1
|
Rodríguez JL, Berrios P, Clavo ZM, Marin-Bravo M, Inostroza-Ruiz L, Ramos-Gonzalez M, Quispe-Solano M, Fernández-Alfonso MS, Palomino O, Goya L. Chemical Characterization, Antioxidant Capacity and Anti-Oxidative Stress Potential of South American Fabaceae Desmodium tortuosum. Nutrients 2023; 15:nu15030746. [PMID: 36771451 PMCID: PMC9921092 DOI: 10.3390/nu15030746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
It has been proposed that oxidative stress is a pathogenic mechanism to induce cytotoxicity and to cause cardiovascular and neuronal diseases. At present, natural compounds such as plant extracts have been used to reduce the cytotoxic effects produced by agents that induce oxidative stress. Our study aimed to evaluate the antioxidant and cytoprotective capacity of Desmodium tortuosum (D. tortuosum) extract in the co- and pre-treatment in EA.hy926 and SH-SY5Y cell lines subjected to oxidative stress induced by tert-butylhydroperoxide (t-BOOH). Cell viability, reactive oxygen species (ROS), nitric oxide (NO), caspase 3/7 activity, reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione reductase (GR), and molecular expression of oxidative stress biomarkers (SOD2, NRF2 and NFκB1) and cell death (APAF1, BAX, Caspase3) were all evaluated. It was observed that the D. tortuosum extract, in a dose-dependent manner, was able to reduce the oxidative and cytotoxicity effects induced by t-BOOH, even normalized to a dose of 200 µg/mL, which would be due to the high content of phenolic compounds mainly phenolic acids, flavonoids, carotenoids and other antioxidant compounds. Finally, these results are indicators that the extract of D. tortuosum could be a natural alternative against the cytotoxic exposure to stressful and cytotoxic chemical agents.
Collapse
Affiliation(s)
- José-Luis Rodríguez
- Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
- Faculty of Veterinary, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence:
| | - Paola Berrios
- Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Zoyla-Mirella Clavo
- Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Manuel Marin-Bravo
- Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Luis Inostroza-Ruiz
- Faculty of Pharmacy, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | | | - Miguel Quispe-Solano
- Faculty of Engineering in Food Industries, Universidad Nacional del Centro del Perú, Huancayo 12006, Peru
| | | | - Olga Palomino
- Faculty of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Luis Goya
- Department of Metabolism and Nutrition, Spanish National Research Council (CSIC), Institute of Food Science, Technology and Nutrition (ICTAN), Jose Antonio Novais 10, 28040 Madrid, Spain
| |
Collapse
|
2
|
Preventive Effect of Cocoa Flavonoids via Suppression of Oxidative Stress-Induced Apoptosis in Auditory Senescent Cells. Antioxidants (Basel) 2022; 11:antiox11081450. [PMID: 35892652 PMCID: PMC9330887 DOI: 10.3390/antiox11081450] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023] Open
Abstract
Presbycusis or Age-related hearing loss (ARHL) is a sensorineural hearing loss that affects communication, leading to depression and social isolation. Currently, there are no effective treatments against ARHL. It is known that cocoa products have high levels of polyphenol content (mainly flavonoids), that are potent anti-inflammatory and antioxidant agents with proven benefits for health. The objective is to determine the protective effect of cocoa at the cellular and molecular levels in Presbycusis. For in vitro study, we used House Ear Institute-Organ of Corti 1 (HEI-OC1), stria vascularis (SV-k1), and organ of Corti (OC-k3) cells (derived from the auditory organ of a transgenic mouse). Each cell line was divided into a control group (CTR) and an H2O2 group (induction of senescence by an oxygen radical). Additionally, every group of every cell line was treated with the cocoa polyphenolic extract (CPE), measuring different markers of apoptosis, viability, the activity of antioxidant enzymes, and oxidative/nitrosative stress. The data show an increase of reactive oxidative and nitrogen species (ROS and RNS, respectively) in senescent cells compared to control ones. CPE treatment effectively reduced these high levels and correlated with a significant reduction in apoptosis cells by inhibiting the mitochondrial-apoptotic pathway. Furthermore, in senescence cells, the activity of antioxidant enzymes (Superoxide dismutase, SOD; Catalase, CAT; and Glutathione peroxidase, GPx) was recovered after CPE treatment. Administration of CPE also decreased oxidative DNA damage in the auditory senescent cells. In conclusion, CPE inhibits the activation of senescence-related apoptotic signaling by decreasing oxidative stress in auditory senescent cells.
Collapse
|
3
|
Ng KS, Tan SA, Bok CY, Loh KE, Ismail IS, Yue CS, Loke CF. Metabolomic Approach for Rapid Identification of Antioxidants in Clinacanthus nutans Leaves with Liver Protective Potential. Molecules 2022; 27:molecules27123650. [PMID: 35744776 PMCID: PMC9230150 DOI: 10.3390/molecules27123650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 01/25/2023] Open
Abstract
Antioxidants are currently utilized to prevent the occurrence of liver cancer in non-alcoholic fatty liver disease (NAFLD) patients. Clinacanthus nutans possesses anti-oxidative and anti-inflammatory properties that could be an ideal therapy for liver problems. The objective of this study is to determine the potential antioxidative compounds from the C. nutans leaves (CNL) and stems (CNS). Chemical- and cell-based antioxidative assays were utilized to evaluate the bioactivities of CNS and CNL. The NMR metabolomics approach assisted in the identification of contributing phytocompounds. Based on DPPH and ABTS radical scavenging activities, CNL demonstrated stronger radical scavenging potential as compared to CNS. The leaf extract also recorded slightly higher reducing power properties. A HepG2 cell model system was used to investigate the ROS reduction potential of these extracts. It was shown that cells treated with CNL and CNS reduced innate ROS levels as compared to untreated controls. Interestingly, cells pre-treated with both extracts were also able to decrease ROS levels in cells induced with oxidative stress. CNL was again the better antioxidant. According to multivariate data analysis of the 1H NMR results, the main metabolites postulated to contribute to the antioxidant and hepatoprotective abilities of leaves were clinacoside B, clinacoside C and isoschaftoside, which warrants further investigation.
Collapse
Affiliation(s)
- Kai Song Ng
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Setapak, Kuala Lumpur 53300, Malaysia
| | - Sheri-Ann Tan
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Setapak, Kuala Lumpur 53300, Malaysia
| | - Chui Yin Bok
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Setapak, Kuala Lumpur 53300, Malaysia
| | - Khye Er Loh
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Setapak, Kuala Lumpur 53300, Malaysia
| | - Intan Safinar Ismail
- Natural Medicine and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Chen Son Yue
- Department of Physical Science, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Setapak, Kuala Lumpur 53300, Malaysia
| | - Chui Fung Loke
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Setapak, Kuala Lumpur 53300, Malaysia
| |
Collapse
|
4
|
|
5
|
Quercetin Liposomal Nanoformulation for Ischemia and Reperfusion Injury Treatment. Pharmaceutics 2022; 14:pharmaceutics14010104. [PMID: 35057000 PMCID: PMC8779145 DOI: 10.3390/pharmaceutics14010104] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
Ischemia and reperfusion injury (IRI) is a common complication caused by inflammation and oxidative stress resulting from liver surgery. Current therapeutic strategies do not present the desirable efficacy, and severe side effects can occur. To overcome these drawbacks, new therapeutic alternatives are necessary. Drug delivery nanosystems have been explored due to their capacity to improve the therapeutic index of conventional drugs. Within nanocarriers, liposomes are one of the most successful, with several formulations currently in the market. As improved therapeutic outcomes have been demonstrated by using liposomes as drug carriers, this nanosystem was used to deliver quercetin, a flavonoid with anti-inflammatory and antioxidant properties, in hepatic IRI treatment. In the present work, a stable quercetin liposomal formulation was developed and characterized. Additionally, an in vitro model of ischemia and reperfusion was developed with a hypoxia chamber, where the anti-inflammatory potential of liposomal quercetin was evaluated, revealing the downregulation of pro-inflammatory markers. The anti-inflammatory effect of quercetin liposomes was also assessed in vivo in a rat model of hepatic IRI, in which a decrease in inflammation markers and enhanced recovery were observed. These results demonstrate that quercetin liposomes may provide a significant tool for addressing the current bottlenecks in hepatic IRI treatment.
Collapse
|
6
|
Ding Y, Xia S, Fang H, Niu B, Chen Q. Loureirin B attenuates insulin resistance in HepG2 cells by regulating gluconeogenesis signaling pathway. Eur J Pharmacol 2021; 910:174481. [PMID: 34481876 DOI: 10.1016/j.ejphar.2021.174481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 12/25/2022]
Abstract
Insulin resistance (IR) is the main cause of type 2 diabetes. The liver is the organ where insulin is secreted from the pancreas, and it regulates the storage and release of glucose according to the body's demand. Althouth Loureirin B (LB) has been reported to promote insulin secretion and decrease blood glucose, the effects of LB on glucose metabolism in the liver and the mechanism is still unclear. Different concentrations of LB were applied to treat on insulin resistance model (IR-HepG2) cells. The research results showed that LB inhibited the production of ROS (Reactive oxygen species) in IR-HepG2 cells, promoted the phosphorylation of AKT, down-regulated the expression of FoxO1, and up-regulated the expression of IRS1 and GLUT4. In addition, LB also down regulated the glucose metabolism related genes PEPCK and GSK3β. The glucose uptake, consumption and glycogen content were increased. Moreover, LB-treated diabetic mice also showed hypoglycaemic effects. In summary, LB may ameliorate type 2 diabetes by preventing the inactivation of IRS1/AKT pathway in IR-HepG2 cells, increasing insulin sensitivity, and regulating glucose uptake and production.
Collapse
Affiliation(s)
- Yanting Ding
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China; School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Sijing Xia
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Haowen Fang
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Bing Niu
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Qin Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
7
|
Hassan DM, Welson NN, Yassa HD. The Possible Protective Role of Dark Chocolate Against Acrylamide Neurotoxicity in Weaning Rats Cerebellum. Mol Neurobiol 2021; 59:234-244. [PMID: 34661852 DOI: 10.1007/s12035-021-02580-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/26/2021] [Indexed: 10/20/2022]
Abstract
Acrylamide (ACR) is selective neurotoxicity, could be found in foods processed by high temperature. This work aimed to evaluate the protective role of the dark chocolate (DC) against cerebellar neurotoxicity induced by subchronic ACR exposure in recently weaned rat pups and to propose it as protective supplement against dietary ACR hazards. Eighteen weaning pups were used in the current study and divided into three groups, six rats in each group; group 1 (control group), group 2 (ACR group), and group 3 (ACR + DC group). The pups were sacrificed after 21 days and the cerebellums were removed for light microscope using H&E stain, ultrastructural study, morphometric analysis of the neurons count, biochemical analysis of oxidant and antioxidant markers and real-time quantitative PCR to evaluate the nuclear receptor subfamily 4, group A, member 2 (Nr4a2) gene expression. Pups with ACR consumption showed signs of neuronal degeneration and reduced Nr4a2 expression. On the other hand, pups with ACR + DC consumption showed relative signs of neuronal restoration and enhanced Nr4a2 expression. In conclusion, DC can be used as effective supplement to decrease the dietary ACR cerebellar neuronal risks.
Collapse
Affiliation(s)
- Doaa M Hassan
- Anatomy Department, Faculty of Medicine, Beni Suef University, Beni Suef, Egypt.
| | - Nermeen N Welson
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Beni Suef University, Beni Suef, Egypt
| | - Hanan D Yassa
- Anatomy Department, Faculty of Medicine, Beni Suef University, Beni Suef, Egypt
| |
Collapse
|
8
|
Carballeda Sangiao N, Chamorro S, de Pascual-Teresa S, Goya L. Aqueous Extract of Cocoa Phenolic Compounds Protects Differentiated Neuroblastoma SH-SY5Y Cells from Oxidative Stress. Biomolecules 2021; 11:biom11091266. [PMID: 34572481 PMCID: PMC8471238 DOI: 10.3390/biom11091266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
Cocoa is a rich source of polyphenols, especially flavanols and procyanidin oligomers, with antioxidant properties, providing protection against oxidation and nitration. Cocoa phenolic compounds are usually extracted with methanol/ethanol solvents in order to obtain most of their bioactive compounds; however, aqueous extraction seems more representative of the physiological conditions. In this study, an aqueous extract of cocoa powder has been prepared and chemically characterized, and its potential protective effect against chemically-induced oxidative stress has been tested in differentiated human neuroblastoma SH-SY5Y cells. Neuronal-like cultured cells were pretreated with realistic concentrations of cocoa extract and its major monomeric flavanol component, epicatechin, and then submitted to oxidative stress induced by a potent pro-oxidant. After one hour, production of reactive oxygen species was evaluated by two different methods, flow cytometry and in situ fluorescence by a microplate reader. Simultaneously, reduced glutathione and antioxidant defense enzymes glutathione peroxidase and glutathione reductase were determined and the results used for a comparative analysis of both ROS (reactive oxygen species) methods and to test the chemo-protective effect of the bioactive products on neuronal-like cells. The results of this approach, never tested before, validate both analysis of ROS and indicate that concentrations of an aqueous extract of cocoa phenolics and epicatechin within a physiological range confer a significant protection against oxidative insult to neuronal-like cells in culture.
Collapse
Affiliation(s)
- Noelia Carballeda Sangiao
- Departamento de Metabolismo y Nutrición, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), C/José Antonio Nováis, 10, 28040 Madrid, Spain;
| | - Susana Chamorro
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain;
| | - Sonia de Pascual-Teresa
- Departamento de Metabolismo y Nutrición, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), C/José Antonio Nováis, 10, 28040 Madrid, Spain;
- Correspondence: (S.d.P.-T.); (L.G.); Tel.: +34-915-492300 (ext. 231309) (S.d.P.-T.); +34-915-492300 (ext. 231310) (L.G.)
| | - Luis Goya
- Departamento de Metabolismo y Nutrición, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), C/José Antonio Nováis, 10, 28040 Madrid, Spain;
- Correspondence: (S.d.P.-T.); (L.G.); Tel.: +34-915-492300 (ext. 231309) (S.d.P.-T.); +34-915-492300 (ext. 231310) (L.G.)
| |
Collapse
|
9
|
Palomino O, García-Aguilar A, González A, Guillén C, Benito M, Goya L. Biological Actions and Molecular Mechanisms of Sambucus nigra L. in Neurodegeneration: A Cell Culture Approach. Molecules 2021; 26:molecules26164829. [PMID: 34443417 PMCID: PMC8399386 DOI: 10.3390/molecules26164829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 12/03/2022] Open
Abstract
Sambucus nigra flowers (elderflower) have been widely used in traditional medicine for the relief of early symptoms of common cold. Its chemical composition mainly consists of polyphenolic compounds such as flavonoids, hydroxycinnamic acids, and triterpenes. Although the antioxidant properties of polyphenols are well known, the aim of this study is to assess the antioxidant and protective potentials of Sambucus nigra flowers in the human neuroblastoma (SH-SY5Y) cell line using different in vitro approaches. The antioxidant capacity is first evaluated by the oxygen radical absorbance capacity (ORAC) and the free radical scavenging activity (DPPH) methods. Cell viability is assessed by the crystal violet method; furthermore, the intracellular ROS formation (DCFH-DA method) is determined, together with the effect on the cell antioxidant defenses: reduced glutathione (GSH) and antioxidant enzyme activities (GPx, GR). On the other hand, mTORC1 hyperactivation and autophagy blockage have been associated with an increase in the formation of protein aggregates, this promoting the transference and expansion of neurodegenerative diseases. Then, the ability of Sambucus nigra flowers in the regulation of mTORC1 signaling activity and the reduction in oxidative stress through the activation of autophagy/mitophagy flux is also examined. In this regard, search for different molecules with a potential inhibitory effect on mTORC1 activation could have multiple positive effects either in the molecular pathogenic events and/or in the progression of several diseases including neurodegenerative ones.
Collapse
Affiliation(s)
- Olga Palomino
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, University Complutense of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (O.P.); (A.G.-A.); (A.G.)
| | - Ana García-Aguilar
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, University Complutense of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (O.P.); (A.G.-A.); (A.G.)
| | - Adrián González
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, University Complutense of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (O.P.); (A.G.-A.); (A.G.)
| | - Carlos Guillén
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University Complutense of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (C.G.); (M.B.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Manuel Benito
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University Complutense of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (C.G.); (M.B.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Luis Goya
- Department of Metabolism and Nutrition, Institute of Science and Food Technology and Nutrition (ICTAN—CSIC), 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-91-549-2300
| |
Collapse
|
10
|
Activity Guided Isolation of Phenolic Compositions from Anneslea fragrans Wall. and Their Cytoprotective Effect against Hydrogen Peroxide Induced Oxidative Stress in HepG2 Cells. Molecules 2021; 26:molecules26123690. [PMID: 34204227 PMCID: PMC8234824 DOI: 10.3390/molecules26123690] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 01/04/2023] Open
Abstract
Anneslea fragrans Wall., commonly known as “Pangpo Tea”, is traditionally used as a folk medicine and healthy tea for the treatment of liver and intestine diseases. The aim of this study was to purify the antioxidative and cytoprotective polyphenols from A. fragrans leaves. After fractionation with polar and nonpolar organic solvents, the fractions of aqueous ethanol extract were evaluated for their total phenolic (TPC) and flavonoid contents (TFC) and antioxidant activities (DPPH, ABTS, and FRAP assays). The n-butanol fraction (BF) showed the highest TPC and TFC with the strongest antioxidant activity. The bio-guided chromatography of BF led to the purification of six flavonoids (1–6) and one benzoquinolethanoid (7). The structures of these compounds were determined by NMR and MS techniques. Compound 6 had the strongest antioxidant capacity, which was followed by 5 and 2. The protective effect of the isolated compounds on hydrogen peroxide (H2O2)-induced oxidative stress in HepG2 cells revealed that the compounds 5 and 6 exhibited better protective effects by inhibiting ROS productions, having no significant difference with vitamin C (p > 0.05), whereas 6 showed the best anti-apoptosis activity. The results suggest that A. fragrans could serve as a valuable antioxidant phytochemical source for developing functional food and health nutraceutical products.
Collapse
|
11
|
Baranowska M, Koziara Z, Suliborska K, Chrzanowski W, Wormstone M, Namieśnik J, Bartoszek A. Interactions between polyphenolic antioxidants quercetin and naringenin dictate the distinctive redox-related chemical and biological behaviour of their mixtures. Sci Rep 2021; 11:12282. [PMID: 34112813 PMCID: PMC8192515 DOI: 10.1038/s41598-021-89314-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/21/2021] [Indexed: 02/08/2023] Open
Abstract
Food synergy concept is suggested to explain observations that isolated antioxidants are less bioactive than real foods containing them. However, mechanisms behind this discrepancy were hardly studied. Here, we demonstrate the profound impact of interactions between two common food flavonoids (individual: aglycones quercetin-Q and naringenin-N- or their glycosides rutin-R and naringin-N+ vs. mixed: QN- and RN+) on their electrochemical properties and redox-related bioactivities. N- and N+ seemed weak antioxidants individually, yet in both chemical and cellular tests (DPPH and CAA, respectively), they increased reducing activity of mixtures synergistically. In-depth measurements (differential pulse voltammetry) pointed to kinetics of oxidation reaction as decisive factor for antioxidant power. In cellular (HT29 cells) tests, the mixtures exhibited properties of a new substance rather than those of components. Pure flavonoids did not influence proliferation; mixtures stimulated cell growth. Individual flavonoids tended to decrease global DNA methylation with growing concentration; this effect was more pronounced for mixtures, but not concentration-dependent. In nutrigenomic studies, expression of gene set affected by QN- differed entirely from common genes modulated by individual components. These results question the current approach of predicting bioactivity of mixtures based on research with isolated antioxidants.
Collapse
Affiliation(s)
- Monika Baranowska
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Zuzanna Koziara
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Klaudia Suliborska
- Department of Physical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdańsk, Poland
| | - Wojciech Chrzanowski
- Department of Physical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdańsk, Poland
| | - Michael Wormstone
- School of Biological Sciences, Faculty of Science, University of East Anglia, Norwich, UK
| | | | - Agnieszka Bartoszek
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland.
| |
Collapse
|
12
|
Protective effects of Dioscorea birmanica extract against oxidative stress-induced damage in cultured normal hepatocytes and its phytochemical constituents. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
13
|
Medrano-Padial C, Puerto M, Richard T, Cantos-Villar E, Pichardo S. Protection and reversion role of a pure stilbene extract from grapevine shoot and its major compounds against an induced oxidative stress. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
14
|
Álvarez-Cilleros D, López-Oliva ME, Ramos S, Martín MÁ. Preventive effect of cocoa flavanols against glucotoxicity-induced vascular inflammation in the arteria of diabetic rats and on the inflammatory process in TNF-α-stimulated endothelial cells. Food Chem Toxicol 2020; 146:111824. [PMID: 33096196 DOI: 10.1016/j.fct.2020.111824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 12/14/2022]
Abstract
Hyperglycaemia induces a vascular inflammatory process that is a critical event in cardiovascular disease in type 2 diabetes. Cocoa and its flavanols have been widely investigated for its antioxidant and anti-inflammatory properties, and several clinical and pre-clinical studies support their vascular benefits. However, the effects of cocoa flavanols on vascular inflammation in diabetes remains to be elucidated. Herein, we evaluated the anti-inflammatory effect of a cocoa-rich diet on the aortas of Zucker diabetic fatty (ZDF) rats. Moreover, the potential role of flavanol-derived colonic metabolites to modulate the adhesion and inflammatory processes were also evaluated using TNF-α-stimulated endothelial cells. Results demonstrate that cocoa attenuates the levels of phospho-p65-nuclear factor-kappaB (NF-κB) and the expression of inflammatory factors including intercellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1) and inducible nitric oxide synthase in the aortas of ZDF rats. Experiments with endothelial cells further confirm that a mix of flavanol-derived colonic metabolites effectively down-regulate the levels of p-p65-NF-κB and the cell adhesion molecules ICAM-1 and VCAM-1, preventing thus the increase of monocyte-endothelial adhesion induced by TNF-α. These novel data provide the first evidence of the relevant role of cocoa and their flavanol-derived metabolites to avoid the development of endothelial inflammation and diabetic complications.
Collapse
Affiliation(s)
- David Álvarez-Cilleros
- Departamento de Metabolismo y Nutrición, Instituto de Ciencia y Tecnología de los Alimentos y Nutrición (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - María Elvira López-Oliva
- Departamento de Fisiología. Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Sonia Ramos
- Departamento de Metabolismo y Nutrición, Instituto de Ciencia y Tecnología de los Alimentos y Nutrición (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - María Ángeles Martín
- Departamento de Metabolismo y Nutrición, Instituto de Ciencia y Tecnología de los Alimentos y Nutrición (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
15
|
Baranowska M, Suliborska K, Todorovic V, Kusznierewicz B, Chrzanowski W, Sobajic S, Bartoszek A. Interactions between bioactive components determine antioxidant, cytotoxic and nutrigenomic activity of cocoa powder extract. Free Radic Biol Med 2020; 154:48-61. [PMID: 32360591 DOI: 10.1016/j.freeradbiomed.2020.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/25/2022]
Abstract
Numerous studies have shown, rather disappointingly, that isolated bioactive phytochemicals are not as biologically effective as natural plant products. Such a discrepancy may be explained by the concept of food synergy, which was verified in this research for cocoa extract versus its major components with regard to cancer chemoprevention. The evaluation embraced the relationship between redox properties evaluated in cell-free systems with the aid of free radicals scavenging method and differential pulse voltammetry, and redox associated anticarcinogenic activities (cellular antioxidant activity, cytotoxicity, nutrigenomic activity) in human colon adenocarcinoma cell line exposed to either cocoa powder extract or artificial mixtures of cocoa bioactives at matching concentrations. In contrast to expectations, our results showed that the stepwise enrichment with antioxidants caused no gradual increase in the antioxidant activity of the model mixtures; also, these model mixtures did not reach the reducing potential of cocoa in the cell-free systems or cellular model employed. Further, the biological activities examined in colon adenocarcinoma cells did not alter in a stepwise manner that could reflect the gradual changes in composition of bioactive ingredients. In conclusion, the experiments presented here showed that the growing complexity of a mixture of phytochemicals seems to create a new redox bioactive substance rather than enrich the mixture with new activities, characteristic of the compound added. It follows that no simple, predictable relationship can be expected between the chemopreventive potential and the composition of real food items containing a complicated set of non-toxic redox active ingredients. Our observations suggest that the interactions between different bioactive compounds and food matrix components are cooperating factors determining the final bioactivity of foods.
Collapse
Affiliation(s)
- Monika Baranowska
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland.
| | - Klaudia Suliborska
- Department of Physical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Vanja Todorovic
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Barbara Kusznierewicz
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Wojciech Chrzanowski
- Department of Physical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Sladjana Sobajic
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Agnieszka Bartoszek
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| |
Collapse
|
16
|
Martins TF, Palomino OM, Álvarez-Cilleros D, Martín MA, Ramos S, Goya L. Cocoa Flavanols Protect Human Endothelial Cells from Oxidative Stress. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2020; 75:161-168. [PMID: 32185628 DOI: 10.1007/s11130-020-00807-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Oxidative stress may cause functional disorders of vascular endothelia which can lead to endothelial apoptosis and thus alter the function and structure of the vascular tissues. Plant antioxidants protect the endothelium against oxidative stress and then become an effective option to treat vascular diseases. Cocoa flavanols have been proven to protect against oxidative stress in cell culture and animal models. In addition, epidemiological and interventional studies strongly suggest that cocoa consumption has numerous beneficial effects on cardiovascular health. The objective of this study was to test the chemo-protective effect of realistic concentrations of a cocoa phenolic extract and its main monomeric flavanol epicatechin on cultured human endothelial cells submitted to an oxidative challenge. Both products efficiently restrained stress-induced reactive oxygen species and biomarkers of oxidative stress such as carbonyl groups and malondialdehyde, and recovered depleted glutathione, antioxidant defences and cell viability. Our results demonstrate for the first time that a polyphenolic extract from cocoa and its main flavonoid protect human endothelial cells against an oxidative insult by modulating oxygen radical generation and antioxidant enzyme and non-enzyme defences.
Collapse
Affiliation(s)
| | - Olga M Palomino
- Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| | - David Álvarez-Cilleros
- Department of Metabolism and Nutrition, Institute of Science and Food Technology and Nutrition (ICTAN - CSIC), José Antonio Novais 10, 28040, Madrid, Spain
| | - María Angeles Martín
- Department of Metabolism and Nutrition, Institute of Science and Food Technology and Nutrition (ICTAN - CSIC), José Antonio Novais 10, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Sonia Ramos
- Department of Metabolism and Nutrition, Institute of Science and Food Technology and Nutrition (ICTAN - CSIC), José Antonio Novais 10, 28040, Madrid, Spain
| | - Luis Goya
- Department of Metabolism and Nutrition, Institute of Science and Food Technology and Nutrition (ICTAN - CSIC), José Antonio Novais 10, 28040, Madrid, Spain.
| |
Collapse
|
17
|
Koss-Mikołajczyk I, Baranowska M, Todorovic V, Albini A, Sansone C, Andreoletti P, Cherkaoui-Malki M, Lizard G, Noonan D, Sobajic S, Bartoszek A. Prophylaxis of Non-communicable Diseases: Why Fruits and Vegetables may be Better Chemopreventive Agents than Dietary Supplements Based on Isolated Phytochemicals? Curr Pharm Des 2019; 25:1847-1860. [DOI: 10.2174/1381612825666190702093301] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/20/2019] [Indexed: 12/23/2022]
Abstract
The World Health Organization (WHO) report from 2014 documented that non-communicable socalled civilization diseases such as cardiovascular disease, chronic respiratory diseases, cancer or type 2 diabetes are responsible for over 50% of all premature deaths in the world. Research carried out over the past 20 years has provided data suggesting that diet is an essential factor influencing the risk of development of these diseases. The increasing knowledge on chemopreventive properties of certain food ingredients, in particular, those of plant origin, opened the discussion on the possibility to use edible plants or their active components in the prevention of these chronic diseases. Health-promoting properties of plant foods are associated with the presence of secondary metabolites that can affect many biological mechanisms of critical importance to the proper functioning of the human organism. Particularly, there have been numerous investigations indicating strong physiological effects of bioactive plant phenols belonging to the flavonoid family. These observations initiated mass production of dietary supplements containing flavonoids commercialized under the name antioxidants, even if their chemical properties did not justify such a term. However, epidemiological studies revealed that isolated bioactive phytochemicals are not as effective as fruits and vegetables containing these substances whereas they are of interest of the functional food industry. In this paper, the critical assessment of reasons for this turn of events has been attempted and the concept of food synergy has been suggested as a future strategy of dietary chemoprevention.
Collapse
Affiliation(s)
- Izabela Koss-Mikołajczyk
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdansk, Poland
| | - Monika Baranowska
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdansk, Poland
| | - Vanja Todorovic
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Studentski trg 1, Beograd, GabrielaNarutowicza 11/12, 80-233, Gdanski, Serbia
| | - Adriana Albini
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | | | | | | | - Gérard Lizard
- BioPeroxIL Laboratory, Universite de Bourgogne-Franche Comte, France
| | | | - Sladjana Sobajic
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Studentski trg 1, Beograd, GabrielaNarutowicza 11/12, 80-233, Gdanski, Serbia
| | - Agnieszka Bartoszek
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdansk, Poland
| |
Collapse
|
18
|
Qin F, Yao L, Lu C, Li C, Zhou Y, Su C, Chen B, Shen Y. Phenolic composition, antioxidant and antibacterial properties, and in vitro anti-HepG2 cell activities of wild apricot (Armeniaca Sibirica L. Lam) kernel skins. Food Chem Toxicol 2019; 129:354-364. [DOI: 10.1016/j.fct.2019.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/16/2019] [Accepted: 05/04/2019] [Indexed: 02/07/2023]
|
19
|
Álvarez-Cilleros D, López-Oliva E, Goya L, Martín MÁ, Ramos S. Cocoa intake attenuates renal injury in Zucker Diabetic fatty rats by improving glucose homeostasis. Food Chem Toxicol 2019; 127:101-109. [DOI: 10.1016/j.fct.2019.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/01/2019] [Accepted: 03/02/2019] [Indexed: 12/26/2022]
|
20
|
Venkatesan T, Choi YW, Kim YK. Effect of an extraction solvent on the antioxidant quality of Pinus densiflora needle extract. J Pharm Anal 2019; 9:193-200. [PMID: 31297297 PMCID: PMC6598446 DOI: 10.1016/j.jpha.2019.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/25/2019] [Accepted: 03/12/2019] [Indexed: 02/08/2023] Open
Abstract
Pinus densiflora needle extract (PDNE) is widely reported to have many pharmacological activities including antioxidant potential. However, the solvent system used for extraction greatly affects its antioxidant quality. Hence, in the present study, we investigated the effect of a different ratio (vol/vol) of ethanol to water (0–100%) in the extraction of PDNE with potent antioxidant capacity. The chemical assays, 2,2-diphenyl-1 picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), were conducted to assess the antioxidant potential of PDNE. Subsequently, the cytoprotective effect of PDNE was determined using tert-butyl hydroperoxide (TBHP)-challenged HepG2 cellular model. The needle extracts from 40% ethanol (PDNE-40) showed greater radical scavenging activity followed by 60%, 20%, 80%, 0% and 100% ethanol extracts. EC50 value of the most active extract, PDNE-40, was 8.56 ± 0.51 μg/mL, relative to 1.34 ± 0.28 μg/mL of the standard trolox (for ABTS radical), and 75.96 ± 11.60 μg/mL, relative to 4.83 ± 0.26 μg/mL of the standard trolox (for DPPH radical). Either PDNE-20 or PDNE-40 pretreatment remarkably decreased the levels of reactive oxygen species (ROS), lipid peroxides and protein carbonyls in TBHP-challenged HepG2 cells. In addition, both PDNE-20 and PDNE-40 significantly reversed the decreased ratio of reduced (GSH) to oxidized (GSSG) glutathione. Moreover, these two extracts showed a significant inhibitory effect on TBHP-induced nuclear damage and loss of cell viability. In summary, the inclusion of 40% ethanol in water for extraction of Pinus densiflora needle greatly increases the antioxidant quality of the extract.
Collapse
Affiliation(s)
- Thamizhiniyan Venkatesan
- Department of Forest Products and Biotechnology, College of Science and Technology, Kookmin University, 861-1 Chongnung-dong, Songbuk-gu, Seoul, 136-702, South Korea
| | - Young-Woong Choi
- Department of Forest Products and Biotechnology, College of Science and Technology, Kookmin University, 861-1 Chongnung-dong, Songbuk-gu, Seoul, 136-702, South Korea
| | - Young-Kyoon Kim
- Department of Forest Products and Biotechnology, College of Science and Technology, Kookmin University, 861-1 Chongnung-dong, Songbuk-gu, Seoul, 136-702, South Korea
| |
Collapse
|
21
|
Schistosoma Egg Antigen Induces Oncogenic Alterations in Human Prostate Cells. Anal Cell Pathol (Amst) 2018; 2018:4675380. [PMID: 30631746 PMCID: PMC6305059 DOI: 10.1155/2018/4675380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/04/2018] [Accepted: 10/17/2018] [Indexed: 12/15/2022] Open
Abstract
Schistosomiasis is a neglected tropical disease that affects 200 million people and accounts for 100,000 deaths annually. In endemic geographical areas, schistosomiasis has been implicated as an etiological agent in the pathogenesis of bladder, colorectal, and renal carcinoma largely due to Schistosoma eggs in tissues that comes with chronic infection. Several studies have also reported cases of association between Schistosoma infection and prostate cancer. The possible causal association is however poorly understood. We hypothesized in this study that infection of the prostate cells with Schistosoma spp promotes cancer. Urine samples from individuals living in Galilea, a schistosomiasis endemic community in the Ga South District of Ghana, were collected and screened for Schistosoma infection via microscopy and multiplex PCR. Soluble egg antigens (SEA) were prepared from Schistosoma egg-positive urine samples and assessed for the ability to induce cancer-like phenotypes including excessive proliferation, oxidative stress (reduced glutathione (GSH) depletion), and diminished apoptosis in cultured human prostate (PNT2) cells. Molecular analysis revealed infecting schistosome species to be S. haematobium and S. mansoni. Prostate cell proliferation was significantly induced by 12.5 μg/ml SEA (p = 0.029). Also, SEA dose-dependently depleted cellular GSH. Flow cytometric analysis and fluorescence staining revealed that SEA dose-dependently diminished apoptosis, significantly, in prostate cells. Findings of this study suggest that schistosome infection may play a role in the pathogenesis of prostate cancer. In vivo studies are however needed to confirm this association.
Collapse
|
22
|
Kim EY, Choi YH, Nam TJ. Identification and antioxidant activity of synthetic peptides from phycobiliproteins of Pyropia yezoensis. Int J Mol Med 2018; 42:789-798. [PMID: 29717771 PMCID: PMC6034921 DOI: 10.3892/ijmm.2018.3650] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/26/2018] [Indexed: 12/16/2022] Open
Abstract
The objective of the present study was to identify peptides, based on active components of the red algae seaweed Pyropia yezoensis, able to inhibit the generation of reactive oxygen species (ROS), which is associated with aging and oxidative activities. Phycobilin, specific to red algae, covalently binds with water-soluble proteins. There are three types of pigment bound proteins, known as phycobiliproteins (PBPs): Phycoerythrin (PE), phycocyanin (PC) and allophycocyanin (APC). In the present study, PBPs reported previously to have antioxidant activities in P. yezoensis were identified and, based on these data, several peptides were synthesized (PBP 1-13) and their inhibition of ROS generation was examined. The existence of PBPs of each type, PE, PC and APC, was established in P. yezoensis and all were analyzed. In addition, PBP 1-2 and 7-9 peptides from PE were synthesized and showed antioxidant activities in HepG2 cells. In HepG2 cells, treatment with PBP2 reduced hydrogen peroxide-mediated oxidative stress and restored the expression of superoxide dismutase (SOD). Furthermore, phosphorylated nuclear factor erythroid-derived 2-like 2 (Nrf2) was elevated by PBP2 treatment. Overall, these results suggested that Nrf2-SOD pathways may be involved in the PBP2-mediated antioxidant effects. Therefore, from the investigations of P. yezoensis, several candidate peptides were identified with promising antioxidant and, potentially, anti-aging properties.
Collapse
Affiliation(s)
- Eun-Young Kim
- Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Republic of Korea
| | - Youn Hee Choi
- Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Republic of Korea
| | - Taek-Jeong Nam
- Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Republic of Korea
| |
Collapse
|
23
|
Zhao D, Shi D, Sun J, Li H, Zhao M, Sun B. Quantification and cytoprotection by vanillin, 4-methylguaiacol and 4-ethylguaiacol against AAPH-induced abnormal oxidative stress in HepG2 cells. RSC Adv 2018; 8:35474-35484. [PMID: 35547925 PMCID: PMC9087904 DOI: 10.1039/c8ra06505e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/30/2018] [Indexed: 11/25/2022] Open
Abstract
Vanillin, 4-methylguaiacol, and 4-ethylguaiacol, three phenolic compounds in Gujinggong (GJG) Chinese baijiu (Chinese liquor), were quantified by liquid–liquid extraction (LLE) combined with gas chromatography-mass spectrometry (GC-MS) and evaluated for their possible cytoprotective effects by AAPH-induced HepG2 cell model. To confirm whether vanillin, 4-methylguaiacol, and 4-ethylguaiacol protected HepG2 cells against AAPH-induced abnormal oxidative stress via motivating the Keap1–Nrf2 pathway, the gene and protein expression of Nrf2, Keap1, SOD, CAT, and GPx from the Keap1–Nrf2 pathway were measured with real-time PCR and western blot. Three levels of treatment doses (1000, 500, and 100 mg L−1) were applied. Results showed that vanillin, 4-methylguaiacol, and 4-ethylguaiacol exhibited potent cytoprotective effect in a dose-dependent manner, greatly alleviating or reversing the increased oxidative stress induced by AAPH through up-regulating the mRNA and protein expression levels of Nrf2, SOD, CAT, and GPx, and thereby, significantly improving the intracellular antioxidant defense system in HepG2 cells (p < 0.05). Based on these findings, it was confirmed that vanillin, 4-methylguaiacol, and 4-ethylguaiacol, natural components of Chinese baijiu, were able to modulate the expression of Nrf2 and its downstream antioxidative enzymes (i.e., SOD, CAT, and GPx) against AAPH-induced abnormal oxidative stress. Further, this study lays the foundation for better illustrating the health benefits of Chinese baijiu. Vanillin, 4-methylguaiacol, and 4-ethylguaiacol widely exist in Gujinggong Chinese baijiu and could protect HepG2 cells against oxidative stress via activating the Nrf2 pathway.![]()
Collapse
Affiliation(s)
- Dongrui Zhao
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
- Beijing Laboratory for Food Quality and Safety
| | - Dongmei Shi
- Beijing Laboratory for Food Quality and Safety
- Beijing Technology and Business University
- Beijing 100048
- P. R. China
| | - Jinyuan Sun
- Beijing Laboratory for Food Quality and Safety
- Beijing Technology and Business University
- Beijing 100048
- P. R. China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
| | - Hehe Li
- Beijing Laboratory for Food Quality and Safety
- Beijing Technology and Business University
- Beijing 100048
- P. R. China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
| | - Mouming Zhao
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
| | - Baoguo Sun
- Beijing Laboratory for Food Quality and Safety
- Beijing Technology and Business University
- Beijing 100048
- P. R. China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
| |
Collapse
|
24
|
Han L, Li F, Yu Q, Li D. In vitro antioxidant and cytoprotective properties of Maillard reaction products from phloridzin-amino acid model systems. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:590-597. [PMID: 28664987 DOI: 10.1002/jsfa.8503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 05/24/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The aim of this study was to investigate in vitro antioxidant activities and cytoprotective effect of Maillard reaction products (MRPs) from phloridzin (Pz)-amino acid model systems. Their structures were also characterised by Fourier transform-infrared spectroscopy (FTIR). RESULTS MRPs were prepared from the Pz-methionine (Met), Pz-lysine (Lys), Pz-isoleucine (Ile), Pz-histidine (His) or Pz-glutamic acid (Glu) model system. The Pz-Lys MRPs, rich in antioxidant potency, were subjected to ultrafiltration to yield four MRPs fractions with different molecular weights (Mw). The fraction with Mw 30-50 kDa had significantly (P < 0.05) higher antioxidant activity than other fractions. Moreover, it significantly (P < 0.05) attenuated the 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AAPH)-elicited decrease in cell viability in HepG2 cells in a concentration-dependent manner. FTIR analysis indicated that the fraction with Mw 30-50 kDa had the strong stretching vibration for the OH, NH, CH, CO and CC groups, suggesting the formation of intermediate MRPs during Maillard reaction. CONCLUSION The results obtained in this study may provide some basis for the purported health-promoting effects of MRPs and their potential application as antioxidant agents in food industry. Also, it is important for our understanding of the variation of bioactive substances in food during thermal processing. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Linna Han
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, P.R. China
| | - Feng Li
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, P.R. China
| | - Qijian Yu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, P.R. China
| | - Dapeng Li
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, P.R. China
- National Engineering Research Center for Apple, Shandong Agricultural University, Taian, Shandong Province, P.R. China
| |
Collapse
|
25
|
Mateos R, Baeza G, Sarriá B, Bravo L. Improved LC-MS n characterization of hydroxycinnamic acid derivatives and flavonols in different commercial mate (Ilex paraguariensis) brands. Quantification of polyphenols, methylxanthines, and antioxidant activity. Food Chem 2017; 241:232-241. [PMID: 28958524 DOI: 10.1016/j.foodchem.2017.08.085] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 07/13/2017] [Accepted: 08/26/2017] [Indexed: 01/02/2023]
Abstract
Yerba mate is a beverage rich in bioactive compounds popular in South America. Polyphenols and methylxanthines were qualitatively and quantitatively analyzed in four commercial brands of yerba mate, as well as the antioxidant capacity of the beverages. Using LC/MSn analysis, 58 polyphenols were observed of which 4-sinapoylquinic acid, di- and tri-methoxycinnamoylquinic acids, two isomers of trimethoxycinnamoylshikimic acid and four isomers of caffeoyl-2,7-anhydro-3-deoxy-2-octulopyranosonic acid were identified for the first time in mate. Additionally, 46 polyphenols and 2 methylxanthines were quantified by HPLC-DAD. Hydroxycinnamic acid derivatives and flavonols comprised 90% and 10% of mate phenols, respectively, 3-caffeoylquinic (26.8-28.8%), 5-caffeoylquinic (21.1-22.4%), 4-caffeoylquinic (12.6-14.2%) and 3,5-dicaffeoylquinic acids (9.5-11.3%) along with rutin (7.1-7.8%) were the most abundant polyphenols, whereas caffeine was the main methylxanthine (90%). Ilex paraguariensis is an important source of polyphenols with moderate methylxanthines content; therefore its high antioxidant capacity was mainly associated to its polyphenolic composition.
Collapse
Affiliation(s)
- Raquel Mateos
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Spanish National Research Council, Madrid, Spain.
| | - Gema Baeza
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Spanish National Research Council, Madrid, Spain
| | - Beatriz Sarriá
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Spanish National Research Council, Madrid, Spain
| | - Laura Bravo
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Spanish National Research Council, Madrid, Spain.
| |
Collapse
|
26
|
Strawberry (cv. Romina) Methanolic Extract and Anthocyanin-Enriched Fraction Improve Lipid Profile and Antioxidant Status in HepG2 Cells. Int J Mol Sci 2017; 18:ijms18061149. [PMID: 28555032 PMCID: PMC5485973 DOI: 10.3390/ijms18061149] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 05/18/2017] [Accepted: 05/23/2017] [Indexed: 01/24/2023] Open
Abstract
Dyslipidemia and oxidation of low density lipoproteins (LDL) are recognized as critical factors in the development of atherosclerosis. Healthy dietary patterns, with abundant fruit and vegetable consumption, may prevent the onset of these risk factors due to the presence of phytochemical compounds. Strawberries are known for their high content of polyphenols; among them, flavonoids are the major constituents, and it is presumed that they are responsible for the biological activity of the fruit. Nevertheless, there are only a few studies that actually evaluate the effects of different fractions isolated from strawberries. In order to assess the effects of two different strawberry extracts (whole methanolic extract/anthocyanin-enriched fraction) on the lipid profile and antioxidant status in human hepatocellular carcinoma (HepG2) cells, the triglycerides and LDL-cholesterol content, lipid peroxidation, intracellular reactive oxygen species (ROS) content and antioxidant enzymes’ activity on cell lysates were determined. Results demonstrated that both strawberry extracts not only improved the lipid metabolism by decreasing triglycerides and LDL-cholesterol contents, but also improved the redox state of HepG2 cells by modulating thiobarbituric acid-reactive substances production, antioxidant enzyme activity and ROS generation. The observed effects were more pronounced for the anthocyanin-enriched fraction.
Collapse
|
27
|
Illam SP, Narayanankutty A, Raghavamenon AC. Polyphenols of virgin coconut oil prevent pro-oxidant mediated cell death. Toxicol Mech Methods 2017; 27:442-450. [DOI: 10.1080/15376516.2017.1320458] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Zhang H, Yin M, Huang L, Wang J, Gong L, Liu J, Sun B. Evaluation of the Cellular and Animal Models for the Study of Antioxidant Activity: A Review. J Food Sci 2017; 82:278-288. [PMID: 28117894 DOI: 10.1111/1750-3841.13605] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/21/2016] [Accepted: 12/05/2016] [Indexed: 02/06/2023]
Abstract
The mechanisms of antioxidant activities of phytochemicals are highly complex, so various methods to study them have been developed. However, the diverse available methods show inconsistent results. Different stressors, cell models, and animal models have been used to evaluate the antioxidant properties of phytochemicals. However, the literature still lacks a summary of the effects of different stressors, cell models, and animal models on the evaluation of antioxidant activities. Therefore, the mechanisms of action of different oxidative stimuli and the characteristics of the available cell models and animal models are summarized in this review.
Collapse
Affiliation(s)
- Huijuan Zhang
- Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business Univ. (BTBU), Beijing, 100048, China
| | - Meng Yin
- Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business Univ. (BTBU), Beijing, 100048, China
| | - Lianyan Huang
- Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business Univ. (BTBU), Beijing, 100048, China
| | - Jing Wang
- Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business Univ. (BTBU), Beijing, 100048, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing, 100048, China.,Key Laboratory of Space Nutrition and Food Engineering, Beijing, 100094, China
| | - Lingxiao Gong
- Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business Univ. (BTBU), Beijing, 100048, China
| | - Jie Liu
- Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business Univ. (BTBU), Beijing, 100048, China
| | - Baoguo Sun
- Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business Univ. (BTBU), Beijing, 100048, China
| |
Collapse
|
29
|
Hu Y, Hou Z, Liu D, Yang X. Tartary buckwheat flavonoids protect hepatic cells against high glucose-induced oxidative stress and insulin resistance via MAPK signaling pathways. Food Funct 2016; 7:1523-36. [PMID: 26899161 DOI: 10.1039/c5fo01467k] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oxidative stress plays a crucial role in chronic complication of diabetes. In this study, the protective effect of purified tartary buckwheat flavonoids (TBF) fraction against oxidative stress induced by a high-glucose challenge, which causes insulin resistance, was investigated on hepatic HepG2 cells. Oxidative status, phosphorylated mitogen-activated protein kinases (MAPKs), nuclear factor E2 related factor 2 (Nrf2) and p-(Ser307)-IRS-1 expression, and glucose uptake were evaluated. Results suggest that treatment of HepG2 cells with TBF alone improved glucose uptake and antioxidant enzymes, and activated Nrf2, and attenuated the IRS-1 Ser307 phosphorylation, and enhanced total levels of IRS-1. Furthermore, the high glucose-induced changes in antioxidant defences, Nrf2, p-MAPKs, p-IRS1 Ser307, and IRS-1 levels, and glucose uptake were also significantly inhibited by pre-treatment with TBF. Interestingly, the selective MAPK inhibitors significantly enhanced the TBF-mediated protection by inducing changes in the redox status, glucose uptake, p-(Ser307) and total IRS-1 levels. This report firstly showed that TBF could recover the redox status of insulin-resistant HepG2 cells, suggesting that TBF significantly protected the cells against high glucose-induced oxidative stress, and these beneficial effects of TBF on redox balance and insulin resistance were mediated by targeting MAPKs.
Collapse
Affiliation(s)
- Yuanyuan Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Zuoxu Hou
- Department of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Dongyang Liu
- The First Brigade of Cadets, Fourth Military Medical University, Xi'an 710032, China
| | - Xingbin Yang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
30
|
Martín MA, Ramos S. Cocoa polyphenols in oxidative stress: Potential health implications. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.10.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
31
|
Cocoa bean (Theobroma cacao L.) phenolic extracts as PTP1B inhibitors, hepatic HepG2 and pancreatic β-TC3 cell cytoprotective agents and their influence on oxidative stress in rats. Food Res Int 2016. [DOI: 10.1016/j.foodres.2016.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Zhang H, Wang J, Liu Y, Gong L, Sun B. Wheat bran feruloyl oligosaccharides ameliorate AAPH-induced oxidative stress in HepG2 cells via Nrf2 signalling. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
33
|
Asiedu-Gyekye IJ, Edem Kukuia KK, Seidu AM, Antwi-Boasiako C, N'guessan BB, Frimpong-Manso S, Adjei S, Zobi J, Tettey AT, Nyarko AK. Unsweetened Natural Cocoa Powder Has the Potential to Attenuate High Dose Artemether-Lumefantrine-Induced Hepatotoxicity in Non-Malarious Guinea Pigs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2016; 2016:7387286. [PMID: 27493672 PMCID: PMC4963575 DOI: 10.1155/2016/7387286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/30/2016] [Accepted: 06/08/2016] [Indexed: 02/05/2023]
Abstract
Objective. This study investigated the elemental composition of unsweetened natural cocoa powder (UNCP), its effect on nitric oxide, and its hepatoprotective potential during simultaneous administration with high-dose artemether/lumefantrine (A/L). Method. Macro- and microelements in UNCP were analyzed with EDXRF spectroscopy. Thirty (30) male guinea-pigs were then divided into five groups. For groups 3 (low-dose), 4 (medium-dose), and 5 (high-dose), the animals received oral UNCP prophylactically for 14 days. Group 1 received distilled water (14 days) and group 2 A/L for the last 3 days (days 12 to 14). After euthanisation, biochemical and histopathological examinations were carried out in all groups. Results. Phytochemical analysis of UNCP showed the presence of saponins, flavonoids, tannins, and cardiac glycosides. Thirty-eight (38) macro- and microelements were found. UNCP produced significant decreases in ALT, ALP, GGT, and AST levels. A significant increase in total protein levels was observed during A/L+UNCP administration in comparison to 75 mg/kg A/L group. Histopathological examinations buttressed the protective effects of cocoa administration. UNCP administration increased nitric oxide levels 149.71% (P < 0.05) compared to controls. Conclusion. UNCP increases nitric oxide levels and has hepatoprotective potential during A/L administration. A high level of copper was observed which may be detrimental during high daily consumptions of UNCP.
Collapse
Affiliation(s)
- Isaac Julius Asiedu-Gyekye
- Department of Pharmacology and Toxicology, University of Ghana School of Pharmacy, College of Health Sciences, Legon, Ghana
| | - Kennedy Kwami Edem Kukuia
- Department of Pharmacology and Toxicology, University of Ghana School of Pharmacy, College of Health Sciences, Legon, Ghana
| | - Abdulai Mahmood Seidu
- Department of Chemical Pathology, School of Biomedical and Allied Health Sciences, College of Health Sciences, Korle-Bu, Ghana
| | - Charles Antwi-Boasiako
- Department of Physiology, School of Biomedical and Allied Health Sciences, College of Health Sciences, Korle-Bu, Ghana
| | - Benoit Banga N'guessan
- Department of Pharmacology and Toxicology, University of Ghana School of Pharmacy, College of Health Sciences, Legon, Ghana
| | - Samuel Frimpong-Manso
- Department of Pharmaceutical Chemistry, University of Ghana School of Pharmacy, College of Health Sciences, Legon, Ghana
| | - Samuel Adjei
- Department of Animal Experimentation, Noguchi Memorial Institute for Medical Research, College of Health Sciences, Accra, Ghana
| | - Jonathan Zobi
- Department of Pharmacology and Toxicology, University of Ghana School of Pharmacy, College of Health Sciences, Legon, Ghana
| | - Abraham Terkpertey Tettey
- Department of Pharmacology and Toxicology, University of Ghana School of Pharmacy, College of Health Sciences, Legon, Ghana
| | - Alexander Kwadwo Nyarko
- Department of Pharmacology and Toxicology, University of Ghana School of Pharmacy, College of Health Sciences, Legon, Ghana
| |
Collapse
|
34
|
Antioxidant Japanese plum (Prunus salicina) microparticles with potential for food preservation. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.04.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
35
|
Martin MÁ, Goya L, Ramos S. Antidiabetic actions of cocoa flavanols. Mol Nutr Food Res 2016; 60:1756-69. [DOI: 10.1002/mnfr.201500961] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/18/2016] [Accepted: 01/21/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Maria Ángeles Martin
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN-CSIC); Ciudad Universitaria; Madrid Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM); Instituto de Salud Carlos III (ISCIII); Madrid Spain
| | - Luis Goya
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN-CSIC); Ciudad Universitaria; Madrid Spain
| | - Sonia Ramos
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN-CSIC); Ciudad Universitaria; Madrid Spain
| |
Collapse
|
36
|
Kong KW, Mat-Junit S, Aminudin N, Hassan FA, Ismail A, Abdul Aziz A. Protective effects of the extracts of Barringtonia racemosa shoots against oxidative damage in HepG2 cells. PeerJ 2016; 4:e1628. [PMID: 26839752 PMCID: PMC4734433 DOI: 10.7717/peerj.1628] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/05/2016] [Indexed: 12/30/2022] Open
Abstract
Barringtonia racemosa is a tropical plant with medicinal values. In this study, the ability of the water extracts of the leaf (BLE) and stem (BSE) from the shoots to protect HepG2 cells against oxidative damage was studied. Five major polyphenolic compounds consisting of gallic acid, ellagic acid, protocatechuic acid, quercetin and kaempferol were identified using HPLC-DAD and ESI-MS. Cell viability assay revealed that BLE and BSE were non-cytotoxic (cell viabilities >80%) at concentration less than 250 µg/ml and 500 µg/ml, respectively. BLE and BSE improved cellular antioxidant status measured by FRAP assay and protected HepG2 cells against H2O2-induced cytotoxicity. The extracts also inhibited lipid peroxidation in HepG2 cells as well as the production of reactive oxygen species. BLE and BSE could also suppress the activities of superoxide dismutase and catalase during oxidative stress. The shoots of B. racemosa can be an alternative bioactive ingredient in the prevention of oxidative damage.
Collapse
Affiliation(s)
- Kin Weng Kong
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sarni Mat-Junit
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Norhaniza Aminudin
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Fouad Abdulrahman Hassan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Amin Ismail
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Azlina Abdul Aziz
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
37
|
Badrie N, Bekele F, Sikora E, Sikora M. Cocoa agronomy, quality, nutritional, and health aspects. Crit Rev Food Sci Nutr 2016; 55:620-59. [PMID: 24915358 DOI: 10.1080/10408398.2012.669428] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The history of cocoa and chocolate including the birth and the expansion of the chocolate industry was described. Recent developments in the industry and cocoa economy were briefly depicted. An overview of the classification of cacao as well as studies on phenotypic and genetic diversity was presented. Cocoa agronomic practices including traditional and modern propagation techniques were reviewed. Nutrition-related health benefits derived from cocoa consumption were listed and widely reviewed. The specific action of cocoa antioxidants was compared to those of teas and wines. Effects of adding milk to chocolate and chocolate drinks versus bioavailability of cocoa polyphenols were discussed. Finally, flavor, sensory, microbiological, and toxicological aspects of cocoa consumption were presented.
Collapse
Affiliation(s)
- Neela Badrie
- a Faculty of Food and Agriculture, Department of Food Production , The University of the West Indies , St. Augustine , Republic of Trinidad and Tobago
| | | | | | | |
Collapse
|
38
|
Cordero-Herrera I, Martín MÁ, Fernández-Millán E, Álvarez C, Goya L, Ramos S. Cocoa and cocoa flavanol epicatechin improve hepatic lipid metabolism in in vivo and in vitro models. Role of PKCζ. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.06.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
39
|
Effects of bioactive constituents in functional cocoa products on cardiovascular health in humans. Food Chem 2015; 174:214-8. [DOI: 10.1016/j.foodchem.2014.11.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 09/10/2014] [Accepted: 11/01/2014] [Indexed: 12/31/2022]
|
40
|
Al-Sheddi ES, Farshori NN, Al-Oqail MM, Musarrat J, Al-Khedhairy AA, Siddiqui MA. Protective effect of Lepidium sativum seed extract against hydrogen peroxide-induced cytotoxicity and oxidative stress in human liver cells (HepG2). PHARMACEUTICAL BIOLOGY 2015; 54:314-321. [PMID: 25885937 DOI: 10.3109/13880209.2015.1035795] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Garden cress [Lepidium sativum (Brassicaceae)] has been widely used to treat a number of ailments in traditional medicine. The pharmacological and preventive potential of Lepidium sativum, such as anti-inflammatory, antipyretic, antihypertensive, anti-ashthamatic, anticancer, and anti-oxidant, are well known. OBJECTIVE The present investigation was designed to study the protective effects of chloroform extract of Lepidium sativum seed (LSE) against oxidative stress and cytotoxicity induced by hydrogen peroxide (H2O2) in human liver cells (HepG2). MATERIALS AND METHODS Cytotoxicity of LSE and H2O2 was identified by (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), neutral red uptake (NRU) assays, and morphological changes in HepG2. The cells were pre-exposed to biologically safe concentrations (5-25 μg/ml) of LSE for 24 h, and then cytotoxic (0.25 mM) concentration of H2O2 was added. After 24 h of the exposures, cell viability by MTT, NRU assays, and morphological changes in HepG2 were evaluated. Further, protective effects of LSE on reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP), lipid peroxidation (LPO), and reduced glutathione (GSH) levels induced by H2O2 were studied. RESULTS Pre-exposure of LSE significantly attenuated the loss of cell viability up to 48% at 25 µg/ml concentration against H2O2 (LD50 value = 2.5 mM). Results also showed that LSE at 25 µg/ml concentration significantly inhibited the induction of ROS generation (45%) and LPO (56%), and increases the MMP (55%) and GSH levels (46%). DISCUSSION AND CONCLUSION The study suggests the cytoprotective effects of LSE against H2O2-induced toxicity in HepG2. The results also demonstrate the anti-oxidative nature of LSE.
Collapse
Affiliation(s)
- Ebtesam S Al-Sheddi
- a Department of Pharmacognosy , College of Pharmacy, King Saud University , Riyadh , Saudi Arabia
| | - Nida N Farshori
- a Department of Pharmacognosy , College of Pharmacy, King Saud University , Riyadh , Saudi Arabia
| | - Mai M Al-Oqail
- a Department of Pharmacognosy , College of Pharmacy, King Saud University , Riyadh , Saudi Arabia
| | - Javed Musarrat
- b Department of Zoology , College of Science, King Saud University , Riyadh , Saudi Arabia , and
- c Al-Jeraisy Chair for DNA Research, King Saud University , Riyadh , Saudi Arabia
| | - Abdulaziz A Al-Khedhairy
- b Department of Zoology , College of Science, King Saud University , Riyadh , Saudi Arabia , and
- c Al-Jeraisy Chair for DNA Research, King Saud University , Riyadh , Saudi Arabia
| | - Maqsood A Siddiqui
- b Department of Zoology , College of Science, King Saud University , Riyadh , Saudi Arabia , and
- c Al-Jeraisy Chair for DNA Research, King Saud University , Riyadh , Saudi Arabia
| |
Collapse
|
41
|
Cordero-Herrera I, Martín MÁ, Escrivá F, Álvarez C, Goya L, Ramos S. Cocoa-rich diet ameliorates hepatic insulin resistance by modulating insulin signaling and glucose homeostasis in Zucker diabetic fatty rats. J Nutr Biochem 2015; 26:704-12. [PMID: 25814291 DOI: 10.1016/j.jnutbio.2015.01.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/09/2015] [Accepted: 01/20/2015] [Indexed: 01/03/2023]
Abstract
Insulin resistance is the primary characteristic of type 2 diabetes and results from insulin signaling defects. Cocoa has been shown to exert anti-diabetic effects by lowering glucose levels. However, the molecular mechanisms responsible for this preventive activity and whether cocoa exerts potential beneficial effects on the insulin signaling pathway in the liver remain largely unknown. Thus, in this study, the potential anti-diabetic properties of cocoa on glucose homeostasis and insulin signaling were evaluated in type 2 diabetic Zucker diabetic fatty (ZDF) rats. Male ZDF rats were fed a control or cocoa-rich diet (10%), and Zucker lean animals received the control diet. ZDF rats supplemented with cocoa (ZDF-Co) showed a significant decrease in body weight gain, glucose and insulin levels, as well as an improved glucose tolerance and insulin resistance. Cocoa-rich diet further ameliorated the hepatic insulin resistance by abolishing the increased serine-phosphorylated levels of the insulin receptor substrate 1 and preventing the inactivation of the glycogen synthase kinase 3/glycogen synthase pathway in the liver of cocoa-fed ZDF rats. The anti-hyperglycemic effect of cocoa appeared to be at least mediated through the decreased levels of hepatic phosphoenolpyruvate carboxykinase and increased values of glucokinase and glucose transporter 2 in the liver of ZDF-Co rats. Moreover, cocoa-rich diet suppressed c-Jun N-terminal kinase and p38 activation caused by insulin resistance. These findings suggest that cocoa has the potential to alleviate both hyperglycemia and hepatic insulin resistance in type 2 diabetic ZDF rats.
Collapse
Affiliation(s)
- Isabel Cordero-Herrera
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition, Consejo Superior de Investigaciones Científicas, José Antonio Novais 10, Ciudad Universitaria, 28040 Madrid, Spain
| | - María Ángeles Martín
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition, Consejo Superior de Investigaciones Científicas, José Antonio Novais 10, Ciudad Universitaria, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Fernando Escrivá
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain; Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Carmen Álvarez
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain; Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Luis Goya
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition, Consejo Superior de Investigaciones Científicas, José Antonio Novais 10, Ciudad Universitaria, 28040 Madrid, Spain
| | - Sonia Ramos
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition, Consejo Superior de Investigaciones Científicas, José Antonio Novais 10, Ciudad Universitaria, 28040 Madrid, Spain.
| |
Collapse
|
42
|
|
43
|
Cordero-Herrera I, Martín MA, Goya L, Ramos S. Cocoa flavonoids protect hepatic cells against high-glucose-induced oxidative stress: relevance of MAPKs. Mol Nutr Food Res 2015; 59:597-609. [PMID: 25594685 DOI: 10.1002/mnfr.201400492] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/20/2014] [Accepted: 12/22/2014] [Indexed: 01/05/2023]
Abstract
SCOPE Oxidative stress plays a main role in the pathogenesis of type 2 diabetes mellitus. Cocoa and (-)-epicatechin (EC), a main cocoa flavanol, have been suggested to exert beneficial effects in type 2 diabetes mellitus because of their protective effects against oxidative stress and insulin-like properties. In this study, the protective effect of EC and a cocoa phenolic extract (CPE) against oxidative stress induced by a high-glucose challenge, which causes insulin resistance, was investigated on hepatic HepG2 cells. METHODS AND RESULTS Oxidative status, phosphorylated mitogen-activated protein kinases (MAPKs), nuclear factor E2 related factor 2 (Nrf2) and p-(Ser)-IRS-1 expression, and glucose uptake were evaluated. EC and CPE regulated antioxidant enzymes and activated extracellular-regulated kinase and Nrf2. EC and CPE pre-treatment prevented high-glucose-induced antioxidant defences and p-MAPKs, and maintained Nrf2 stimulation. The presence of selective MAPK inhibitors induced changes in redox status, glucose uptake, p-(Ser)- and total IRS-1 levels that were observed in CPE-mediated protection. CONCLUSION EC and CPE recovered redox status of insulin-resistant HepG2 cells, suggesting that the functionality in EC- and CPE-treated cells was protected against high-glucose-induced oxidative insult. CPE beneficial effects on redox balance and insulin resistance were mediated by targeting MAPKs.
Collapse
Affiliation(s)
- Isabel Cordero-Herrera
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Universitaria, Madrid, Spain
| | | | | | | |
Collapse
|
44
|
Pandurangan AK, Saadatdoust Z, Esa NM, Hamzah H, Ismail A. Dietary cocoa protects against colitis-associated cancer by activating the Nrf2/Keap1 pathway. Biofactors 2015; 41:1-14. [PMID: 25545372 DOI: 10.1002/biof.1195] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/01/2014] [Indexed: 12/21/2022]
Abstract
Colorectal cancer (CRC) is the third most common malignancy in males and the second most common cancer worldwide. Chronic colonic inflammation is a known risk factor for CRC. Cocoa contains many polyphenolic compounds that have beneficial effects in humans. The objective of this study is to explore the antioxidant properties of cocoa in the mouse model of azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colitis-associated cancer, focusing on the activation of Nrf2 signaling. Mice were treated with AOM/DSS and randomized to receive either a control diet or a 5 and 10% cocoa diet during the study period. On day 62 of the experiment, the entire colon was processed for biochemical and histopathological examination and further evaluations. Increased levels of malondialdehyde (MDA) were observed in AOM/DSS-induced mice; however, subsequent administration of cocoa decreased the MDA. Enzymatic and nonenzymatic antioxidants, such as superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase, were decreased in the AOM/DSS mice. Cocoa treatment increases the activities/levels of enzymatic and nonenzymatic antioxidants. Inflammatory mediators, such as inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, were elevated during AOM/DSS-induction, and treatment with 5 and 10% cocoa effectively decreases the expression of iNOS and COX-2. The NF-E2-related factor 2 and its downstream targets, such as NQO1 and UDP-GT, were increased by cocoa treatment. The results of our study suggest that cocoa may merit further clinical investigation as a chemopreventive agent that helps prevent CAC.
Collapse
Affiliation(s)
- Ashok Kumar Pandurangan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | | | | | | | | |
Collapse
|
45
|
de Oliveira Fernandes T, de Ávila RI, de Moura SS, de Almeida Ribeiro G, Naves MMV, Valadares MC. Campomanesia adamantium (Myrtaceae) fruits protect HEPG2 cells against carbon tetrachloride-induced toxicity. Toxicol Rep 2014; 2:184-193. [PMID: 28962350 PMCID: PMC5598383 DOI: 10.1016/j.toxrep.2014.11.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/07/2014] [Accepted: 11/26/2014] [Indexed: 12/12/2022] Open
Abstract
Campomanesia adamantium (Myrtaceae) is an antioxidant compounds-rich Brazilian fruit popularly known as gabiroba. In view of this, it was evaluated the hepatoprotective effects of pulp (GPE) or peel/seed (GPSE) hydroalcoholic extracts of gabiroba on injured liver-derived HepG2 cells by CCl4 (4 mM). The results showed the presence of total phenolic in GPSE was (60%) higher when compared to GPE, associated with interesting antioxidant activity using DPPH• assay. Additionally, HPLC chromatograms and thin layer chromatography of GPE and GPSE showed the presence of flavonoids. Pretreatment of HepG2 cells with GPE or GPSE (both at 800–1000 μg/mL) significantly (p < 0.0001) protected against cytotoxicity induced by CCl4. Additionally, the cells treated with both extracts (both at 1000 μg/mL) showed normal morphology (general and nuclear) contrasting with apoptotic characteristics in the cells only exposed to CCl4. In these experiments, GPSE also was more effective than GPE. In addition, CCl4 induced a marked increase in AST (p < 0.05) and ALT (p < 0.0001) levels, while GPE or GPSE significantly (p < 0.0001) reduced these levels, reaching values found in the control group. In conclusion, the results suggest that gabiroba fruits exert hepatoprotective effects on HepG2 cells against the CCl4-induced toxicity, probably, at least in part, associated with the presence of antioxidant compounds, especially flavonoids.
Collapse
Affiliation(s)
- Thaís de Oliveira Fernandes
- Laboratório de Nutrição Experimental, Faculdade de Nutrição, Universidade Federal de Goiás, rua 227, quadra 68, s/n, Setor Leste Universitário, 74.605-080 Goiânia, GO, Brazil
| | - Renato Ivan de Ávila
- Laboratório de Farmacologia e Toxicologia Celular – FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, rua 240 esquina com 5ª Avenida, s/n, Setor Universitário, 74.605-220 Goiânia, GO, Brazil
| | - Soraia Santana de Moura
- Laboratório de Farmacologia e Toxicologia Celular – FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, rua 240 esquina com 5ª Avenida, s/n, Setor Universitário, 74.605-220 Goiânia, GO, Brazil
| | - Gerlon de Almeida Ribeiro
- Laboratório de Pesquisa em Produtos Naturais – LPPN, Faculdade de Farmácia, Universidade Federal de Goiás, rua 240 esquina com 5ª Avenida, s/n, Setor Universitário, 74.605-220 Goiânia, GO, Brazil
| | - Maria Margareth Veloso Naves
- Laboratório de Nutrição Experimental, Faculdade de Nutrição, Universidade Federal de Goiás, rua 227, quadra 68, s/n, Setor Leste Universitário, 74.605-080 Goiânia, GO, Brazil
- Corresponding author. Tel.: +55 62 3209 6270.
| | - Marize Campos Valadares
- Laboratório de Farmacologia e Toxicologia Celular – FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, rua 240 esquina com 5ª Avenida, s/n, Setor Universitário, 74.605-220 Goiânia, GO, Brazil
- Corresponding author. Tel.: +55 62 3209 6044x227; fax: +55 62 3209 6044x227.
| |
Collapse
|
46
|
Javan AJ, Javan MJ. Electronic structure of some thymol derivatives correlated with the radical scavenging activity: Theoretical study. Food Chem 2014; 165:451-9. [DOI: 10.1016/j.foodchem.2014.05.073] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 04/06/2014] [Accepted: 05/14/2014] [Indexed: 11/30/2022]
|
47
|
Martínez-López S, Sarriá B, Baeza G, Mateos R, Bravo-Clemente L. Pharmacokinetics of caffeine and its metabolites in plasma and urine after consuming a soluble green/roasted coffee blend by healthy subjects. Food Res Int 2014; 64:125-133. [DOI: 10.1016/j.foodres.2014.05.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/19/2014] [Accepted: 05/29/2014] [Indexed: 12/11/2022]
|
48
|
Chemopreventive effects of standardized papaya leaf fraction on oxidatively stressed human liver cells. Food Res Int 2014; 64:387-395. [DOI: 10.1016/j.foodres.2014.06.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/25/2014] [Accepted: 06/28/2014] [Indexed: 02/04/2023]
|
49
|
Theobromine, caffeine, and theophylline metabolites in human plasma and urine after consumption of soluble cocoa products with different methylxanthine contents. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.03.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
Martín MÁ, Cordero-Herrera I, Bravo L, Ramos S, Goya L. Cocoa flavanols show beneficial effects in cultured pancreatic beta cells and liver cells to prevent the onset of type 2 diabetes. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|