptide sequences identified from tea, namely peptides I, II, III, and IV, were used to examine ACE inhibition and kinetics. The half maximal inhibitory concentration (IC50) values of the four peptides were (210.03±18.29), (178.91±5.18), (196.31±2.87), and (121.11±3.38) μmol/L, respectively. The results of Lineweaver-Burk plots showed that peptides I, II, and IV inhibited ACE activity in an uncompetitive manner, which requires the presence of substrate. Peptide III inhibited ACE in a non-competitive manner, for which the presence of substrate is not necessary. The docking simulations showed that the four peptides did not bind to the active sites of ACE, indicating that the four peptides are allosteric inhibitors. The binding free energies calculated from molecular dynamic (MD) simulation were -72.47, -42.20, -52.10, and -67.14 kcal/mol (1 kcal=4.186 kJ), respectively. The lower IC50 value of peptide IV may be attributed to its stability when docking with ACE and changes in the flexibility and unfolding of ACE. These four bioactive peptides with ACE inhibitory ability can be incorporated into novel functional ingredients of black tea.
Collapse
Affiliation(s)
- Yating Lu
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yu Wang
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Danyi Huang
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhuang Bian
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Peng Lu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Dongmei Fan
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiaochang Wang
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
37
|
Xu Z, Fan F, Chen H, Shi P, Zhu D, Yang M, Wang Z, Ei-Seedi HR, Du M. Absorption and transport of a Mytilus edulis-derived peptide with the function of preventing osteoporosis. Food Funct 2021; 12:2102-2111. [PMID: 33564802 DOI: 10.1039/d0fo02353a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The YPRKDETGAERT peptide (PME-1) identified from the Mytilus edulis proteins has been shown to promote the proliferation and differentiation of osteoblasts and it has good bone-forming activity in vitro. Further, PME-1 has been shown to prevent osteoporosis in vivo. PME-1 can be absorbed through the gastrointestinal tract, and the passing rate in monolayer Caco-2 cells was 6.57%. PME-1 can also enter the blood circulation and the concentration of PME-1 in serum reached the maximum, 61.06 ± 26.32 ng mL-1, 20 min after feeding. The multifunctional in vivo imager was used to further determine the distribution of the 5-FITC-(Acp)-YPRKDETGAERT peptide (PME-1-FITC) 2 h after feeding the peptide, and the result confirmed the above results and showed that a part of PME-1-FITC can affect bone in vivo. Therefore, PME-1 not only was easily absorbed in the gastrointestinal tract, but also has the potential beneficial effect on preventing osteoporosis.
Collapse
Affiliation(s)
- Zhe Xu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China. and College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116029, China
| | - Fengjiao Fan
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Hui Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Pujie Shi
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Dongyang Zhu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Meilian Yang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Zhenyu Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Hesham R Ei-Seedi
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Uppsala 75123, Sweden
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
38
|
Yang Y, Qiu Z, Li L, Vidyarthi SK, Zheng Z, Zhang R. Structural characterization and antioxidant activities of one neutral polysaccharide and three acid polysaccharides from Ziziphus jujuba cv. Hamidazao: A comparison. Carbohydr Polym 2021; 261:117879. [PMID: 33766366 DOI: 10.1016/j.carbpol.2021.117879] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/06/2021] [Accepted: 02/25/2021] [Indexed: 11/25/2022]
Abstract
A neutral polysaccharide (HJP-1a) and three acid polysaccharides (HJP-2, HJP-3 and HJP-4) were obtained from Z. jujuba cv. Hamidazao. HJP-1a was mainly composed of arabinose and galactose in a ratio of 56.9:20.0, with an average molecular weight of 3.115 × 104 g/mol. HJP-2, HJP-3 and HJP-4 were homogeneous heteropolysaccharides mainly containing galacturonic acid, arabinose and galactose, with average molecular weights of 4.590 × 104, 6.986 × 104 and 1.951 × 105 g/mol, respectively. Structural characterization indicated that the backbone of HJP-3 appeared to be mainly composed of →4)-α-d-GalpA (1→ and →2,4)-α-l-Rhap (1→ residues with some branches consisting of →5)-α-l-Araf (1→ residues and terminals of T-α-l-Araf (1→ and T-β-d-Galp residues. The four purified fractions displayed dose-dependent radical scavenging activity on ABTS+ radicals and reducing capacity, as well as excellent protective effect on H2O2-induced HepG2 cells and metronidazole-damaged zebrafish embryos, especially HJP-2 in vitro and HJP-1a in vivo. Therefore, the polysaccharides from Z. jujuba cv. Hamidazao could be used as a potential antioxidant in functional foods.
Collapse
Affiliation(s)
- Yanmin Yang
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, PR China
| | - Zhichang Qiu
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, PR China
| | - Lingyu Li
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, PR China
| | - Sriram K Vidyarthi
- Department of Biological and Agricultural Engineering, University of California, Davis, 95616, CA, USA; Research and Development, The Morning Star Company, Woodland, 95695, CA, USA
| | - Zhenjia Zheng
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, PR China
| | - Rentang Zhang
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, PR China.
| |
Collapse
|
39
|
Guha S, Alvarez S, Majumder K. Transport of Dietary Anti-Inflammatory Peptide, γ-Glutamyl Valine (γ-EV), across the Intestinal Caco-2 Monolayer. Nutrients 2021; 13:nu13051448. [PMID: 33923345 PMCID: PMC8145144 DOI: 10.3390/nu13051448] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 01/04/2023] Open
Abstract
The present study analyzed the transepithelial transport of the dietary anti-inflammatory peptide, γ-glutamyl valine (γ-EV). γ-EV is naturally found in dry edible beans. Our previous study demonstrated the anti-inflammatory potency of γ-EV against vascular inflammation at a concentration of 1mM, and that it can transport with the apparent permeability coefficient (Papp) of 1.56 × 10-6 ± 0.7 × 10-6 cm/s across the intestinal Caco-2 cells. The purpose of the current study was to explore whether the permeability of the peptide could be enhanced and to elucidate the mechanism of transport of γ-EV across Caco-2 cells. The initial results indicated that γ-EV was nontoxic to the Caco-2 cells up to 5 mM concentration and could be transported across the intestinal cells intact. During apical-to-basolateral transport, a higher peptide dose (5 mM) significantly (p < 0.01) enhanced the transport rate to 2.5 × 10-6 ± 0.6 × 10-6 cm/s. Cytochalasin-D disintegrated the tight-junction proteins of the Caco-2 monolayer and increased the Papp of γ-EV to 4.36 × 10-6 ± 0.16 × 10-6 cm/s (p < 0.001), while theaflavin 3'-gallate and Gly-Sar significantly decreased the Papp (p < 0.05), with wortmannin having no effects on the peptide transport, indicating that the transport route of γ-EV could be via both PepT1-mediated and paracellular.
Collapse
Affiliation(s)
- Snigdha Guha
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, USA;
| | - Sophie Alvarez
- Proteomics and Metabolomics Facility, Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588-0665, USA;
| | - Kaustav Majumder
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, USA;
- Correspondence: ; Tel.: +1-(402)-472-3510; Fax: +1-(402)-472-4474
| |
Collapse
|
40
|
Pei J, Hua Y, Zhou T, Gao X, Dang Y, Wang Y. Transport, In Vivo Antihypertensive Effect, and Pharmacokinetics of an Angiotensin-Converting Enzyme (ACE) Inhibitory Peptide LVLPGE. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2149-2156. [PMID: 33560131 DOI: 10.1021/acs.jafc.0c07048] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The angiotensin-converting enzyme (ACE) inhibitory peptide LVLPGE provides outstanding antihypertensive effects in vivo, with a maximum systolic blood pressure (SBP) drop of 39 mmHg at a dose of 10 mg/kg. We evaluated the gastrointestinal digestion, transport, and in vivo antihypertensive effects of LVLPGE at different doses. LVLPGE was resistant to gastrointestinal enzymes with a stability of 97.8% and a permeability Papp of (5.09 ± 0.94) × 10-7 cm/s. LVLPGE was mainly transported through the Caco-2 cell monolayer by the peptide transporter PepT 1 and passive-mediated transport. LVLPGE at doses of 30 and 50 mg/kg had a positive antihypertensive effect in vivo; 30 mg/kg had a more significant effect than 50 mg/kg. After oral administration, the pharmacokinetics of LVLPGE showed that the Cmax was 4.65 ng/mL at 2 min. The blood pressure-lowering effect increased as the concentration of LVLPGE increased in the plasma of spontaneous hypertensive rats (SHRs).
Collapse
Affiliation(s)
- Jingyan Pei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Ying Hua
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, 310053 Hangzhou, Zhejiang, China
| | - Tingyi Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Xinchang Gao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yali Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yongdong Wang
- Zhejiang Teley Biotech Co., Ltd., Taizhou 318000, Zhejiang, China
| |
Collapse
|
41
|
Xue L, Yin R, Howell K, Zhang P. Activity and bioavailability of food protein-derived angiotensin-I-converting enzyme-inhibitory peptides. Compr Rev Food Sci Food Saf 2021; 20:1150-1187. [PMID: 33527706 DOI: 10.1111/1541-4337.12711] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022]
Abstract
Angiotensin-I-converting enzyme (ACE) inhibitory peptides are able to inhibit the activity of ACE, which is the key enzymatic factor mediating systemic hypertension. ACE-inhibitory peptides can be obtained from edible proteins and have the function of antihypertension. The amino acid sequences and the secondary structures of ACE-inhibitory peptides determine the inhibitory activities and stability. The resistance of ACE-inhibitory peptides to digestive enzymes and peptidase affect their antihypertensive bioactivity in vivo. In this paper, the mechanism of ACE-inhibition, sources of the inhibitory peptides, structure-activity relationships, stability during digestion, absorption and transportation of ACE-inhibitory peptides, and consumption of ACE-inhibitory peptides are reviewed, which provide guidance to the development of new functional foods and production of antihypertensive nutraceuticals and pharmaceuticals.
Collapse
Affiliation(s)
- Lu Xue
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China.,School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Rongxin Yin
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Kate Howell
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
42
|
Miguel M, Vassallo DV, Wiggers GA. Bioactive Peptides and Hydrolysates from Egg Proteins as a New Tool for Protection Against Cardiovascular Problems. Curr Pharm Des 2021; 26:3676-3683. [PMID: 32216734 DOI: 10.2174/1381612826666200327181458] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/12/2020] [Indexed: 01/21/2023]
Abstract
The aim of the present work is to review the potential beneficial effects of dietary supplementation with bioactive egg protein hydrolysates or peptides on cardiometabolic changes associated with oxidative stress. The development of nutritionally improved food products designed to address specific health concerns is of particular interest because many bioactive food compounds can be potentially useful in various physiological functions such as for reducing oxidative stress. The results presented suggest that egg hydrolysates or derived peptides could be included in the diet to prevent and/or reduce some cardiometabolic complications associated with oxidative stress-related diseases.
Collapse
Affiliation(s)
- Marta Miguel
- Bioactivity and Food Analysis Laboratory, Instituto de Investigación em Ciencias de la Alimentación, Nicolás Cabrera, 9, Campus Universitario de Cantoblanco, Madrid, Spain
| | - Dalton V Vassallo
- Department of Physiological Sciences, Universidade Federal do Espirito Santo and School of Medicine of Santa Casa de Misericordia (EMESCAM), Av. Marechal Campos 1468, Zip Code: 29040-090, Vitoria, Espirito Santo, Brazil
| | - Giulia A Wiggers
- Cardiovascular Physiology Research Group, Federal University of Pampa, BR 472 - Km 592 - PO box 118. Zip Code: 97500-970, Uruguaiana, Rio Grande do Sul, Brazil
| |
Collapse
|
43
|
ACE inhibitory peptide KYIPIQ derived from yak milk casein induces nitric oxide production in HUVECs and diffuses via a transcellular mechanism in Caco-2 monolayers. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.08.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
44
|
He L, Yang F, Liang Y, Zhang M, Liu X, Zhao S, Jin G. Process optimisation of haemoglobin hydrolysis by complex proteases to produce haem‐enriched peptides and its iron uptake property evaluation by Caco‐2 cell model. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Lichao He
- College of Food and Biotechnology Wuhan Institute of Design and Sciences Wuhan430205China
| | - Fan Yang
- College of Food Science and Technology & MOE Key Laboratory of Environment Correlative Dietology Huazhong Agricultural University Wuhan430070China
| | - Yanhui Liang
- College of Food Science and Technology & MOE Key Laboratory of Environment Correlative Dietology Huazhong Agricultural University Wuhan430070China
| | - Min Zhang
- College of Food Science and Technology & MOE Key Laboratory of Environment Correlative Dietology Huazhong Agricultural University Wuhan430070China
| | - Xiaojie Liu
- College of Food Science and Technology & MOE Key Laboratory of Environment Correlative Dietology Huazhong Agricultural University Wuhan430070China
| | - Shilin Zhao
- College of Food Science and Technology & MOE Key Laboratory of Environment Correlative Dietology Huazhong Agricultural University Wuhan430070China
| | - Guofeng Jin
- College of Food Science and Technology & MOE Key Laboratory of Environment Correlative Dietology Huazhong Agricultural University Wuhan430070China
| |
Collapse
|
45
|
Moreno-Fernández S, Garcés-Rimón M, Miguel M. Egg-derived peptides and hydrolysates: A new bioactive treasure for cardiometabolic diseases. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
46
|
Xu Z, Chen H, Fan F, Shi P, Cheng S, Tu M, Ei-Seedi HR, Du M. Pharmacokinetics and Transport of an Osteogenic Dodecapeptide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9961-9967. [PMID: 32786858 DOI: 10.1021/acs.jafc.0c02779] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A dodecapeptide with the amino acid sequence of IEELEEELEAER (PIE), identified from Mytilus edulis proteolysis hydrolysates, has shown good bone-forming activity in previous studies. The pharmacokinetics and transport of the PIE peptide in vivo or in vitro were investigated in this study. The results showed that the PIE peptide can be transported into monolayer Caco-2 cells, and the PIE peptide was identified in the serum after the mice reached the highest value of 173.60 ± 60.30 ng/mL, in which it was quantified by an optimized mass spectrometry method. In addition, the PIE peptide has a promoting effect on the bone morphogenetic protein pathway at the gene and protein levels. According to the distribution of PIE-FITC in ovariectomized mice after orally administrated PIE-FITC, it was confirmed that it can enter the gastrointestinal tract and serum, and reach the bones. Taken together, the PIE peptide can be absorbed well both in vitro and in vivo, and it could promote pre-osteoblast differentiation factors.
Collapse
Affiliation(s)
- Zhe Xu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Hui Chen
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Fengjiao Fan
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Pujie Shi
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Shuzhen Cheng
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Maolin Tu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Hesham R Ei-Seedi
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Uppsala 75 123, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
47
|
Iftikhar M, Iftikhar A, Zhang H, Gong L, Wang J. Transport, metabolism and remedial potential of functional food extracts (FFEs) in Caco-2 cells monolayer: A review. Food Res Int 2020; 136:109240. [PMID: 32846508 DOI: 10.1016/j.foodres.2020.109240] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/28/2020] [Accepted: 04/11/2020] [Indexed: 02/07/2023]
Abstract
Caco-2, a human intestinal carcinoma cell line, has been used to test the absorption and transport mechanism of functional foods and drugs across the intestinal epithelium in order to study their antioxidant, anticancer and anti-inflammatory activities. Caco-2 cells represent the morphological and functional characteristics of small intestinal cells and capable of expressing brush borders, tight junctions, intestinal efflux and uptake transporters which regulate permeation of drugs and functional food extracts from intestinal lumen to systemic circulation. The integrity of the Caco-2 monolayer is controlled by establishing the TEER between 200 and 1000 O per cm2. FFEs affect intestinal permeability by adjusting the tight junction proteins between the cells in order to maintain the epithelial barrier function. Because of the side effects of medicines, there is an increased interest in functional food extracts (FFEs) as drug substitutes. Functional foods undergo intricate transport processes and biotransformation after oral administration. Metabolism and transport studies of FFEs in Caco-2 cells are very important for determining their bioavailability. Functional foods and their constituents produce anti-proliferative and anti-cancer effects through apoptosis, cell cycle arrest and inhibition of various signal transduction pathways across Caco-2 cell lines. The current review has summarized the anti-inflammation, anticancer, antioxidant and cholesterol lowering potential of FFEs using Caco-2 cells through reducing local inflammatory signals, production of ROS and lipid accumulation. The transport, bioavailability, metabolism, mechanisms of actions, cellular pathways adopted by FFEs across Caco-2 cell lines are predominantly affected by their molecular weight, structures and physicochemical properties. These studies are beneficial for investigating the different mechanisms of action of FFEs in the human body.
Collapse
Affiliation(s)
- Maryam Iftikhar
- Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology & Business University, Beijing 100048, China
| | - Asra Iftikhar
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, The University of Faisalabad (TUF), Faisalabad 38000, Pakistan
| | - Huijuan Zhang
- Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology & Business University, Beijing 100048, China.
| | - Lingxiao Gong
- Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology & Business University, Beijing 100048, China
| | - Jing Wang
- Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology & Business University, Beijing 100048, China.
| |
Collapse
|
48
|
Wang L, Ding L, Du Z, Liu J. Effects of hydrophobicity and molecular weight on the transport permeability of oligopeptides across Caco-2 cell monolayers. J Food Biochem 2020; 44:e13188. [PMID: 32173923 DOI: 10.1111/jfbc.13188] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/20/2022]
Abstract
The objective of this paper was to investigate the effects of hydrophobicity and molecular weight (MW) on the transepithelial transport permeability of oligopeptides across Caco-2 cell monolayers. Results showed that oligopeptides with different N-terminal amino acids had a wide range of permeability values and could be divided into three levels according to their correlations with log D and MW. At a good level of permeability, the permeability was positively correlated with log D, but negatively correlated with MW (p < .001); at an intermediate level of permeability, the permeability was negatively correlated with log D and MW (p < .001); and at a low level of permeability, the permeability was positively correlated with log D and MW (p < .01). These results suggest for the first time that the transport of oligopeptides across Caco-2 cell monolayers might be closely related to their molecular properties of log D and MW. PRACTICAL APPLICATIONS: A great number of food-derived bioactive peptides display health-promoting effects and show potential as bioactive ingredients in functional foods. However, the poor absorption in the intestine limits the application of food bioactive peptides, especially for the oligopeptides containing more than three amino acids. Although the transepithelial transport of food-derived oligopeptides in the intestinal epithelium has been widely reported, its transport mechanism is still obscure. Our study shows a three-level relationship between the transport permeability and log D and MW of oligopeptides across Caco-2 cell monolayers and provides a novel evidence for the coexistence of transcellular and paracellular pathways for the transport of oligopeptides through the intestine. This result will contribute to the understanding of the transport mechanisms of oligopeptides in the intestine.
Collapse
Affiliation(s)
- Liying Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, P.R. China.,College of Food Science and Engineering, Jilin University, Changchun, P.R. China
| | - Long Ding
- College of Food Science and Engineering, Northwest A&F University, Yangling, P.R. China.,College of Food Science and Engineering, Jilin University, Changchun, P.R. China
| | - Zhiyang Du
- College of Food Science and Engineering, Jilin University, Changchun, P.R. China
| | - Jingbo Liu
- College of Food Science and Engineering, Jilin University, Changchun, P.R. China
| |
Collapse
|
49
|
Phenolic Profile, Antioxidant Capacities and Enzymatic Inhibitory Activities of Propolis from Different Geographical Areas: Needs for Analytical Harmonization. Antioxidants (Basel) 2020; 9:antiox9010075. [PMID: 31952253 PMCID: PMC7022753 DOI: 10.3390/antiox9010075] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/12/2022] Open
Abstract
Propolis is a resinous vegetal exudate modified by bees, and is interesting as a preservative and potentially functional product. This work dealt with studying the common phenolic profiles and antioxidant capacities of 13 bee propolis from different geographical areas. Both hyaluronidase and angiotensin converting enzyme (ACE) inhibitory activities were also assessed and related when possible with particular phenolic compounds. High performance liquid chromatography-ultraviolet detection (HPLC-UV) analysis showed that every propolis contained p-coumaric acid (1.2–12.2 mg/g) and ferulic acid (0.3–11.0 mg/g). Pinocembrin, catechin, and caffeic acid phenethyl ester (CAPE) plus galangin were the main flavonoids. Antioxidant activities were higher than 280 µmol trolox/g for trolox equivalent antioxidant capacity (TEAC), 0.099 mmol uric acid/g for radical-scavenging effect on hydroxyl radicals, and 0.19 mg/mL for half maximal inhibitory concentration (IC50) of antioxidant activity against superoxide anion radical. Working with solutions of 10 mg/mL propolis, hyaluronidase inhibitory activity ranged between 0% and 68.20%, being correlated to ferulic acid content. ACE inhibitory effect determined by HPLC was higher than 78%, being correlated with catechin and p-coumaric acid. Therefore, propolis could be useful for food, pharmaceutical, and cosmetic companies, also helping to reduce risk factors for diseases related to oxidative damage, inflammatory processes, and hypertension. This research also highlights the necessity for harmonized analysis methods and the expression of results for propolis.
Collapse
|
50
|
Du Z, Liu J, Zhang H, Wu X, Zhang B, Chen Y, Liu B, Ding L, Xiao H, Zhang T. N-Acetyl-l-cysteine/l-Cysteine-Functionalized Chitosan-β-Lactoglobulin Self-Assembly Nanoparticles: A Promising Way for Oral Delivery of Hydrophilic and Hydrophobic Bioactive Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12511-12519. [PMID: 31626537 DOI: 10.1021/acs.jafc.9b05219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-assembled and cross-linked hybrid hydrogels for entrapment and delivery of hydrophilic and hydrophobic bioactive compounds were developed based on N-acetyl-l-cysteine (NAC)- or l-cysteine (CYS)-functionalized chitosan-β-lactoglobulin nanoparticles (NPs). In both the systems, amphiphilic protein β-lactoglobulin (β-lg) was self-assembled by using glutaraldehyde for affinity binding with egg white-derived peptides (EWDP) and curcumin and then coated with NAC- or CYS-functionalized chitosan (CS) by electrostatic interaction. The resulting NPs were characterized in terms of size, polydispersity, and surface charge by dynamic light scattering. Results corroborated pH-sensitive properties of NAC-CS-β-lg NPs and CYS-CS-β-lg NPs with the particle size as small as 118 and 48 nm, respectively. The two kinds of NPs also showed excellent entrapment of EWDP and curcumin with the entrapment efficiency (EE) of EWDP and curcumin ranging from 51 to 89% and 42 to 57% in NAC-CS-β-lg NPs, as well as 50-81% and 41-57% in CYS-CS-β-lg NPs under different pH values. Fourier transform infrared and molecular docking studies provided support for the interaction mechanism of NAC/CYS-CS with β-lg as well as the NPs with EWDP and curcumin. Strikingly, the in vitro release kinetics of EWDP and curcumin exhibited the controlled and sustained release properties up to 58 and 70 h from the NPs, respectively. Note that the permeability of QIGLF (pentapeptide, isolated from EWDP) and curcumin passing through Caco-2 cell monolayers were all improved after the entrapment in the NPs. This work offers promising methods for effective entrapment and oral delivery of both hydrophilic and hydrophobic bioactive compounds.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Long Ding
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , People's Republic of China
| | - Hang Xiao
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | | |
Collapse
|