1
|
Xu L, Zhou XY, Ju WT, Ge YD, Xing MY, Wang X. Effect of the presence of berberine/curcumin on the binding of limonin to human serum albumin and antitumor activity in vitro. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124929. [PMID: 39116592 DOI: 10.1016/j.saa.2024.124929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/20/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
The competition among drugs for binding to plasma proteins is regarded as a pharmacokinetic drug interaction. Competition between antitumor agents and other drugs for plasma protein binding can alter the free concentration of the drug, potentially impacting its efficacy and increasing the risk of toxic side effects. Through a range of spectroscopic techniques, this study examined the interaction between limonin and human serum albumin (HSA) in the context of berberine (Ber) and curcumin (Cur) under physiological conditions to clarify the binding mechanisms of binary and ternary systems at the molecular level. As demonstrated by fluorescence quenching experiments, Static quenching was identified as the mechanism of interaction between HSA and limonin. The results of site competition experiments indicated that the binding site between limonin and HSA was site I, a result further supported by molecular docking simulations. Through the use of thermodynamic data calculations, it was determined that limonin forms a stable complex with HSA by establishing hydrogen bonds and van der Waals forces. Circular dichroism (CD) spectroscopy, three-dimensional (3D) fluorescence spectroscopy, and synchronous fluorescence spectroscopy (SFS) employed to validate the notion that limonin perturbed the microenvironment of amino acids and induced conformational changes in HSA. What's more, the presence of Ber or Cur was found to have further modified the alterations observed in the interaction between the original HSA-limonin binary system. In vitro cellular experiments showed that interaction with HSA reduced the antitumor activity of limonin. In contrast, adding Ber or Cur increased the inhibition rate of tumor cells. The coexistence of both Ber and Cur significantly diminished limonin's binding affinity to HSA. The current investigation enhances comprehension regarding the binding characteristics and interaction mechanisms involving limonin, Ber, Cur, and HSA. It explores the potential of HSA as a versatile drug carrier and furnishes theoretical underpinnings for co-administrative strategies.
Collapse
Affiliation(s)
- Liang Xu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China; Shenyang Key Laboratory for Causes and Drug Discovery of Chronic Diseases, Liaoning University, Shenyang 110036, China
| | - Xin-Yi Zhou
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Wan-Ting Ju
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Ying-Di Ge
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Mei-Yi Xing
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Xin Wang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China; Shenyang Key Laboratory for Causes and Drug Discovery of Chronic Diseases, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
2
|
Zhu C, Chen J, Zhao C, Liu X, Chen Y, Liang J, Cao J, Wang Y, Sun C. Advances in extraction and purification of citrus flavonoids. FOOD FRONTIERS 2023; 4:750-781. [DOI: 10.1002/fft2.236] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
AbstractFlavonoids are the representative active substances of citrus with various biological activities and high nutritional value. In order to evaluate and utilize citrus flavonoids, isolation and purification are necessary steps. This manuscript reviewed the research advances in the extraction and purification of citrus flavonoids. The structure classification, the plant and nutritional functions, and the biosynthesis of citrus flavonoids were summarized. The characteristics of citrus flavonoids and the selection of separation strategies were explained. The technical system of extraction and purification of citrus flavonoids was systematically described. Finally, outlook and research directions were proposed.
Collapse
Affiliation(s)
- Chang‐Qing Zhu
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Jie‐Biao Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Chen‐Ning Zhao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Xiao‐Juan Liu
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Yun‐Yi Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Jiao‐Jiao Liang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Jin‐Ping Cao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Yue Wang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Chong‐De Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| |
Collapse
|
3
|
Khandy MT, Sofronova AK, Gorpenchenko TY, Chirikova NK. Plant Pyranocoumarins: Description, Biosynthesis, Application. PLANTS (BASEL, SWITZERLAND) 2022; 11:3135. [PMID: 36432864 PMCID: PMC9693251 DOI: 10.3390/plants11223135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 05/23/2023]
Abstract
This overview article contains information about pyranocoumarins over the last 55 years. The article is based on the authors' phytochemical and physiological studies in vivo and in vitro as well as search and analysis of data in literature available on Google Scholar, Web of Science, PubMed, and ScienceDirect before January 2022. Pyranocoumarins are synthesized in plants of the Apiaceae, Rutaceae families, and one species in each of the Cornaceae, Calophyllaceae, and Fabaceae families can synthesize this class of compounds. The physiological role of these compounds in plants is not clear. It has been proven that these substances have a wide range of biological activities: anti-cancer, anti-spasmatic, and anticoagulant, and they also inhibit erythrocyte lysis and accumulation of triacylglycerides. The overview generalizes the modern understanding of the classification, structure, and biological activity of natural pyranocoumarins, and summarizes dispersed data into a unified scheme of biosynthesis. The review analyzes data on the localization and productivity of these substances in individual organs and the whole plant. It discusses a link between the unique structure of these substances and their biological activity, as well as new opportunities for pyranocoumarins in pharmacology. The article evaluates the potential of different plant species as producers of pyranocoumarins and considers the possibilities of cell cultures to obtain the end product.
Collapse
Affiliation(s)
- Maria T. Khandy
- Laboratory of Cell and Developmental Biology, Federal Scientific Center of East-Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Stoletiya Vladivostoka Ave. 159, Vladivostok 690022, Russia
- Laboratory of Biomedical Cell Technologies of the Center for Genomic and Regenerative Medicine, Institute of Life Sciences and Biomedicine, Far Eastern Federal University, FEFU Campus, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia
| | - Anastasia K. Sofronova
- Laboratory of Biomedical Cell Technologies of the Center for Genomic and Regenerative Medicine, Institute of Life Sciences and Biomedicine, Far Eastern Federal University, FEFU Campus, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia
| | - Tatiana Y. Gorpenchenko
- Laboratory of Cell and Developmental Biology, Federal Scientific Center of East-Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Stoletiya Vladivostoka Ave. 159, Vladivostok 690022, Russia
| | - Nadezhda K. Chirikova
- Department of Biology, Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, 58 Belinsky Str., Yakutsk 677000, Russia
| |
Collapse
|
4
|
The Crystal Structure of 2-Amino-4-(2,3-Dichlorophenyl)-6-Methoxy-4H-Benzo[h]chromene-3-Carbonitrile: Antitumor and Tyrosine Kinase Receptor Inhibition Mechanism Studies. CRYSTALS 2022. [DOI: 10.3390/cryst12050737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The target compound, 2-amino-4-(2,3-dichlorophenyl)-6-methoxy-4H-benzo[h]chromene -3-carbonitrile (4), was synthesized via the reaction of 4-methoxynaphthalen-1-ol (1), 2,3-dichlorobenzaldehyde (2), and malononitrile (3) in an ethanolic piperidine solution under microwave irradiation. The synthesized β-enaminonitrile derivative (4) was characterized by spectral data and X-ray diffraction. The in vitro anti-proliferative profile was conducted against five cancer cell lines and was assessed for compound 4, which revealed strong and selective cytotoxic potency. This derivative showed promising inhibition efficacy against the EGFR and VEGFR-2 kinases in comparison to Sorafenib as a reference inhibitor. Lastly, the docking analysis into the EGFR and VEGFR-2 active sites was performed to clarify our biological findings.
Collapse
|
5
|
Wang L, Wang S, Yao Q, Wang B, Duan W, Zhou H, Duan K. Chemical constituents of Peperomia tetraphylla (Forst. F.) Hooker et Arnott. BIOCHEM SYST ECOL 2021. [DOI: 10.1016/j.bse.2021.104342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Abdelghffar EA, El-Nashar HAS, Al-Mohammadi AGA, Eldahshan OA. Orange fruit ( Citrus sinensis) peel extract attenuates chemotherapy-induced toxicity in male rats. Food Funct 2021; 12:9443-9455. [PMID: 34606555 DOI: 10.1039/d1fo01905h] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background: Cyclophosphamide (CYP) is a chemotherapy drug widely used in the treatment of several types of cancers and autoimmune disorders. Unfortunately, it causes severe side effects on many organs due to its oxidative stress effect. Objective: The present study aims to tentatively identify the phytochemical constituents of orange fruit (Citrus sinensis) peel extract (OFPE) and elucidate the chemopreventive effects of OFPE on CYP drug induced organ toxicity. Methods: The high performance liquid chromatography coupled with mass spectroscopy (HPLC-MS/MS) technique was used to identify the compounds. Thirty-five male rats were divided into five groups (GP; n = 7): GP1: normal control, GP2: OFPE 0.5 only, GP3: CYP-only, GP4: OFPE 0.25 + CYP, and GP5: OFPE 0.5 + CYP. Results: Twenty-nine compounds of polyphenolic nature, mainly flavonoids, anthocyanidins, phenolic acids and limonoids were characterized by HPLC-MS/MS analysis. Among these compounds, naringin, hesperidin, diosmin, rutin, neohesperidin and limonin were the predominant compounds in the examined extract. Serum cellular markers were found to be decreased significantly upon treatment with OFPE (especially high dose). Also, a significant prophylactic effect against liver, kidney, and heart injuries induced by CYP via decreasing inflammation (serum TNF-α, IL-1β & IL-6) and lipid peroxidation (MDA) was also revealed. Also, an increase in antioxidant levels (serum TAO, and cellular GSH & CAT in tissue homogenates) confirmed the protective efficacy of OFPE against CYP toxicity. Conclusions: The present study reveals some chemopreventive properties and beneficial effects of OFPE on CYP-induced organ toxicity via its antioxidant status and immunoregulatory activities.
Collapse
Affiliation(s)
- Eman A Abdelghffar
- Department of Biology, Collage of Science, Taibah University, Saudi Arabia. .,Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Heba A S El-Nashar
- Pharmacognosy Department, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt.,Center for Drug Discovery Research and Development, Ain Shams University, Egypt
| | | | - Omayma A Eldahshan
- Pharmacognosy Department, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt.,Center for Drug Discovery Research and Development, Ain Shams University, Egypt
| |
Collapse
|
7
|
Greco D, Aprile A, De Bellis L, Luvisi A. Diseases Caused by Xylella fastidiosa in Prunus Genus: An Overview of the Research on an Increasingly Widespread Pathogen. FRONTIERS IN PLANT SCIENCE 2021; 12:712452. [PMID: 34484274 PMCID: PMC8414816 DOI: 10.3389/fpls.2021.712452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Cultivated plants belonging to the genus Prunus are globally widespread and for some countries, are economically important crops; and they play a key role in the composition of a landscape. Xylella fastidiosa is a key threat to plant health, and several Prunus species are heavily stressed by this pathogen, such as almond, peach, and plum; many strain types of different subspecies can cause severe diseases. This review highlights different approaches to managing epidemic events related to X. fastidiosa in stone fruit plants. In fact, in most new European and Asian outbreaks, almond is the main and very common host and peach, plum, apricot, and cherry are widespread and profitable crops for the involved areas. Various diseases associated with stone fruit plants show different degrees of severity in relation to cultivar, although investigations are still limited. The development and selection of tolerant and resistant cultivars and the study of resistance mechanisms activated by the plant against X. fastidiosa infections seem to be the best way to find long-term solutions aimed at making affected areas recover. In addition, observations in orchards severely affected by the disease can be essential for collecting tolerant or resistant materials within the local germplasm. In areas where the bacterium is not yet present, a qualitative-quantitative study on entomofauna is also important for the timely identification of potential vectors and for developing effective control strategies.
Collapse
|
8
|
da Silva DF, Amaral JC, Carlos RM, Ferreira AG, Forim MR, Fernandes JB, da Silva MFDGF, Filho HDC, de Souza AA. Octahedral ruthenium and magnesium naringenin 5-alkoxide complexes: NMR analysis of diastereoisomers and in-vivo antibacterial activity against Xylella fastidiosa. Talanta 2020; 225:122040. [PMID: 33592764 DOI: 10.1016/j.talanta.2020.122040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 11/24/2022]
Abstract
Although many copper-based antimicrobial compounds have been developed to control pathogenic bacteria and fungi in plants and applied for crop protection, there is evidence that several plant pathogens have developed resistance to copper-based antimicrobial compounds, including some Xanthomonas species. Xylella is a bacterial genus belonging to the Xanthomonas family; and X. fastidiosa, which is responsible for citrus variegated chlorosis (CVC) in sweet orange, may develop resistance to one or more copper-based antimicrobials. Because of the time required for the development and approval of new antimicrobials for commercial use, the discovery of novel bactericidal compounds is essential before the development of resistance to the antimicrobials currently in use becomes widespread. Here, we explored the antimicrobial potential of two newly synthesized antimicrobials complexes and one natural compound against X. fastidiosa. Several nuclear magnetic resonance (NMR) assays with high resolution and sensitivity were developed to identify new diastereoisomers in the context of octahedral ruthenium - [Ru(narin)(phen)2]PF6-and magnesium naringenin 5-alkoxide - [Mg(narin)(phen)2]OAc - complexes, obtained in the present work. The NMR assays proved to be powerful tools for the identification of isomers in metal complexes. Moreover, a protocol for the in-vivo determination of the effects of these complexes against X. fastidiosa was developed. The main trunks of X. fastidiosa infected plants were injected with the two complexes as well as with the limonoid azadirachtin using a syringe; the number of bacterial cells in the plants following treatment was estimated via real-time quantitative PCR (qPCR). Importantly, the administration of both complexes and of azadirachtin drastically reduced the number of X. fastidiosa cells in vivo.
Collapse
Affiliation(s)
| | - Jéssica Cristina Amaral
- Departamento de Química, Universidade Federal de São Carlos, CP 676, 13565-905, São Carlos, SP, Brazil
| | - Rose Maria Carlos
- Departamento de Química, Universidade Federal de São Carlos, CP 676, 13565-905, São Carlos, SP, Brazil
| | - Antonio Gilberto Ferreira
- Departamento de Química, Universidade Federal de São Carlos, CP 676, 13565-905, São Carlos, SP, Brazil
| | - Moacir Rossi Forim
- Departamento de Química, Universidade Federal de São Carlos, CP 676, 13565-905, São Carlos, SP, Brazil
| | - João Batista Fernandes
- Departamento de Química, Universidade Federal de São Carlos, CP 676, 13565-905, São Carlos, SP, Brazil
| | | | | | - Alessandra Alves de Souza
- Centro APTA Citros Sylvio Moreira, Instituto Agronômico, CP 04, 13490-970, Cordeirópolis, SP, Brazil
| |
Collapse
|
9
|
Niquini FM, Tenorio JC, da Silva MF, Ribeiro AB, Wanderley A, Ellena J, Corrêa RS. On the conformation, molecular interactions and electron density of a natural flavonoid derivative. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Soares MS, da Silva DF, Amaral JC, da Silva MM, Forim MR, Rodrigues-Filho E, das Graças Fernandes da Silva MF, Fernandes JB, Machado MA, de Souza AA, Martins CHG. Rapid differentiation of graft Citrus sinensis with and without Xylella fastidiosa infection by mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 3:e8745. [PMID: 32053855 DOI: 10.1002/rcm.8745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/30/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
RATIONALE Xylella fastidiosa causes citrus variegated chlorosis (CVC) in sweet orange trees. A diagnostic method for detecting CVC before the symptoms appear, which would inform citrus producers in advance about when the plant should be removed from the orchard, is essential for reducing pesticide application costs. METHODS Chemometrics was applied to high-performance liquid chromatography diode array detector (HPLC-DAD) data to evaluate the similarities and differences between the chromatographic profiles. A liquid chromatography/atmospheric pressure chemical ionization mass spectrometry selected reaction monitoring (LC/APCI-MS-SRM) method was developed to identify the major compounds and to determine their amounts in all samples. RESULTS We evaluated the effect of this bacterium on the variation in the chemical profile in citrus plants. The organs of C. sinensis grafted on C. limonia were analyzed. Chemometrics was applied to the obtained data, and two major groups were differentiated. Flavonoids were observed in one group (leaves) and coumarins in the second (roots), both at higher concentrations in the plants with CVC symptoms than in those without the symptoms and those in the negative control. The rootstocks also interfered in the metabolism of the scion. CONCLUSIONS The developed LC/APCI-MS-SRM method for detecting CVC before the symptoms appear is simple and accurate. It is inexpensive, and many samples can be screened per hour using 1 mg of leaves. Knowledge of the influence of the rootstock on the chemical profile of the graft is limited. This study demonstrates the effect of the rootstock in synthesizing flavonoids and increasing its content in all parts of the graft.
Collapse
Affiliation(s)
- Márcio Santos Soares
- Departamento de Química, Universidade Federal de São Carlos, CP 676, 13565-905, São Carlos, SP, Brazil
| | | | - Jéssica Cristina Amaral
- Departamento de Química, Universidade Federal de São Carlos, CP 676, 13565-905, São Carlos, SP, Brazil
| | | | - Moacir Rossi Forim
- Departamento de Química, Universidade Federal de São Carlos, CP 676, 13565-905, São Carlos, SP, Brazil
| | - Edson Rodrigues-Filho
- Departamento de Química, Universidade Federal de São Carlos, CP 676, 13565-905, São Carlos, SP, Brazil
| | | | - João Batista Fernandes
- Departamento de Química, Universidade Federal de São Carlos, CP 676, 13565-905, São Carlos, SP, Brazil
| | - Marcos Antônio Machado
- Centro APTA Citros Sylvio Moreira, Instituto Agronômico, CP 04,13490-970, Cordeirópolis, SP, Brazil
| | | | | |
Collapse
|
11
|
Hussein HA, Fadhil GF. Theoretical investigation of
para
amino‐dichloro chalcone isomers, part I: A DFT structure—stability study. J PHYS ORG CHEM 2020. [DOI: 10.1002/poc.4073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Haval A. Hussein
- Department of Chemistry, College of ScienceUniversity of Duhok Duhok Kurdistan Region Iraq
| | - Ghazwan F. Fadhil
- Department of Chemistry, College of ScienceUniversity of Duhok Duhok Kurdistan Region Iraq
| |
Collapse
|
12
|
Amaral JC, da Silva MM, da Silva MFGF, Alves TC, Ferreira AG, Forim MR, Fernandes JB, Pina ES, Lopes AA, Pereira AMS, Novelli VM. Advances in the Biosynthesis of Pyranocoumarins: Isolation and 13C-Incorporation Analysis by High-Performance Liquid Chromatography-Ultraviolet-Solid-Phase Extraction-Nuclear Magnetic Resonance Data. JOURNAL OF NATURAL PRODUCTS 2020; 83:1409-1415. [PMID: 32372647 DOI: 10.1021/acs.jnatprod.9b00607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Citrus sinensis and Citrus limonia were obtained by germination from seeds, and isotopic-labeling experiments using d-[1-13C]glucose were performed with the seedlings. After 60 days, the seedlings were analyzed by high-performance liquid chromatography-ultraviolet-solid-phase extraction-nuclear magnetic resonance, data and the 13C enrichment patterns of xanthyletin and seselin indicated that the pyran ring was formed by the methylerythritol phosphate pathway and that the coumarin moiety was derived from the shikimate pathway in both compounds. This information regarding the biosynthetic pathway can be used to increase resistance against phytopathogens, because xanthyletin and seselin are reported to have antimicrobial activity on the growth of Xylella fastidiosa, which causes citrus variegated chlorosis in orange.
Collapse
Affiliation(s)
- Jéssica C Amaral
- Departamento de Química, Universidade Federal de São Carlos, CP 676, 13565-905 São Carlos, São Paulo, Brazil
| | - Michelli M da Silva
- Departamento de Química, Universidade Federal de São Carlos, CP 676, 13565-905 São Carlos, São Paulo, Brazil
| | - M Fátima G F da Silva
- Departamento de Química, Universidade Federal de São Carlos, CP 676, 13565-905 São Carlos, São Paulo, Brazil
| | - Thayana C Alves
- Departamento de Química, Universidade Federal de São Carlos, CP 676, 13565-905 São Carlos, São Paulo, Brazil
| | - A Gilberto Ferreira
- Departamento de Química, Universidade Federal de São Carlos, CP 676, 13565-905 São Carlos, São Paulo, Brazil
| | - Moacir R Forim
- Departamento de Química, Universidade Federal de São Carlos, CP 676, 13565-905 São Carlos, São Paulo, Brazil
| | - João B Fernandes
- Departamento de Química, Universidade Federal de São Carlos, CP 676, 13565-905 São Carlos, São Paulo, Brazil
| | - Edieidia S Pina
- Unidade de Biotecnologia, Universidade de Ribeirão Preto, Avenida Costábile Romano 2201, 14096-900 Ribeirão Preto, São Paulo, Brazil
| | - Adriana A Lopes
- Unidade de Biotecnologia, Universidade de Ribeirão Preto, Avenida Costábile Romano 2201, 14096-900 Ribeirão Preto, São Paulo, Brazil
| | - Ana M S Pereira
- Unidade de Biotecnologia, Universidade de Ribeirão Preto, Avenida Costábile Romano 2201, 14096-900 Ribeirão Preto, São Paulo, Brazil
| | - Valdenice M Novelli
- Centro APTA Citros Sylvio Moreira, Instituto Agronômico, CP 04, 13490-970 Cordeirópolis, São Paulo, Brazil
| |
Collapse
|
13
|
Braga TM, Rocha L, Chung TY, Oliveira RF, Pinho C, Oliveira AI, Morgado J, Cruz A. Biological Activities of Gedunin-A Limonoid from the Meliaceae Family. Molecules 2020; 25:E493. [PMID: 31979346 PMCID: PMC7037920 DOI: 10.3390/molecules25030493] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Gedunin is an important limonoid present in several genera of the Meliaceae family, mainly in seeds. Several biological activities have been attributed to gedunin, including antibacterial, insecticidal, antimalarial, antiallergic, anti-inflammatory, anticancer, and neuroprotective effects. The discovery of gedunin as a heat shock protein (Hsp) inhibitor represented a very important landmark for its application as a biological therapeutic agent. The current study is a critical literature review based on the several biological activities so far described for gedunin, its therapeutic effect on some human diseases, and future directions of research for this natural compound.
Collapse
Affiliation(s)
- Teresa M. Braga
- Centro de Investigação em Saúde e Ambiente, Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal; (L.R.); (T.Y.C.); (R.F.O.); (C.P.); (A.I.O.)
| | - Lídia Rocha
- Centro de Investigação em Saúde e Ambiente, Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal; (L.R.); (T.Y.C.); (R.F.O.); (C.P.); (A.I.O.)
| | - Tsz Yan Chung
- Centro de Investigação em Saúde e Ambiente, Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal; (L.R.); (T.Y.C.); (R.F.O.); (C.P.); (A.I.O.)
| | - Rita F. Oliveira
- Centro de Investigação em Saúde e Ambiente, Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal; (L.R.); (T.Y.C.); (R.F.O.); (C.P.); (A.I.O.)
| | - Cláudia Pinho
- Centro de Investigação em Saúde e Ambiente, Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal; (L.R.); (T.Y.C.); (R.F.O.); (C.P.); (A.I.O.)
| | - Ana I. Oliveira
- Centro de Investigação em Saúde e Ambiente, Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal; (L.R.); (T.Y.C.); (R.F.O.); (C.P.); (A.I.O.)
| | - Joaquim Morgado
- Bio4Life4You, 4460-170 Porto, Portugal;
- World Neem Organization, Mumbai 400101, India
| | - Agostinho Cruz
- Centro de Investigação em Saúde e Ambiente, Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal; (L.R.); (T.Y.C.); (R.F.O.); (C.P.); (A.I.O.)
| |
Collapse
|
14
|
Cattò C, De Vincenti L, Cappitelli F, D’Attoma G, Saponari M, Villa F, Forlani F. Non-Lethal Effects of N-Acetylcysteine on Xylella fastidiosa Strain De Donno Biofilm Formation and Detachment. Microorganisms 2019; 7:E656. [PMID: 31817370 PMCID: PMC6955915 DOI: 10.3390/microorganisms7120656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 01/03/2023] Open
Abstract
This study investigated in-vitro the non-lethal effects of N-acetylcysteine (NAC) on Xylella fastidiosa subspecies pauca strain De Donno (Xf-DD) biofilm. This strain was isolated from the olive trees affected by the olive quick decline syndrome in southern Italy. Xf-DD was first exposed to non-lethal concentrations of NAC from 0.05 to 1000 µM. Cell surface adhesion was dramatically reduced at 500 µM NAC (-47%), hence, this concentration was selected for investigating the effects of pre-, post- and co-treatments on biofilm physiology and structural development, oxidative homeostasis, and biofilm detachment. Even though 500 µM NAC reduced bacterial attachment to surfaces, compared to the control samples, it promoted Xf-DD biofilm formation by increasing: (i) biofilm biomass by up to 78% in the co-treatment, (ii) matrix polysaccharides production by up to 72% in the pre-treatment, and (iii) reactive oxygen species levels by 3.5-fold in the co-treatment. Xf-DD biofilm detachment without and with NAC was also investigated. The NAC treatment did not increase biofilm detachment, compared to the control samples. All these findings suggested that, at 500 µM, NAC diversified the phenotypes in Xf-DD biofilm, promoting biofilm formation (hyper-biofilm-forming phenotype) and discouraging biofilm detachment (hyper-attachment phenotype), while increasing oxidative stress level in the biofilm.
Collapse
Affiliation(s)
- Cristina Cattò
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy; (C.C.); (L.D.V.); (F.C.); (F.F.)
| | - Luca De Vincenti
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy; (C.C.); (L.D.V.); (F.C.); (F.F.)
| | - Francesca Cappitelli
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy; (C.C.); (L.D.V.); (F.C.); (F.F.)
| | - Giusy D’Attoma
- Institute for Sustainable Plant Protection, Consiglio Nazionale delle Ricerche, via Amendola 165/A, 70126 Bari, Italy (M.S.)
| | - Maria Saponari
- Institute for Sustainable Plant Protection, Consiglio Nazionale delle Ricerche, via Amendola 165/A, 70126 Bari, Italy (M.S.)
| | - Federica Villa
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy; (C.C.); (L.D.V.); (F.C.); (F.F.)
| | - Fabio Forlani
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy; (C.C.); (L.D.V.); (F.C.); (F.F.)
| |
Collapse
|
15
|
Bleve G, Gallo A, Altomare C, Vurro M, Maiorano G, Cardinali A, D'Antuono I, Marchi G, Mita G. In vitro activity of antimicrobial compounds against Xylella fastidiosa, the causal agent of the olive quick decline syndrome in Apulia (Italy). FEMS Microbiol Lett 2019; 365:4780293. [PMID: 29390137 DOI: 10.1093/femsle/fnx281] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/25/2017] [Indexed: 12/30/2022] Open
Abstract
Olive quick decline syndrome (OQDS) causes severe damages to the olive trees in Salento (Apulia, Italy) and poses a severe threat for the agriculture of Mediterranean countries. DNA-based typing methods have pointed out that OQDS is caused by a single outbreak strain of Xylella fastidiosa subsp. pauca referred to as CoDiRO or ST53. Since no effective control measures are currently available, the objective of this study was to evaluate in vitro antimicrobial activities of different classes of compounds against Salento-1 isolated by an OQDS affected plant and classified as ST53. A bioassay based on agar disk diffusion method revealed that 17 out of the 32 tested antibiotics did not affect bacterial growth at a dose of 5 μg disk-1. When we assayed micro-, ultra- and nano-filtered fractions of olive mill wastewaters, we found that the micro-filtered fraction resulted to be the most effective against the bacterium. Moreover, some phenolics (4-methylcathecol, cathecol, veratric acid, caffeic acid, oleuropein) were active in their pure form. Noteworthy, also some fungal extracts and fungal toxins showed inhibitory effects on bacterial growth. Some of these compounds can be further explored as potential candidate in future applications for curative/preventive treating OQDS-affected or at-risk olive plants.
Collapse
Affiliation(s)
- Gianluca Bleve
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, 73100 Lecce, Italy
| | - Antonia Gallo
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, 73100 Lecce, Italy
| | - Claudio Altomare
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, 70126 Bari, Italy
| | - Maurizio Vurro
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, 70126 Bari, Italy
| | - Gabriele Maiorano
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, 73100 Lecce, Italy
| | - Angela Cardinali
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, 70126 Bari, Italy
| | - Isabella D'Antuono
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, 70126 Bari, Italy
| | - Guido Marchi
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, Sezione di Patologia Vegetale ed Entomologia, Università degli Studi, Piazzale delle Cascine 28, 50144 Firenze, Italy
| | - Giovanni Mita
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, 73100 Lecce, Italy
| |
Collapse
|
16
|
Bucci EM. Xylella fastidiosa , a new plant pathogen that threatens global farming: Ecology, molecular biology, search for remedies. Biochem Biophys Res Commun 2018; 502:173-182. [DOI: 10.1016/j.bbrc.2018.05.073] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 11/30/2022]
|
17
|
Ma QG, Wei RR, Yang M, Huang XY, Wang F, Sang ZP, Liu WM, Yu Q. Molecular Characterization and Bioactivity of Coumarin Derivatives from the Fruits of Cucumis bisexualis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5540-5548. [PMID: 29775541 DOI: 10.1021/acs.jafc.8b00976] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cucumis bisexualis (Cucurbitaceae) is known as "mapao egg" or "muskmelon egg", which has been widely used as a wild melon in Chinese folk. Nine new coumarin derivatives (1-9), named 7-hydroxy-3-(4',6'-dihydroxy-5'-isopropyl-3″,3″-dimethyl-2 H-chromen)-6-prenyl-2 H-chro-men-2-one (1), 7-hydroxy-3-(5'-prenyl-3″,3″-dimethyl-2 H-chromen)-6-prenyl-2 H-chromen-2-one (2), 3-(6'-hydroxy-5'-prenyl-3″,3″-dimethyl-2 H-chromen)-6-prenyl-2 H-chromen-2-one (3), 3-(5'-ethyl-3″,3″-dimethyl-2 H-chromen)-6-prenyl-2 H-chromen-2-one (4), 3-(4',6'-dihydroxy-5'-dimeth-ylallyl-3″,3″-dimethyl-2 H-chromen)-6-prenyl-2 H-chromen-2-one (5), 3-[4',6'-dihydroxy-5'-(2-pro-penyl)-3″,3″-dimethyl-2 H-chromen]-14,15-dimethyl-pyrano-chromen-2-one (6), 3-(6'-dihydroxy-5'-isopropanol-3″,3″-dimethyl-2 H-chromen)-14,15-dimethyl-pyrano-chromen-2-one (7), 3-(5'-iso-pentenol-3″,3″-dimethyl-2 H-chromen)-14,15-dimethyl-pyrano-chromen-2-one (8), 3-(4',6'-dihydr-oxy-5'-prenyl-3″,3″-dimethyl-2 H-chromen)-14,15-dimethyl-pyrano-chromen-2-one (9), together with 12 known compounds (10-21), were isolated and identified by spectroscopic analysis and references from the active site (EtOAc soluble fraction) of the fruits of C. bisexualis for the first time. Compounds (1-21) were evaluated for antiacetylcholinesterase (AChE) and hepatoprotective activities for the first time. Compounds 1, 3, 5, 6, 7, and 9 showed anti-AChE activities with IC50 values ranging from 11.23 to 89.69 μM, and compounds 2, 4, 12, 15, 17, 18, and 19 (10 μM) exhibited moderate hepatoprotective activities. These findings shed much light on a better understanding of the anti-AChE and hepatoprotective effects of these coumarin derivatives and provided new insights into developing better anti-AChE and hepatoprotective drugs in the future.
Collapse
Affiliation(s)
- Qin-Ge Ma
- State Key Laboratory of Innovative Drugs and High Efficiency Energy Saving and Consumption Reduction Pharmaceutical Equipment, Key Laboratory of Modern Preparation of TCM of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine , Jiangxi University of Traditional Chinese Medicine , Nanchang 330004 China
- College of Chemistry and Pharmaceutical Engineering , Nanyang Normal University , Nanyang 473061 China
| | - Rong-Rui Wei
- State Key Laboratory of Innovative Drugs and High Efficiency Energy Saving and Consumption Reduction Pharmaceutical Equipment, Key Laboratory of Modern Preparation of TCM of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine , Jiangxi University of Traditional Chinese Medicine , Nanchang 330004 China
| | - Ming Yang
- State Key Laboratory of Innovative Drugs and High Efficiency Energy Saving and Consumption Reduction Pharmaceutical Equipment, Key Laboratory of Modern Preparation of TCM of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine , Jiangxi University of Traditional Chinese Medicine , Nanchang 330004 China
| | - Xiao-Ying Huang
- State Key Laboratory of Innovative Drugs and High Efficiency Energy Saving and Consumption Reduction Pharmaceutical Equipment, Key Laboratory of Modern Preparation of TCM of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine , Jiangxi University of Traditional Chinese Medicine , Nanchang 330004 China
| | - Fang Wang
- State Key Laboratory of Innovative Drugs and High Efficiency Energy Saving and Consumption Reduction Pharmaceutical Equipment, Key Laboratory of Modern Preparation of TCM of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine , Jiangxi University of Traditional Chinese Medicine , Nanchang 330004 China
| | - Zhi-Pei Sang
- College of Chemistry and Pharmaceutical Engineering , Nanyang Normal University , Nanyang 473061 China
| | - Wen-Min Liu
- College of Chemistry and Pharmaceutical Engineering , Nanyang Normal University , Nanyang 473061 China
| | - Qing Yu
- College of Chemistry and Pharmaceutical Engineering , Nanyang Normal University , Nanyang 473061 China
| |
Collapse
|
18
|
Santos ICD, Almeida AAFD, Pirovani CP, Costa MGC, Silva MFDGFD, Bellete BS, Freschi L, Soares Filho W, Coelho Filho MA, Gesteira ADS. Differential accumulation of flavonoids and phytohormones resulting from the canopy/rootstock interaction of citrus plants subjected to dehydration/rehydration. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 119:147-158. [PMID: 28866236 DOI: 10.1016/j.plaphy.2017.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 08/10/2017] [Accepted: 08/21/2017] [Indexed: 05/08/2023]
Abstract
Water scarcity can elicit drastic changes in plant metabolic and hormonal regulation, which may be of fundamental importance to stress tolerance. The study of plant the metabolic alterations in response to water deficit, especially the effects of the rootstocks level, is important to elucidate the mechanisms associated to drought tolerance. To verify the influence of rootstock and grafting on the tolerance to drought in citrus plants, we analyzed the growth, phytohormone levels and flavonoid profiles in grafted and ungrafted citrus plants subjected to different soil water regimes on plant status (well-watered, moderate drought and severe drought and rehydrated) under field conditions. The experiments were conducted under field conditions in the Brazilian Agricultural Research Corporation (EMBRAPA), Cruz das Almas, BA, Brazil. Water deficit reduced the total leaf area per plant in all canopy/rootstock combinations. Self-grafting reduce root volume, area and length when compared to ungrafted plants. Drought-induced increases in salicylic acid and abscisic acid associated with concomitant reductions in indoleacetic acid were observed in most canopy/rootstock combinations. However, plants with 'Sunki Maravilha' rootstocks exhibited the most pronounced changes in hormonal levels upon drought stress. Associated to these hormonal changes, drought also significantly affected flavonoid content and profile in both leaves and roots of the distinct citrus combinations. Glycosylated (GFs) and polimethoxylated flavonoids were predominantly found in leaves, whereas prenylated coumarins were found in the roots. Leaf levels of GFs (vicenin, F11, rutin and rhoifolin) were particularly modulated by drought in plants with 'Rangpur Santa Cruz' lime rootstock, whereas root levels of prenylated coumarins were most regulated by drought in plants with the 'Sunki Maravilha' root system. Taken together, these data indicate that the impacts of water deficit restriction on growth, hormonal balance and flavonoid profiles significantly varies depending on the canopy/rootstock combinations.
Collapse
Affiliation(s)
- Ivanildes C Dos Santos
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, BA, Brazil
| | - Alex-Alan Furtado de Almeida
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, BA, Brazil.
| | - Carlos P Pirovani
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, BA, Brazil
| | - Márcio Gilberto Cardoso Costa
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, BA, Brazil
| | - Maria Fatima das Graças Fernandes da Silva
- Departamento de Química, Laboratório de Produtos Naturais, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235 - SP-310, 13565-905, São Carlos, São Paulo, Brazil
| | - Barbara Sayuri Bellete
- Departamento de Química, Laboratório de Produtos Naturais, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235 - SP-310, 13565-905, São Carlos, São Paulo, Brazil
| | - Luciano Freschi
- Departamento de Botânica, Universidade de São Paulo, São Paulo, 05508-090, Brazil
| | - Walter Soares Filho
- Embrapa Mandioca e Fruticultura, Rua Embrapa s/n, CP 007, Cruz das Almas, BA, Brazil
| | | | | |
Collapse
|
19
|
Yang YF, Zhang LZ, Du XP, Zhang SF, Li LJ, Jiang ZD, Wu LM, Ni H, Chen F. Recovery and purification of limonin from pummelo [Citrus grandis] peel using water extraction, ammonium sulfate precipitation and resin adsorption. J Chromatogr B Analyt Technol Biomed Life Sci 2017. [DOI: 10.1016/j.jchromb.2017.05.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
20
|
Vrábel V, Sivý J, Švorc Ľ, Světlík J, Peter Š. Crystal and electronic structure, N–H⋯N and C–H⋯O interactions in novel spiro-[chroman-chromene]-carboxylate. ACTA CHIMICA SLOVACA 2017. [DOI: 10.1515/acs-2017-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
We report here the structure of new spiro-derivative, namely methyl (2R,4R)-4-(5-methylthiazol- 2-ylamino)spiro[chroman-2,2’-chromene]-3’-carboxylate, C23H20N2O4S, which crystallizes as racemate in the space group P-1. In this compound, the chromanone moiety consists of a benzene ring fused with a sixmembered heterocyclic ring which adopts a distorted half-chair conformation. The molecules are linked by a combination of N–H⋯N hydrogen bonds and weak C–H⋯O, C-H⋯S, C-H⋯π, inter- and intramolecular interactions resulting in a two-dimensional network in the crystal structure.
Collapse
Affiliation(s)
- Viktor Vrábel
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava , Slovak Republic
| | - Július Sivý
- Institute of Mathematics and Physics, Faculty of Mechanical Engineering, Slovak University of Technology, Námestie slobody 17, SK-812 31 Bratislava , Slovak Republic
| | - Ľubomír Švorc
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava , Slovak Republic
| | - Jan Světlík
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University, Odbojárov 10, Bratislava , SK-83232, Slovak Republic
| | - Šafař Peter
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava , Slovak Republic
| |
Collapse
|
21
|
Xing TT, Zhao XJ, Zhang YD, Li YF. Fast Separation and Sensitive Quantitation of Polymethoxylated Flavonoids in the Peels of Citrus Using UPLC-Q-TOF-MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2615-2627. [PMID: 28260382 DOI: 10.1021/acs.jafc.6b05821] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A rapid, sensitive, and efficient ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) method has been developed to analyze polymethoxylated flavonoids (PMFs) in 14 Citrus peels, including 7 Citrus reticulata (C. reticulata) and 7 Citrus sinensis (C. sinensis). In this study, fast separation can be achieved within 12 min and 42 PMFs have been identified including 33 flavones and 9 flavanones. Most C. reticulata were shown to contain more than 20 PMFs, except Guangxihongpisuanju (GX) containing only 12 PMFs, while most C. sinensis contained fewer than 20 PMFs, except Edangan (EG) containing as many as 32 PMFs. To our knowledge, there are few reports about the quantitation of PMFs using the MS response. Here, a MS quantitative method was established and systematically validated in linearity, precision, and recovery. The linearity was from 1.25 ng/mL to 1.0 μg/mL with the limit of detection (LOD) as low as 75 pg/mL and the limit of quantitation (LOQ) as low as 0.25 ng/mL. Up to 13 PMFs, more types than ever before, were undoubtedly identified and quantitated according to the PMF standards. The results showed that the contents of PMFs in the C. reticulata were generally higher than those in the C. sinensis. This study is systematic for analyzing PMFs and is of great significance because it can provide guidance on utilization of both PMFs and citrus germplasm resources in the future.
Collapse
Affiliation(s)
- Tian Tian Xing
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, P. R. China
| | - Xi Juan Zhao
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University , Chongqing 400715, P. R. China
| | - Yi Dan Zhang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, P. R. China
| | - Yuan Fang Li
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, P. R. China
| |
Collapse
|
22
|
|
23
|
Gualdani R, Cavalluzzi MM, Lentini G, Habtemariam S. The Chemistry and Pharmacology of Citrus Limonoids. Molecules 2016; 21:E1530. [PMID: 27845763 PMCID: PMC6273274 DOI: 10.3390/molecules21111530] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/10/2016] [Indexed: 01/10/2023] Open
Abstract
Citrus limonoids (CLs) are a group of highly oxygenated terpenoid secondary metabolites found mostly in the seeds, fruits and peel tissues of citrus fruits such as lemons, limes, oranges, pumellos, grapefruits, bergamots, and mandarins. Represented by limonin, the aglycones and glycosides of CLs have shown to display numerous pharmacological activities including anticancer, antimicrobial, antioxidant, antidiabetic and insecticidal among others. In this review, the chemistry and pharmacology of CLs are systematically scrutinised through the use of medicinal chemistry tools and structure-activity relationship approach. Synthetic derivatives and other structurally-related limonoids from other sources are include in the analysis. With the focus on literature in the past decade, the chemical classification of CLs, their physico-chemical properties as drugs, their biosynthesis and enzymatic modifications, possible ways of enhancing their biological activities through structural modifications, their ligand efficiency metrics and systematic graphical radar plot analysis to assess their developability as drugs are among those discussed in detail.
Collapse
Affiliation(s)
- Roberta Gualdani
- Department of Chemistry "U. Shiff", University of Florence, Via della Lastruccia 3, Florence 50019, Italy.
| | - Maria Maddalena Cavalluzzi
- Department of Pharmacy-Drug Sciences, University of Studies of Bari Aldo Moro, Via E. Orabona n. 4, Bari 70126, Italy.
| | - Giovanni Lentini
- Department of Pharmacy-Drug Sciences, University of Studies of Bari Aldo Moro, Via E. Orabona n. 4, Bari 70126, Italy.
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services, University of Greenwich, Central Avenue, Charham-Maritime, Kent ME4 4TB, UK.
| |
Collapse
|
24
|
Krugner R, Ledbetter CA. Rootstock Effects on Almond Leaf Scorch Disease Incidence and Severity. PLANT DISEASE 2016; 100:1617-1621. [PMID: 30686222 DOI: 10.1094/pdis-01-16-0125-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A 5-year field study was conducted to evaluate effects of duration and exclusion of Xylella fastidiosa infections on young almond tree performance and their links to tree vigor. 'Nemaguard,' 'Okinawa,' 'Nonpareil,' and Y119 were used as rootstocks for almond scion 'Sonora.' Among X. fastidiosa-infected trees, there was significant etiological heterogeneity with i) absence of leaf scorching symptoms in the presence of reduced growth, ii) presence of leaf scorching symptoms in the absence of reduced growth, and iii) severe leaf scorching and reduced growth. Trunk cross sectional areas of X. fastidiosa-infected trees grafted on 'Nemaguard' and 'Nonpareil' rootstocks were significantly smaller than noninfected trees, whereas trunk size of trees grafted on 'Okinawa' and Y119 was not affected by infection status. Severity of leaf scorching symptoms was highest on trees grafted on 'Nonpareil' rootstock, intermediate on 'Okinawa' and Y119, and lowest on 'Nemaguard.' X. fastidiosa infections and seasonal leaf scorching symptoms persisted on most inoculated trees throughout the study, except on trees grafted on 'Nemaguard' that manifested complete leaf scorching symptom remission and apparent elimination of the pathogen after the second year. Results indicate that depending on rootstock type X. fastidiosa can affect trunk size in a relatively short period and/or persist for years as trees grow.
Collapse
Affiliation(s)
- R Krugner
- USDA-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA 93648
| | - C A Ledbetter
- USDA-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA 93648
| |
Collapse
|
25
|
Costa M, Dias TA, Brito A, Proença F. Biological importance of structurally diversified chromenes. Eur J Med Chem 2016; 123:487-507. [PMID: 27494166 DOI: 10.1016/j.ejmech.2016.07.057] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 06/21/2016] [Accepted: 07/23/2016] [Indexed: 12/20/2022]
Abstract
Compounds incorporating the chromene scaffold are largely present in natural products and display a wide variety of biological activities. Their low toxicity combined to the broad pharmacological properties have inspired medicinal chemists in the search for new therapeutic agents. This review covers the literature between 1993 and on the biological activity of 2H- and 4H-chromenes, both from natural and synthetic origin. Includes a section that identifies a selection of chromene-based natural products, followed by recent literature on bioactive natural chromenes and the corresponding source, covering plants and fruits. Synthetic chromenes are equally important and a separate section addresses the use of these derivatives as new leads for drug discovery. Different biological targets were identified, namely those associated with anticancer, antimicrobial, anti-inflammatory, antithrombotic and antipsychotic activities.
Collapse
Affiliation(s)
- Marta Costa
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Tatiana A Dias
- Department of Chemistry, University of Minho, Campus of Gualtar, Braga, Portugal
| | - Alexandra Brito
- Department of Chemistry, University of Minho, Campus of Gualtar, Braga, Portugal
| | - Fernanda Proença
- Department of Chemistry, University of Minho, Campus of Gualtar, Braga, Portugal.
| |
Collapse
|
26
|
Chemistry and Pharmacology of Citrus sinensis. Molecules 2016; 21:247. [PMID: 26907240 PMCID: PMC6273684 DOI: 10.3390/molecules21020247] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/27/2016] [Accepted: 02/09/2016] [Indexed: 11/30/2022] Open
Abstract
Presently the search for new drugs from natural resources is of growing interest to the pharmaceutical industry. Natural products have been the source of new drugs since ancient times. Plants are a good source of secondary metabolites which have been found to have beneficial properties. The present study is a review of the chemistry and pharmacology of Citrus sinensis. This review reveals the therapeutic potential of C. sinensis as a source of natural compounds with important activities that are beneficial for human health that could be used to develop new drugs.
Collapse
|
27
|
Soares MS, da Silva DF, Forim MR, da Silva MFDGF, Fernandes JB, Vieira PC, Silva DB, Lopes NP, de Carvalho SA, de Souza AA, Machado MA. Quantification and localization of hesperidin and rutin in Citrus sinensis grafted on C. limonia after Xylella fastidiosa infection by HPLC-UV and MALDI imaging mass spectrometry. PHYTOCHEMISTRY 2015; 115:161-70. [PMID: 25749617 DOI: 10.1016/j.phytochem.2015.02.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 01/02/2015] [Accepted: 02/10/2015] [Indexed: 05/24/2023]
Abstract
A high performance liquid chromatography-ultraviolet (HPLC-UV) method was developed for quantifying hesperidin and rutin levels in leaves and stems of Citrus limonia, with a good linearity over a range of 1.0-80.0 and 1.0-50.0 μg mL(-1) respectively, with r(2)>0.999 for all curves. The limits of detection (LOD) for both flavonoids were 0.6 and 0.5 μg mL(-1), respectively, with quantification (LOQ) being 2.0 and 1.0 μg mL(-1), respectively. The quantification method was applied to Citrus sinensis grafted onto C. limonia with and without CVC (citrus variegated chlorosis) symptoms after Xylella fastidiosa infection. The total content of rutin was low and practically constant in all analyses in comparison with hesperidin, which showed a significant increase in its amount in symptomatic leaves. Scanning electron microscopy studies on leaves with CVC symptoms showed vessel occlusion by biofilm, and a crystallized material was noted. Considering the difficulty in isolating these crystals for analysis, tissue sections were analyzed by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) to confirm the presence of hesperidin at the site of infection. The images constructed from MS/MS data with a specific diagnostic fragment ion (m/z 483) also showed higher ion intensities for it in infected plants than in healthy ones, mainly in the vessel regions. These data suggest that hesperidin plays a role in the plant-pathogen interaction, probably as a phytoanticipin. This method was also applied to C. sinensis and C. limonia seedlings, and comparison with the graft results showed that the rootstock had an increased hesperidin content ∼3.6 fold greater in the graft stem than in the stem of C. sinensis seedlings. Increase in hesperidin content by rootstock can be related to induced internal defense mechanisms.
Collapse
Affiliation(s)
- Márcio Santos Soares
- Departamento de Química, Universidade Federal de São Carlos, CP 676, 13565-905 São Carlos, SP, Brazil
| | | | - Moacir Rossi Forim
- Departamento de Química, Universidade Federal de São Carlos, CP 676, 13565-905 São Carlos, SP, Brazil
| | | | - João Batista Fernandes
- Departamento de Química, Universidade Federal de São Carlos, CP 676, 13565-905 São Carlos, SP, Brazil
| | - Paulo Cezar Vieira
- Departamento de Química, Universidade Federal de São Carlos, CP 676, 13565-905 São Carlos, SP, Brazil
| | - Denise Brentan Silva
- Núcleo Pesquisas em Produtos Naturais e Sintéticos, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903 Ribeirão Preto, SP, Brazil
| | - Norberto Peporine Lopes
- Núcleo Pesquisas em Produtos Naturais e Sintéticos, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903 Ribeirão Preto, SP, Brazil
| | - Sérgio Alves de Carvalho
- Centro APTA Citros Sylvio Moreira, Instituto Agronômico, CP 04, 13490-970 Cordeirópolis, São Paulo, Brazil
| | - Alessandra Alves de Souza
- Centro APTA Citros Sylvio Moreira, Instituto Agronômico, CP 04, 13490-970 Cordeirópolis, São Paulo, Brazil
| | - Marcos Antônio Machado
- Centro APTA Citros Sylvio Moreira, Instituto Agronômico, CP 04, 13490-970 Cordeirópolis, São Paulo, Brazil
| |
Collapse
|
28
|
Costa M, Rodrigues AI, Proença F. Synthesis of 3-aminochromenes: the Zincke reaction revisited. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.05.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Tundis R, Loizzo MR, Menichini F. An overview on chemical aspects and potential health benefits of limonoids and their derivatives. Crit Rev Food Sci Nutr 2014; 54:225-50. [PMID: 24188270 DOI: 10.1080/10408398.2011.581400] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Limonoids are heavily oxygenated, modified triterpenes dominant in Meliaceae and Rutaceae plant families. The term 'limonoid' is derived from limonin, which was first identified as the bitter constituent of Citrus seeds in 1841. This group of secondary metabolites exhibits a wide range of biological properties, including anticancer, antibacterial, antifungal, antimalarial, and antiviral activities. Significant progress on the role of limonoids as promising candidates for cancer chemoprevention and/or therapy has been achieved in particular in recent years. The aim of this review article is to discuss the recent developments on limonoids chemical aspects and biological activities with the relationship between structure and activity, supporting the new possibilities for the medicinal and/or nutraceutical use of these compounds.
Collapse
Affiliation(s)
- Rosa Tundis
- a Department of Pharmacy, Health and Nutritional Sciences , University of Calabria , I-87036 Rende (CS) , Italy
| | | | | |
Collapse
|
30
|
Morel S, Landreau A, Nguyen VH, Derbré S, Grellier P, Pape PL, Pagniez F, Litaudon M, Richomme P. Preparative isolation, fast centrifugal partition chromatography purification and biological activity of cajaflavanone from Derris ferruginea stems. PHYTOCHEMICAL ANALYSIS : PCA 2012; 23:152-8. [PMID: 21774015 DOI: 10.1002/pca.1336] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 04/12/2011] [Accepted: 04/14/2011] [Indexed: 05/18/2023]
Abstract
INTRODUCTION The Derris genus is known to contain flavonoid derivatives, including prenylated flavanones and isoflavonoids such as rotenoids, which are generally associated with significant biological activity. OBJECTIVE To develop an efficient preparative isolation procedure for bioactive cajaflavanone. METHODOLOGY Fast centrifugal partition chromatography (FCPC) was optimised to purify cajaflavanone from Derris ferruginea stems in a single step as compared to fractionation from the cyclohexane extract by successive conventional solid-liquid chromatography procedures. The purification yield, purity, time and solvent consumption per procedure are described. The anti-fungal, anti-bacterial, anti-leishmanial, anti-plasmodial, anti-oxidant activities and the inhibition of advanced glycation end-products (AGEs) by cajaflavanone accumulation are described. RESULTS FCPC enabled cajaflavanone purification in a single separation step, yielding sufficient quantities to perform in vitro biological screening. Interestingly, cajaflavanone had an inhibitory effect on the formation of AGEs, without displaying any in vitro anti-oxidant activity. CONCLUSION A simple and efficient procedure, in comparison with other preparative methods, for bioactive cajaflavone purification has been developed using FCPC.
Collapse
Affiliation(s)
- Sylvie Morel
- SONAS EA 921, IFR 149, Quasav UFR des Sciences Pharmaceutiques et d'Ingénierie de la Santé, 16 Bd Daviers, 49100 Angers, France
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Cardinali MCDB, Villas Boas PR, Milori DMBP, Ferreira EJ, França e Silva M, Machado MA, Bellete BS, da Silva MFDGF. Infrared spectroscopy: a potential tool in huanglongbing and citrus variegated chlorosis diagnosis. Talanta 2012; 91:1-6. [PMID: 22365672 DOI: 10.1016/j.talanta.2012.01.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 12/12/2011] [Accepted: 01/06/2012] [Indexed: 11/16/2022]
Abstract
Huanglongbing (HLB) and citrus variegated chlorosis (CVC) are serious threats to citrus production and have caused considerable economic losses worldwide, especially in Brazil, which is one of the biggest citrus producers in the world. Neither disease has a cure nor an efficient means of control. They are also generally confused with each other in the field since they share similar initial symptoms, e.g., yellowing blotchy leaves. The most efficient tool for detecting these diseases is by polymerase chain reaction (PCR). However, PCR is expensive, is not high throughput, and is subject to cross reaction and contamination. In this report, a diagnostic method is proposed for detecting HLB and CVC diseases in leaves of sweet orange trees using attenuated total reflectance Fourier transform infrared spectroscopy and the induced classifier via partial least-squares regression. Four different leaf types were considered: healthy, CVC-symptomatic, HLB-symptomatic, and HLB-asymptomatic. The results show a success rate of 93.8% in correctly identifying these different leaf types. In order to understand which compounds are responsible for the spectral differences between the leaf types, samples of carbohydrates starch, sucrose, and glucose, flavonoids hesperidin and naringin, and coumarin umbelliferone were also analyzed. The concentration of these compounds in leaves may vary due to biotic stresses.
Collapse
|
33
|
Maddox CE, Laur LM, Tian L. Antibacterial activity of phenolic compounds against the phytopathogen Xylella fastidiosa. Curr Microbiol 2009; 60:53-8. [PMID: 19813054 PMCID: PMC2796966 DOI: 10.1007/s00284-009-9501-0] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 08/28/2009] [Indexed: 12/02/2022]
Abstract
Xylella fastidiosa is a pathogenic bacterium that causes diseases in many crop species, which leads to considerable economic loss. Phenolic compounds (a group of secondary metabolites) are widely distributed in plants and have shown to possess antimicrobial properties. The anti-Xylella activity of 12 phenolic compounds, representing phenolic acid, coumarin, stilbene and flavonoid, was evaluated using an in vitro agar dilution assay. Overall, these phenolic compounds were effective in inhibiting X. fastidiosa growth, as indicated by low minimum inhibitory concentrations (MICs). In addition, phenolic compounds with different structural features exhibited different anti-Xylella capacities. Particularly, catechol, caffeic acid and resveratrol showed strong anti-Xylella activities. Differential response to phenolic compounds was observed among X. fastidiosa strains isolated from grape and almond. Elucidation of secondary metabolite-based host resistance to X. fastidiosa will have broad implication in combating X. fastidiosa-caused plant diseases. It will facilitate future production of plants with improved disease resistance properties through genetic engineering or traditional breeding approaches and will significantly improve crop yield.
Collapse
Affiliation(s)
- Christina E Maddox
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
34
|
Yazaki K, Sasaki K, Tsurumaru Y. Prenylation of aromatic compounds, a key diversification of plant secondary metabolites. PHYTOCHEMISTRY 2009; 70:1739-45. [PMID: 19819506 DOI: 10.1016/j.phytochem.2009.08.023] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 08/23/2009] [Accepted: 08/24/2009] [Indexed: 05/11/2023]
Abstract
Prenylation plays a major role in the diversification of aromatic natural products, such as phenylpropanoids, flavonoids, and coumarins. This biosynthetic reaction represents the crucial coupling process of the shikimate or polyketide pathway providing an aromatic moiety and the isoprenoid pathway derived from the mevalonate or methyl erythritol phosphate (MEP) pathway, which provides the prenyl (isoprenoid) chain. In particular, prenylation contributes strongly to the diversification of flavonoids, due to differences in the prenylation position on the aromatic rings, various lengths of prenyl chain, and further modifications of the prenyl moiety, e.g., cyclization and hydroxylation, resulting in the occurrence of ca. 1000 prenylated flavonoids in plants. Many prenylated flavonoids have been identified as active components in medicinal plants with biological activities, such as anti-cancer, anti-androgen, anti-leishmania, and anti-nitric oxide production. Due to their beneficial effects on human health, prenylated flavonoids are of particular interest as lead compounds for producing drugs and functional foods. However, the gene coding for prenyltransferases that catalyze the key step of flavonoid prenylation have remained unidentified for more than three decades, because of the membrane-bound nature of these enzymes. Recently, we have succeeded in identifying the first prenyltransferase gene SfN8DT-1 from Sophora flavescens, which is responsible for the prenylation of the flavonoid naringenin at the 8-position, and is specific for flavanones and dimethylallyl diphosphate (DMAPP) as substrates. Phylogenetic analysis showed that SfN8DT-1 has the same evolutionary origin as prenyltransferases for vitamin E and plastoquinone. A prenyltransferase GmG4DT from soybean, which is involved in the formation of glyceollin, was also identified recently. This enzyme was specific for pterocarpan as its aromatic substrate, and (-)-glycinol was the native substrate yielding the direct precursor of glyceollin I. These enzymes are localized to plastids and the prenyl chain is derived from the MEP pathway. Further relevant genes involved in the prenylation of other types of polyphenol are expected to be cloned by utilizing the sequence information provided by the above studies.
Collapse
Affiliation(s)
- Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Japan.
| | | | | |
Collapse
|
35
|
Chromane derivatives of small aromatic molecules: Chemoenzymatic synthesis and growth inhibitory activity on human tumor cell line LoVo WT. Bioorg Med Chem 2009; 17:6003-7. [DOI: 10.1016/j.bmc.2009.06.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 06/25/2009] [Accepted: 06/26/2009] [Indexed: 11/24/2022]
|
36
|
Isolation of secondary metabolites from Hortia oreadica (Rutaceae) leaves through high-speed counter-current chromatography. J Chromatogr A 2009; 1216:4275-81. [DOI: 10.1016/j.chroma.2009.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 01/24/2009] [Accepted: 02/03/2009] [Indexed: 11/21/2022]
|