1
|
Bermúdez-Puga S, Dias M, Lima Reis I, Freire de Oliveira T, Yokomizo de Almeida SR, Mendes MA, Moore SJ, Almeida JR, Proaño-Bolaños C, Pinheiro de Souza Oliveira R. Microscopic and metabolomics analysis of the anti-Listeria activity of natural and engineered cruzioseptins. Biochimie 2024; 225:168-175. [PMID: 38823620 DOI: 10.1016/j.biochi.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/04/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Listeria monocytogenes is a human opportunistic foodborne pathogen that produces life-threatening infections with a high mortality rate. The control of Listeria in the food production environment and effective clinical management of human listeriosis are challenging due to the emergence of antibiotic resistance. Hence we evaluate the in vitro anti-Listeria activity of two synthetic cruzioseptins reproducing their natural sequences CZS-9, and CZS-12, and one engineered sequence based on CZS-1, named [K4K15]CZS-1. The assessment of the in vitro potential of cruzioseptins, highlighted the promising antibacterial effect of [K4K15]CZS-1 in very low concentrations (0.91 μM) and its thermal stability at high-temperature conditions, is compatible with the food industry. Microscopic and metabolomic analyses suggest cruzioseptin induces anti-Listeria bioactivity through membrane disruption and changes in the intracellular metabolome. We also report that [K4K15]CZS-1 is not resistant to peptidases/proteases emphasizing a key advantage for their use as a food preservative. However, there is a need for further structural and functional optimisations for the potential clinical application as an antibiotic. In conclusion, [K4K15]CZS-1 stand out as membrane-active peptides with the ability to induce shifts in the bacteria metabolome and inspire the development of strategies for the prevention of L. monocytogenes emergence and dissemination.
Collapse
Affiliation(s)
- Sebastián Bermúdez-Puga
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, University of São Paulo, Rua do Lago 250, São Paulo, 05508-000, SP, Brazil
| | - Meriellen Dias
- Dempster MS Lab, Chemical Engineering Department of Polytechnic School of University of São Paulo, Rua do Lago 250, São Paulo, 05508-080, SP, Brazil
| | - Iara Lima Reis
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, University of São Paulo, Rua do Lago 250, São Paulo, 05508-000, SP, Brazil
| | - Taciana Freire de Oliveira
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, University of São Paulo, Rua do Lago 250, São Paulo, 05508-000, SP, Brazil
| | | | - Maria Anita Mendes
- Dempster MS Lab, Chemical Engineering Department of Polytechnic School of University of São Paulo, Rua do Lago 250, São Paulo, 05508-080, SP, Brazil
| | - Simon J Moore
- School of Biological and Behavioural Sciences, Queen Mary University of London, UK
| | - José R Almeida
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena, Napo, Ecuador; School of Pharmacy, University of Reading, Reading, RG6 6UB, UK
| | - Carolina Proaño-Bolaños
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena, Napo, Ecuador
| | - Ricardo Pinheiro de Souza Oliveira
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, University of São Paulo, Rua do Lago 250, São Paulo, 05508-000, SP, Brazil.
| |
Collapse
|
2
|
Kang S, Xu Y, Kang Y, Rao J, Xiang F, Ku S, Li W, Liu Z, Guo Y, Xu J, Zhu X, Zhou M. Metabolomic insights into the effect of chickpea protein hydrolysate on the freeze-thaw tolerance of industrial yeasts. Food Chem 2024; 439:138143. [PMID: 38103490 DOI: 10.1016/j.foodchem.2023.138143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023]
Abstract
The use of frozen dough is an intensive food-processing practice that contributes to the development of chain operations in the bakery industry. However, the fermentation activity of yeasts in frozen dough can be severely damaged by freeze-thaw stress, thereby degrading the final bread quality. In this study, chickpea protein hydrolysate significantly improved the quality of steamed bread made from frozen dough while enhancing the yeast survival rate and maintaining yeast cell structural integrity under freeze-thaw stress. The mechanism underlying this protective role of chickpea protein hydrolysate was further investigated by untargeted metabolomics analysis, which suggested that chickpea protein hydrolysate altered the intracellular metabolites associated with central carbon metabolism, amino acid synthesis, and lipid metabolism to improve yeast cell freeze-thaw tolerance. Therefore, chickpea protein hydrolysate is a promising natural antifreeze component for yeast cryopreservation in the frozen dough industry.
Collapse
Affiliation(s)
- Sini Kang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Yang Xu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Yanyang Kang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Junhui Rao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Fuwen Xiang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Seockmo Ku
- Department of Food Science and Technology, Texas A&M University, College Station, TX 77843, USA
| | - Wei Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Zhijie Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Yaqing Guo
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Hubei Provincial Institute for Food Supervision and Test, Wuhan 430075, China
| | - Jianhua Xu
- Pinyuan (Suizhou) Modern Agriculture Development Co., Ltd., Wuhan 441300, China
| | - Xiangwei Zhu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Mengzhou Zhou
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
3
|
Reda AT, Park JY, Park YT. Zinc Oxide-Based Nanomaterials for Microbiostatic Activities: A Review. J Funct Biomater 2024; 15:103. [PMID: 38667560 PMCID: PMC11050959 DOI: 10.3390/jfb15040103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The world is fighting infectious diseases. Therefore, effective antimicrobials are required to prevent the spread of microbes and protect human health. Zinc oxide (ZnO) nano-materials are known for their antimicrobial activities. Because of their distinctive physical and chemical characteristics, they can be used in medical and environmental applications. ZnO-based composites are among the leading sources of antimicrobial research. They are effective at killing (microbicidal) and inhibiting the growth (microbiostatic) of numerous microorganisms, such as bacteria, viruses, and fungi. Although most studies have focused on the microbicidal features, there is a lack of reviews on their microbiostatic effects. This review provides a detailed overview of available reports on the microbiostatic activities of ZnO-based nano-materials against different microorganisms. Additionally, the factors that affect the efficacy of these materials, their time course, and a comparison of the available antimicrobials are highlighted in this review. The basic properties of ZnO, challenges of working with microorganisms, and working mechanisms of microbiostatic activities are also examined. This review underscores the importance of further research to better understand ZnO-based nano-materials for controlling microbial growth.
Collapse
Affiliation(s)
| | | | - Yong Tae Park
- Department of Mechanical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi 17058, Republic of Korea; (A.T.R.)
| |
Collapse
|
4
|
Ge X, Chen J, Gu J, Yi W, Xu S, Tan L, Liu T. Metabolomic analysis of hydroxycinnamic acid inhibition on Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2024; 108:165. [PMID: 38252275 PMCID: PMC10803543 DOI: 10.1007/s00253-023-12830-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 01/23/2024]
Abstract
Ferulic acid (FA) and p-coumaric acid (p-CA) are hydroxycinnamic acid inhibitors that are mainly produced during the pretreatment of lignocellulose. To date, the inhibitory mechanism of hydroxycinnamic acid compounds on Saccharomyces cerevisiae has not been fully elucidated. In this study, liquid chromatography-mass spectrometry (LC-MS) and scanning electron microscopy (SEM) were used to investigate the changes in S. cerevisiae cells treated with FA and p-CA. In this experiment, the control group was denoted as group CK, the FA-treated group was denoted as group F, and the p-CA-treated group was denoted as group P. One hundred different metabolites in group F and group CK and 92 different metabolites in group P and group CK were selected and introduced to metaboanalyst, respectively. A total of 38 metabolic pathways were enriched in S. cerevisiae under FA stress, and 27 metabolic pathways were enriched in S. cerevisiae under p-CA stress as identified through Kyoto Encyclopaedia of Genes and Genomes (KEGG) analysis. The differential metabolites involved included S-adenosine methionine, L-arginine, and cysteine, which were significantly downregulated, and acetyl-CoA, L-glutamic acid, and L-threonine, which were significantly upregulated. Analysis of differential metabolic pathways showed that the differentially expressed metabolites were mainly related to amino acid metabolism, nucleotide metabolism, fatty acid degradation, and the tricarboxylic acid cycle (TCA). Under the stress of FA and p-CA, the metabolism of some amino acids was blocked, which disturbed the redox balance in the cells and destroyed the synthesis of most proteins, which was the main reason for the inhibition of yeast cell growth. This study provided a strong scientific reference to improve the durability of S. cerevisiae against hydroxycinnamic acid inhibitors. KEY POINTS: • Morphological changes of S. cerevisiae cells under inhibitors stress were observed. • Changes of the metabolites in S. cerevisiae cells were explored by metabolomics. • One of the inhibitory effects on yeast is due to changes in the metabolic network.
Collapse
Affiliation(s)
- Xiaoli Ge
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Junxiao Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Jie Gu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Wenbo Yi
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Shujie Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Liping Tan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
- Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - Tongjun Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
- Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| |
Collapse
|
5
|
Zhuang D, Li R, Wang S, Ahmad HN, Zhu J. Reinforcing effect of ε-polylysine-carboxymethyl chitosan nanoparticles on gelatin-based film: Enhancement of physicochemical, antioxidant, and antibacterial properties. Int J Biol Macromol 2024; 255:128043. [PMID: 37984581 DOI: 10.1016/j.ijbiomac.2023.128043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
The development and application of antibacterial film were highly anticipated to prevent food spoilage caused by bacteria. In this investigation, antibacterial and antioxidant functionalized gelatin-based film was formed with the incorporation of oregano essential emulsion Pickering emulsion (OPE). ε-Polylysine-Carboxymethyl Chitosan nanoparticles (CMCS-ε-PL) composed of different mass ratios of CMCS and ε-PL were orchestrated by electrostatic forces and hydrogen bonding, which effectively acted as a stabilizer for OPE. The design of different mass ratios of CMCS and ε-PL in CMCS-ε-PL has a deep effect on the structure and functional properties of OPE and film. It successfully improved the encapsulation efficiency of OPE from 49.52 % to 79.83 %. With the observation of AFM images, the augmentation of surface roughness consequent to OPE incorporation can be relieved by the increased contention of ε-PL in CMCS-ε-PL. Meanwhile, the mechanical properties, barrier properties, anti-oxidation, and antibacterial properties of the films were improved with the incorporation of the above OPE. In particular, a synergistic antibacterial activity between ε-PL and OEO in the film was demonstrated in this study and the mechanism of enhanced antibacterial activity was elucidated by examining the integrity of bacteria cell membrane. The film unequivocally demonstrated its ability to appreciably prolong the shelf life of both beef and strawberries with excellent antioxidant and antibacterial properties.
Collapse
Affiliation(s)
- Di Zhuang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Li
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shancan Wang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hafiz Nabeel Ahmad
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
6
|
Bermúdez-Puga S, Dias M, Freire de Oliveira T, Mendonça CMN, Yokomizo de Almeida SR, Rozas EE, do Nascimento CAO, Mendes MA, Oliveira De Souza de Azevedo P, Almeida JR, Proaño-Bolaños C, Oliveira RPDS. Dual antibacterial mechanism of [K4K15]CZS-1 against Salmonella Typhimurium: a membrane active and intracellular-targeting antimicrobial peptide. Front Microbiol 2023; 14:1320154. [PMID: 38156004 PMCID: PMC10752938 DOI: 10.3389/fmicb.2023.1320154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/17/2023] [Indexed: 12/30/2023] Open
Abstract
Salmonella genus is a leading cause of food-borne infections with strong public health impact and economic ramifications. The development of antimicrobial resistance added complexity to this scenario and turned the antibiotic drug discovery into a highly important challenge. The screening of peptides has served as a successful discovery platform to design new antibiotic candidates. Motivated by this, the antimicrobial and cytotoxic properties of three cruzioseptins against Salmonella Typhimurium and RAW 264.7 murine macrophage cells, respectively, were investigated. [K4K15]CZS-1 was the most potent antimicrobial peptide identified in the screening step with a minimum inhibitory concentration (MIC) of 16 μg/mL (7.26 μM) and moderate cytotoxicity. From a structural point of view, in vitro and in silico techniques evidenced that [K4K15]CZS-1 is a α-helical cationic antimicrobial peptide. In order to capture mechanistic details and fully decipher their antibacterial action, we adopted a multidimensional approach, including spectroscopy, electron microscopy and omics analysis. In general lines, [K4K15]CZS-1 caused membrane damage, intracellular alterations in Salmonella and modulated metabolic pathways, such as the tricarboxylic acid (TCA) cycle, fatty acid biosynthesis, and lipid metabolism. Overall, these findings provide deeper insights into the antibacterial properties and multidimensional mode of action of [K4K15]CZS-1 against Salmonella Typhimurium. In summary, this study represents a first step toward the screening of membrane-acting and intracellular-targeting peptides as potential bio-preservatives to prevent foodborne outbreaks caused by Salmonella.
Collapse
Affiliation(s)
- Sebastián Bermúdez-Puga
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Meriellen Dias
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Taciana Freire de Oliveira
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Enrique Eduardo Rozas
- Dempster MS Lab, Chemical Engineering Department of Polytechnic School of University of São Paulo, São Paulo, Brazil
| | | | - Maria Anita Mendes
- Dempster MS Lab, Chemical Engineering Department of Polytechnic School of University of São Paulo, São Paulo, Brazil
| | | | - José R. Almeida
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Tena, Napo, Ecuador
- School of Pharmacy, University of Reading, Reading, United Kingdom
| | | | | |
Collapse
|
7
|
Hu S, Li X, Xiong Q. The Combination of Corona Discharge Plasma and ε-Polylysine for the Inactivation of Serratia liquefaciens. J Food Prot 2023; 86:100078. [PMID: 37295216 DOI: 10.1016/j.jfp.2023.100078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
The purpose of the study was to investigate the mechanism of inactivation of Serratia liquefaciens by different treatments, namely corona discharge plasma (CDP), ε-polylysine (ε-PL), and corona discharge plasma combined with ε-polylysine (CDP plus ε-PL). The results showed that the combined treatment of CDP and ε-PL exhibited significant antibacterial effects. The total number of colonies of S. liquefaciens dropped by 0.49 log CFU/mL following 4 min of CDP treatment, 4MIC ε-PL treatment for 6 h alone decreased the amounts of colonies by 2.11 log CFU/mL, and 6 h of treatment with 4MIC ε-PL after the bacterium was treated with CDP could decrease the number of colonies by 6.77 log CFU/mL. Scanning electron microscopy images showed that the combined treatment of CDP and ε-PL caused the most serious damage to the cell morphology. Electrical conductivity, nucleic acid, and PI staining indicated that the combined treatment dramatically enhanced the permeability of the cell membrane. In addition, the combined treatment led to a significant decrease in SOD and POD enzyme activities in S. liquefaciens, which prevented energy metabolism. Finally, the determination of free and intracellular ε-PL concentrations confirmed that the treatment of CDP could cause the bacteria to bind more ε-PL and exert more significant bacterial inhibition. Therefore, CDP and ε-PL had a synergistic effect in the inhibition of S. liquefaciens.
Collapse
Affiliation(s)
- Sijia Hu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Xinfu Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Qiang Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China.
| |
Collapse
|
8
|
Wang Y, Tong LL, Yuan L, Liu MZ, Du YH, Yang LH, Ren B, Guo DS. Integration of Physiological, Transcriptomic and Metabolomic Reveals Molecular Mechanism of Paraisaria dubia Response to Zn 2+ Stress. J Fungi (Basel) 2023; 9:693. [PMID: 37504682 PMCID: PMC10381912 DOI: 10.3390/jof9070693] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/29/2023] Open
Abstract
Utilizing mycoremediation is an important direction for managing heavy metal pollution. Zn2+ pollution has gradually become apparent, but there are few reports about its pollution remediation. Here, the Zn2+ remediation potential of Paraisaria dubia, an anamorph of the entomopathogenic fungus Ophiocordyceps gracilis, was explored. There was 60% Zn2+ removed by Paraisaria dubia mycelia from a Zn2+-contaminated medium. To reveal the Zn2+ tolerance mechanism of Paraisaria dubia, transcriptomic and metabolomic were executed. Results showed that Zn2+ caused a series of stress responses, such as energy metabolism inhibition, oxidative stress, antioxidant defense system disruption, autophagy obstruction, and DNA damage. Moreover, metabolomic analyses showed that the biosynthesis of some metabolites was affected against Zn2+ stress. In order to improve the tolerance to Zn2+ stress, the metabolic mechanism of metal ion transport, extracellular polysaccharides (EPS) synthesis, and microcycle conidiation were activated in P. dubia. Remarkably, the formation of microcycle conidiation may be triggered by reactive oxygen species (ROS) and mitogen-activated protein kinase (MAPK) signaling pathways. This study supplemented the gap of the Zn2+ resistance mechanism of Paraisaria dubia and provided a reference for the application of Paraisaria dubia in the bioremediation of heavy metals pollution.
Collapse
Affiliation(s)
- Yue Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Ling-Ling Tong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Li Yuan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Meng-Zhen Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yuan-Hang Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Lin-Hui Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Bo Ren
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Dong-Sheng Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
9
|
Lang A, Lan W, Xie J. Preparation and antimicrobial mechanism of Maillard reaction products derived from ε-polylysine and chitooligosaccharides. Biochem Biophys Res Commun 2023; 650:30-38. [PMID: 36773337 DOI: 10.1016/j.bbrc.2023.01.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
Chitooligosaccharides can be combined with amino acids or polypeptide to form Maillard reaction products (MRPs) with the antibacterial characteristics through Maillard reaction. This research aims to clarify the structure, antimicrobial effect and mechanism against Shewanella putrefaciens (S. putrefaciens) of ε-polylysine and chitooligosaccharides Maillard reaction products (LC-MRPs). The results of intrinsic fluorescence (IF) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction, proton nuclear magnetic resonance (1H NMR) spectra and scanning electron microscope (SEM) indicated Maillard reaction occurred between ε-polylysine and chitooligosaccharides. The observation of confocal laser scanning microscopy (CLSM), SEM and growth curves of S. putrefaciens evidenced that LC-MRPs have the strongest antibacterial effects. The leakage of alkaline phosphatase (AKP) and lactate dehydrogenase (LDH) implied that LC-MRPs sabotaged bacterial barrier (cell wall and cell membrane). The changes in content of nucleic acids, reactive oxygen species (ROS) level, lipid peroxidation content (LPO), succinate dehydrogenase (SDH) activity and adenosine triphosphate (ATP) content showed LC-MRPs will affect bacterial genetic gene transcription, material and energy metabolism. Therefore, the LC-MRPs were effective antibacterial agents to inhibit S. putrefaciens, which will help to preserve food with S. putrefaciens as the main spoilage bacteria.
Collapse
Affiliation(s)
- Ai Lang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai, 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai, 201306, China.
| |
Collapse
|
10
|
Zhang Q, Lin R, Yang J, Zhao J, Li H, Liu K, Xue X, Zhao H, Han S, Zhao H. Transcriptome Analysis Reveals That C17 Mycosubtilin Antagonizes Verticillium dahliae by Interfering with Multiple Functional Pathways of Fungi. BIOLOGY 2023; 12:biology12040513. [PMID: 37106714 PMCID: PMC10136297 DOI: 10.3390/biology12040513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
Verticillium wilt is a kind of soil-borne plant fungal disease caused by Verticillium dahliae (Vd). Vd 991 is a strong pathogen causing cotton Verticillium wilt. Previously, we isolated a compound from the secondary metabolites of Bacillus subtilis J15 (BS J15), which showed a significant control effect on cotton Verticillium wilt and was identified as C17 mycosubtilin. However, the specific fungistatic mechanism by which C17 mycosubtilin antagonizes Vd 991 is not clear. Here, we first showed that C17 mycosubtilin inhibits the growth of Vd 991 and affects germination of spores at the minimum inhibitory concentration (MIC). Morphological observation showed that C17 mycosubtilin treatment caused shrinking, sinking, and even damage to spores; the hyphae became twisted and rough, the surface was sunken, and the contents were unevenly distributed, resulting in thinning and damage to the cell membrane and cell wall and swelling of mitochondria of fungi. Flow cytometry analysis with ANNEXINV-FITC/PI staining showed that C17 mycosubtilin induces necrosis of Vd 991 cells in a time-dependent manner. Differential transcription analysis showed that C17 mycosubtilin at a semi-inhibitory concentration (IC50) treated Vd 991 for 2 and 6 h and inhibited fungal growth mainly by destroying synthesis of the fungal cell membrane and cell wall, inhibiting its DNA replication and transcriptional translation process, blocking its cell cycle, destroying fungal energy and substance metabolism, and disrupting the redox process of fungi. These results directly showed the mechanism by which C17 mycosubtilin antagonizes Vd 991, providing clues for the mechanism of action of lipopeptides and useful information for development of more effective antimicrobials.
Collapse
|
11
|
Metabolomics analysis of freeze-thaw tolerance enhancement mechanism of ε-poly-l-lysine on industrial yeast. Food Chem 2022; 382:132315. [PMID: 35134720 DOI: 10.1016/j.foodchem.2022.132315] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/07/2022] [Accepted: 01/30/2022] [Indexed: 11/23/2022]
Abstract
Antimicrobial polycationic peptide ε-poly-l-lysine (ε-PL) enhanced the freeze-thaw tolerance of industrial yeast; the enhancement mechanism of ε-PL on yeast was studied. Results showed that a ε-PL coating was observed in ε-PL-treated yeast. After 4 times of freeze-thaw, the cell viability, glycerol content, and CO2 production of 0.6 mg/mL ε-PL-treated yeast were higher than those of untreated yeast, specifically, the cell viability of ε-PL-treated yeast was 87.6%, and that of untreated yeast was 68.5%. Metabolomic results showed that the enhancement mechanism of ε-PL on yeast was related to the promotion of cell membrane-related fatty acid synthesis pathways before freeze-thaw treatment, and the promotion of trehalose biosynthesis and glycerophospholipid metabolism pathways after freeze-thaw. Furthermore, ε-PL induced inhibition of the tricarboxylic acid cycle, resulting in a longer stationary phase at the beginning of the freeze-thaw and ultimately providing a higher level of freeze-thaw stress tolerance than untreated yeast.
Collapse
|
12
|
Padilla-Garfias F, Ríos-Cifuentes L, Sánchez NS, Calahorra M, Peña A. Study of the mechanism of ε-poly-l-lysine as an antifungal on Candida albicans and Saccharomyces cerevisiae. Biochim Biophys Acta Gen Subj 2022; 1866:130197. [PMID: 35732210 DOI: 10.1016/j.bbagen.2022.130197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 10/17/2022]
Abstract
The antimicrobial activity of ε-poly-l-lysine (EPL) has been documented, but its antifungal activity on yeast is not well defined and its mechanism of action has been vaguely explained. Our studies revealed that on both, Candida albicans and Saccharomyces cerevisiae, the minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) were 250 μg·mL-1; EPL produced a K+ and Ca2+ efflux, and at higher concentrations also an efflux of material absorbing at 260 nm, small peptides, and phosphate is produced, along with the inhibition of fermentation and extracellular acidification and respiration. Moreover, growth was inhibited, reactive oxygen species (ROS) production increased, and cell viability decreased. The polycation also produced plasma membrane potential hyperpolarization. The effects were dependent both on the cell quantity and polycation concentration, as well as the media used. The plasma membrane disruption was confirmed by TEM and PI staining.
Collapse
Affiliation(s)
- Francisco Padilla-Garfias
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, CDMX, 04510, México, CDMX, Mexico
| | - Laura Ríos-Cifuentes
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, CDMX, 04510, México, CDMX, Mexico
| | - Norma Silvia Sánchez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, CDMX, 04510, México, CDMX, Mexico
| | - Martha Calahorra
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, CDMX, 04510, México, CDMX, Mexico
| | - Antonio Peña
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, CDMX, 04510, México, CDMX, Mexico.
| |
Collapse
|
13
|
Involvement of Organic Acid in the Control Mechanism of ε-Poly-L-lysine (ε-PL) on Blue Mold Caused by Penicillium expansum in Apple Fruits. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8060468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Blue mold is one of the most serious postharvest diseases in apples caused by Penicillium expansum. The purpose of this study is to determine the effect of ε-poly-L-lysine (ε-PL) on the pathogenicity of P. expansum and explore the potential mechanism from the perspective of organic acid. The study investigates the effect of ε-PL treatment on the growth and acid production of P. expansum in vitro and in vivo. When the concentration of ε-PL was 50 mg/L, the growth of P. expansum was inhibited and the decrease in pH value was delayed in the medium. For example, on the third day of culture, P. expansum reduced the pH of the medium from 6.1 to 4.15, and ε-PL inhibited the decrease in the pH value at most 34.4%. When the concentration reached 1000 or 2000 mg/L, the infection of P. expansum in fruits was effectively inhibited. During the growth and infection of P. expansum, gluconic acid is one of the main factors leading to the pH value falling in the local environment. After ε-PL treatment, the accumulation of gluconic acid decreased, the activity of glucose oxidase was suppressed, and then the decline in the local environmental pH slowed down. In addition, after ε-PL treatment, the activities of cell-wall-degrading enzymes, such as cellulase (CL) and polygalacturonase (PG), in the different areas of the P. expansum–apple interaction were also affected by pH change. The results show that ε-PL inhibited the pathogenicity of P. expansum by affecting the accumulation of gluconic acid and slowing the decline in pH in fruit tissues, so as to affect the pathogenicity of P. expansum. This is the first time that the mechanism of ε-PL interfering with the pathogenicity of P. expansum from the perspective of organic acids is clarified.
Collapse
|
14
|
Waste cooking oil: new efficient carbon source for natamycin production by Streptomyces gilvosporeus Z8. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Zarrintaj P, Ghorbani S, Barani M, Singh Chauhan NP, Khodadadi Yazdi M, Saeb MR, Ramsey JD, Hamblin MR, Mozafari M, Mostafavi E. Polylysine for skin regeneration: A review of recent advances and future perspectives. Bioeng Transl Med 2022; 7:e10261. [PMID: 35111953 PMCID: PMC8780928 DOI: 10.1002/btm2.10261] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/28/2021] [Accepted: 10/03/2021] [Indexed: 12/19/2022] Open
Abstract
There have been several attempts to find promising biomaterials for skin regeneration, among which polylysine (a homopolypeptide) has shown benefits in the regeneration and treatment of skin disorders. This class of biomaterials has shown exceptional abilities due to their macromolecular structure. Polylysine-based biomaterials can be used as tissue engineering scaffolds for skin regeneration, and as drug carriers or even gene delivery vectors for the treatment of skin diseases. In addition, polylysine can play a preservative role in extending the lifetime of skin tissue by minimizing the appearance of photodamaged skin. Research on polylysine is growing today, opening new scenarios that expand the potential of these biomaterials from traditional treatments to a new era of tissue regeneration. This review aims to address the basic concepts, recent trends, and prospects of polylysine-based biomaterials for skin regeneration. Undoubtedly, this class of biomaterials needs further evaluations and explorations, and many critical questions have yet to be answered.
Collapse
Affiliation(s)
- Payam Zarrintaj
- School of Chemical EngineeringOklahoma State UniversityStillwaterOklahomaUSA
| | - Sadegh Ghorbani
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhusDenmark
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research CenterKerman University of Medical SciencesKermanIran
| | | | | | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of ChemistryGdańsk University of TechnologyGdańskPoland
| | - Joshua D. Ramsey
- School of Chemical EngineeringOklahoma State UniversityStillwaterOklahomaUSA
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health ScienceUniversity of JohannesburgSouth Africa
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in MedicineIran University of Medical SciencesTehranIran
- Present address:
Lunenfeld‐Tanenbaum Research InstituteMount Sinai Hospital, University of TorontoTorontoONCanada.
| | - Ebrahim Mostafavi
- Stanford Cardiovascular InstituteStanford University School of MedicineStanfordCaliforniaUSA
- Department of MedicineStanford University School of MedicineStanfordCaliforniaUSA
| |
Collapse
|
16
|
He B, Wang Y, Jiang Z, Liu S, Zhu J. Physical properties and antibacterial activity of the composited films based on carboxymethyl cellulose and gelatin functionalized with ε-polylysine. Int J Biol Macromol 2021; 191:1126-1136. [PMID: 34606788 DOI: 10.1016/j.ijbiomac.2021.09.181] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 01/21/2023]
Abstract
Antibacterial composite films were produced from carboxymethyl cellulose-gelatin (CMC-Gel) blend with different concentration of ε-polylysine (ε-PL) and their physical and chemical properties were characterized. Compared with the control CMC-Gel film, the functionalized films had almost indistinguishable crystalline type, thickness, tensile strength, and elongation at break, however, poor water vapor barrier properties. The results showed that the ε-PL was well incorporated into CMC-Gel matrix by electrostatic interaction, as the changes of absorption peaks in the Fourier transform infrared spectrometer and the increase of glass transition temperature in differential scanning calorimeter. The films containing ε-PL showed excellent antibacterial activity against S. aureus, B. subtilis, E. coli and P. aeruginosa. In the composting experiment, the films become degraded on the seventh day, and further degraded with the growth of molds over time. The present results showed that the active films could be a potential material for food packaging.
Collapse
Affiliation(s)
- Beibei He
- Laboratory of Muscle and Meat Biophysics, Institute of Biophysics and College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Yifei Wang
- Laboratory of Muscle and Meat Biophysics, Institute of Biophysics and College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zixuan Jiang
- Laboratory of Muscle and Meat Biophysics, Institute of Biophysics and College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shucheng Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China.
| | - Jie Zhu
- Laboratory of Muscle and Meat Biophysics, Institute of Biophysics and College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China; Laboratory of Muscle Biology & Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
17
|
Zhang TZ, Liu LP, Ye L, Li WC, Xin B, Xie YY, Jia SR, Wang TF, Zhong C. The production of bacterial cellulose in Gluconacetobacter xylinus regulated by luxR overexpression of quorum sensing system. Appl Microbiol Biotechnol 2021; 105:7801-7811. [PMID: 34581846 DOI: 10.1007/s00253-021-11603-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/27/2021] [Accepted: 09/14/2021] [Indexed: 12/28/2022]
Abstract
Quorum sensing is a mechanism that facilitates cell-to-cell communication. Through signal molecular density for signal recognition, which leads to the regulation of some physiological and biochemical functions. Gluconacetobacter xylinus CGMCC 2955, which produces bacterial cellulose (BC), synthesizes the LuxR protein belonging to the LuxI/LuxR type QS system. Here, a luxR overexpression vector was transformed into G. xylinus CGMCC 2955. The overexpression of luxR increased the yield of BC by 15.6% after 16 days static culture and reduced the cell density by 15.5% after 120-h-agitated culture. The glucose was used up by G. xylinus-pMV24-luxR at 72-h-agitated fermentation, which 12 h earlier than the wild-type (WT). The total N-acylhomoserine lactones (AHL) content of the luxR-overexpressing strain and the WT strain attained 1367.9 ± 57.86 mg/L and 842.9 ± 54.22 mg/L, respectively. The C12-HSL and C14-HSL contents of G. xylinus-pMV24-luxR were 202 ± 21.66 mg/L and 409.6 ± 0.91 mg/L, which were significantly lower than that of WT. In contrast, C6-HSL showed opposite results. The difference of AHL content proved that overexpression of luxR improved the binding of AHL and showed preference for some specific AHL. The metabolic results demonstrated that upon glucose exhaustion, the consumption of gluconic acid was promoted by luxR overexpression, and the content of D- ( +)-trehalose, an antiretrograde metabolite, increased significantly. KEY POINTS: • The overexpression of luxR increased the yield of bacterial cellulose • The content of signal molecules was significantly different • Differential metabolites were involved in multiple metabolic pathways.
Collapse
Affiliation(s)
- Tian-Zhen Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, People's Republic of China
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Ling-Pu Liu
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Li Ye
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Wen-Chao Li
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Bo Xin
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Yan-Yan Xie
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Shi-Ru Jia
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Teng-Fei Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, People's Republic of China.
| | - Cheng Zhong
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
18
|
Wang L, Zhang C, Zhang J, Rao Z, Xu X, Mao Z, Chen X. Epsilon-poly-L-lysine: Recent Advances in Biomanufacturing and Applications. Front Bioeng Biotechnol 2021; 9:748976. [PMID: 34650962 PMCID: PMC8506220 DOI: 10.3389/fbioe.2021.748976] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022] Open
Abstract
ε-poly-L-lysine (ε-PL) is a naturally occurring poly(amino acid) of varying polymerization degree, which possesses excellent antimicrobial activity and has been widely used in food and pharmaceutical industries. To provide new perspectives from recent advances, this review compares several conventional and advanced strategies for the discovery of wild strains and development of high-producing strains, including isolation and culture-based traditional methods as well as genome mining and directed evolution. We also summarize process engineering approaches for improving production, including optimization of environmental conditions and utilization of industrial waste. Then, efficient downstream purification methods are described, including their drawbacks, followed by the brief introductions of proposed antimicrobial mechanisms of ε-PL and its recent applications. Finally, we discuss persistent challenges and future perspectives for the commercialization of ε-PL.
Collapse
Affiliation(s)
- Liang Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Chongyang Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jianhua Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xueming Xu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhonggui Mao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xusheng Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
19
|
Wang Z, Guo F, Dong T, Tan Z, Abdelraof M, Wang Z, Cui J, Jia S. Metabolomic Analysis of Biosynthesis Mechanism of ε-Polylysine Produced by Streptomyces diastatochromogenes. Front Bioeng Biotechnol 2021; 9:698022. [PMID: 34395404 PMCID: PMC8363252 DOI: 10.3389/fbioe.2021.698022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
ε-Polylysine (ε-PL), a natural preservative with broad-spectrum antimicrobial activity, has been widely used as a green food additive, and it is now mainly produced by Streptomyces in industry. In the previous study, strain 6#-7 of high-yield ε-PL was obtained from the original strain TUST by mutagenesis. However, the biosynthesis mechanism of ε-PL in 6#-7 is still unclear. In this study, the metabolomic analyses of the biosynthesis mechanism of ε-PL in both strains are investigated. Results show that the difference in metabolisms between TUST and 6#-7 is significant. Based on the results of both metabolomic and enzymatic activities, a metabolic regulation mechanism of the high-yield strain is revealed. The transport and absorption capacity for glucose of 6#-7 is improved. The enzymatic activity benefits ε-PL synthesis, such as pyruvate kinase and aspartokinase, is strengthened. On the contrary, the activity of homoserine dehydrogenase in the branched-chain pathways is decreased. Meanwhile, the increase of trehalose, glutamic acid, etc. makes 6#-7 more resistant to ε-PL. Thus, the ability of the mutagenized strain 6#-7 to synthesize ε-PL is enhanced, and it can produce more ε-PLs compared with the original strain. For the first time, the metabolomic analysis of the biosynthesis mechanism of ε-PL in the high-yield strain 6#-7 is investigated, and a possible mechanism is then revealed. These findings provide a theoretical basis for further improving the production of ε-PL.
Collapse
Affiliation(s)
- Ziyuan Wang
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Tianjin Beiyang Baichuan Biotechnology Co., Ltd., Tianjin, China
| | - Fengzhu Guo
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Tianyu Dong
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Zhilei Tan
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Mohamed Abdelraof
- Genetic Engineering and Biotechnology Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Zichen Wang
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Shiru Jia
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
20
|
Shu C, Cui K, Li Q, Cao J, Jiang W. Epsilon-poly-l-lysine (ε-PL) exhibits multifaceted antifungal mechanisms of action that control postharvest Alternaria rot. Int J Food Microbiol 2021; 348:109224. [PMID: 33965694 DOI: 10.1016/j.ijfoodmicro.2021.109224] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/06/2021] [Accepted: 04/26/2021] [Indexed: 12/30/2022]
Abstract
ε-Poly-l-lysine (ε-PL) is a natural antimicrobial poly-cationic peptide widely applied as a natural preservative in the food industry, whereas its application in preventing postharvest loss of fruit was largely absent. This study investigated the antifungal activity of ε-PL and determined the possible mechanisms involved. The in vivo results indicated that 500 mg L-1 exogenous ε-PL treatment significantly inhibited black spot rot in apple, jujube, and tomato. The lesion diameter inhibition rate was range from 20.11% to 29.09% by 500 mg L-1 ε-PL treatment. ε-PL exerts antifungal activity against A. alternata in vitro, the half-inhibition concentration is 160.1 mg L-1. ε-PL induced morphology and ultrastructure change on the pathogen, which resulted in the inhibition of A. alternata. This was accomplished by disturbing pathogen membrane integrity and functionality. The fluorometric assay confirmed that ε-PL induced endogenous reactive oxygen species formation and accumulation in A. alternata and the elicited severe lipid peroxidation that caused membrane lesions. Further, ε-PL treatment enhanced the expression of genes involved in antioxidant metabolism and pathogenesis-related responses in apple fruit. These findings illustrated that ε-PL exhibits multifaceted antifungal activity by the direct effect on the pathogen as well as induce host defense responses. ε-PL may be conducive as a promising alternative for Alternaria rot management.
Collapse
Affiliation(s)
- Chang Shu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Kuanbo Cui
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; Agricultural Mechanization Institute, Xinjiang Academy of Agricultural Sciences, No. 291 Nanchangnanlu, Urumqi 830091, PR China
| | - Qianqian Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
21
|
Lu L, Yang Z, Guo XN, Xing JJ, Zhu KX. Thermal-aggregation behavior of gluten in frozen dough induced by ε-poly-L-lysine treated yeast. Food Chem 2021; 359:129985. [PMID: 33965764 DOI: 10.1016/j.foodchem.2021.129985] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 02/05/2023]
Abstract
ε-poly-L-lysine treated yeast (PTY) helps to enhance the freeze-thaw tolerance of frozen dough. This study explored the effect of PTY on the aggregation and the gas-retention of frozen dough after steaming for 2, 5, 10, and 20 min. Gas-cell images showed that PTY reduced the loss of gas-retention ability caused by 4 times of freeze-thaw. The results of sodium dodecyl sulfate extractability and subunit distribution of gluten showed that, after the same heat time, frozen dough with PTY has higher degree of covalent crosslinking with better aggregation ability of α-, γ-gliadin, and low molecular weight glutenin subunits than frozen dough with yeast. Chemical analysis and chain morphology results demonstrated that the levels of acidity, NH2, and free sulfhydryl in dough were decreased, and the protein molecules aggregated into longer chains when using PTY instead of yeast, indicating that PTY reduced acid-mediated hydrolysis and increased the disulfide bonds-mediated gluten polymerization.
Collapse
Affiliation(s)
- Lu Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Zhen Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Xiao-Na Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Jun-Jie Xing
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Ke-Xue Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China.
| |
Collapse
|
22
|
Li SF, Zhang SB, Lv YY, Zhai HC, Li N, Hu YS, Cai JP. Metabolomic analyses revealed multifaceted effects of hexanal on Aspergillus flavus growth. Appl Microbiol Biotechnol 2021; 105:3745-3757. [PMID: 33880599 DOI: 10.1007/s00253-021-11293-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/03/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022]
Abstract
Hexanal, a natural volatile organic compound, exerts antifungal activity against Aspergillus flavus; however, the mechanisms underlying these effects are unclear. In this study, we found that the growth of A. flavus mycelium was completely inhibited following exposure to 0.4 μL/mL hexanal (minimal inhibitory concentration). A detailed metabolomics survey was performed to identify changes in metabolite production by A. flavus cells after exposure to 1/2 the minimal inhibitory concentration of hexanal for 6 h, which revealed significant differences in 70 metabolites, including 20 upregulated and 50 downregulated metabolites. Among them, levels of L-malic acid, α-linolenic acid, phosphatidylcholine, D-ribose, riboflavin, D-mannitol, D-sorbitol, and deoxyinosine were significantly reduced. The metabolomics results suggest that the metabolites are mainly involved in the tricarboxylic acid cycle (TCA), ABC transport system, and membrane synthesis in A. flavus cells. Hexanal treatment reduced succinate dehydrogenase and mitochondrial dehydrogenase activity and stimulated superoxide anion and hydrogen peroxide accumulation in A. flavus mycelia. Increases in the electric conductivity and A260nm of the culture supernatant indicated cell membrane leakage. Therefore, hexanal appears to disrupt cell membrane synthesis, induce mitochondrial dysfunction, and increase oxidative stress in A. flavus mycelia. KEY POINTS: • Metabolite changes of A. flavus mycelia were identified after hexanal treatment. • Most differential metabolites were downregulated in hexanal-treated A. flavus. • An antifungal model of hexanal against A. flavus was proposed.
Collapse
Affiliation(s)
- Sheng-Fa Li
- College of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, China
| | - Shuai-Bing Zhang
- College of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, China.
| | - Yang-Yong Lv
- College of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, China
| | - Huan-Chen Zhai
- College of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, China
| | - Na Li
- College of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, China
| | - Yuan-Sen Hu
- College of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, China
| | - Jing-Ping Cai
- College of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, China
| |
Collapse
|
23
|
Yang F, Xu L, Dias ACP, Zhang X. A sensitive sandwich ELISA using a modified biotin-streptavidin amplified system for histamine detection in fish, prawn and crab. Food Chem 2021; 350:129196. [PMID: 33607409 DOI: 10.1016/j.foodchem.2021.129196] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/27/2020] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
Histamine poisoning from seafood is a significant public health and safety concern. To detect histamine sensitively and accurately, a novel competitive sandwich immunoassay using a modified biotin-streptavidin system coupling with polylysine was developed. Using this strategy, a sandwich ELISA with an IC50 value of 112.8 ng mL-1 and a broad linear range of 11.7-1500 ng mL-1 with a correlation coefficient of 0.9942 was validated. Without any sample derivatization procedure, the recovery of histamine ranged from 80.19% to 108.3% with a coefficient of variation of 1.43-11.7% in tuna, prawn and crab. The sandwich ELISA had a detectionlimit of 5.86 ng mL-1, which was 15-fold lower than an indirect competitive ELISA (ic-ELISA). This simple, sensitive and accurate method can be applied to detect histamine in routine seafood samples.
Collapse
Affiliation(s)
- Fanfan Yang
- Centre of Molecular and Environmental Biology, University of Minho, Department of Biology, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Long Xu
- Centre of Molecular and Environmental Biology, University of Minho, Department of Biology, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Alberto C P Dias
- Centre of Molecular and Environmental Biology, University of Minho, Department of Biology, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Xiaoying Zhang
- Centre of Molecular and Environmental Biology, University of Minho, Department of Biology, Campus de Gualtar, 4710-057 Braga, Portugal; Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China.
| |
Collapse
|
24
|
Lu L, Xing JJ, Yang Z, Guo XN, Zhu KX. Influence of ε-poly-l-lysine treated yeast on gluten polymerization and freeze-thaw tolerance of frozen dough. Food Chem 2020; 343:128440. [PMID: 33127224 DOI: 10.1016/j.foodchem.2020.128440] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 01/16/2023]
Abstract
The effects of ε-poly-l-lysine (ε-PL) treated yeast on gluten polymerization of frozen dough and quality of steamed bread after freeze-thaw cycles were investigated. Compared with steamed bread made from frozen dough containing ε-PL and untreated yeast (PUTY) or only untreated yeast, steamed bread made from frozen dough containing ε-PL treated yeast (PTY) had a larger specific volume, lower hardness and more porous. A dynamic rheological and scanning electron microscopic analysis demonstrated that using PTY instead of yeast could reduce dough elasticity and damage protein network after freeze-thaw cycles. Lower sodium dodecyl sulfate (SDS) soluble polymeric proteins and monomeric proteins, and higher SDS insoluble proteins were found in frozen dough containing PTY, which indicates a reduced depolymerization of gluten proteins after freeze-thaw cycles. After 4 freeze-thaw cycles, the lower glutathione and free sulfhydryl in dough containing PTY indicate that the interchain disulfide bonds between proteins were preserved.
Collapse
Affiliation(s)
- Lu Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China
| | - Jun-Jie Xing
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China
| | - Zhen Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China
| | - Xiao-Na Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China
| | - Ke-Xue Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| |
Collapse
|
25
|
Lu L, Xing JJ, Guo XN, Sun XH, Zhu KX. Enhancing the freezing–thawing tolerance of frozen dough using ε-poly-L-lysine treated yeast. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
The Effect of Chlorogenic Acid on Bacillus subtilis Based on Metabolomics. Molecules 2020; 25:molecules25184038. [PMID: 32899667 PMCID: PMC7571229 DOI: 10.3390/molecules25184038] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 01/11/2023] Open
Abstract
Chlorogenic acid (CGA), a natural phenolic compound, is an important bioactive compound, and its antibacterial activity has been widely concerned, but its antibacterial mechanism remains largely unknown. Protein leakage and the solution exosmosis conductivity of Bacillus subtilis 24434 (B. subtilis) reportedly display no noticeable differences before and after CGA treatment. The bacterial cells treated with CGA displayed a consistently smooth surface under the electron microscope, indicating that CGA cannot directly disrupt bacterial membranes. However, CGA induced a significant decrease in the intracellular adenosine triphosphate (ATP) concentration, possibly by affecting the material and energy metabolism or cell-signaling transduction. Furthermore, metabolomic results indicated that CGA stress had a bacteriostatic effect by inducing the intracellular metabolic imbalance of the tricarboxylic acid (TCA) cycle and glycolysis, leading to metabolic disorder and death of B. subtilis. These findings improve the understanding of the complex action mechanisms of CGA antimicrobial activity and provide theoretical support for the application of CGA as a natural antibacterial agent.
Collapse
|
27
|
Chen X, Wang T, Jin M, Tan Y, Liu L, Liu L, Li C, Yang Y, Du P. Metabolomics analysis of growth inhibition of
Lactobacillus plantarum
under ethanol stress. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaoqian Chen
- Key Laboratory of Dairy Sciences College of Food Science Northeast Agricultural University Harbin150030China
| | - Tingting Wang
- Key Laboratory of Dairy Sciences College of Food Science Northeast Agricultural University Harbin150030China
| | - Man Jin
- National Dairy Quality Supervision and Inspection Center Harbin150028China
| | - Ying Tan
- Key Laboratory of Dairy Sciences College of Food Science Northeast Agricultural University Harbin150030China
| | - Libo Liu
- Key Laboratory of Dairy Sciences College of Food Science Northeast Agricultural University Harbin150030China
| | - Lihua Liu
- Institute of Animal Science (IAS) Chinese Academy of Agricultural Sciences (CAAS) Beijing100193China
| | - Chun Li
- Key Laboratory of Dairy Sciences College of Food Science Northeast Agricultural University Harbin150030China
| | - Yuzhuo Yang
- Heilongjiang Academy of Green Food Science Harbin150030China
| | - Peng Du
- Key Laboratory of Dairy Sciences College of Food Science Northeast Agricultural University Harbin150030China
| |
Collapse
|
28
|
Jiang C, Li Z, Shi Y, Guo D, Pang B, Chen X, Shao D, Liu Y, Shi J. Bacillus subtilis inhibits Aspergillus carbonarius by producing iturin A, which disturbs the transport, energy metabolism, and osmotic pressure of fungal cells as revealed by transcriptomics analysis. Int J Food Microbiol 2020; 330:108783. [PMID: 32659523 DOI: 10.1016/j.ijfoodmicro.2020.108783] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/08/2020] [Accepted: 07/01/2020] [Indexed: 12/24/2022]
Abstract
The contamination of Aspergillus carbonarius causes decreases and great decay of agricultural products, and threatens the human and animal health by producing mycotoxins, especially ochratoxin A. Bacillus subtilis has been proved to efficiently inhibit the growth of A. carbonarius. Revealing the major active compound and the mechanisms for the antifungal of B. subtilis are essential to enhance its antifungal activity and control the quality of antifungal products made of it. In this study, we determined that iturin A is the major compound that inhibits Aspergillus carbonarius, a widespread fungal pathogen of grape and other fruits. Iturin A significantly inhibited growth and ochratoxin A production of A. carbonarius with minimal inhibitory concentrations (MICs) of 10 μg/mL and 0.312 μg/mL, respectively. Morphological observations revealed that iturin A caused swelling of the fungal cells and thinning of the cell wall and membrane at 1/2 MIC, whereas it inhibited fungal spore germination and caused mitochondrial swelling at higher concentrations. A differential transcriptomic analysis indicated that the mechanisms used by iturin A to inhibit A. carbonarius were to downregulate the expression of genes related to cell membrane, transport, osmotic pressure, oxidation-reduction processes, and energy metabolism. Among the down-regulated genes, those related to the transport capacity were most significantly influenced, including the increase of energy-related transport pathways and decrease of other pathways. Notably, the genes related to taurine and hypotaurine metabolism were also decreased, indicating iturin A potentially cause the occurrence of osmotic imbalance in A. carbonarius, which may be the intrinsic cause for the swelling of fungal cells and mitochondria. Overall, iturin A produced by B. subtilis played important roles to inhibit A. carbonarius via changing the fungal cell structure and causing perturbations to energy, transport and osmotic pressure metabolisms in fungi. The results indicated a new direction for researches on the mechanisms for lipopeptides and provided useful information to develop more efficient antifungal agents, which are important to agriculture and biomedicine.
Collapse
Affiliation(s)
- Chunmei Jiang
- Key Laboratory for Space Bioscience & Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Zhenzhu Li
- Key Laboratory for Space Bioscience & Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Yihong Shi
- Key Laboratory for Space Bioscience & Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Dan Guo
- Key Laboratory for Space Bioscience & Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Bin Pang
- Key Laboratory for Space Bioscience & Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Xianqing Chen
- Jiaxing Synbiolab Biotechnology Co., Ltd., Jiaxing, Zhejiang Province 314006, China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience & Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Yanlin Liu
- College of Enology, Northwest A&F University, 23 Xinong Road, Yangling, Shaanxi Province 712100, China
| | - Junling Shi
- Key Laboratory for Space Bioscience & Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China.
| |
Collapse
|
29
|
Ye C, Xu N, Gao C, Liu G, Xu J, Zhang W, Chen X, Nielsen J, Liu L. Comprehensive understanding of Saccharomyces cerevisiae phenotypes with whole-cell model WM_S288C. Biotechnol Bioeng 2020; 117:1562-1574. [PMID: 32022245 DOI: 10.1002/bit.27298] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 02/01/2023]
Abstract
Biological network construction for Saccharomyces cerevisiae is a widely used approach for simulating phenotypes and designing cell factories. However, due to a complicated regulatory mechanism governing the translation of genotype to phenotype, precise prediction of phenotypes remains challenging. Here, we present WM_S288C, a computational whole-cell model that includes 15 cellular states and 26 cellular processes and which enables integrated analyses of physiological functions of Saccharomyces cerevisiae. Using WM_S288C to predict phenotypes of S. cerevisiae, the functions of 1140 essential genes were characterized and linked to phenotypes at five levels. During the cell cycle, the dynamic allocation of intracellular molecules could be tracked in real-time to simulate cell activities. Additionally, one-third of non-essential genes were identified to affect cell growth via regulating nucleotide concentrations. These results demonstrated the value of WM_S288C as a tool for understanding and investigating the phenotypes of S. cerevisiae.
Collapse
Affiliation(s)
- Chao Ye
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Key Laboratory of Industrial Biotechnology, Jiangnan University, Ministry of Education, Wuxi, Jiangsu, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Nan Xu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Key Laboratory of Industrial Biotechnology, Jiangnan University, Ministry of Education, Wuxi, Jiangsu, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Gaoqiang Liu
- Hunan Provincial Key Laboratory for Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Jianzhong Xu
- Key Laboratory of Industrial Biotechnology, Jiangnan University, Ministry of Education, Wuxi, Jiangsu, China
| | - Weiguo Zhang
- Key Laboratory of Industrial Biotechnology, Jiangnan University, Ministry of Education, Wuxi, Jiangsu, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Key Laboratory of Industrial Biotechnology, Jiangnan University, Ministry of Education, Wuxi, Jiangsu, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Key Laboratory of Industrial Biotechnology, Jiangnan University, Ministry of Education, Wuxi, Jiangsu, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
30
|
|
31
|
Tan Z, Shi Y, Xing B, Hou Y, Cui J, Jia S. The antimicrobial effects and mechanism of ε-poly-lysine against Staphylococcus aureus. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0246-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
32
|
Su R, Li T, Fan D, Huang J, Zhao J, Yan B, Zhou W, Zhang W, Zhang H. The inhibition mechanism of ϵ-polylysine against Bacillus cereus emerging in surimi gel during refrigerated storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2922-2930. [PMID: 30471133 DOI: 10.1002/jsfa.9505] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/04/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Refrigeration is commonly used in the processing and storage of surimi products. However, refrigerated surimi products are susceptible to microbial contamination, which leads to deterioration of the products and shortens their shelf life. The aims of the present study were therefore to evaluate the effects of ϵ-polylysine (ϵ-PL) on spoilage bacteria in surimi products, and to investigate the antibacterial mechanism of Bacillus cereus, which is the dominant spoilage bacterium. RESULTS ϵ-Polylysine with a high degree of polymerization (20-30K) proved able to decrease the total number of colonies in surimi products and showed an obvious antibacterial effect against B. cereus. After ϵ-PL treatments, the distinct broken areas on the bacterial surfaces and the aggregations of cells were observed by scanning electron microscope (SEM). The intracellular materials, such as small molecules, soluble proteins, and deoxyribonucleic acids in the cells were analyzed, which revealed the destructive effects of ϵ-PL on bacterial cells. Experiments with propidium iodide (PI) infiltration experiments verified that the permeability of cell membranes was enhanced by ϵ-PL treatment. CONCLUSION These results indicated that ϵ-PL could destroy the cell membranes and change the permeability of B. cereus, and subsequently the cell contents leaked out to achieve antibacterial effects. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ruihua Su
- Key Laboratory of Refrigeration and Conditioning Aquatie Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Tangfei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Daming Fan
- Key Laboratory of Refrigeration and Conditioning Aquatie Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Wuxi, China
| | - Jianlian Huang
- Key Laboratory of Refrigeration and Conditioning Aquatie Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Fujian Anjoyfood Share Co. Ltd., Xiamen, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Wuxi, China
| | - Bowen Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenguo Zhou
- Key Laboratory of Refrigeration and Conditioning Aquatie Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen, China
- Fujian Anjoyfood Share Co. Ltd., Xiamen, China
| | - Wenhai Zhang
- Key Laboratory of Refrigeration and Conditioning Aquatie Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen, China
- Fujian Anjoyfood Share Co. Ltd., Xiamen, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Wuxi, China
| |
Collapse
|
33
|
Evaluation of ε-polylysine as antimicrobial alternative for liquid-stored boar semen. Theriogenology 2019; 130:146-156. [PMID: 30897429 DOI: 10.1016/j.theriogenology.2019.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 12/15/2022]
Abstract
ε-polylysine (ε-PL) has potent antibacterial effects and is often used in the food industry. However, no studies have clarified the antibacterial effects of ε-PL during storage of boar semen. In this study, boar semen samples were diluted with BTS buffer supplemented with different concentrations (0, 0.04, 0.08, 0.16, 0.32, 0.64, and 1.28 g/L) of ε-PL and different combinations of ε-PL plus gentamicin during liquid storage at 17 °C for 5 days. Bacterial concentrations, bacterial community compositions, sperm quality parameters, and in vitro fertilization (IVF) were evaluated in order to analyze the antibacterial effects of these parameters during boar semen preservation. The results indicated that the optimum concentration of ε-PL was 0.16 g/L, which significantly improved sperm quality parameters, including sperm motility, plasma membrane integrity, mitochondrial membrane potential, and acrosome integrity, and changed bacterial proliferation and composition (P < 0.05). Moreover, compared with the control group, IVF parameters in the treatment groups also significantly improved (P < 0.05), although there were no significant differences among treatment groups. Interestingly, the antibacterial effect of 0.16 g/L ε-PL in combination with 0.125 g/L gentamycin was similar to that of 0.25 g/L gentamicin alone. In conclusion, our results showed that 0.16 g/L ε-PL is promising for the replacement of gentamicin to improve sperm quality parameters, sperm capacitation, and IVF by reducing bacterial concentrations and disrupting bacterial community composition.
Collapse
|
34
|
Xu D, Wang R, Xu Z, Xu Z, Li S, Wang M, Feng X, Xu H. Discovery of a Short-Chain ε-Poly-l-lysine and Its Highly Efficient Production via Synthetase Swap Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1453-1462. [PMID: 30638374 DOI: 10.1021/acs.jafc.8b06019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
ε-Poly-l-lysine (ε-PL) is a natural antimicrobial cationic peptide, which is generally recognized as safe for use as a food preservative. To date, the production capacity of strains that produce low-molecular weight ε-PL remains very low and thus unsuitable for industrial production. Here, we report a new low-molecular weight ε-PL-producing Kitasatospora aureofaciens strain. The ε-PL synthase gene of this strain was cloned into a high ε-PL-producing Streptomyces albulus strain. The resulting recombinant strain efficiently produced ε-PL with a molecular weight of 1.3-2.3 kDa and yielded of 23.6 g/L following fed-batch fermentation in a 5 L bioreactor. In addition, circular dichroism spectra showed that this ε-PL takes on a conformation similar to an antiparallel pleated-sheet. Moreover, it demonstrated better antimicrobial activity against yeast compared to the 3.2-4.5 kDa ε-PL. This study provides a highly efficient strategy for production of the low-molecular weight ε-PL, which helps to expand its potential applications.
Collapse
Affiliation(s)
- Delei Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing Tech University , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
- The Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture , Nanjing Tech University , Nanjing 211816 , China
| | - Rui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing Tech University , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
- The Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture , Nanjing Tech University , Nanjing 211816 , China
| | - Zhaoxian Xu
- School of Environmental and Biological Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Zheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing Tech University , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
- The Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture , Nanjing Tech University , Nanjing 211816 , China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing Tech University , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
- The Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture , Nanjing Tech University , Nanjing 211816 , China
| | - Mingxuan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing Tech University , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
- The Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture , Nanjing Tech University , Nanjing 211816 , China
| | - Xiaohai Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing Tech University , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
- The Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture , Nanjing Tech University , Nanjing 211816 , China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing Tech University , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
- The Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture , Nanjing Tech University , Nanjing 211816 , China
| |
Collapse
|
35
|
Tan Z, Bo T, Guo F, Cui J, Jia S. Effects of ε-Poly-l-lysine on the cell wall of Saccharomyces cerevisiae and its involved antimicrobial mechanism. Int J Biol Macromol 2018; 118:2230-2236. [DOI: 10.1016/j.ijbiomac.2018.07.094] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/12/2018] [Accepted: 07/14/2018] [Indexed: 01/08/2023]
|
36
|
Lin L, Gu Y, Li C, Vittayapadung S, Cui H. Antibacterial mechanism of ε -Poly-lysine against Listeria monocytogenes and its application on cheese. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.03.025] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
37
|
Chen XS, Wang KF, Zheng GC, Gao Y, Mao ZG. Preparation, characterization and antimicrobial activity of ε-poly-l-lysine with short chain length produced from glycerol by Streptomyces albulus. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Lin L, Mao X, Sun Y, Cui H. Antibacterial mechanism of artemisinin / beta-cyclodextrins against methicillin-resistant Staphylococcus aureus ( MRSA ). Microb Pathog 2018. [DOI: 10.1016/j.micpath.2018.03.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Xu HL, Fan ZL, ZhuGe DL, Shen BX, Jin BH, Xiao J, Lu CT, Zhao YZ. Therapeutic supermolecular micelles of vitamin E succinate-grafted ε-polylysine as potential carriers for curcumin: Enhancing tumour penetration and improving therapeutic effect on glioma. Colloids Surf B Biointerfaces 2017; 158:295-307. [DOI: 10.1016/j.colsurfb.2017.07.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/06/2017] [Accepted: 07/05/2017] [Indexed: 01/17/2023]
|
40
|
Chen M, Fan DM, Li TF, Yan BW, Gao YS, Zhao JX, Zhang H. Synergistic bactericidal effects of basic amino acids and microwave treatment on Escherichia coli. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.05.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Xu J, Shao X, Li Y, Wei Y, Xu F, Wang H. Metabolomic Analysis and Mode of Action of Metabolites of Tea Tree Oil Involved in the Suppression of Botrytis cinerea. Front Microbiol 2017; 8:1017. [PMID: 28634477 PMCID: PMC5459894 DOI: 10.3389/fmicb.2017.01017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/22/2017] [Indexed: 12/25/2022] Open
Abstract
Tea tree oil (TTO), a volatile essential oil, has been widely used as an antimicrobial agent. However, the mechanism underlying TTO antifungal activity is not fully understood. In this study, a comprehensive metabolomics survey was undertaken to identify changes in metabolite production in Botrytis cinerea cells treated with TTO. Significant differences in 91 metabolites were observed, including 8 upregulated and 83 downregulated metabolites in TTO-treated cells. The results indicate that TTO inhibits primary metabolic pathways through the suppression of the tricarboxylic acid (TCA) cycle and fatty acid metabolism. Further experiments show that TTO treatment decreases the activities of key enzymes in the TCA cycle and increases the level of hydrogen peroxide (H2O2). Membrane damage is also induced by TTO treatment. We hypothesize that the effect of TTO on B. cinerea is achieved mainly by disruption of the TCA cycle and fatty acid metabolism, resulting in mitochondrial dysfunction and oxidative stress.
Collapse
Affiliation(s)
| | - Xingfeng Shao
- Department of Food Science and Engineering, Ningbo UniversityNingbo, China
| | | | | | | | | |
Collapse
|
42
|
Tian P, Cao P, Hu D, Wang D, Zhang J, Wang L, Zhu Y, Gao Q. Comparative metabolomics reveals the mechanism of avermectin production enhancement by S-adenosylmethionine. ACTA ACUST UNITED AC 2017; 44:595-604. [DOI: 10.1007/s10295-016-1883-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/30/2016] [Indexed: 11/24/2022]
Abstract
Abstract
It was found that S-adenosylmethionine (SAM) could effectively improve avermectin titer with 30–60 μg/mL addition to FH medium. To clearly elucidate the mechanism of SAM on intracellular metabolites of Streptomyces avermitilis, a GC–MS-based comparative metabolomics approach was carried out. First, 230 intracellular metabolites were identified and 14 of them remarkably influenced avermectin biosynthesis were discriminative biomarkers between non-SAM groups and SAM-treated groups by principal components analysis (PCA) and partial least squares (PLS). Based on further key metabolic pathway analyses, these biomarkers, such as glucose, oxaloacetic acid, fatty acids (in soybean oil), threonine, valine, and leucine, were identified as potentially beneficial precursors and added in medium. Compared with single-precursor feeding, the combined feeding of the precursors and SAM markedly increased the avermectin titer. The co-feeding approach not only directly verified our hypothesis on the mechanism of SAM by comparative metabolomics, but also provided a novel strategy to increase avermectin production.
Collapse
Affiliation(s)
- Pingping Tian
- grid.413109.e 0000 0000 9735 6249 Key Laboratory of Industrial Fermentation Microbiology Ministry of Education, Tianjin Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology Tianjin People’s Republic of China
| | - Peng Cao
- grid.413109.e 0000 0000 9735 6249 Key Laboratory of Industrial Fermentation Microbiology Ministry of Education, Tianjin Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology Tianjin People’s Republic of China
| | - Dong Hu
- grid.413109.e 0000 0000 9735 6249 Key Laboratory of Industrial Fermentation Microbiology Ministry of Education, Tianjin Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology Tianjin People’s Republic of China
| | - Depei Wang
- grid.413109.e 0000 0000 9735 6249 Key Laboratory of Industrial Fermentation Microbiology Ministry of Education, Tianjin Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology Tianjin People’s Republic of China
| | - Jian Zhang
- grid.413109.e 0000 0000 9735 6249 Key Laboratory of Industrial Fermentation Microbiology Ministry of Education, Tianjin Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology Tianjin People’s Republic of China
| | - Lin Wang
- 0000 0000 9735 6249 grid.413109.e School of Computer Sciences and Information Engineering Tianjin University of Science and Technology Tianjin People’s Republic of China
| | - Yan Zhu
- 0000 0000 9735 6249 grid.413109.e Logistics Service Group Tianjin University of Science and Technology Tianjin People’s Republic of China
| | - Qiang Gao
- grid.413109.e 0000 0000 9735 6249 Key Laboratory of Industrial Fermentation Microbiology Ministry of Education, Tianjin Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology Tianjin People’s Republic of China
| |
Collapse
|
43
|
Wu L, Qiu J, Wu S, Liu X, Liu C, Xu Z, Li S, Xu H. Bioinspired Production of Antibacterial Sucrose Isomerase-Sponge for the Synthesis of Isomaltulose. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Lingtian Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Food Science and Light Industry; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Biological and Pharmaceutical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Juanjuan Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Food Science and Light Industry; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Biological and Pharmaceutical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Shanshan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Biological and Pharmaceutical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Xiaoliu Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Food Science and Light Industry; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Biological and Pharmaceutical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Chao Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Food Science and Light Industry; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Zheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Food Science and Light Industry; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Food Science and Light Industry; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Food Science and Light Industry; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
| |
Collapse
|
44
|
Wu L, Wu S, Xu Z, Qiu Y, Li S, Xu H. Modified nanoporous titanium dioxide as a novel carrier for enzyme immobilization. Biosens Bioelectron 2016; 80:59-66. [DOI: 10.1016/j.bios.2016.01.045] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/05/2016] [Accepted: 01/16/2016] [Indexed: 11/25/2022]
|
45
|
Liu M, Zhong C, Zhang YM, Xu ZM, Qiao CS, Jia SR. Metabolic Investigation in Gluconacetobacter xylinus and Its Bacterial Cellulose Production under a Direct Current Electric Field. Front Microbiol 2016; 7:331. [PMID: 27014248 PMCID: PMC4794480 DOI: 10.3389/fmicb.2016.00331] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/02/2016] [Indexed: 01/05/2023] Open
Abstract
The effects of a direct current (DC) electric field on the growth and metabolism of Gluconacetobacter xylinus were investigated in static culture. When a DC electric field at 10 mA was applied using platinum electrodes to the culture broth, bacterial cellulose (BC) production was promoted in 12 h but was inhibited in the last 12 h as compared to the control (without DC electric field). At the cathode, the presence of the hydrogen generated a strong reductive environment that is beneficial to cell growth. As compared to the control, the activities of glycolysis and tricarboxylic acid cycle, as well as BC productivity were observed to be slightly higher in the first 12 h. However, due to the absence of sufficient oxygen, lactic acid was accumulated from pyruvic acid at 18 h, which was not in favor of BC production. At the anode, DC inhibited cell growth in 6 h when compared to the control. The metabolic activity in G. xylinus was inhibited through the suppression of the tricarboxylic acid cycle and glycolysis. At 18-24 h, cell density was observed to decrease, which might be due to the electrolysis of water that significantly dropped the pH of cultural broth far beyond the optimal range. Meanwhile, metabolites for self-protection were accumulated, for instance proline, glutamic acid, gluconic acid, and fatty acids. Notably, the accumulation of gluconic acid and lactic acid made it a really tough acid stress to cells at the anode and finally led to depression of cell growth.
Collapse
Affiliation(s)
- Miao Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology Tianjin, China
| | - Cheng Zhong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and TechnologyTianjin, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin UniversityTianjin, China
| | - Yu Ming Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology Tianjin, China
| | - Ze Ming Xu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology Tianjin, China
| | - Chang Sheng Qiao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology Tianjin, China
| | - Shi Ru Jia
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology Tianjin, China
| |
Collapse
|
46
|
Antimicrobial ε-poly-l-lysine induced changes in cell membrane compositions and properties of Saccharomyces cerevisiae. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.09.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Chen XS, Gao Y, Zhen B, Han D, Zhang JH, Mao ZG. Separation and purification of ϵ-poly- l -lysine from fermentation broth. Process Biochem 2016. [DOI: 10.1016/j.procbio.2015.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Frankl A, Mari M, Reggiori F. Electron microscopy for ultrastructural analysis and protein localization in Saccharomyces cerevisiae. MICROBIAL CELL 2015; 2:412-428. [PMID: 28357267 PMCID: PMC5349205 DOI: 10.15698/mic2015.11.237] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The yeast Saccharomyces cerevisiae is a key model system for studying of a multitude of cellular processes because of its amenability to genetics, molecular biology and biochemical procedures. Ultrastructural examinations of this organism, though, are traditionally difficult because of the presence of a thick cell wall and the high density of cytoplasmic proteins. A series of recent methodological and technical developments, however, has revived interest in morphological analyses of yeast (e.g. 123). Here we present a review of established and new methods, from sample preparation to imaging, for the ultrastructural analysis of S. cerevisiae. We include information for the use of different fixation methods, embedding procedures, approaches for contrast enhancement, and sample visualization techniques, with references to successful examples. The goal of this review is to guide researchers that want to investigate a particular process at the ultrastructural level in yeast by aiding in the selection of the most appropriate approach to visualize a specific structure or subcellular compartment.
Collapse
Affiliation(s)
- Andri Frankl
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Muriel Mari
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Fulvio Reggiori
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
49
|
Hegab HM, ElMekawy A, Barclay TG, Michelmore A, Zou L, Saint CP, Ginic-Markovic M. Fine-Tuning the Surface of Forward Osmosis Membranes via Grafting Graphene Oxide: Performance Patterns and Biofouling Propensity. ACS APPLIED MATERIALS & INTERFACES 2015; 7:18004-18016. [PMID: 26214126 DOI: 10.1021/acsami.5b04818] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Graphene oxide (GO) nanosheets were attached to the polyamide selective layer of thin film composite (TFC) forward osmosis (FO) membranes through a poly L-Lysine (PLL) intermediary using either layer-by-layer or hybrid (H) grafting strategies. Fourier transform infrared spectroscopy, zeta potential, and thermogravimetric analysis confirmed the successful attachment of GO/PLL, the surface modification enhancing both the hydrophilicity and smoothness of the membrane's surface demonstrated by water contact angle, atomic force microscopy, and transmission electron microscopy. The biofouling resistance of the FO membranes determined using an adenosine triphosphate bioluminescence test showed a 99% reduction in surviving bacteria for GO/PLL-H modified membranes compared to pristine membrane. This antibiofouling property of the GO/PLL-H modified membrane was reflected in reduced flux decline compared to all other samples when filtering brackish water under biofouling conditions. Further, the high density and tightly bound GO nanosheets using the hybrid modification reduced the reverse solute flux compared to the pristine, which reflects improved membrane selectivity. These results illustrate that the GO/PLL-H modification is a valuable addition to improve the performance of FO TFC membranes.
Collapse
Affiliation(s)
- Hanaa M Hegab
- †Centre for Water Management and Reuse, University of South Australia, Adelaide SA 5095, Australia
- ‡Institute of Advanced Technology and New Materials, City of Scientific Research and Technological Applications, Borg Elarab, Alexandria, Egypt
| | - Ahmed ElMekawy
- §Genetic Engineering and Biotechnology Research Institute, University of Sadat City (USC), Sadat City, Egypt
- ∥School of Chemical Engineering, University of Adelaide, Adelaide SA 5095, Australia
| | - Thomas G Barclay
- ⊥Mawson Institute, University of South Australia, Adelaide, SA 5095, Australia
| | - Andrew Michelmore
- ⊥Mawson Institute, University of South Australia, Adelaide, SA 5095, Australia
| | - Linda Zou
- †Centre for Water Management and Reuse, University of South Australia, Adelaide SA 5095, Australia
- #Department of Chemical and Environmental Engineering, Masdar Institute of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Christopher P Saint
- †Centre for Water Management and Reuse, University of South Australia, Adelaide SA 5095, Australia
| | | |
Collapse
|
50
|
Wu L, Liu Y, Chi B, Xu Z, Feng X, Li S, Xu H. An innovative method for immobilizing sucrose isomerase on ε-poly-L-lysine modified mesoporous TiO2. Food Chem 2015; 187:182-8. [PMID: 25977014 DOI: 10.1016/j.foodchem.2015.04.072] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 04/11/2015] [Accepted: 04/17/2015] [Indexed: 11/28/2022]
Abstract
Sucrose isomerase (SIase) is the key enzyme in the enzymatic synthesis of isomaltulose. Mesoporous titanium dioxide (M-TiO2) and ε-poly-L-lysine-functionalized M-TiO2 (EPL-M-TiO2) were prepared as carriers for immobilizing SIase. SIase was effectively immobilized on EPL-M-TiO2 (SI-EPL-M-TiO2) with an enzyme activity of 39.41 U/g, and the enzymatic activity recovery rate up to 93.26%. The optimal pH and temperature of immobilized SIase were 6.0 and 30° C, respectively. SI-EPL-M-TiO2 was more stable in pH and thermal tests than SIase immobilized on M-TiO2 and free SIase. K(m) of SI-EPL-M-TiO2 was 204.92 mmol/L, and vmax was 45.7 μmol/L/s. Batch catalysis reaction of sucrose by SI-EPL-M-TiO2 was performed under the optimal conditions. The half-life period of SI-EPL-M-TiO2 under continuous reaction was 114 h, and the conversion rate of sucrose after 16 batches consistently remained at around 95%, which indicates that SI-EPL-M-TiO2 has good operational stability. Thus, SI-EPL-M-TiO2 can be used as a biocatalyst in food industries.
Collapse
Affiliation(s)
- Lingtian Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China
| | - Yi Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China
| | - Zheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China
| | - Xiaohai Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China.
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China.
| |
Collapse
|