1
|
Wachananawat B, Kong BL, Shaw P, Bongcheewin B, Sangvirotjanapat S, Prombutara P, Pornputtapong N, Sukrong S. Characterization and phylogenetic analysis of the complete chloroplast genome of Curcuma comosa and C. latifolia. Heliyon 2024; 10:e31248. [PMID: 38813184 PMCID: PMC11133819 DOI: 10.1016/j.heliyon.2024.e31248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
Members of the Curcuma genus, a crop in the Zingiberaceae, are widely utilized rhizomatous herbs globally. There are two distinct species, C. comosa Roxb. and C. latifolia Roscoe, referred to the same vernacular name "Wan Chak Motluk" in Thai. C. comosa holds economic importance and is extensively used as a Thai traditional medicine due to its phytoestrogenic properties. However, its morphology closely resembles that of C. latifolia, which contains zederone, a compound known for its hepatotoxic effects. They are often confused, which may affect the quality, efficacy and safety of the derived herbal materials. Thus, DNA markers were developed for discriminating C. comosa from C. latifolia. This study focused on analyzing core DNA barcode regions, including rbcL, matK, psbA-trnH spacer and ITS2, of the authentic C. comosa and C. latifolia species. As a result, no variable nucleotides in core DNA barcode regions were observed. The complete chloroplast (cp) genome was introduced to differentiate between the two species. The comparison revealed that the cp genomes of C. comosa and C. latifolia were 162,272 and 162,289 bp, respectively, with a total of 133 identified genes. The phylogenetic analysis revealed that C. comosa and C. latifolia exhibited a very close relationship with other Curcuma species. The cp genome of C. comosa and C. latifolia were identified for the first time, providing valuable insights for species identification and evolutionary research within the Zingiberaceae family.
Collapse
Affiliation(s)
- Bussarin Wachananawat
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Bobby Lim‐Ho Kong
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine and Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, N.T., China
| | - Pang‐Chui Shaw
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine and Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, N.T., China
| | - Bhanubong Bongcheewin
- Department of Pharmaceutical Botany, Faculty of Pharmacy and Center of Excellence in Herbal Medicine and Natural Products, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
- Sireeruckhachati Nature Learning Park, Mahidol University, Nakhon Pathom, 73170, Thailand
| | | | - Pinidphon Prombutara
- Faculty of Science, Omics Science & Bioinformatics Center, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Natapol Pornputtapong
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Suchada Sukrong
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
2
|
Inprasit J, Itharat A, Ruangnoo S, Thisayakorn K, Sukkasem K, Prommee N, Khoenok W, Sriyam K, Pahusee D, Davies NM. Ethnopharmacological analysis based on Thai traditional medicine theory and anti-inflammatory activity of Sa-Tri-Lhung-Klod remedy as a post-partum anti-inflammatory drug. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117207. [PMID: 37739101 DOI: 10.1016/j.jep.2023.117207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sa-Tri-Lhung-Klod (ST) remedy is a Thai traditional remedy used in obstetrics and gynecology to reduce inflammation and nourish the body post-partum. In Thai traditional medicine (TTM), there is a theory of formulating drugs based on the four elements and the tastes of herbs for use in treating diseases. AIMS OF STUDY To determine relationships between taste theory and pharmacological properties for the anti-inflammatory effect of ST remedy and its chemical constituent components. To evaluate anti-inflammatory activity and also investigate the HPLC fingerprint of ST extracts. MATERIALS AND METHODS ST remedy was extracted by maceration in 95% ethanol (STE) and decoction in distilled water (STW). ST extracts were evaluated for anti-inflammatory activity by nitric oxide inhibitory assay in RAW264.7 cells, carrageenan-induced rat paw edema, and prostaglandin E2 inhibitory assay in inflamed rat paw tissue. In addition, the chemical constituent fingerprints of ST extracts were examined using HPLC. RESULTS STE contained seven main chemical compounds, and STW demonstrated only one identifiable chemical compound. The STE and STW displayed potent NO inhibitory activity with an IC50 value of 20.59 ± 0.03 and 52.93 ± 0.90 μg/mL, respectively. Moreover, the STE and STW (at doses of 100 - 400 mg/kg) promoted significant inhibition of inflammation in carrageenan-induced paw edema in rats (20.81 - 38.25%). Additionally, the STE (200 - 400 mg/kg) and STW (100 - 400 mg/kg) significantly reduced PGE2 levels in inflamed rat paw tissue. CONCLUSION These findings suggest that the spicy, astringent, sweet, and fragrant taste of the ST remedy used to treat post-partum inflammation encompass constituents with potent anti-inflammatory activity. STE and STW possess anti-inflammatory properties and effectively inhibit the production of NO and PGE2. Results confirm the use of the ST remedy for treating inflammatory diseases in the post-partum period according to TTM knowledge.
Collapse
Affiliation(s)
- Janjira Inprasit
- Graduate School, Department of Applied Thai Traditional Medicine, Faculty of Medicine, Thammasat University, Klongluang, Pathumthani, 12120, Thailand.
| | - Arunporn Itharat
- Department of Applied Thai Traditional Medicine, Faculty of Medicine, Thammasat University, Klongluang, Pathumthani, 12120, Thailand; Center of Excellence in Applied Thai Traditional Medicine Research (CEATMR), Thammasat University, Klongluang, Pathumthani, 12120, Thailand.
| | - Srisopa Ruangnoo
- Department of Applied Thai Traditional Medicine, Faculty of Medicine, Thammasat University, Klongluang, Pathumthani, 12120, Thailand.
| | - Krittiya Thisayakorn
- Expert Center of Innovative Herbal Products (InnoHerb), Thailand Institute of Scientific and Technological Research (TISTR), Technopolis, Pathumthani, 12120, Thailand.
| | - Kanmanee Sukkasem
- Department of Applied Thai Traditional Medicine, Faculty of Medicine, Thammasat University, Klongluang, Pathumthani, 12120, Thailand.
| | - Nuntika Prommee
- Department of Applied Thai Traditional Medicine, Faculty of Medicine, Thammasat University, Klongluang, Pathumthani, 12120, Thailand.
| | - Wicheian Khoenok
- Expert Center of Innovative Herbal Products (InnoHerb), Thailand Institute of Scientific and Technological Research (TISTR), Technopolis, Pathumthani, 12120, Thailand.
| | - Kanjana Sriyam
- Expert Center of Innovative Herbal Products (InnoHerb), Thailand Institute of Scientific and Technological Research (TISTR), Technopolis, Pathumthani, 12120, Thailand.
| | - Darunee Pahusee
- Expert Center of Innovative Herbal Products (InnoHerb), Thailand Institute of Scientific and Technological Research (TISTR), Technopolis, Pathumthani, 12120, Thailand.
| | - Neal M Davies
- Thammasat University, Khlong Luang, Pathum Thani, 12120, Thailand; Faculty of Pharmacy and Pharmaceutical Sciences, Katz Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, T6G2E1, Canada.
| |
Collapse
|
3
|
Hoang NN, Kodama T, Nakashima Y, Do KM, Hnin SYY, Lee YE, Prema, Ikumi N, Morita H. Arginase inhibitory activities of guaiane sesquiterpenoids from Curcuma comosa rhizomes. J Nat Med 2023; 77:891-897. [PMID: 37462864 DOI: 10.1007/s11418-023-01731-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/09/2023] [Indexed: 08/31/2023]
Abstract
Arginases are bimanganese enzymes involved in many human illnesses, and thus are targets for disease treatments. The screening of traditional medicinal plants demonstrated that an ethanol extract of Curcuma comosa rhizomes showed significant human arginase I and II inhibitory activity, and further fractionation led to the isolation of three known guaiane sesquiterpenoids, alismoxide (1), 7α,10α-epoxyguaiane-4α,11-diol (2) and guaidiol (3). Tests of their inhibitory activities on human arginases I and II revealed that 1 exhibited selective and potent competitive inhibition for human arginase I (IC50 = 30.2 μM), whereas the other compounds lacked inhibitory activities against human arginases. To the best of our knowledge, this is the first demonstration of human arginase I inhibitory activity by a sesquiterpenoid. Thus, 1 is a primary and specific inhibitory molecule against human arginase I.
Collapse
Affiliation(s)
- Nhat Nam Hoang
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama, 930-0194, Japan
| | - Takeshi Kodama
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama, 930-0194, Japan
| | - Yu Nakashima
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama, 930-0194, Japan
| | - Kiep Minh Do
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama, 930-0194, Japan
| | - Saw Yu Yu Hnin
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama, 930-0194, Japan
| | - Yuan-E Lee
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama, 930-0194, Japan
| | - Prema
- Department of Chemistry, University of Yangon, Yangon, 11041, Myanmar
| | - Naotaka Ikumi
- Japan Preventive Medical Laboratory Company, Ltd., 3-6-36 Toyoda, Suruga-ku, Shizuoka, 422-8027, Japan
| | - Hiroyuki Morita
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
4
|
Sharma A, Sharma C, Shah OP, Chigurupati S, Ashokan B, Meerasa SS, Rashid S, Behl T, Bungau SG. Understanding the mechanistic potential of plant based phytochemicals in management of postmenopausal osteoporosis. Biomed Pharmacother 2023; 163:114850. [PMID: 37172332 DOI: 10.1016/j.biopha.2023.114850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/14/2023] Open
Abstract
Postmenopausal osteoporosis, an epidemic disorder is defined as a loss in bone mineral density and a greater possibility of fractures in older women. It is a multifactorial disease under the control of various genetic, hormonal, and environmental factors. Insufficiency of estrogen hormone, leads to postmenopausal osteoporosis. Hormone replacement therapy (HRT), despite being the most effective treatment, it is associated with the risk of breast cancer and cardiovascular disorders. This review seeks to compile the most recent information on medicinal plants and natural compounds used to treat and prevent postmenopausal osteoporosis. Furthermore, the origin, chemical constituents and the molecular mechanisms responsible for this therapeutic and preventive effect are also discussed. Literature research was conducted using PubMed, Science direct, Scopus, Web of Science, and Google Scholar. Different plant extracts and pure compounds exerts their antiosteoporotic activity by inhibition of RANKL and upregulation of OPG. RANKL signaling regulates osteoclast formation, characterized by increased bone turnover and osteoprotegrin is a decoy receptor for RANKL thereby preventing bone loss from excessive resorption. In addition, this review also includes the chemical structure of bioactive compounds acting on NFκB, TNF α, RUNX2. In conclusion, we propose that postmenopausal osteoporosis could be prevented or treated with herbal products.
Collapse
Affiliation(s)
- Aditi Sharma
- Department of Pharmacology, School of Pharmaceutical Sceinces, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Chakshu Sharma
- Department of Pharmacology, School of Pharmaceutical Sceinces, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Om Praksah Shah
- Department of Pharmacology, School of Pharmaceutical Sceinces, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 52571, Saudi Arabia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Saveetha Nagar, Thandalam, Chennai, 602105 India
| | - Bhaskaran Ashokan
- Department of Surgery, College of Medicine, Shaqra University, Shaqra 15526, Saudi Arabia
| | - Semmal Syed Meerasa
- Department of Physiology, College of Medicine, Shaqra University, Shaqra 15526, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, PO Box 173, Al-Kharj 11942, Saudi Arabia
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun 248007, Uttarakhand, India.
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410028, Romania; Doctoral School of Biomedical Sciences, University of Oradea, Oradea 410028, Romania.
| |
Collapse
|
5
|
Formulation and In Vitro Evaluation of Mucoadhesive Sustained Release Gels of Phytoestrogen Diarylheptanoids from Curcuma comosa for Vaginal Delivery. Pharmaceutics 2023; 15:pharmaceutics15010264. [PMID: 36678892 PMCID: PMC9862155 DOI: 10.3390/pharmaceutics15010264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Diarylheptanoids (DAs) characterized by a 1,7-diphenylheptane structural skeleton are considered a novel class of phytoestrogens. The DAs available in Curcuma comosa Roxb. (C. comosa) extract demonstrated significant estrogenic activities both in vitro and in vivo. This study aimed to develop and comprehensively evaluate a mucoadhesive vaginal gel for the sustained release of DAs. Different mucoadhesive polymers as gelling agents were investigated. C. comosa ethanolic crude extract was used as a source of DAs. All C. comosa gels were light brown homogeneous with pH within 4.4-4.6. Their flow behaviors were pseudoplastic with a flow behavior index of 0.18-0.38. The viscosity at a low shear rate varied from 6.2 to 335.4 Pa·s. Their mechanical and extrudability properties were associated well with rheological properties. Polycarbophil (PCP):hydroxypropyl methylcellulose (HPMC) blends had a higher mucoadhesiveness to porcine vaginal mucosa than those of PCP-based or HPMC-based gels. All C. comosa gels exhibited a sustained, zero-order DA release pattern over 72 h. Korsmeyer and Peppas equation fitting indicated a non-Fickian, case II transport release mechanism. C. comosa gels had good physical and chemical stability under low-temperature storage for up to 12 months. PCP:HPMC-based mucoadhesive gels could be a proper delivery system for vaginal administration of DAs.
Collapse
|
6
|
Khin Aung ZM, Jantaratnotai N, Piyachaturawat P, Sanvarinda P. A pure compound from Curcuma comosa Roxb. protects neurons against hydrogen peroxide-induced neurotoxicity via the activation of Nrf-2. Heliyon 2022; 8:e11228. [DOI: 10.1016/j.heliyon.2022.e11228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/12/2022] [Accepted: 10/20/2022] [Indexed: 10/31/2022] Open
|
7
|
Sueajai J, Sutjarit N, Boonmuen N, Auparakkitanon S, Noumjad N, Suksamrarn A, Vinayavekhin N, Piyachaturawat P. Lowering of lysophosphatidylcholines in ovariectomized rats by Curcuma comosa. PLoS One 2022; 17:e0268179. [PMID: 35588422 PMCID: PMC9119514 DOI: 10.1371/journal.pone.0268179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/24/2022] [Indexed: 11/19/2022] Open
Abstract
Decline of ovarian function in menopausal women increases metabolic disease risk. Curcuma comosa extract and its major compound, (3R)-1,7-diphenyl-(4E,6E)-4,6-heptadien-3-ol (DPHD), improved estrogen-deficient ovariectomized (OVX) rat metabolic disturbances. However, information on their effects on metabolites is limited. Here, we investigated the impacts of C. comosa ethanol extract and DPHD on 12-week-old OVX rat metabolic disturbances, emphasizing the less hydrophobic metabolites. Metabolomics analysis of OVX rat serum showed a marked increase compared to sham-operated rat (SHAM) in levels of lysophosphatidylcholines (lysoPCs), particularly lysoPC (18:0) and lysoPC (16:0), and of arachidonic acid (AA), metabolites associated with inflammation. OVX rat elevated lysoPCs and AA levels reverted to SHAM levels following treatments with C. comosa ethanol extract and DPHD. Overall, our studies demonstrate the effect of C. comosa extract in ameliorating the metabolic disturbances caused by ovariectomy, and the elevated levels of bioactive lipid metabolites, lysoPCs and AA, may serve as potential biomarkers of menopausal metabolic disturbances.
Collapse
Affiliation(s)
- Jetjamnong Sueajai
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nareerat Sutjarit
- Graduate Program in Nutrition, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nittaya Boonmuen
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Saranya Auparakkitanon
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nantida Noumjad
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Nawaporn Vinayavekhin
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| | | |
Collapse
|
8
|
Chuncharunee A, Khosuk P, Naovarat R, Kaliyadan F, Sreekanth GP. ASPP 092, a phenolic diarylheptanoid from Curcuma comosa suppresses experimentally-induced inflammatory ear edema in mice. Saudi J Biol Sci 2021; 28:5937-5946. [PMID: 34588910 PMCID: PMC8459156 DOI: 10.1016/j.sjbs.2021.06.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 06/20/2021] [Accepted: 06/20/2021] [Indexed: 11/30/2022] Open
Abstract
Curcuma comosa Roxb., family Zingiberaceae, exhibits diverse biological activities. This study was aimed to investigate the anti-inflammatory potential of a major phenolic diarylheptanoid isolated from C. comosa, ASPP 092 [(3S)-1-(3,4-dihydroxy-phenyl)-7-phenyl-(6E)-6-hepten-3-ol] in an experimentally-induced inflammatory ear edema model in mice. Ear edema in the mice was induced by the topical application of irritant, ethyl phenylpropiolate (EPP). The topical application of ASPP 092 at the edema site was directed immediately after the EPP application. The edematous responses were assessed at different time points by measuring the thickness of each ear before and after the EPP application followed by histopathology analysis. The expressions of major inflammatory cytokines were analyzed by real-time RT-PCR followed by the immunohistochemistry analysis of cyclooxygenase (COX-2). The topical application of ASPP 092 effectively suppressed the EPP-induced edematous formation in the ear of mice. Histopathological analysis showed substantial improvements in epidermal hyperplasia and inflammatory cell infiltration. ASPP 092 treatment also modulated the expressions of inflammatory cytokines including Tumor Necrosis Factor-α (TNF-α), interleukin-6 (IL-6), interleukin-10 (IL-10), interleukin-1β (IL-1β), and Matrix metalloproteinase-13 (MMP-13). The expressions of cyclooxygenases (COX) including COX-1 and COX-2 were significantly reduced by ASPP 092 treatment. For the first time, our results suggest the efficacy of ASPP 092 to suppress experimentally-induced inflammation in a preclinical model in mice; however, a more detailed evaluation of its mechanism of action is necessary before evaluating its efficacy and safety in randomized trials.
Collapse
Affiliation(s)
- Aporn Chuncharunee
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Poonyawee Khosuk
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Rajitpan Naovarat
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Feroze Kaliyadan
- Department of Dermatology, King Faisal University, Kingdom of Saudi Arabia
| | - Gopinathan Pillai Sreekanth
- Siriraj Center of Research Excellence for Molecular Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
9
|
Sutjarit N, Thongon N, Weerachayaphorn J, Piyachaturawat P, Suksamrarn A, Suksen K, Papachristou DJ, Blair HC. Inhibition of Adipogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells by a Phytoestrogen Diarylheptanoid from Curcuma comosa. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9993-10002. [PMID: 32838526 DOI: 10.1021/acs.jafc.0c04063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We investigated the effect of a phytoestrogen, (3R)-1,7-diphenyl-(4E,6E)-4,6-heptadien-3-ol (DPHD), from Curcuma comosa Roxb. (Zingiberaceae family) on the adipogenic differentiation of mesenchymal progenitors, human bone marrow-derived mesenchymal stem cells (hBMSCs). DPHD inhibited adipocyte differentiation of hBMSCs by suppressing the expression of genes involved in adipogenesis. DPHD at concentrations of 0.1, 1, and 10 μM significantly decreased triglyceride accumulation in hBMSCs to 7.1 ± 0.2, 6.3 ± 0.4, and 4.9 ± 0.2 mg/dL, respectively, compared to the nontreated control (10.1 ± 0.9 mg/dL) (p < 0.01). Based on gene expression profiling, DPHD increased the expression of several genes involved in the Wnt/β-catenin signaling pathway, a negative regulator of adipocyte differentiation in hBMSCs. DPHD also increased the levels of essential signaling proteins which are extracellular signal-regulated kinases 1 and 2 (ERK1/2) and glycogen synthase kinase 3 beta (GSK-3β) that link estrogen receptor (ER) signaling to Wnt/β-catenin signaling. In conclusion, DPHD exhibited the anti-adipogenic effect in hBMSCs by suppression of adipogenic markers in hBMSCs through the activation of ER and Wnt/β catenin signaling pathways. This finding suggests the potential role of DPHD in preventing bone marrow adiposity which is one of the major factors that exacerbates osteoporosis in postmenopause.
Collapse
Affiliation(s)
- Nareerat Sutjarit
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Natthakan Thongon
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | - Pawinee Piyachaturawat
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Kanoknetr Suksen
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Dionysios J Papachristou
- Laboratory of Bone and Soft Tissue Studies, Department of Anatomy-Histology-Embryology, University Patras Medical School, Patras 26504, Greece
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Harry C Blair
- The Pittsburgh Veterans Affairs Medical Center, Pittsburgh, Pennsylvania 15261, United States
- Department of Pathology, School of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
10
|
Enhanced Stability and Bioactivity of Curcuma comosa Roxb. Extract in Electrospun Gelatin Nanofibers. FIBERS 2019. [DOI: 10.3390/fib7090076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Electrospun fiber can be used as a carrier for releasing active ingredients at the target site to achieve the effects of drug treatment. The objectives of this research work were to study suitable conditions for producing electrospun gelatin fiber loaded with crude Curcuma comosa Roxb. extract (CE) and to study antioxidant, anti-tyrosinase and anti-bacterial activities and its freeze–thaw stability as well. To achieve optimal conditions for producing electrospun gelatin fiber, the concentration of gelatin was adjusted to 30% w/v in a co-solvent system of acetic acid/water (9:1 v/v) with a feed rate of 3 mL/h and an applied voltage of 15 kV. The lowest percent loading of 5% (w/v) CE in gelatin nanofiber exhibited the highest DPPH radical scavenging activity of 94% and the highest inhibition of tyrosinase enzyme of 35%. Moreover, the inhibition zones for antibacterial activities against S. aureus and S. epidermidis were 7.77 ± 0.21 and 7.73 ± 0.12 mm, respectively. The freeze–thaw stability of CE in electrospun gelatin nanofiber was significantly different (p < 0.05) after the 4th cycle as compared to CE. Electrospun gelatin nanofiber containing CE also showed the capacity of the release of bioactive ingredients possessing anti-oxidant properties and, therefore, it could potentially be used for face masks.
Collapse
|
11
|
Lin Y, Peng X, Ruan H. Diarylheptanoids from the fresh pericarps of Juglans hopeiensis. Fitoterapia 2019; 136:104165. [DOI: 10.1016/j.fitote.2019.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/28/2019] [Accepted: 05/05/2019] [Indexed: 12/13/2022]
|
12
|
Tunpanich P, Limpongsa E, Pongjanyakul T, Sripanidkulchai B, Jaipakdee N. Mucoadhesive sustained-release tablets for vaginal delivery of Curcuma comosa extracts: Preparation and characterization. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Jaipakdee N, Limpongsa E, Sripanidkulchai BO, Piyachaturawat P. Preparation of Curcuma comosa tablets using liquisolid techniques: In vitro and in vivo evaluation. Int J Pharm 2018; 553:157-168. [PMID: 30316793 DOI: 10.1016/j.ijpharm.2018.10.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/07/2018] [Accepted: 10/10/2018] [Indexed: 11/16/2022]
Abstract
Curcuma comosa (C. comosa) is a Thai medicinal herb that provides numerous pharmacologic activities due to its estrogen-like action. This study aimed to investigate the use of liquisolid technique to prepare tablets containing oleoresin-like crude extract of C. comosa, and to improve the dissolution profiles of its major compounds, diarylheptanoids (DAs). Free flowing powders of C. comosa extract were obtained by adsorption onto solid carriers, microcrystalline cellulose, with colloidal silica as coating material. FTIR results ruled out possible interactions between C. comosa extract and excipients. The results indicated that all of liquisolid tablets met the USP requirements. The release of DAs were significantly increased through liquisolid formulations, compared to crude extract. By decreasing the ratio of carrier to coating from 20 to 10, an improvement in dissolution rate was observed. Addition of additives - namely polymer (polyvinyl pyrrolidone) and/or nonvolatile liquid (propylene glycol) affected tablet properties which involved longer disintegration time and lower DA dissolution. Optimized C. comosa liquisolid formulation was prepared in a carrier to coating ratio of 10 without additives. Stability studies showed that physical properties of liquisolid tablet were not affected by aging, but percent remaining and dissolution profiles of DAs were influenced by storage temperature. In vivo pharmacokinetic behavior of the optimized C. comosa liquisolid tablets was investigated following a single oral administration to rabbits. The results proved that the method used for preparation of liquisolid led to C. comosa tablets with low variation in content uniformity and tablet properties, as well as enhanced dissolution behavior.
Collapse
Affiliation(s)
- Napaphak Jaipakdee
- Center for Research and Development of Herbal Health Products, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; Division of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Ekapol Limpongsa
- Center for Research and Development of Herbal Health Products, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; Division of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Bung-Orn Sripanidkulchai
- Center for Research and Development of Herbal Health Products, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; Division of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Pawinee Piyachaturawat
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
14
|
Sutjarit N, Sueajai J, Boonmuen N, Sornkaew N, Suksamrarn A, Tuchinda P, Zhu W, Weerachayaphorn J, Piyachaturawat P. Curcuma comosa reduces visceral adipose tissue and improves dyslipidemia in ovariectomized rats. JOURNAL OF ETHNOPHARMACOLOGY 2018; 215:167-175. [PMID: 29273438 DOI: 10.1016/j.jep.2017.12.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/14/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Curcuma comosa Roxb. (C. comosa) or Wan chak motluk Zingiberaceae family, is widely used in Thai traditional medicine for treatment of gynecological problems as well as relief of postmenopausal symptoms. Since C. comosa contains phytoestrogen and causes lipid lowering effect by an unknown mechanism, we investigated its effect on adiposity and lipid metabolism in estrogen-deprived rats. MATERIALS AND METHODS Adult female rats were ovariectomized (OVX) and received daily doses of either a phytoestrogen from C. comosa [(3R)-1,7-diphenyl-(4E,6E)-4,6-heptadien-3-ol; DPHD], C. comosa extract, or estrogen (17β-estradiol; E2) for 12 weeks. Adipose tissue mass, serum levels of lipids and adipokines were determined. In addition, genes and proteins involved in lipid synthesis and fatty acid oxidation in visceral adipose tissue were analyzed. RESULTS Ovariectomy for 12 weeks elevated level of serum lipids and increased visceral fat mass and adipocyte size. These alterations were accompanied with the up-regulation of lipogenic mRNA and protein expressions including LXR-α, SREBP1c and their downstream targets. OVX rats showed decrease in proteins involved in fatty acid oxidation including AMPK-α and PPAR-α in adipose tissue, as well as alteration of adipokines; leptin and adiponectin. Treatments with E2, DPHD or C. comosa extract in OVX rats prevented an increase in adiposity, down-regulated lipogenic genes and proteins with marked increases in the protein levels of AMPK-α and PPAR-α. These findings indicated that their lipid lowering effects were mediated via the suppression of lipid synthesis in concert with an increase in fatty acid oxidation. CONCLUSIONS C. comosa exerts a lipid lowering effect in the estrogen deficient rats through the modulations of lipid synthesis and AMPK-α activity in adipose tissues, supporting the use of this plant for health promotion in the post-menopausal women.
Collapse
Affiliation(s)
- Nareerat Sutjarit
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Jetjamnong Sueajai
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Nittaya Boonmuen
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Nilubon Sornkaew
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Patoomratana Tuchinda
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | | | - Pawinee Piyachaturawat
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
15
|
Motiur Rahman AFM, Lu Y, Lee HJ, Jo H, Yin W, Alam MS, Cha H, Kadi AA, Kwon Y, Jahng Y. Linear diarylheptanoids as potential anticancer therapeutics: synthesis, biological evaluation, and structure–activity relationship studies. Arch Pharm Res 2018; 41:1131-1148. [DOI: 10.1007/s12272-018-1004-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 01/06/2018] [Indexed: 01/06/2023]
|
16
|
Yingngam B, Brantner A, Jinarat D, Kaewamatawong R, Rungseevijitprapa W, Suksamrarn A, Piyachaturawat P, Chokchaisiri R. Determination of the Marker Diarylheptanoid Phytoestrogens in Curcuma comosa Rhizomes and Selected Herbal Medicinal Products by HPLC-DAD. Chem Pharm Bull (Tokyo) 2018; 66:65-70. [DOI: 10.1248/cpb.c17-00517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Bancha Yingngam
- Department of Pharmaceutical Chemistry and Technology, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University
| | - Adelheid Brantner
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz
| | - Damrongsak Jinarat
- Department of Pharmaceutical Chemistry and Technology, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University
| | - Rawiwun Kaewamatawong
- Department of Pharmaceutical Chemistry and Technology, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University
| | - Wandee Rungseevijitprapa
- Department of Pharmaceutical Chemistry and Technology, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University
| | | | | | | |
Collapse
|
17
|
Busayapongchai P, Siri S. Simple assay for screening phytoestrogenic compounds using the oestrogen receptor immobilised magnetite nanoparticles. IET Nanobiotechnol 2017; 11:395-402. [PMID: 28530188 DOI: 10.1049/iet-nbt.2016.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
With increasing interests of phytoestrogens for their potential applications, a rapid and simple tool for screening these phytochemicals is still required. In this study, a simple assay to detect phytoestrogens was developed based on the competition binding between the tested samples and the fluorescently labelled oestrogen (E2) to the human ligand binding domain of oestrogen receptor (LBD-ER) that was immobilised on the magnetite nanoparticles (MNPs). The 40-kDa LBD-ER peptide was produced in an Escherichia coli system. The synthesised 68.7-nm MNPs were silanised and subsequently covalently linked to the C-terminus of LBD-ER peptide. The LBD-ER immobilised MNPs demonstrated the specific binding for the standard E2 with the equilibrium dissociation constant of 9.56 nM and the binding capacity of 0.08 pmol/1 mg of the MNPs. The LBD-ER immobilised MNPs could evaluate oestrogenic activity of the extracts of Asparagus racemosus and Curcuma comosa, the reported phytoestrogenic plants, but not progesterone (P4) and Raphanus sativus extract, the negative controls. The results of this work clearly demonstrated a potential assay for detecting phytoestrogens of crude plant extracts, which is simple and easily adapted to a high throughput format.
Collapse
Affiliation(s)
| | - Sineenat Siri
- School of Biology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
| |
Collapse
|
18
|
Thongon N, Boonmuen N, Suksen K, Wichit P, Chairoungdua A, Tuchinda P, Suksamrarn A, Winuthayanon W, Piyachaturawat P. Selective Estrogen Receptor Modulator (SERM)-like Activities of Diarylheptanoid, a Phytoestrogen from Curcuma comosa, in Breast Cancer Cells, Pre-osteoblast Cells, and Rat Uterine Tissues. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3490-3496. [PMID: 28412809 DOI: 10.1021/acs.jafc.7b00769] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Diarylheptanoids from Curcuma comosa, of the Zingiberaceae family, exhibit diverse estrogenic activities. In this study we investigated the estrogenic activity of a major hydroxyl diarylheptanoid, 7-(3,4 -dihydroxyphenyl)-5-hydroxy-1-phenyl-(1E)-1-heptene (compound 092) isolated from C. comosa. The compound elicited different transcriptional activities of estrogen agonist at low concentrations (0.1-1 μM) and antagonist at high concentrations (10-50 μM) using luciferase reporter gene assay in HEK-293T cells. In human breast cancer (MCF-7) cells, compound 092 showed an anti-estrogenic activity by down-regulating ERα-signaling and suppressing estrogen-responsive genes, whereas it attenuated the uterotrophic effect of estrogen in immature ovariectomized rats. Of note, compound 092 promoted mouse pre-osteoblastic (MC3T3-E1) cell differentiation and the related bone markers, indicating its positive osteogenic effect. Our findings highlight a new, nonsteroidal, estrogen agonist/antagonist of catechol diarylheptanoid from C. comosa, which is scientific evidence supporting its potential as a dietary supplement to prevent bone loss with low risk of breast and uterine cancers in postmenopausal women.
Collapse
Affiliation(s)
- Natthakan Thongon
- Department of Physiology, Faculty of Science, Mahidol University , Bangkok 10400, Thailand
| | - Nittaya Boonmuen
- Department of Physiology, Faculty of Science, Mahidol University , Bangkok 10400, Thailand
| | - Kanoknetr Suksen
- Department of Physiology, Faculty of Science, Mahidol University , Bangkok 10400, Thailand
| | - Patsorn Wichit
- Department of Physiology, Faculty of Science, Mahidol University , Bangkok 10400, Thailand
| | - Arthit Chairoungdua
- Department of Physiology, Faculty of Science, Mahidol University , Bangkok 10400, Thailand
| | - Patoomratana Tuchinda
- Department of Chemistry, Faculty of Science, Mahidol University , Bangkok 10400, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University , Bangkok 10240, Thailand
| | - Wipawee Winuthayanon
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University , Pullman, Washington 99164, United States
| | - Pawinee Piyachaturawat
- Department of Physiology, Faculty of Science, Mahidol University , Bangkok 10400, Thailand
| |
Collapse
|
19
|
Keeratinijakal V, Kongkiatpaiboon S. Distribution of phytoestrogenic diarylheptanoids and sesquiterpenoids components in Curcuma comosa rhizomes and its related species. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2017. [DOI: 10.1016/j.bjp.2016.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Tuntiyasawasdikul S, Limpongsa E, Jaipakdee N, Sripanidkulchai B. Effects of Vehicles and Enhancers on the Skin Permeation of Phytoestrogenic Diarylheptanoids from Curcuma comosa. AAPS PharmSciTech 2017; 18:895-903. [PMID: 27380435 DOI: 10.1208/s12249-016-0582-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/23/2016] [Indexed: 11/30/2022] Open
Abstract
Curcuma comosa (C. comosa) is widely used in traditional medicine as a dietary supplement for health promotion in postmenopausal women in Thailand. It contains several diarylheptanoids, which are considered to be a novel class of phytoestrogens. However, the diarylheptanoids isolated from the plant rhizome are shown to have low oral bioavailability and faster elimination characteristics. The aim of this study was to investigate the permeation behavior of the active compounds of diarylheptanoids. The effects of binary vehicle systems and permeation enhancers on diarylheptanoids permeation and accumulation within the skin were studied using side-by-side diffusion cells through the porcine ear skin. Among the tested binary vehicle systems, the ethanol/water vehicle appeared to be the most effective system for diarylheptanoids permeation with the highest flux and shortest lag time. The presence of transcutol in the vehicle system significantly increased diarylheptanoid's permeation and accumulation within the skin in a concentration-dependent manner. Although the presence of terpenes in formulation decreased the flux of diarylheptanoids, it raised the amount of diarylheptanoids retained within the skin substantially. Based on the feasibility of diarylheptanoid permeation, C. comosa extract should be further developed into an effective transdermal product for health benefits and hormone replacement therapy.
Collapse
|
21
|
Sun W, Wang S, Zhao W, Wu C, Guo S, Gao H, Tao H, Lu J, Wang Y, Chen X. Chemical constituents and biological research on plants in the genus Curcuma. Crit Rev Food Sci Nutr 2017; 57:1451-1523. [PMID: 27229295 DOI: 10.1080/10408398.2016.1176554] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Curcuma, a valuable genus in the family Zingiberaceae, includes approximately 110 species. These plants are native to Southeast Asia and are extensively cultivated in India, China, Sri Lanka, Indonesia, Peru, Australia, and the West Indies. The plants have long been used in folk medicine to treat stomach ailments, stimulate digestion, and protect the digestive organs, including the intestines, stomach, and liver. In recent years, substantial progress has been achieved in investigations regarding the chemical and pharmacological properties, as well as in clinical trials of certain Curcuma species. This review comprehensively summarizes the current knowledge on the chemistry and briefly discusses the biological activities of Curcuma species. A total of 720 compounds, including 102 diphenylalkanoids, 19 phenylpropene derivatives, 529 terpenoids, 15 flavonoids, 7 steroids, 3 alkaloids, and 44 compounds of other types isolated or identified from 32 species, have been phytochemically investigated. The biological activities of plant extracts and pure compounds are classified into 15 groups in detail, with emphasis on anti-inflammatory and antitumor activities.
Collapse
Affiliation(s)
- Wen Sun
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Sheng Wang
- b State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing , China
| | - Wenwen Zhao
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Chuanhong Wu
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Shuhui Guo
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Hongwei Gao
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Hongxun Tao
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Jinjian Lu
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Yitao Wang
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Xiuping Chen
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| |
Collapse
|
22
|
Tipbunjong C, Kitiyanant Y, Chaturapanich G, Sornkaew N, Suksamrarn A, Kitiyanant N, Esser KA, Pholpramool C. Natural diarylheptanoid compounds from Curcuma comosa Roxb. promote differentiation of mouse myoblasts C2C12 cells selectively via ER alpha receptors. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1748-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
23
|
Vinayavekhin N, Sueajai J, Chaihad N, Panrak R, Chokchaisiri R, Sangvanich P, Suksamrarn A, Piyachaturawat P. Serum lipidomics analysis of ovariectomized rats under Curcuma comosa treatment. JOURNAL OF ETHNOPHARMACOLOGY 2016; 192:273-282. [PMID: 27448454 DOI: 10.1016/j.jep.2016.07.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/26/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Curcuma comosa Roxb. (C. comosa) or Wan Chak Motluk, Zingiberaceae family, has been used in Thai traditional medicine for the treatment of gynecological problems and inflammation. AIM OF THE STUDY This study aimed to investigate the therapeutic potential of C. comosa by determining the changes in the lipid profiles in the ovariectomized rats, as a model of estrogen-deficiency-induced hyperlipidemia, after treatment with different components of C. comosa using an untargeted lipidomics approach. MATERIALS AND METHODS Lipids were extracted from the serum of adult female rats subjected to a sham operation (SHAM; control), ovariectomy (OVX), or OVX with 12-week daily doses of estrogen (17β-estradiol; E2), (3R)-1,7-diphenyl-(4E,6E)-4,6-heptadien-3-ol (DPHD; a phytoestrogen from C. comosa), powdered C. comosa rhizomes or its crude ethanol extract. They were then analyzed by liquid chromatography-mass spectrometry, characterized, and subjected to the orthogonal projections to latent structures discriminant analysis statistical model to identify tentative biomarkers. RESULTS Levels of five classes of lipids (ceramide, ceramide-1-phosphate, sphingomyelin, 1-O-alkenyl-lysophosphatidylethanolamine and lysophosphatidylethanolamine) were elevated in the OVX rats compared to those in the SHAM rats, while the monoacylglycerols and triacylglycerols were decreased. The E2 treatment only reversed the levels of ceramides, whereas treatments with DPHD, C. comosa extract or powder returned the levels of all upregulated lipids back to those in the SHAM control rats. CONCLUSIONS The findings suggest the potential beneficial effects of C. comosa on preventing the increased ceramide levels in OVX rats, a possible cause of metabolic disturbance under estrogen deficiency. Overall, the results demonstrated the power of untargeted lipidomics in discovering disease-relevant biomarkers, as well as evaluating the effectiveness of treatment by C. comosa components (DPHD, extract or powder) as utilized in Thai traditional medicine, and also providing scientific support for its folklore use.
Collapse
Affiliation(s)
- Nawaporn Vinayavekhin
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Omics Sciences and Bioinformatics Center, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Jetjamnong Sueajai
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Nichaboon Chaihad
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Ratchanee Panrak
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | | | - Polkit Sangvanich
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Apichart Suksamrarn
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand.
| | - Pawinee Piyachaturawat
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Chakri Naruebodindra Medical Institute, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
24
|
Chawalitpong S, Sornkaew N, Suksamrarn A, Palaga T. Diarylheptanoid from Curcuma comosa Roxb. suppresses RANKL-induced osteoclast differentiation by decreasing NFATc1 and c-Fos expression via MAPK pathway. Eur J Pharmacol 2016; 788:351-359. [DOI: 10.1016/j.ejphar.2016.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/28/2016] [Accepted: 08/11/2016] [Indexed: 12/11/2022]
|
25
|
Demirel MA, Ilhan M, Suntar I, Keles H, Kupeli Akkol E. Activity of Corylus avellana seed oil in letrozole-induced polycystic ovary syndrome model in rats. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2016. [DOI: 10.1016/j.bjp.2015.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Suksen K, Charaslertrangsi T, Noonin C, Jariyawat S, Devakul Na Ayutthaya W, Suksamrarn A, Tuchinda P, Piyachaturawat P. Protective effect of diarylheptanoids from Curcuma comosa on primary rat hepatocytes against t-butyl hydroperoxide-induced toxicity. PHARMACEUTICAL BIOLOGY 2015; 54:853-862. [PMID: 26455646 DOI: 10.3109/13880209.2015.1088550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
CONTEXT Curcuma comosa Roxb. (Zingiberaceae) has traditionally been used as an anti-inflammatory agent in liver, and recent study has shown its hepatoprotective effect against CCl4-induced liver injury in vivo. OBJECTIVE This study further assesses the protective effect of C. comosa extracts and its isolated compounds against tert-butyl hydroperoxide (t-BHP)-induced hepatotoxicity in isolated primary rat hepatocytes. MATERIALS AND METHODS Isolated primary hepatocytes were pretreated with either ethanol (5-50 μg/ml) or hexane extract (1-50 μg/ml), or two diarylheptanoids (4-35 μM): compound D-91 [1-(4-hydroxyphenyl)-7-phenyl-(6E)-6-hepten-3-ol] and compound D-92 [(3S)-1-(3,4-dihydroxyphenyl)-7-phenyl-(6E)-6-hepten-3-ol], from C. comosa for 2 h prior to exposure to 1.5 mM t-BHP for 15 and 30 min. Their hepatoprotective activities were then determined. RESULTS t-BHP markedly caused the formation of MDA and ALT leakage from the hepatocytes. Pretreatment with the C. comosa ethanol extract showed greater protective effect than the hexane extract, and the effect was concentration related. Treating the hepatocytes with compound D-92 provided greater protective effect than compound D-91. IC50 values of compounds D-91, D-92, and silymarin for the protection of ALT leakage at 30 min were 32.7 ± 1.1, 9.8 ± 0.7, and 160 ± 8 μM, respectively. Further investigation showed that compound D-92 was more effective in maintaining the intracellular glutathione content in the t-BHP treated group, whereas the reduction in antioxidant enzymes, glutathione peroxidase and glutathione-S-transferase activities, were not improved. DISCUSSION AND CONCLUSION Results suggest that diarylheptanoids are the active principles that provide protection against t-BHP-induced injury. Their ability to maintain intracellular glutathione content is the main mechanisms underlying the protective action.
Collapse
Affiliation(s)
- Kanoknetr Suksen
- a Department of Physiology , Faculty of Science, Mahidol University , Bangkok , Thailand
| | - Tumnoon Charaslertrangsi
- a Department of Physiology , Faculty of Science, Mahidol University , Bangkok , Thailand
- b Toxicology Graduate Program, Faculty of Science, Mahidol University , Bangkok , Thailand
| | - Chadanat Noonin
- a Department of Physiology , Faculty of Science, Mahidol University , Bangkok , Thailand
- b Toxicology Graduate Program, Faculty of Science, Mahidol University , Bangkok , Thailand
| | - Surawat Jariyawat
- a Department of Physiology , Faculty of Science, Mahidol University , Bangkok , Thailand
| | | | - Apichart Suksamrarn
- d Department of Chemistry , Faculty of Science, Ramkamhaeng University , Bangkok , Thailand
| | - Patoomratana Tuchinda
- e Department of Chemistry , Faculty of Science, Mahidol University , Bangkok , Thailand , and
| | - Pawinee Piyachaturawat
- a Department of Physiology , Faculty of Science, Mahidol University , Bangkok , Thailand
- f Chakri Naruebodindra Medical Institute, Faculty of Medicine, Ramathibodi Hospital, Mahidol University , Bangkok , Thailand
| |
Collapse
|
27
|
Paterni I, Granchi C, Katzenellenbogen JA, Minutolo F. Estrogen receptors alpha (ERα) and beta (ERβ): subtype-selective ligands and clinical potential. Steroids 2014; 90:13-29. [PMID: 24971815 PMCID: PMC4192010 DOI: 10.1016/j.steroids.2014.06.012] [Citation(s) in RCA: 461] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Estrogen receptors alpha (ERα) and beta (ERβ) are nuclear transcription factors that are involved in the regulation of many complex physiological processes in humans. Modulation of these receptors by prospective therapeutic agents is currently being considered for prevention and treatment of a wide variety of pathological conditions, such as, cancer, metabolic and cardiovascular diseases, neurodegeneration, inflammation, and osteoporosis. This review provides an overview and update of compounds that have been recently reported as modulators of ERs, with a particular focus on their potential clinical applications.
Collapse
Affiliation(s)
- Ilaria Paterni
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Carlotta Granchi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - John A Katzenellenbogen
- Department of Chemistry, University of Illinois, 600 S. Mathews Avenue, Urbana, IL 61801, USA
| | - Filippo Minutolo
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy.
| |
Collapse
|
28
|
Yim-im W, Sawatdichaikul O, Semsri S, Horata N, Mokmak W, Tongsima S, Suksamrarn A, Choowongkomon K. Computational analyses of curcuminoid analogs against kinase domain of HER2. BMC Bioinformatics 2014; 15:261. [PMID: 25089037 PMCID: PMC4143557 DOI: 10.1186/1471-2105-15-261] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 07/28/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human epidermal growth factor receptor 2 (HER2) has an important role in cancer aggressiveness and poor prognosis. HER2 has been used as a drug target for cancers. In particular, to effectively treat HER2-positive cancer, small molecule inhibitors were developed to target HER2 kinase. Knowing that curcumin has been used as food to inhibit cancer activity, this study evaluated the efficacy of natural curcumins and curcumin analogs as HER2 inhibitors using in vitro and in silico studies. The curcumin analogs considered in this study composed of 4 groups classified by their core structure, β-diketone, monoketone, pyrazole, and isoxazole. RESULTS In the present study, both computational and experimental studies were performed. The specificity of curcumin analogs selected from the docked results was examined against human breast cancer cell lines. The screened curcumin compounds were then subjected to molecular dynamics simulation study. By modifying curcumin analogs, we found that protein-ligand affinity increases. The benzene ring with a hydroxyl group could enhance affinity by forming hydrophobic interactions and the hydrogen bond with the hydrophobic pocket. Hydroxyl, carbonyl or methoxy group also formed hydrogen bonds with residues in the adenine pocket and sugar pocket of HER2-TK. These modifications could suggest the new drug design for potentially effective HER2-TK inhibitors. Two outstanding compounds, bisdemethylcurcumin (AS-KTC006) and 3,5-bis((E)-3,4-dimethoxystyryl)isoxazole (AS-KTC021 ),were well oriented in the binding pocket almost in the simulation time, 30 ns. This evidence confirmed the results of cell-based assays and the docking studies. They possessed more distinguished interactions than known HER2-TK inhibitors, considering them as a promising drug in the near future. CONCLUSIONS The series of curcumin compounds were screened using a computational molecular docking and followed by human breast cancer cell lines assay. Both AS-KTC006 and AS-KTC021 could inhibit breast cancer cell lines though inhibiting of HER2-TK. The intermolecular interactions were confirmed by molecular dynamics simulation studies. This information would explore more understanding of curcuminoid structures and HER2-TK.
Collapse
Affiliation(s)
| | - Orathai Sawatdichaikul
- Institute of Food Research and Product Development, Kasetsart University, 50 Ngam Wong Wan Rd, Chatuchak, Bangkok 10900, Thailand.
| | | | | | | | | | | | | |
Collapse
|
29
|
Ishibashi M, G. Fuentes R, Toume K, A. Arai M, Koyano T, Kowithayakorn T. Constituents from the Rhizomes of Curcuma comosa and Their Wnt Signal Inhibitory Activities. HETEROCYCLES 2014. [DOI: 10.3987/com-13-s(s)49] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Tantikanlayaporn D, Wichit P, Weerachayaphorn J, Chairoungdua A, Chuncharunee A, Suksamrarn A, Piyachaturawat P. Bone sparing effect of a novel phytoestrogen diarylheptanoid from Curcuma comosa Roxb. in ovariectomized rats. PLoS One 2013; 8:e78739. [PMID: 24244350 PMCID: PMC3823985 DOI: 10.1371/journal.pone.0078739] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 09/16/2013] [Indexed: 01/06/2023] Open
Abstract
Phytoestrogens have been implicated in the prevention of bone loss in postmenopausal osteoporosis. Recently, an active phytoestrogen from Curcuma comosa Roxb, diarylheptanoid (DPHD), (3R)-1,7-diphenyl-(4E,6E)-4,6-heptadien-3-ol, was found to strongly promote human osteoblast function in vitro. In the present study, we demonstrated the protective effect of DPHD on ovariectomy-induced bone loss (OVX) in adult female Sprague-Dawley rats with 17β-estradiol (E2, 10 µg/kg Bw) as a positive control. Treatment of OVX animals with DPHD at 25, 50, and 100 mg/kg Bw for 12 weeks markedly increased bone mineral density (BMD) of tibial metaphysis as measured by peripheral Quantitative Computed Tomography (pQCT). Histomorphometric analysis of bone structure indicated that DPHD treatment retarded the ovariectomy-induced deterioration of bone microstructure. Ovariectomy resulted in a marked decrease in trabecular bone volume, number and thickness and these changes were inhibited by DPHD treatment, similar to that seen with E2. Moreover, DPHD decreased markers of bone turnover, including osteocalcin and tartrate resistant acid phosphatase (TRAP) activity. These results suggest that DPHD has a bone sparing effect in ovariectomy-induced trabecular bone loss and prevents deterioration of bone microarchitecture by suppressing the rate of bone turnover. Therefore, DPHD appears to be a promising candidate for preserving bone mass and structure in the estrogen deficient women with a potential role in reducing postmenopausal osteoporosis.
Collapse
Affiliation(s)
| | - Patsorn Wichit
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Arthit Chairoungdua
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Aporn Chuncharunee
- Department of Anatomy, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Pawinee Piyachaturawat
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
31
|
Tantikanlayaporn D, Robinson LJ, Suksamrarn A, Piyachaturawat P, Blair HC. A diarylheptanoid phytoestrogen from Curcuma comosa, 1,7-diphenyl-4,6-heptadien-3-ol, accelerates human osteoblast proliferation and differentiation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:676-682. [PMID: 23557993 PMCID: PMC3660539 DOI: 10.1016/j.phymed.2013.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 01/11/2013] [Accepted: 02/21/2013] [Indexed: 06/02/2023]
Abstract
Curcuma comosa Roxb. is ginger-family plant used to relieve menopausal symptoms. Previous work showed that C. comosa extracts protect mice from ovariectomy-induced osteopenia with minimal effects on reproductive organs, and identified the diarylheptanoid (3R)-1,7-diphenyl-(4E,6E)-4,6-heptadien-3-ol (DPHD) as the major active component of C. comosa rhizomes. At 1-10μM, DPHD increased differentiation in transformed mouse osteoblasts, but the effect of DPHD on normal bone cells was unknown. We examined the concentration dependency and mechanism of action of DPHD relative to 17β-estradiol in nontransformed human osteoblasts (h-OB). The h-OB were 10-100 fold more sensitive to DPHD than transformed osteoblasts: DPHD increased h-OB proliferation at 10nM and, at 100nM, activated MAP kinase signaling within 30 min. In long-term differentiation assays, responses of h-OB to DPHD were significant at 10nM, and optimal response in most cases was at 100 nM. At 7-21 days, DPHD accelerated osteoblast differentiation, indicated by alkaline phosphatase activity and osteoblast-specific mRNA production. Effects of DPHD were eliminated by the estrogen receptor antagonist ICI182780. During differentiation, DPHD promoted early expression of osteoblast transcription factors, RUNX2 and osterix. Subsequently, DPHD accelerated production of bone structural genes, including COL1A1 and osteocalcin comparably to 17β-estradiol. In h-OB, DPHD increased the osteoprotegerin to RANKL ratio and supported mineralization more efficiently than 10nM 17β-estradiol. We conclude that DPHD promotes human osteoblast function in vitro effectively at nanomolar concentrations, making it a promising compound to protect bone in menopausal women.
Collapse
Affiliation(s)
- Duangrat Tantikanlayaporn
- Department of Physiology, Mahidol University, Bangkok 10400, Thailand
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Lisa J. Robinson
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | - Harry C. Blair
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Veteran’s Affairs Medical Center, Pittsburgh PA 15206, USA
| |
Collapse
|
32
|
Winuthayanon W, Piyachaturawat P, Suksamrarn A, Burns KA, Arao Y, Hewitt SC, Pedersen LC, Korach KS. The natural estrogenic compound diarylheptanoid (D3): in vitro mechanisms of action and in vivo uterine responses via estrogen receptor α. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:433-9. [PMID: 23552522 PMCID: PMC3620745 DOI: 10.1289/ehp.1206122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/17/2013] [Indexed: 05/07/2023]
Abstract
BACKGROUND Diarylheptanoid (D3) isolated from the medicinal plant, Curcuma comosa, has estrogenic activity. OBJECTIVE We aimed to elucidate the mechanism(s) of D3 action and compare it with that of 17β-estradiol (E2) using both in vitro and in vivo uterine models. METHODS We used human uterine (Ishikawa) cells to determine the estrogenic action of D3 on the activation and nuclear translocation of estrogen receptor α (ERα). In addition, we further characterized the uterine response to D3 treatment in vivo. RESULTS D3 activated an estrogen responsive element (ERE) luciferase reporter through ERα, and molecular modeling suggested that D3 could be accommodated in the ERα binding pocket. Using modified ERα to assay ligand-dependent nuclear translocation, we observed D3-dependent ERα interaction and translocation. In mouse uteri, early- and late-phase estrogen-regulated gene responses were increased in D3-treated ovariectomized wild-type animals, in a manner similar to that of E2; no response was seen in ERα knockout animals. We observed a divergence in estrogen responses after D3 treatment: D3 induced robust DNA synthesis in uterine epithelial cells, linked to an increase in cell-cycle-related genes; however, no increase in uterine weight was observed 24 hr after treatment. D3 also affected uterine progesterone receptor expression patterns similar to E2. When D3 and E2 were administered together, we observed no additive or antagonistic effects of D3 on E2. Our findings suggest that D3 is a weak estrogenic agonist compound. CONCLUSION D3 is a weakly acting phytoestrogen that mimics the mitogenic responses produced by E2 in an ERα-dependent manner, but it is unable to increase uterine weight or enhance or antagonize the effects of estrogen.
Collapse
Affiliation(s)
- Wipawee Winuthayanon
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Chaturapanich G, Yamthed R, Piyachaturawat P, Chairoungdua A, Suvitayavat W, Kongsaktrakoon B, Suksamrarn A, Pholpramool C. Nitric oxide signalling is involved in diarylheptanoid-induced increases in femoral arterial blood flow in ovariectomized rats. Clin Exp Pharmacol Physiol 2013; 40:240-9. [DOI: 10.1111/1440-1681.12058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Ganyapong Chaturapanich
- Department of Physiology; Faculty of Science; Siriraj Hospital; Mahidol University; Bangkok; Thailand
| | | | - Pawinee Piyachaturawat
- Department of Physiology; Faculty of Science; Siriraj Hospital; Mahidol University; Bangkok; Thailand
| | - Arthit Chairoungdua
- Department of Physiology; Faculty of Science; Siriraj Hospital; Mahidol University; Bangkok; Thailand
| | - Wisuda Suvitayavat
- Department of Physiology; Faculty of Pharmacy; Siriraj Hospital; Mahidol University; Bangkok; Thailand
| | - Boontium Kongsaktrakoon
- Department of Physiology; Faculty of Pharmacy; Siriraj Hospital; Mahidol University; Bangkok; Thailand
| | - Apichart Suksamrarn
- Department of Chemistry; Faculty of Science; Ramkhamhaeng University; Bangkok; Thailand
| | - Chumpol Pholpramool
- Department of Physiology; Faculty of Science; Siriraj Hospital; Mahidol University; Bangkok; Thailand
| |
Collapse
|
34
|
Bhukhai K, Suksen K, Bhummaphan N, Janjorn K, Thongon N, Tantikanlayaporn D, Piyachaturawat P, Suksamrarn A, Chairoungdua A. A phytoestrogen diarylheptanoid mediates estrogen receptor/Akt/glycogen synthase kinase 3β protein-dependent activation of the Wnt/β-catenin signaling pathway. J Biol Chem 2012; 287:36168-78. [PMID: 22936801 DOI: 10.1074/jbc.m112.344747] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Estrogen promotes growth in many tissues by activating Wnt/β-catenin signaling. Recently, ASPP 049, a diarylheptanoid isolated from Curcuma comosa Roxb., has been identified as a phytoestrogen. This investigation determined the involvement of Wnt/β-catenin signaling in the estrogenic activity of this diarylheptanoid in transfected HEK 293T and in mouse preosteoblastic (MC3T3-E1) cells using a TOPflash luciferase assay and immunofluorescence. ASPP 049 rapidly activated T-cell-specific transcription factor/lymphoid enhancer binding factor-mediated transcription activity and induced β-catenin accumulation in the nucleus. Interestingly, the effects of ASPP 049 on the transcriptional activity and induction and accumulation of β-catenin protein in the nucleus of MC3T3-E1 cells were greater compared with estradiol. Activation of β-catenin in MC3T3-E1 cells was inhibited by ICI 182,780, suggesting that an estrogen receptor is required. In addition, ASPP 049 induced phosphorylations at serine 473 of Akt and serine 9 of GSK-3β. Moreover, ASPP 049 also induced proliferation and expressions of Wnt target genes Axin2 and Runx2 in MC3T3-E1 cells. In addition, ASPP 049 increased alkaline phosphatase expression, and activity that was abolished by DKK-1, a blocker of the Wnt/β-catenin receptor. Taken together, these results suggest that ASPP 049 from C. comosa induced osteoblastic cell proliferation and differentiation through ERα-, Akt-, and GSK-3β-dependent activation of β-catenin signaling. Our findings provide a scientific rationale for using C. comosa as a dietary supplement to prevent bone loss in postmenopausal women.
Collapse
Affiliation(s)
- Kanit Bhukhai
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Prasannarong M, Saengsirisuwan V, Piyachaturawat P, Suksamrarn A. Improvements of insulin resistance in ovariectomized rats by a novel phytoestrogen from Curcuma comosa Roxb. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 12:28. [PMID: 22463706 PMCID: PMC3342156 DOI: 10.1186/1472-6882-12-28] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/30/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND Curcuma comosa Roxb. (C. comosa) is an indigenous medicinal herb that has been used in Thailand as a dietary supplement to relieve postmenopausal symptoms. Recently, a novel phytoestrogen, (3R)-1,7-diphenyl-(4E,6E)-4,6-heptadien-3-ol or compound 049, has been isolated and no study thus far has investigated the role of C. comosa in preventing metabolic alterations occurring in estrogen-deprived state. The present study investigated the long-term effects (12 weeks) of C. comosa hexane extract and compound 049 on insulin resistance in prolonged estrogen-deprived rats. METHODS Female Sprague-Dawley rats were ovariectomized (OVX) and treated with C. comosa hexane extract (125 mg, 250 mg, or 500 mg/kg body weight (BW)) and compound 049 (50 mg/kg BW) intraperitoneally three times per week for 12 weeks. Body weight, food intake, visceral fat weight, uterine weight, serum lipid profile, glucose tolerance, insulin action on skeletal muscle glucose transport activity, and GLUT-4 protein expression were determined. RESULTS Prolonged ovariectomy resulted in dyslipidemia, impaired glucose tolerance and insulin-stimulated skeletal muscle glucose transport, as compared to SHAM. Treatment with C. comosa hexane extract and compound 049, three times per week for 12 weeks, markedly reduced serum total cholesterol and low-density lipoprotein levels, improved insulin sensitivity and partially restored uterine weights in ovariectomized rats. In addition, compound 049 or high doses of C. comosa hexane extract enhanced insulin-mediated glucose uptake in skeletal muscle and increased muscle GLUT-4 protein levels. CONCLUSIONS Treatment with C. comosa and its diarylheptanoid derivative improved glucose and lipid metabolism in estrogen-deprived rats, supporting the traditional use of this natural phytoestrogen as a strategy for relieving insulin resistance and its related metabolic defects in postmenopausal women.
Collapse
|
36
|
Intapad S, Saengsirisuwan V, Prasannarong M, Chuncharunee A, Suvitayawat W, Chokchaisiri R, Suksamrarn A, Piyachaturawat P. Long-term effect of phytoestrogens from Curcuma comosa Roxb. on vascular relaxation in ovariectomized rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:758-764. [PMID: 22225491 DOI: 10.1021/jf203173b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Phytoestrogens have been implicated as promising therapeutic agents to treat the vascular impairment seen in menopausal women. The present study investigated the long-term effects of phytoestrogens from Curcuma comosa Roxb. on vascular relaxation of isolated thoracic aorta from ovariectomized (OVX) rats. Treatment of OVX rats for 12 weeks with C. comosa powder, hexane extract, and a novel phytoestrogen, diarylheptanoid-D3, [(3R)-1,7-diphenyl-(4E,6E)-4,6-heptadien-3-ol] prevented impairment of the endothelium-dependent relaxation response to acetylcholine in OVX, but not the endothelium-denude aortic ring relaxation in response to sodium nitroprusside. These data suggest that the vascular relaxation effect of C. comosa is mediated via endothelial cells. Treatment with D3 also increased endothelial nitric oxide synthase (eNOS) and estrogen receptor-α (ERα) protein expression in the aorta of OVX rats and suppressed elevated tumor necrosis factor-α (TNF-α) expression in OVX aortic rings. These results indicate that C. comosa treatment prevents impairment of vascular relaxation in estrogen-deficient animals via the ER-eNOS pathway as well as through its ability to promote an anti-inflammatory response.
Collapse
Affiliation(s)
- Suttira Intapad
- Department of Physiology, Mahidol University, Bangkok, Thailand 10400
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Weerachayaphorn J, Chuncharunee A, Mahagita C, Lewchalermwongse B, Suksamrarn A, Piyachaturawat P. A protective effect of Curcuma comosa Roxb. on bone loss in estrogen deficient mice. JOURNAL OF ETHNOPHARMACOLOGY 2011; 137:956-962. [PMID: 21762769 DOI: 10.1016/j.jep.2011.06.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 06/27/2011] [Accepted: 06/29/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Curcuma comosa Roxb. or Wan chak motluk is an indigenous medicinal herb and has traditionally been used among postmenopausal women for relief of unpleasant menopausal symptoms. AIM OF THE STUDY Estrogen deficiency is a causative factor in the development of osteoporosis in menopausal women. Phytoestrogens, non-steroidal plant-derived compounds which have an array of beneficial effects, are considered as an effective alternative compound in preventing bone loss caused by the deficiency of estrogen. The present study determined the potential effect of Curcuma comosa Roxb. (C. comosa) hexane extract containing phytoestrogens in protecting bone loss induced by ovariectomy in mice. MATERIALS AND METHODS Mature Swiss albino female mice were ovariectomized and treated with the C. comosa extract for 5 weeks. Bone calcium content, bone mass density, histology, and bone markers were evaluated. RESULTS The ovariectomized mice showed a marked decrease in total bone calcium content and bone mass density of lumbar vertebrae 5-6, femur and tibia bone in comparison with the intact control mice. Bone histology demonstrated the poor development of endochondral bone formation in ovariectomized mice which correlated with a decrease in plasma bone alkaline phosphatase activity. Treatment with C. comosa protected against the loss of total bone calcium content and bone mass density in both trabecular and cortical bones, similar to results observed with estrogen treatment. In addition, C. comosa treatment resulted in less increase in uterine weight compared to estrogen treatment. CONCLUSION Our results suggest that C. comosa prevents bone loss induced by estrogen deficiency. Therefore, C. comosa would be a potential alternative treatment for prevention of postmenopausal osteoporosis.
Collapse
|
38
|
Li J, Liao CR, Wei JQ, Chen LX, Zhao F, Qiu F. Diarylheptanoids from Curcuma kwangsiensis and their inhibitory activity on nitric oxide production in lipopolysaccharide-activated macrophages. Bioorg Med Chem Lett 2011; 21:5363-9. [DOI: 10.1016/j.bmcl.2011.07.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/22/2011] [Accepted: 07/06/2011] [Indexed: 11/17/2022]
|
39
|
Boonmee A, Srisomsap C, Chokchaichamnankit D, Karnchanatat A, Sangvanich P. A proteomic analysis of Curcuma comosa Roxb. rhizomes. Proteome Sci 2011; 9:43. [PMID: 21801377 PMCID: PMC3199743 DOI: 10.1186/1477-5956-9-43] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 07/29/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The similarly in plant physiology and the difficulty of plant classification, in some medicinal plant species, especially plants of the Zingiberaceae family, are a major problem for pharmacologists, leading to mistaken use. To overcome this problem, the proteomic base method was used to study protein profiles of the plant model, Curcuma comosa Roxb., which is a member of the Zingiberaceae and has been used in traditional Thai medicine as an anti-inflammatory agent for the treatment of postpartum uterine bleeding. RESULTS Due to the complexity of protein extraction from this plant, microscale solution-phase isoelectric focusing (MicroSol-IEF) was used to enrich and improve the separation of Curcuma comosa rhizomes phenol-soluble proteins, prior to resolving and analyzing by two-dimensional polyacrylamide gel electrophoresis and identification by tandem mass spectrometry. The protein patterns showed a high abundance of protein spots in the acidic range, including three lectin proteins. The metabolic and defense enzymes, such as superoxide dismutase (SOD) and ascorbate peroxidase, that are associated with antioxidant activity, were mainly found in the basic region. Furthermore, cysteine protease was found in this plant, as had been previously reported in other Zingiberaceae plants. CONCLUSION This report presents the protein profiles of the ginger plant, Curcuma comosa. Several interesting proteins were identified in this plant that may be used as a protein marker and aid in identifying plants of the Zingiberaceae family.
Collapse
Affiliation(s)
- Apaporn Boonmee
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chantragan Srisomsap
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | | | - Aphichart Karnchanatat
- Research Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Polkit Sangvanich
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
40
|
Boonmee A, Srisomsap C, Karnchanatat A, Sangvanich P. An antioxidant protein in Curcuma comosa Roxb. Rhizomes. Food Chem 2011. [DOI: 10.1016/j.foodchem.2010.06.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Weerachayaphorn J, Chuncharunee A, Jariyawat S, Lewchalermwong B, Amonpatumrat S, Suksamrarn A, Piyachaturawat P. Protection of centrilobular necrosis by Curcuma comosa Roxb. in carbon tetrachloride-induced mice liver injury. JOURNAL OF ETHNOPHARMACOLOGY 2010; 129:254-260. [PMID: 20362655 DOI: 10.1016/j.jep.2010.03.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 03/05/2010] [Accepted: 03/19/2010] [Indexed: 05/29/2023]
Abstract
AIM OF THE STUDY To investigate the protective effect and possible mechanism of Curcuma comosa hexane extract on CCl(4)-induced liver injury in adult male mice. MATERIALS AND METHODS Hepatotoxicity was induced by an intraperitoneal injection of CCl(4) and was evaluated after 24 h from the elevations of plasma alanine transaminase (ALT) and aspartate transaminase (AST) activities, and histological analysis of liver injuries. Hexane extract of Curcuma comosa was given at different time points from 1 to 72 h, prior to CCl(4) administration and the protection from liver injury was assessed. RESULTS CCl(4)-induced damage to liver cells was resulted in elevations of plasma ALT and AST activities. Pretreatment with Curcuma comosa hexane extract 24 h at a dose of 100, 250, and 500 mg/kg BW resulted in a dose-dependent prevention of the increases in plasma ALT and AST activities as well as time dependent. The protective effect of the extract at a dose of 500 mg/kg BW was seen at 12-24 h. Pretreatment of the extract completely prevented elevation of plasma ALT and AST activities, and centrilobular necrosis. The protective effect of Curcuma comosa was associated with restoration of hepatic glutathione content, and CYP2E1 catalytic activity, and its mRNA and protein levels as well as increase in activity of glutathione-S-transferase (GST). CONCLUSION Curcuma comosa has a potent protective property against CCl(4)-induced hepatic injuries via the activation of detoxifying mechanisms (GST) as well as reduction of the bioactive toxic metabolites. Therefore, Curcuma comosa may be beneficial for prevention of hepatotoxicity.
Collapse
Affiliation(s)
- Jittima Weerachayaphorn
- Department of Physiology, Faculty of Science, Mahidol University, Rachatewee, Bangkok, Thailand
| | | | | | | | | | | | | |
Collapse
|
42
|
Intapad S, Suksamrarn A, Piyachaturawat P. Enhancement of vascular relaxation in rat aorta by phytoestrogens from Curcuma comosa Roxb. Vascul Pharmacol 2009; 51:284-90. [PMID: 19665059 DOI: 10.1016/j.vph.2009.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 07/14/2009] [Accepted: 07/21/2009] [Indexed: 10/20/2022]
Abstract
The present study aims to examine the effects and mechanisms of Curcuma comosa Roxb., an indigenous medicinal plant containing phytoestrogens, on vascular relaxation. Using an organ bath system, acute exposure of intact or endothelium-denuded aortic rings to the hexane extract of C. comosa or an isolated diarylheptanoid compound, D3, did not induce relaxation. However, pre-incubation of aortic rings for 20 min with hexane extract of C. comosa (10 microg/ml) or the isolated diarylheptanoid compound, D3, (0.1, 1 and 10 microg/ml) markedly enhanced endothelial-dependent relaxation in response to ACh. The hexane extract did not modulate the relaxation of denuded aortic rings in response to SNP, which suggested a predominant effect on endothelial cells rather than on vascular smooth muscle cells. Co-incubation with ICI 182,780 (estrogen receptor antagonist), L-NAME (nitric oxide synthase inhibitor) or ODQ (guanylase cyclase inhibitor) inhibited the enhancing effects of C. comosa on ACh-induced relaxation. These findings suggest that the actions of C. comosa are mediated through estrogen receptor (ER) and NO-cGMP-dependent mechanisms. In addition, C. comosa also increased the phosphorylation of serine 1177 eNOS and serine 473 Akt proteins, and these effects were abolished by ICI 182,780. The results suggest that C. comosa acutely increases endothelium-dependent relaxation of aortic rings through the ER-Akt-eNOS pathway. This is the first evidence indicating non-genomic action of a novel phytoestrogen from C. comosa, on vascular relaxation.
Collapse
Affiliation(s)
- Suttira Intapad
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | | |
Collapse
|
43
|
Winuthayanon W, Piyachaturawat P, Suksamrarn A, Ponglikitmongkol M, Arao Y, Hewitt SC, Korach KS. Diarylheptanoid phytoestrogens isolated from the medicinal plant Curcuma comosa: biologic actions in vitro and in vivo indicate estrogen receptor-dependent mechanisms. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:1155-61. [PMID: 19654927 PMCID: PMC2717144 DOI: 10.1289/ehp.0900613] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Accepted: 03/23/2009] [Indexed: 05/23/2023]
Abstract
BACKGROUND Diarylheptanoids isolated from Curcuma comosa Roxb. have been recently identified as phyto estrogens. However, the mechanism underlying their actions has not yet been identified. OBJECTIVES We characterized the estrogenic activity of three active naturally occurring diarylheptanoids both in vitro and in vivo. METHODS We characterized mechanisms of estrogenic action of the diarylheptanoids (3S)-1,7-diphenyl-(6E)-6-hepten-3-ol (D1), 1,7-diphenyl-(6E)-6-hepten-3-one (D2), and (3R)-1,7-diphenyl-(4E,6E)-4,6-heptadien-3-ol (D3) by using a real-time polymerase chain reaction assay, a mammalian transfection model, and a uterotrophic assay in mice. RESULTS All diarylheptanoids up-regulated estrogen-responsive genes in estrogen-responsive breast cancer cells (MCF-7). In HepG2 cells transfected with estrogen receptor (ER) beta or different ERalpha functional receptor mutants and the Vit-ERE-TATA-Luc reporter gene, all diarylheptanoids induced transcription through a ligand-dependent human ERalpha-ERE-driven pathway, which was abolished with ICI 182,780 (ER antagonist), whereas only D2 was active with ERbeta. An ERalpha mutant lacking the functional AF2 (activation function 2) region was not responsive to 17beta-estradiol (E(2)) or to any of the diarylheptanoids, whereas ERalpha lacking the AF1 domain exhibited wild-type-like activity. D3 markedly increased uterine weight and proliferation of the uterine epithelium in ovariectomized mice, whereas D1 and D2 were inactive. D3, like E(2), up-regulated lactoferrin (Ltf) gene expression. The responses to D3 in the uterus were inhibited by ICI 182,780. In addition, D3 stimulated both classical (Aqp5) and nonclassical (Cdkn1a) ER-mediated gene regulation. CONCLUSIONS The results suggest that the D3 diarylheptanoid is an agonist for ER both in vitro and in vivo, and its biological action is ERalpha selective, specifically requiring AF2 function, and involves direct binding via ER as well as ERE-independent gene regulation.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Curcuma/chemistry
- Diarylheptanoids/chemistry
- Diarylheptanoids/isolation & purification
- Diarylheptanoids/pharmacology
- Estradiol/analogs & derivatives
- Estradiol/pharmacology
- Estrogen Receptor alpha/antagonists & inhibitors
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/physiology
- Estrogen Receptor beta/antagonists & inhibitors
- Estrogen Receptor beta/genetics
- Estrogen Receptor beta/physiology
- Female
- Fulvestrant
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Mutant Strains
- Organ Size/drug effects
- Ovariectomy
- Phytoestrogens/chemistry
- Phytoestrogens/isolation & purification
- Phytoestrogens/pharmacology
- Plant Extracts/chemistry
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Plants, Medicinal/chemistry
- Polymerase Chain Reaction
- Receptors, Estrogen/antagonists & inhibitors
- Receptors, Estrogen/genetics
- Receptors, Estrogen/physiology
- Transcription, Genetic/drug effects
- Transcription, Genetic/genetics
- Uterus/cytology
- Uterus/drug effects
Collapse
Affiliation(s)
- Wipawee Winuthayanon
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | | | - Apichart Suksamrarn
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | | | - Yukitomo Arao
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Sylvia C. Hewitt
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Kenneth S. Korach
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| |
Collapse
|
44
|
Jariyawat S, Kigpituck P, Suksen K, Chuncharunee A, Chaovanalikit A, Piyachaturawat P. Protection against cisplatin-induced nephrotoxicity in mice by Curcuma comosa Roxb. ethanol extract. J Nat Med 2009; 63:430-6. [PMID: 19536611 DOI: 10.1007/s11418-009-0345-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 05/25/2009] [Indexed: 01/07/2023]
Abstract
The protective effect of an ethanol extract of Curcuma comosa against cisplatin-induced renal toxicity in mice was studied. Adult male mice were pretreated for 4 days with the ethanol extract of C. comosa [100-200 mg/kg body weight (BW), orally (p.o.)] before injection of cisplatin (12.5 mg/kg BW, intraperitoneally (i.p.)). Five days later the mice were killed, and blood samples were collected to determine blood urea nitrogen (BUN) and plasma creatinine levels. Kidneys were examined histopathologically and levels of lipid peroxidation, gluthathione (GSH) content, and superoxide dismutase (SOD), gluthathione peroxidase (GPx), and catalase (CAT) activities were determined. Histological examinations revealed degenerative changes and tubular necrosis in mice treated with cisplatin, which were improved by pretreatment with C. comosa ethanol extract. Cisplatin raised BUN, creatinine, and kidney lipid peroxidation levels, and lowered kidney GSH content and levels of GPx, SOD, and CAT activities, all of which (except SOD and CAT) could be restored to normal values by pretreatment with 200 mg/kg BW of C. comosa ethanol extract. In addition, the ethanol extract of C. comosa and its isolated diarylheptanoid compound also exhibited radical scavenging activities. The results suggest that the ethanol extract of C. comosa exhibits effective protection against cisplatin-induced nephrotoxicity mediated through its antioxidant activity.
Collapse
Affiliation(s)
- Surawat Jariyawat
- Department of Physiology, Faculty of Science, Mahidol University, Rama 6 Road, Rachatewee, Bangkok 10400, Thailand
| | | | | | | | | | | |
Collapse
|