1
|
Wang K, Li W, Wu J, Yan Z, Li H. Effect of oxidized Bletilla striata polysaccharide on fibrin hydrogel formation and its application in wound healing dressing. Int J Biol Macromol 2024; 279:135303. [PMID: 39236945 DOI: 10.1016/j.ijbiomac.2024.135303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Wound healing is influenced by various factors, including oxidative damage, bacterial infection, and inadequate angiogenesis, which collectively contribute to a protracted healing process. In this work, we designed innovative multifunctional hydrogels based on fibrin integrated with Bletilla striata polysaccharides (BSP) or oxidated Bletilla striata polysaccharides (OBSP) for use as wound dressings. The preliminary structure and bioactivity of BSP and OBSP were investigated. The effect of polysaccharides on the self-assembly process of fibrin hydrogels were also evaluated. BSP and OBSP significantly altered the initial fibrin fibrillogenesis and the ultimate structure of the fibrin network. Relative to pure fibrin hydrogel, the incorporation of BSP and OBSP enhanced water swelling and retention, and decelerated the degradation of hydrogels in PBS. Furthermore, BSP and OBSP augmented the antioxidant, antibacterial, and anti-inflammatory properties of fibrin hydrogels, with OBSP demonstrating superior performance in these aspects. Through the development of a murine wound model, it was observed that the wound healing efficacy of hydrogels incorporating BSP and OBSP surpassed that of the pure fibrin group. Notably, the hydrogel formulated with 25 mg/mL OBSP exhibited the most pronounced therapeutic effect, achieving a healing rate approaching 100 %. Consequently, fibrin-OBSP composite hydrogels demonstrate significant potential as wound dressings.
Collapse
Affiliation(s)
- Kun Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Wei Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jintao Wu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhaolan Yan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Hui Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
2
|
Long X, Xie J, Xue B, Li X, Sun T. Effect of oxidative modification on physicochemical and functional properties of soybean polysaccharides. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Marasca E, Zehnder-Wyss O, Boulos S, Nyström L. Estimation of Iron Availability in Modified Cereal β-Glucan Extracts by an in vitro Digestion Model. Front Nutr 2022; 9:879280. [PMID: 35769375 PMCID: PMC9234558 DOI: 10.3389/fnut.2022.879280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022] Open
Abstract
For cereal-based foods rich in dietary fibers, iron bioavailability is known to be poor. For native cereal β-glucan extracts, literature has demonstrated that the main factor impacting the bioavailability is phytic acid, which is often found in association with dietary fibers. During food processing, β-glucan can undergo modifications which could potentially affect the equilibrium between phytic acid, fiber, and iron. In this study, an in vitro digestion was used to elucidate the iron dialysability, and hence estimate iron availability, in the presence of native, chelating resin (Chelex)-treated, oxidised, or partially hydrolysed oat and barley β-glucan extracts (at 1% actual β-glucan concentration), with or without phytase treatment. It was confirmed that pure, phytic acid-free β-glucan polysaccharide does not impede iron availability in cereal foods, while phytic acid, and to a smaller extent, also proteins, associated to β-glucan can do so. Neither Chelex-treatment nor partial hydrolysis, 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) or NaIO4 oxidation significantly influenced the phytic acid content of the β-glucan extracts (ranging 2.0-3.9%; p > 0.05). Consequently, as long as intrinsic phytic acid was still present, the β-glucan extracts blocked the iron availability regardless of source (oat, barley) or Chelex-treatment, partial hydrolysis or NaIO4-oxidation down to 0-8% (relative to the reference without β-glucan extract). Remarkably, TEMPO-oxidation released around 50% of the sequestered iron despite unchanged phytic acid levels in the modified extract. We propose an iron-mobilising effect of the TEMPO product β-polyglucuronan from insoluble Fe(II)/phytate/protein aggregates to soluble Fe(II)/bile salt units that can cross the dialysis membrane. In addition, Chelex-treatment was identified as prerequisite for phytase to dramatically diminish iron retention of the extract for virtually full availability, with implications for optimal iron bioavailability in cereal foods.
Collapse
Affiliation(s)
| | | | | | - Laura Nyström
- Institute of Food, Nutrition and Health, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
4
|
Effect of sulfated modification on rheological and physiological properties of oat β-glucan oligosaccharides prepared by acid or oxidative degradation. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
5
|
Biological Effects of β-Glucans on Osteoclastogenesis. Molecules 2021; 26:molecules26071982. [PMID: 33915775 PMCID: PMC8036280 DOI: 10.3390/molecules26071982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/02/2022] Open
Abstract
Although the anti-tumor and anti-infective properties of β-glucans have been well-discussed, their role in bone metabolism has not been reviewed so far. This review discusses the biological effects of β-glucans on bone metabolisms, especially on bone-resorbing osteoclasts, which are differentiated from hematopoietic precursors. Multiple immunoreceptors that can recognize β-glucans were reported to be expressed in osteoclast precursors. Coordinated co-stimulatory signals mediated by these immunoreceptors are important for the regulation of osteoclastogenesis and bone remodeling. Curdlan from the bacterium Alcaligenes faecalis negatively regulates osteoclast differentiation in vitro by affecting both the osteoclast precursors and osteoclast-supporting cells. We also showed that laminarin, lichenan, and glucan from baker’s yeast, as well as β-1,3-glucan from Euglema gracilisas, inhibit the osteoclast formation in bone marrow cells. Consistent with these findings, systemic and local administration of β-glucan derived from Aureobasidium pullulans and Saccharomyces cerevisiae suppressed bone resorption in vivo. However, zymosan derived from S. cerevisiae stimulated the bone resorption activity and is widely used to induce arthritis in animal models. Additional research concerning the relationship between the molecular structure of β-glucan and its effect on osteoclastic bone resorption will be beneficial for the development of novel treatment strategies for bone-related diseases.
Collapse
|
6
|
Marasca E, Boulos S, Nyström L. Bile acid-retention by native and modified oat and barley β-glucan. Carbohydr Polym 2020; 236:116034. [PMID: 32172850 DOI: 10.1016/j.carbpol.2020.116034] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/15/2020] [Accepted: 02/17/2020] [Indexed: 10/25/2022]
Abstract
Foods rich in cereal β-glucan are efficient dietary tools to help reduce serum cholesterol levels and hence the risk of cardiovascular diseases. However, β-glucan undergoes various reactions during food processing, which alter its viscous properties and interactions with components of the gastrointestinal tract. It has been proposed in the literature that oxidation and partial hydrolysis increase β-glucan's bile acid-binding activity, and therefore its effectiveness in lowering cholesterol. Here, the passage kinetics of a bile salt mix across a dialysis membrane was studied with or without oat and barley β-glucan extracts, native or modified (partial hydrolysis and oxidations by sodium periodate or TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl)). Bile acid-retention turned out to be purely a function of viscosity, with the most viscous native extracts exhibiting the strongest retardation of bile acid permeation. Opposite of what was suggested in the literature, oxidation and molecular weight reduction do not seem to increase the bile acid-binding capability of β-glucan.
Collapse
Affiliation(s)
- Elena Marasca
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Zurich, Switzerland
| | - Samy Boulos
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Zurich, Switzerland
| | - Laura Nyström
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Zurich, Switzerland.
| |
Collapse
|
7
|
He W, Sun Q, Song X. TEMPO-mediated oxidation of corncob holocellulose and its influences on paper properties. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1612250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Weitao He
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, China
| | - Qi Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, China
| | - Xianliang Song
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, China
| |
Collapse
|
8
|
Du B, Meenu M, Liu H, Xu B. A Concise Review on the Molecular Structure and Function Relationship of β-Glucan. Int J Mol Sci 2019; 20:E4032. [PMID: 31426608 PMCID: PMC6720260 DOI: 10.3390/ijms20164032] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
β-glucan is a non-starch soluble polysaccharide widely present in yeast, mushrooms, bacteria, algae, barley, and oat. β-Glucan is regarded as a functional food ingredient due to its various health benefits. The high molecular weight (Mw) and high viscosity of β-glucan are responsible for its hypocholesterolemic and hypoglycemic properties. Thus, β-glucan is also used in the food industry for the production of functional food products. The inherent gel-forming property and high viscosity of β-glucan lead to the production of low-fat foods with improved textural properties. Various studies have reported the relationship between the molecular structure of β-glucan and its functionality. The structural characteristics of β-glucan, including specific glycosidic linkages, monosaccharide compositions, Mw, and chain conformation, were reported to affect its physiochemical and biological properties. Researchers have also reported some chemical, physical, and enzymatic treatments can successfully alter the molecular structure and functionalities of β-glucan. This review article attempts to review the available literature on the relationship of the molecular structure of β-glucan with its functionalities, and future perspectives in this area.
Collapse
Affiliation(s)
- Bin Du
- Hebei Key Laboratory of Natural Products Activity Components and Function, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Maninder Meenu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China
| | - Hongzhi Liu
- Institute of Agro-products Processing Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China.
| |
Collapse
|
9
|
Bai J, Ren Y, Li Y, Fan M, Qian H, Wang L, Wu G, Zhang H, Qi X, Xu M, Rao Z. Physiological functionalities and mechanisms of β-glucans. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Grundy MML, Fardet A, Tosh SM, Rich GT, Wilde PJ. Processing of oat: the impact on oat's cholesterol lowering effect. Food Funct 2018; 9:1328-1343. [PMID: 29431835 PMCID: PMC5885279 DOI: 10.1039/c7fo02006f] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/31/2022]
Abstract
Epidemiological and interventional studies have clearly demonstrated the beneficial impact of consuming oat and oat-based products on serum cholesterol and other markers of cardiovascular disease. The cholesterol-lowering effect of oat is thought to be associated with the β-glucan it contains. However, not all food products containing β-glucan seem to lead to the same health outcome. Overall, highly processed β-glucan sources (where the oat tissue is highly disrupted) appear to be less effective at reducing serum cholesterol, but the reasons are not well understood. Therefore, the mechanisms involved still need further clarification. The purpose of this paper is to review current evidence of the cholesterol-lowering effect of oat in the context of the structure and complexity of the oat matrix. The possibility of a synergistic action and interaction between the oat constituents promoting hypocholesterolaemia is also discussed. A review of the literature suggested that for a similar dose of β-glucan, (1) liquid oat-based foods seem to give more consistent, but moderate reductions in cholesterol than semi-solid or solid foods where the results are more variable; (2) the quantity of β-glucan and the molecular weight at expected consumption levels (∼3 g day-1) play a role in cholesterol reduction; and (3) unrefined β-glucan-rich oat-based foods (where some of the plant tissue remains intact) often appear more efficient at lowering cholesterol than purified β-glucan added as an ingredient.
Collapse
Affiliation(s)
- Myriam M-L Grundy
- Food and Health Programme, Quadram Institute Bioscience, Norwich Research Park, NR4 7UA, UK.
| | - Anthony Fardet
- INRA, JRU 1019, UNH, CRNH Auvergne, F-63000 Clermont-Ferrand & Université de Clermont, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France.
| | - Susan M Tosh
- University of Ottawa, Université, Salle 118, Ottawa, ON K1N 6N5 Canada.
| | - Gillian T Rich
- Food and Health Programme, Quadram Institute Bioscience, Norwich Research Park, NR4 7UA, UK.
| | - Peter J Wilde
- Food and Health Programme, Quadram Institute Bioscience, Norwich Research Park, NR4 7UA, UK.
| |
Collapse
|
11
|
Laccase-TEMPO-mediated air oxidation of galactomannan for use as paper strengthening agent. Carbohydr Polym 2018; 184:94-99. [DOI: 10.1016/j.carbpol.2017.12.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/27/2017] [Accepted: 12/18/2017] [Indexed: 11/22/2022]
|
12
|
Structural characterization and evaluation of antioxidant, anticancer and hypoglycemic activity of radiation degraded oat (Avena sativa) β- glucan. Radiat Phys Chem Oxf Engl 1993 2018. [DOI: 10.1016/j.radphyschem.2017.08.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Boulos S, Nyström L. Complementary Sample Preparation Strategies for Analysis of Cereal β-Glucan Oxidation Products by UPLC-MS/MS. Front Chem 2017; 5:90. [PMID: 29164106 PMCID: PMC5673685 DOI: 10.3389/fchem.2017.00090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/17/2017] [Indexed: 11/18/2022] Open
Abstract
The oxidation of cereal (1→3,1→4)-β-D-glucan can influence the health promoting and technological properties of this linear, soluble homopolysaccharide by introduction of new functional groups or chain scission. Apart from deliberate oxidative modifications, oxidation of β-glucan can already occur during processing and storage, which is mediated by hydroxyl radicals (HO•) formed by the Fenton reaction. We present four complementary sample preparation strategies to investigate oat and barley β-glucan oxidation products by hydrophilic interaction ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), employing selective enzymatic digestion, graphitized carbon solid phase extraction (SPE), and functional group labeling techniques. The combination of these methods allows for detection of both lytic (C1, C3/4, C5) and non-lytic (C2, C4/3, C6) oxidation products resulting from HO•-attack at different glucose-carbons. By treating oxidized β-glucan with lichenase and β-glucosidase, only oxidized parts of the polymer remained in oligomeric form, which could be separated by SPE from the vast majority of non-oxidized glucose units. This allowed for the detection of oligomers with mid-chain glucuronic acids (C6) and carbonyls, as well as carbonyls at the non-reducing end from lytic C3/C4 oxidation. Neutral reducing ends were detected by reductive amination with anthranilic acid/amide as labeled glucose and cross-ring cleaved units (arabinose, erythrose) after enzyme treatment and SPE. New acidic chain termini were observed by carbodiimide-mediated amidation of carboxylic acids as anilides of gluconic, arabinonic, and erythronic acids. Hence, a full characterization of all types of oxidation products was possible by combining complementary sample preparation strategies. Differences in fine structure depending on source (oat vs. barley) translates to the ratio of observed oxidized oligomers, with in-depth analysis corroborating a random HO•-attack on glucose units irrespective of glycosidic linkage and neighborhood. The method was demonstrated to be (1) sufficiently sensitive to allow for the analysis of oxidation products also from a mild ascorbate-driven Fenton reaction, and (2) to be specific for cereal β-glucan even in the presence of other co-oxidized polysaccharides. This opens doors to applications in food processing to assess potential oxidations and provides the detailed structural basis to understand the effect oxidized functional groups have on β-glucan's health promoting and technological properties.
Collapse
Affiliation(s)
| | - Laura Nyström
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Jang HS, Yoon KN. The Antihyperlipidemic Effect of Lion's Mane Mushroom ( Hericium erinaceus) in Hyperlipidemic Rats Induced by High Fat and Cholesterol Diet. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2017. [DOI: 10.15324/kjcls.2017.49.3.263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Hyung Seok Jang
- Department of Clinical Laboratory Science, Ansan University, Ansan, Korea
| | - Ki Nam Yoon
- Department of Clinical Laboratory Science, Ansan University, Ansan, Korea
| |
Collapse
|
15
|
Lamas de Souza N, Bartz J, da Rosa Zavareze E, Diaz de Oliveira P, da Silveira Moreira A, Schellin Vieira da Silva W, Guerra Dias AR. Functional, physiological, and rheological properties of oat β-glucan oxidized with hydrogen peroxide under soft conditions. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nelisa Lamas de Souza
- Departamento de Ciência e Tecnologia Agroindustrial; Universidade Federal de Pelotas; Pelotas 96010-900 Brazil
| | - Josiane Bartz
- Departamento de Ciência e Tecnologia Agroindustrial; Universidade Federal de Pelotas; Pelotas 96010-900 Brazil
| | - Elessandra da Rosa Zavareze
- Departamento de Ciência e Tecnologia Agroindustrial; Universidade Federal de Pelotas; Pelotas 96010-900 Brazil
| | - Patrícia Diaz de Oliveira
- Centro de Desenvolvimento Tecnológico-Biotecnologia; Universidade Federal de Pelotas; Pelotas 96010-900 Brazil
| | | | | | - Alvaro Renato Guerra Dias
- Departamento de Ciência e Tecnologia Agroindustrial; Universidade Federal de Pelotas; Pelotas 96010-900 Brazil
| |
Collapse
|
16
|
Fiume MM, Heldreth B, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JG, Shank RC, Slaga TJ, Snyder PW, Andersen FA. Safety Assessment of Microbial Polysaccharide Gums as Used in Cosmetics. Int J Toxicol 2016; 35:5S-49S. [DOI: 10.1177/1091581816651606] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The Cosmetic Ingredient Review Expert Panel assessed the safety of 34 microbial polysaccharide gums for use in cosmetics, finding that these ingredients are safe in cosmetic formulations in the present practices of use and concentration. The microbial polysaccharide gums named in this report have a variety of reported functions in cosmetics, including emulsion stabilizer, film former, binder, viscosity-increasing agent, and skin-conditioning agent. The Panel reviewed available animal and clinical data in making its determination of safety.
Collapse
Affiliation(s)
- Monice M. Fiume
- Cosmetic Ingredient Review Scientific Analyst/Writer, Cosmetic Ingredient Review, Washington, DC, USA
| | - Bart Heldreth
- Cosmetic Ingredient Review Chemist, Cosmetic Ingredient Review, Washington, DC, USA
| | - Wilma F. Bergfeld
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Donald V. Belsito
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Ronald A. Hill
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Curtis D. Klaassen
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Daniel C. Liebler
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - James G. Marks
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Ronald C. Shank
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Thomas J. Slaga
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Paul W. Snyder
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - F. Alan Andersen
- Former Director, Cosmetic Ingredient Review, Washington, DC, USA
| |
Collapse
|
17
|
Menon R, Gonzalez T, Ferruzzi M, Jackson E, Winderl D, Watson J. Oats-From Farm to Fork. ADVANCES IN FOOD AND NUTRITION RESEARCH 2016; 77:1-55. [PMID: 26944101 DOI: 10.1016/bs.afnr.2015.12.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Oats have a long history of use as human food and animal feed. From its origins in the Fertile Crescent, the oat has adapted to a wide range of climatic conditions and geographic regions. Its unique macro-, micro-, and phytonutrient composition, high nutritional value, and relatively low agricultural input requirements makes oats unique among cereal crops. The health benefits of the oats are becoming well established. While the connection between oat β-glucan fiber in reducing the risk of cardiovascular disease and controlling glycemia have been unequivocally established, other potential benefits including modulation of intestinal microbiota and inflammation continue to be explored. Advances in food technology are continuing to expand the diversity of oat-based foods, creating opportunities to deliver the health benefits of oats to a larger segment of the population.
Collapse
Affiliation(s)
- Ravi Menon
- The Bell Institute of Health & Nutrition, Minneapolis, MN, United States; General Mills Inc., Minneapolis, MN, United States.
| | - Tanhia Gonzalez
- The Bell Institute of Health & Nutrition, Minneapolis, MN, United States; General Mills Inc., Minneapolis, MN, United States
| | | | - Eric Jackson
- General Mills Inc., Minneapolis, MN, United States
| | - Dan Winderl
- General Mills Inc., Minneapolis, MN, United States
| | - Jay Watson
- General Mills Inc., Minneapolis, MN, United States
| |
Collapse
|
18
|
|
19
|
Boulos S, Nyström L. UPLC-MS/MS investigation of β-glucan oligosaccharide oxidation. Analyst 2016; 141:6533-6548. [DOI: 10.1039/c6an01125j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fenton-induced degradation of isomeric β-d-glucotetraoses is systematically investigated by negative mode HILIC UPLC-MS/MS with regard to the effect of the glycosidic linkage on kinetics, product profiles, and MS/MS fragmentation patterns.
Collapse
Affiliation(s)
- Samy Boulos
- ETH Zurich
- Institute of Food
- Nutrition and Health
- 8092 Zurich
- Switzerland
| | - Laura Nyström
- ETH Zurich
- Institute of Food
- Nutrition and Health
- 8092 Zurich
- Switzerland
| |
Collapse
|
20
|
Carboxymethylated glucomannan as paper strengthening agent. Carbohydr Polym 2015; 125:334-9. [DOI: 10.1016/j.carbpol.2015.02.060] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 02/24/2015] [Accepted: 02/25/2015] [Indexed: 11/19/2022]
|
21
|
Lee KY, Park SY, Lee S, Lee HG. Suitability of TEMPO-oxidized oat β-glucan for noodle preparation. Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0259-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
22
|
|
23
|
Effects of degree of carboxymethylation on physicochemical and biological properties of pachyman. Int J Biol Macromol 2012; 51:1052-6. [DOI: 10.1016/j.ijbiomac.2012.08.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 08/03/2012] [Accepted: 08/19/2012] [Indexed: 11/23/2022]
|
24
|
Mäkinen OE, Kivelä R, Nyström L, Andersen ML, Sontag-Strohm T. Formation of oxidising species and their role in the viscosity loss of cereal beta-glucan extracts. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.12.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
25
|
Ahmad A, Anjum FM, Zahoor T, Nawaz H, Dilshad SMR. Beta glucan: a valuable functional ingredient in foods. Crit Rev Food Sci Nutr 2012; 52:201-12. [PMID: 22214441 DOI: 10.1080/10408398.2010.499806] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
β-Glucan is a valuable functional ingredient and various extraction techniques are available for its extraction. Choice of an appropriate extraction technique is important as it may affect the quality, structure, rheological properties, molecular weight, and other functional properties of the extracted β-glucan. These properties lead to the use of β-glucan into various food systems and have important implications in human health. This review focuses on the extraction, synthesis, structure, molecular weight, and rheology of β-glucan. Furthermore, health implications and utilization of β-glucan in food products is also discussed.
Collapse
Affiliation(s)
- Asif Ahmad
- Department of Food Technology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan.
| | | | | | | | | |
Collapse
|
26
|
Delattre C, Chaisemartin L, Favre-Mercuret M, Berthon J, Rios L. Biological effect of β-(1,3)-polyglucuronic acid sodium salt on lipid storage and adipocytes differentiation. Carbohydr Polym 2012; 87:775-783. [DOI: 10.1016/j.carbpol.2011.08.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 08/13/2011] [Accepted: 08/21/2011] [Indexed: 11/24/2022]
|
27
|
Kivelä R, Henniges U, Sontag-Strohm T, Potthast A. Oxidation of oat β-glucan in aqueous solutions during processing. Carbohydr Polym 2012; 87:589-597. [DOI: 10.1016/j.carbpol.2011.08.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 08/09/2011] [Accepted: 08/11/2011] [Indexed: 10/17/2022]
|
28
|
Effect of oat β-glucan and its oxidised derivative on the quality characteristics of sponge cake. Int J Food Sci Technol 2011. [DOI: 10.1111/j.1365-2621.2011.02798.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Kim HJ, White PJ. Optimizing the molecular weight of oat β-glucan for in vitro bile acid binding and fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:10322-10328. [PMID: 21834529 DOI: 10.1021/jf202226u] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A previous study showed β-glucan with low molecular weight (MW, 1.56×10(5) g/mol) bound more bile acid and produced greater amounts of short-chain fatty acids (SCFA) than did β-glucan with high MW (Mn=6.87×10(5) g/mol). In the current study, β-glucan extracted from oat flour was fractionated into six different MW levels (high MW, 7.09×10(5); low level 1 (L1), 3.48×10(5); L2, 2.42×10(5); L3, 1.61×10(5); L4, 0.87×10(5); and L5, 0.46×10(5) g/mol) and evaluated to find the optimum MW affecting in vitro bile acid binding and fermentation. The β-glucan fractions with 2.42×10(5)-1.61×10(5) g/mol (L2 and L3) bound the greatest amounts of bile acid. After 24 h of fermentation, no differences were found in total SCFA formation among L1, L2, L3, and L4 fractions; however, the high MW and L5 MW fractions produced lower amounts of total SCFA. Thus, the optimum MW of β-glucan to affect both hypocholesterolemic and antitumorigenic in vitro effects was in the range of 2.42×10(5)-1.61×10(5) g/mol. This MW range also was the most water-soluble among the MWs evaluated.
Collapse
Affiliation(s)
- Hyun Jung Kim
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa 50011-1061, United States
| | | |
Collapse
|
30
|
Abstract
Elevated total and low-density lipoprotein (LDL) cholesterol levels are considered major risk factors for cardiovascular disease. Oat β-glucan, a soluble dietary fiber that is found in the endosperm cell walls of oats, has generated considerable interest due to its cholesterol-lowering properties. The United States Food and Drug Administration (FDA) approved a health claim for β-glucan soluble fiber from oats for reducing plasma cholesterol levels and risk of heart disease in 1997. Similarly, in 2004 the United Kingdom Joint Health Claims Initiative (JHCI) allowed a cholesterol-lowering health claim for oat β-glucan. The present review aims to investigate if results from more recent studies are consistent with the original conclusions reached by the FDA and JHCI. Results of this analysis show that studies conducted during the past 13 years support the suggestion that intake of oat β-glucan at daily doses of at least 3 g may reduce plasma total and low-density lipoprotein (LDL) cholesterol levels by 5-10% in normocholesterolemic or hypercholesterolemic subjects. Studies described herein have shown that, on average, oat consumption is associated with 5% and 7% reductions in total and LDL cholesterol levels, respectively. Significant scientific agreement continues to support a relationship between oat β-glucan and blood cholesterol levels, with newer data being consistent with earlier conclusions made by the FDA and JHCI.
Collapse
Affiliation(s)
- Rgia A Othman
- Department of Human Nutritional Sciences and Canadian Centre for Agri-food Research in Health and Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
31
|
Jung HY, Bae IY, Lee S, Lee HG. Effect of the degree of sulfation on the physicochemical and biological properties of Pleurotus eryngii polysaccharides. Food Hydrocoll 2011. [DOI: 10.1016/j.foodhyd.2010.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Kim H, Bartley GE, Rimando AM, Yokoyama W. Hepatic gene expression related to lower plasma cholesterol in hamsters fed high-fat diets supplemented with blueberry peels and peel extract. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:3984-3991. [PMID: 20143813 DOI: 10.1021/jf903230s] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This study analyzed plasma lipid profiles, genes related to cholesterol and bile acid metabolism, and inflammation in liver as well as adipose tissue from Syrian Golden hamsters fed high-fat diets supplemented with blueberry (BB) pomace byproducts including 8% dried whole blueberry peels (BBPWHL), 2% dried extract of peels (BBPX; 95% ethanol extract), and 6% residue from extracted peel (BBPEXT) compared to a diet containing 5% (w/w) microcrystalline cellulose (control). All BB diets significantly lowered plasma very low density lipoprotein cholesterol and total cholesterol concentrations. Interestingly, BB diets increased fecal lipid excretion. Hepatic CYP7A1 expression was up-regulated by all BB diets, and the expression of CYP51 was up-regulated by BBPX and BBPEXT diets, suggesting that both bile acid and cholesterol synthesis were increased. No significant changes in adipocyte gene expression related to inflammatory markers were observed with any BB diet. These data suggest that hepatic modulation of bile acid and cholesterol synthesis primarily contributes to the cholesterol-lowering effect of BB pomace byproducts.
Collapse
Affiliation(s)
- Hyunsook Kim
- Processed Foods Research, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, Calfifornia 94710, USA.
| | | | | | | |
Collapse
|
33
|
Kim HJ, White PJ. In vitro bile-acid binding and fermentation of high, medium, and low molecular weight beta-glucan. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:628-634. [PMID: 20020684 DOI: 10.1021/jf902508t] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The impact of beta-glucan molecular weight (MW) on in vitro bile-acid binding and in vitro fermentation with human fecal flora was evaluated. beta-Glucan extracted from oat line 'N979-5-4' was treated with lichenase (1,3-1,4-beta-D-glucanase) to yield high (6.87x10(5) g/mol), medium (3.71x10(5) g/mol), and low (1.56x10(5) g/mol) MW fractions. The low MW beta-glucan bound more bile acid than did the high MW beta-glucan (p<0.05). If the positive control, cholestyramine, was considered to bind bile acid at 100%, the relative bile-acid binding of the original oat flour and the extracted beta-glucan with high, medium, and low MW was 15, 27, 24, and 21%, respectively. Significant effects of high, medium, and low MW beta-glucans on total SCFA were observed compared to the blank without substrate (p<0.05). There were no differences in pH changes and total gas production among high, medium, and low MW beta-glucans, and lactulose. The low MW beta-glucan produced greater amounts of SCFA than the high MW after 24 h of fermentation. Among the major SCFA, more propionate was produced from all MW fractions of extracted beta-glucans than from lactulose. In vitro fermentation of extracted beta-glucan fractions with different MW lowered pH and produced SCFA, providing potential biological function.
Collapse
Affiliation(s)
- Hyun Jung Kim
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | | |
Collapse
|
34
|
Kim HJ, White PJ. In vitro fermentation of oat flours from typical and high beta-glucan oat lines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:7529-7536. [PMID: 19572543 DOI: 10.1021/jf900788c] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Two publicly available oat (Avena sativa) lines, "Jim" and "Paul" (5.17 and 5.31% beta-glucan, respectively), and one experimental oat line "N979" (7.70% beta-glucan), were used to study the effect of beta-glucan levels in oat flours during simulated in vitro digestion and fermentation with human fecal flora obtained from different individuals. The oat flours were digested by using human digestion enzymes and fermented by batch fermentation under anaerobic conditions for 24 h. The fermentation progress was monitored by measuring pH, total gas, and short-chain fatty acid (SCFA) production. Significant effects of beta-glucan on the formation of gas and total SCFA were observed compared to the blank without substrate (P < 0.05); however, there were no differences in pH changes, total gas, and total SCFA production among oat lines (P > 0.05). Acetate, propionate, and butyrate were the main SCFA produced from digested oat flours during fermentation. More propionate and less acetate were produced from digested oat flours compared to lactulose. Different human fecal floras obtained from three healthy individuals had similar patterns in the change of pH and the production of gas during fermentation. Total SCFA after 24 h of fermentation were not different, but the formation rates of total SCFA differed between individuals. In vitro fermentation of digested oat flours with beta-glucan could provide favorable environmental conditions for the colon and these findings, thus, will help in developing oat-based food products with desirable health benefits.
Collapse
Affiliation(s)
- Hyun Jung Kim
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|