1
|
Wimmer B, Langarica-Fuentes A, Schwarz E, Kleindienst S, Huhn C, Pagel H. Mechanistic modeling indicates rapid glyphosate dissipation and sorption-driven persistence of its metabolite AMPA in soil. JOURNAL OF ENVIRONMENTAL QUALITY 2023; 52:393-405. [PMID: 36417923 DOI: 10.1002/jeq2.20437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Residual concentrations of glyphosate and its main transformation product aminomethylphosphonic acid (AMPA) are often observed in soils. The factors controlling their biodegradation are currently not well understood. We analyzed sorption-limited biodegradation of glyphosate and AMPA in soil with a set of microcosm experiments. A mechanistic model that accounts for equilibrium and kinetic sorption facilitated interpretation of the experimental results. Both compounds showed a biphasic dissipation with an initial fast (up to Days 7-10) and subsequent slower transformation rate, pointing to sorption-limited degradation. Glyphosate transformation was well described by considering only equilibrium sorption. Model simulations suggested that only 0.02-0.13% of total glyphosate was present in the soil solution and thus bioavailable. Glyphosate transformation was rapid in solution (time required for 50 % dissipation of the total initially added chemical [DT50 ] = 3.9 min), and, despite strong equilibrium sorption, total glyphosate in soil dissipated quickly (DT50 = 2.4 d). Aminomethylphosphonic acid dissipation kinetics could only be described when considering both equilibrium and kinetic sorption. In comparison to glyphosate, the model simulations showed that a higher proportion of total AMPA was dissolved and directly bioavailable (0.27-3.32%), but biodegradation of dissolved AMPA was slower (DT50 = 1.9 h). The model-based data interpretation suggests that kinetic sorption strongly reduces AMPA bioavailability, leading to increased AMPA persistence in soil (DT50 = 12 d). Thus, strong sorption combined with rapid degradation points to low risks of glyphosate leaching by vertical transport through soil in the absence of preferential flow. Ecotoxicological effects on soil microorganisms might be reduced. In contrast, AMPA persists, rendering these risks more likely.
Collapse
Affiliation(s)
- Benedikt Wimmer
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Univ., Tübingen, Germany
| | - Adrian Langarica-Fuentes
- Center for Applied Geosciences/Geo- and Environmental Research Center, Eberhard Karls Univ., Tübingen, Germany
| | - Erik Schwarz
- Dep. of Biogeophysics, Institute of Soil Science and Land Evaluation, Univ. of Hohenheim, Stuttgart, Germany
- Dep. of Physical Geography and Bolin Centre for Climate Research, Stockholm Univ., Stockholm, Sweden
| | - Sara Kleindienst
- Center for Applied Geosciences/Geo- and Environmental Research Center, Eberhard Karls Univ., Tübingen, Germany
- Dep. of Environmental Microbiology, Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), Univ. of Stuttgart, Stuttgart, Germany
| | - Carolin Huhn
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Univ., Tübingen, Germany
| | - Holger Pagel
- Dep. of Biogeophysics, Institute of Soil Science and Land Evaluation, Univ. of Hohenheim, Stuttgart, Germany
| |
Collapse
|
2
|
Jing Y, Miltner A, Eggen T, Kästner M, Nowak KM. Microcosm test for pesticide fate assessment in planted water filters: 13C, 15N-labeled glyphosate as an example. WATER RESEARCH 2022; 226:119211. [PMID: 36252297 PMCID: PMC9669332 DOI: 10.1016/j.watres.2022.119211] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Planted filters are often used to remove pesticides from runoff water. However, the detailed fate of pesticides in the planted filters still remains elusive. This hampers an accurate assessment of environmental risks of the pesticides related to their fate and thereby development of proper mitigation strategies. In addition, a test system for the chemical fate analysis including plants and in particular for planted filters is not well established yet. Therefore, we developed a microcosm test to simulate the fate of pesticide in planted filters, and applied 2-13C,15N-glyphosate as a model pesticide. The fate of 2-13C,15N-glyphosate in the planted microcosms over 31 day-incubation period was balanced and compared with that in the unplanted microcosms. The mass balance of 2-13C,15N-glyphosate turnover included 13C mineralization, degradation products, and the 13C and 15N incorporation into the rhizosphere microbial biomass and plants. We observed high removal of glyphosate (> 88%) from the water mainly due to adsorption on gravel in both microcosms. More glyphosate was degraded in the planted microcosms with 4.1% of 13C being mineralized, 1.5% of 13C and 3.8% of 15N being incorporated into microbial biomass. In the unplanted microcosms, 1.1% of 13C from 2-13C,15N-glyphosate was mineralized, and only 0.2% of 13C and 0.1% of 15N were assimilated into microbial biomass. The total recovery of 13C and 15N was 81% and 85% in planted microcosms, and 91% and 93% in unplanted counterparts, respectively. The microcosm test was thus proven to be feasible for mass balance assessments of the fate of non-volatile chemicals in planted filters. The results of such studies could help better manage and design planted filters for pesticide removal.
Collapse
Affiliation(s)
- Yuying Jing
- Department of Environmental Biotechnology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, Leipzig 04318, Germany
| | - Anja Miltner
- Department of Environmental Biotechnology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, Leipzig 04318, Germany
| | - Trine Eggen
- Norwegian Institute of Bioeconomy Research - NIBIO, Postboks 115, 1431-Ås, Norway
| | - Matthias Kästner
- Department of Environmental Biotechnology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, Leipzig 04318, Germany
| | - Karolina M Nowak
- Department of Environmental Biotechnology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, Leipzig 04318, Germany.
| |
Collapse
|
3
|
Malone M, Foster E. A mixed-methods approach to determine how conservation management programs and techniques have affected herbicide use and distribution in the environment over time. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:145-157. [PMID: 30639712 DOI: 10.1016/j.scitotenv.2018.12.266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
No-till agriculture has the ability to reduce fuel consumption, increase soil moisture, reduce soil erosion and increase organic matter. However, it remains unclear whether it increases herbicide use overall in the long term for communities that use no-till as their primary source of conservation agriculture. The preponderance of literature suggests that no-till has increased herbicide use, but it is difficult to quantify how much herbicide has increased in a given location and to directly correlate changes in herbicide use to changes in soil and water quality. This paper provides several methods to determine how herbicide use has changed over time in an agricultural community in Oregon that switched over to no-till in the late 1990s and early 2000s. These methods include: spatial analysis of remote sensing satellite imagery of vegetation health along streams; use of a drone fitted with an agricultural camera to detect vegetation health; and soil, sediment, and water sampling for the most commonly used herbicides in the study area. By using these methods, this study shows where stream vegetation health continues to be an issue in the agricultural community, and where concentrations of a commonly used herbicide in the community may be impacting human and ecological health. This study has important implications for impacts to soil and water quality over time in agricultural communities, as many researchers have noted the need to determine the long term effects of conversion to no-till and other forms of conservation agriculture. By providing these methods, communities heavily engaged in multiple forms of conservation agriculture may be able to track herbicide use changes in real time and on shorter decadal time spans in places where conservation agriculture is practiced.
Collapse
Affiliation(s)
- Melanie Malone
- Portland State University, Department of Earth, Environment, and Society, PO Box 751, Portland, OR 97207-0751, USA.
| | - Eugene Foster
- Portland State University, Department of Environmental Science and Management, PO Box 751, Portland, OR 97201-0751, USA.
| |
Collapse
|
4
|
la Cecilia D, Tang FHM, Coleman NV, Conoley C, Vervoort RW, Maggi F. Glyphosate dispersion, degradation, and aquifer contamination in vineyards and wheat fields in the Po Valley, Italy. WATER RESEARCH 2018; 146:37-54. [PMID: 30223108 DOI: 10.1016/j.watres.2018.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/07/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
Biodegradation of glyphosate (GLP) and its metabolite aminomethylphosphonic acid (AMPA) was numerically assessed for a vineyard and a wheat field in the Po Valley, Italy. Calculation of the Hazard Quotient suggested that GLP and AMPA can pose a risk of aquifer contamination in the top 1.5 m depth within 50 years of GLP use. Numerical results relative to soil GLP and AMPA concentrations, and GLP age, half life, and turnover time show that GLP was equivalently removed through hydrolysis and oxidation, but the latter produced AMPA. Biodegradation processes in the root zone removed more than 90% of applied GLP and more than 23% of the produced AMPA between two consecutive applications. Doubling organic carbon availability enhanced GLP and AMPA biodegradation, especially GLP hydrolysis to sarcosine. This work highlights that GLP and AMPA removal is controlled by soil water dynamics that depend on ecohydrological boundary conditions, and by carbon sources availability to biodegraders.
Collapse
Affiliation(s)
- Daniele la Cecilia
- Laboratory for Environmental Engineering, School of Civil Engineering, The University of Sydney, Bld. J05, 2006, Sydney, NSW, Australia.
| | - Fiona H M Tang
- Laboratory for Environmental Engineering, School of Civil Engineering, The University of Sydney, Bld. J05, 2006, Sydney, NSW, Australia
| | - Nicholas V Coleman
- School of Life and Environmental Sciences, The University of Sydney, Bld. G08, 2006, Sydney, NSW, Australia
| | - Chris Conoley
- Environmental Earth Sciences International Pty Ltd, 82-84, Dickson Ave, Artarmon, NSW, Australia
| | - R Willem Vervoort
- School of Life and Environmental Sciences, The University of Sydney, Bld. G08, 2006, Sydney, NSW, Australia
| | - Federico Maggi
- Laboratory for Environmental Engineering, School of Civil Engineering, The University of Sydney, Bld. J05, 2006, Sydney, NSW, Australia
| |
Collapse
|
5
|
Nguyen NK, Dörfler U, Welzl G, Munch JC, Schroll R, Suhadolc M. Large variation in glyphosate mineralization in 21 different agricultural soils explained by soil properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:544-552. [PMID: 29426177 DOI: 10.1016/j.scitotenv.2018.01.204] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/18/2018] [Accepted: 01/20/2018] [Indexed: 06/08/2023]
Abstract
Glyphosate and its main metabolite aminomethylphosphonic acid (AMPA) have frequently been detected in surface water and groundwaters. Since adequate glyphosate mineralization in soil may reduce its losses to environment, improved understanding of site specific factors underlying pesticide mineralization in soils is needed. The aim of this study was to investigate the relationship between soil properties and glyphosate mineralization. To establish a sound basis for resilient correlations, the study was conducted with a large number of 21 agricultural soils, differing in a variety of soil parameters, such as soil texture, soil organic matter content, pH, exchangeable ions etc. The mineralization experiments were carried out with 14C labelled glyphosate at a soil water tension of -15 kPa and at a soil density of 1.3 g cm-3 at 20 ± 1 °C for an incubation period of 32 days. The results showed that the mineralization of glyphosate in different agricultural soils varied to a great extent, from 7 to 70% of the amount initially applied. Glyphosate mineralization started immediately after application, the highest mineralization rates were observed within the first 4 days in most of the 21 soils. Multiple regression analysis revealed exchangeable acidity (H+ and Al3+), exchangeable Ca2+ ions and ammonium lactate extractable K to be the key soil parameters governing glyphosate mineralization in the examined soils. A highly significant negative correlation between mineralized glyphosate and NaOH-extractable residues (NaOH-ER) in soils strongly suggests that NaOH-ER could be used as a simple and reliable parameter for evaluating the glyphosate mineralization capacity. The NaOH-ER were composed of glyphosate, unknown 14C-residues, and AMPA (12%-65%, 3%-34%, 0%-11% of applied 14C, respectively). Our results highlighted the influential role of soil exchangeable acidity, which should therefore be considered in pesticide risk assessments and management to limit efficiently the environmental transfers of glyphosate.
Collapse
Affiliation(s)
- Nghia Khoi Nguyen
- Cantho University, Department of Soil Science, Cantho City, Viet Nam; Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Ulrike Dörfler
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Gerhard Welzl
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Jean Charles Munch
- Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, 85354 Freising, Germany
| | - Reiner Schroll
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Marjetka Suhadolc
- University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| |
Collapse
|
6
|
Okada E, Pérez D, De Gerónimo E, Aparicio V, Massone H, Costa JL. Non-point source pollution of glyphosate and AMPA in a rural basin from the southeast Pampas, Argentina. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:15120-15132. [PMID: 29556978 DOI: 10.1007/s11356-018-1734-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
We measured the occurrence and seasonal variations of glyphosate and its metabolite, aminomethylphosphonic acid (AMPA), in different environmental compartments within the limits of an agricultural basin. This topic is of high relevance since glyphosate is the most applied pesticide in agricultural systems worldwide. We were able to quantify the seasonal variations of glyphosate that result mainly from endo-drift inputs, that is, from direct spraying either onto genetically modified (GM) crops (i.e., soybean and maize) or onto weeds in no-till practices. We found that both glyphosate and AMPA accumulate in soil, but the metabolite accumulates to a greater extent due to its higher persistence. Knowing that glyphosate and AMPA were present in soils (> 93% of detection for both compounds), we aimed to study the dispersion to other environmental compartments (surface water, stream sediments, and groundwater), in order to establish the degree of non-point source pollution. Also, we assessed the relationship between the water-table depth and glyphosate and AMPA levels in groundwater. All of the studied compartments had variable levels of glyphosate and AMPA. The highest frequency of detections was found in the stream sediments samples (glyphosate 95%, AMPA 100%), followed by surface water (glyphosate 28%, AMPA 50%) and then groundwater (glyphosate 24%, AMPA 33%). Despite glyphosate being considered a molecule with low vertical mobility in soils, we found that its detection in groundwater was strongly associated with the month where glyphosate concentration in soil was the highest. However, we did not find a direct relation between groundwater table depth and glyphosate or AMPA detections. This is the first simultaneous study of glyphosate and AMPA seasonal variations in soil, groundwater, surface water, and sediments within a rural basin.
Collapse
Affiliation(s)
- Elena Okada
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina.
- INTA (Instituto Nacional de Tecnología Agropecuaria), Route 226 Km 73.5, 7620, Balcarce, Argentina.
| | - Débora Pérez
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina
- INTA (Instituto Nacional de Tecnología Agropecuaria), Route 226 Km 73.5, 7620, Balcarce, Argentina
| | - Eduardo De Gerónimo
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina
- INTA (Instituto Nacional de Tecnología Agropecuaria), Route 226 Km 73.5, 7620, Balcarce, Argentina
| | - Virginia Aparicio
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina
- INTA (Instituto Nacional de Tecnología Agropecuaria), Route 226 Km 73.5, 7620, Balcarce, Argentina
| | - Héctor Massone
- Instituto de Geología de Costas y del Cuaternario FCEyN (Facultad de Ciencias Exactas y Naturales), Universidad Nacional de Mar del Plata, Funes 3350, 7600, Mar del Plata, Argentina
| | - José Luis Costa
- INTA (Instituto Nacional de Tecnología Agropecuaria), Route 226 Km 73.5, 7620, Balcarce, Argentina
| |
Collapse
|
7
|
Yan W, Jing C. Molecular Insights into Glyphosate Adsorption to Goethite Gained from ATR-FTIR, Two-Dimensional Correlation Spectroscopy, and DFT Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1946-1953. [PMID: 29353483 DOI: 10.1021/acs.est.7b05643] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Glyphosate (PMG) complexation on iron (hydr)oxides impacts its fate and transport in the environment. To decipher the molecular-level interfacial configuration and reaction mechanism of PMG on iron (hydr)oxides, the PMG protonation process, which influences the chemical and physical properties of PMG, was first determined using ATR-FTIR spectroscopy. The FTIR results reveal that the deprotonation occurs at carboxylate oxygen when pKa1< pH < pKa2, at phosphonate oxygen when pKa2< pH < pKa3, and at amino nitrogen when pH > pKa3. PMG complexation on goethite was investigated using in situ flow-cell ATR-FTIR, two-dimensional correlation spectroscopy (2D-COS), and density functional theory (DFT) calculations. The results indicate that the phosphonate group on PMG interacts with goethite to form inner-sphere complexes with multiple configurations depending on pH: binuclear bidentate (BB) and mononuclear bidentate (MB) without proton under acidic conditions (pH 5), mononuclear monodentate (MM) with proton and BB without proton at pH 6-8, and MM without proton under alkaline conditions (pH 9). Phosphate competition significantly impacted the PMG adsorption capacity and its interfacial configurations. As a result, the stability of the adsorbed PMG was impaired, as evidenced by its elevated leachability. These results improve our understanding of PMG-mineral interactions at the molecular level and have significant implications for risk assessment for PMG and structural analog pollutants.
Collapse
Affiliation(s)
- Wei Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Chuanyong Jing
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|
8
|
Yang X, Wang F, Bento CPM, Meng L, van Dam R, Mol H, Liu G, Ritsema CJ, Geissen V. Decay characteristics and erosion-related transport of glyphosate in Chinese loess soil under field conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 530-531:87-95. [PMID: 26026412 DOI: 10.1016/j.scitotenv.2015.05.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
UNLABELLED The decay characteristics and erosion-related transport of glyphosate and aminomethylphosphonic acid (AMPA) were monitored for 35 d at different slope gradients and rates of application in plots with loess soil on the Loess Plateau, China. The initial glyphosate decayed rapidly (half-life of 3.5d) in the upper 2 cm of soil following a first-order rate of decay. AMPA content in the 0-2 cm soil layer correspondingly peaked 3d after glyphosate application and then gradually decreased. The residues of glyphosate and AMPA decreased significantly with soil depth (p<0.05) independently of the slope inclination and application rate. About 0.36% of the glyphosate initially applied was transported from plots after one erosive rain 2d after the application. Glyphosate and AMPA concentrations in runoff were low while the contents in the sediment were much higher than in the upper 2 cm of the soil. CAPSULE Although the rate of glyphosate decay is rapid in Chinese loess soil, the risks of glyphosate and AMPA need to be taken into account especially in the area with highly erosive rainfall.
Collapse
Affiliation(s)
- Xiaomei Yang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, 712100 Yangling, China; Soil Physics and Land Management, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Fei Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, 712100 Yangling, China; Institute of Soil and Water Conservation, Northwest A&F University, 712100 Yangling, China.
| | - Célia P M Bento
- Soil Physics and Land Management, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Lei Meng
- College of Geography and Environment, Baoji University of Arts and Sciences, 712300 Baoji, Shaanxi, China
| | - Ruud van Dam
- Institute of Food Safety (RIKILT), Wageningen University, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - Hans Mol
- Institute of Food Safety (RIKILT), Wageningen University, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - Guobin Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, 712100 Yangling, China; Institute of Soil and Water Conservation, Northwest A&F University, 712100 Yangling, China
| | - Coen J Ritsema
- Soil Physics and Land Management, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Violette Geissen
- Soil Physics and Land Management, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands; Institute of Crop Science and Resources Conservation (INRES), University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
9
|
Yang X, Wang F, Bento CPM, Xue S, Gai L, van Dam R, Mol H, Ritsema CJ, Geissen V. Short-term transport of glyphosate with erosion in Chinese loess soil--a flume experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 512-513:406-414. [PMID: 25644837 DOI: 10.1016/j.scitotenv.2015.01.071] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/13/2015] [Accepted: 01/22/2015] [Indexed: 05/25/2023]
Abstract
Repeated applications of glyphosate may contaminate the soil and water and threaten their quality both within the environmental system and beyond it through water erosion related processes and leaching. In this study, we focused on the transport of glyphosate and its metabolite aminomethylphosphonic acid (AMPA) related to soil erosion at two slope gradients (10 and 20°), two rates of pesticide with a formulation of glyphosate (Roundup®) application (360 and 720 mg m(-2)), and a rain intensity of 1.0 mm min(-1) for 1 h on bare soil in hydraulic flumes. Runoff and erosion rate were significantly different within slope gradients (p<0.05) while suspended load concentration was relatively constant after 15 min of rainfall. The glyphosate and AMPA concentration in the runoff and suspended load gradually decreased. Significant power and exponent function relationship were observed between rainfall duration and the concentration of glyphosate and AMPA (p<0.01) in runoff and suspended load, respectively. Meanwhile, glyphosate and AMPA content in the eroded material depended more on the initial rate of application than on the slope gradients. The transport rate of glyphosate by runoff and suspended load was approximately 14% of the applied amount, and the chemicals were mainly transported in the suspended load. The glyphosate and AMPA content in the flume soil at the end of the experiment decreased significantly with depth (p<0.05), and approximately 72, 2, and 3% of the applied glyphosate (including AMPA) remained in the 0-2, 2-5, and 5-10 cm soil layers, respectively. The risk of contamination in deep soil and the groundwater was thus low, but 5% of the initial application did reach the 2-10 cm soil layer. The risk of contamination of surface water through runoff and sedimentation, however, can be considerable, especially in regions where rain-induced soil erosion is common.
Collapse
Affiliation(s)
- Xiaomei Yang
- Institute of Soil and Water Conservation, Northwest A&F University, 712100 Yangling, China; Soil Physics and Land Management, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands; State Key Laboratory of Soil Erosion Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, 712100 Yangling, China.
| | - Fei Wang
- Institute of Soil and Water Conservation, Northwest A&F University, 712100 Yangling, China; State Key Laboratory of Soil Erosion Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, 712100 Yangling, China.
| | - Célia P M Bento
- Soil Physics and Land Management, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Sha Xue
- Institute of Soil and Water Conservation, Northwest A&F University, 712100 Yangling, China; State Key Laboratory of Soil Erosion Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, 712100 Yangling, China
| | - Lingtong Gai
- Soil Physics and Land Management, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Ruud van Dam
- RIKILT-Institute of Food Safety, Wageningen University, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - Hans Mol
- RIKILT-Institute of Food Safety, Wageningen University, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - Coen J Ritsema
- Soil Physics and Land Management, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Violette Geissen
- Soil Physics and Land Management, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands; Institute of Crop Science and Resources Conservation (INRES), University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
10
|
Myung K, Madary MW, Satchivi NM. A simple method to determine mineralization of (14) C-labeled compounds in soil. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:1303-1307. [PMID: 24677225 DOI: 10.1002/etc.2558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/21/2014] [Accepted: 02/14/2014] [Indexed: 06/03/2023]
Abstract
Degradation of organic compounds in soil is often determined by measuring the decrease of the parent compound and analyzing the occurrence of its metabolites. However, determining carbon species as end products of parent compound dissipation requires using labeled materials that allow more accurate determination of the environmental fate of the compound of interest. The current conventional closed system widely used to monitor degradation of (14) C-labeled compounds in soil is complex and expensive and requires a specialized apparatus and facility. In the present study, the authors describe a simple system that facilitates measurement of mineralization of (14) C-labeled compounds applied to soil samples. In the system, soda lime pellets to trap mineralized (14) C-carbon species, including carbon dioxide, were placed in a cup, which was then inserted above the treated soil sample in a tube. Mineralization of [(14) C]2,4-D applied to soil samples in the simple system was compared with that in the conventional system. The simple system provided an equivalent detection of (14) C-carbon species mineralized from the parent compound. The results demonstrate that this cost- and space-effective simple system is suitable for examining degradation and mineralization of (14) C-labeled compounds in soil and could potentially be used to investigate their mineralization in other biological matrices.
Collapse
Affiliation(s)
- Kyung Myung
- Discovery Research, Dow AgroSciences, Indianapolis, Indiana, USA
| | | | | |
Collapse
|
11
|
Badawi N, Johnsen AR, Sørensen J, Aamand J. Centimeter-scale spatial variability in 2-methyl-4-chlorophenoxyacetic Acid mineralization increases with depth in agricultural soil. JOURNAL OF ENVIRONMENTAL QUALITY 2013; 42:683-689. [PMID: 23673934 DOI: 10.2134/jeq2012.0397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Mineralization of organic chemicals in soil is typically studied using large homogenized samples, but little is known about the small-scale spatial distribution of mineralization potential. We studied centimeter-scale spatial distribution of 2-methyl-4-chlorophenoxyacetic acid (MCPA) mineralization activity at different depths (8-115 cm) in a Danish agricultural soil profile using a 96-well microplate C-radiorespirometric method for small-volume samples. The heterotrophic microbial population and specific MCPA degraders decreased 10- to 100-fold from the plow layer to a depth of 115 cm. MCPA was mineralized in all samples in the plow layer, but only about 60% in the transition zone immediately below the plow layer showed mineralization; at greater depth even fewer samples showed mineralization. A patchy spatial distribution of mineralization activity was observed from right below the plow layer and in the subsoil, with a few clearly defined active zones surrounded by areas devoid of mineralization activity. Due to the patchy distribution of mineralization activity at the centimeter scale just beneath the plow layer, MCPA and presumably other weakly sorbing pesticides might be at risk of leaching to the groundwater if transported from the plow layer into the subsoil.
Collapse
|
12
|
Duke SO, Lydon J, Koskinen WC, Moorman TB, Chaney RL, Hammerschmidt R. Glyphosate effects on plant mineral nutrition, crop rhizosphere microbiota, and plant disease in glyphosate-resistant crops. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:10375-97. [PMID: 23013354 PMCID: PMC3479986 DOI: 10.1021/jf302436u] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 09/24/2012] [Accepted: 09/26/2012] [Indexed: 05/09/2023]
Abstract
Claims have been made recently that glyphosate-resistant (GR) crops sometimes have mineral deficiencies and increased plant disease. This review evaluates the literature that is germane to these claims. Our conclusions are: (1) although there is conflicting literature on the effects of glyphosate on mineral nutrition on GR crops, most of the literature indicates that mineral nutrition in GR crops is not affected by either the GR trait or by application of glyphosate; (2) most of the available data support the view that neither the GR transgenes nor glyphosate use in GR crops increases crop disease; and (3) yield data on GR crops do not support the hypotheses that there are substantive mineral nutrition or disease problems that are specific to GR crops.
Collapse
Affiliation(s)
- Stephen O Duke
- USDA, ARS Natural Products Utilization Research Unit, P.O. Box 8048, University, Mississippi 38677, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Shipitalo MJ, Owens LB. Comparative losses of glyphosate and selected residual herbicides in surface runoff from conservation-tilled watersheds planted with corn or soybean. JOURNAL OF ENVIRONMENTAL QUALITY 2011; 40:1281-9. [PMID: 21712598 DOI: 10.2134/jeq2010.0454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Residual herbicides regularly used in conjunction with conservation tillage to produce corn ( L.) and soybean [ (L.) Merr] are often detected in surface water at concentrations that exceed their U.S. maximum contaminant levels (MCL) and ecological standards. These risks might be reduced by planting glyphosate-tolerant varieties of these crops and totally or partially replacing the residual herbicides alachlor, atrazine, linuron, and metribuzin with glyphosate, a contact herbicide that has a short half-life and is strongly sorbed to soil. Therefore, we applied both herbicide types at typical rates and times to two chisel-plowed and two no-till watersheds in a 2-yr corn/soybean rotation and at half rates to three disked watersheds in a 3-yr corn/soybean/wheat-red clover ( L.- L.) rotation and monitored herbicide losses in surface runoff for three crop years. Average dissolved glyphosate loss for all tillage practices, as a percentage of the amount applied, was significantly less ( ≤ 0.05) than the losses of atrazine (21.4x), alachlor (3.5x), and linuron (8.7x) in corn-crop years. Annual, flow-weighted, concentration of atrazine was as high as 41.3 μg L, much greater than its 3 μg L MCL. Likewise, annual, flow-weighted alachlor concentration (MCL = 2 μg L) was as high as 11.2 and 4.9 μg L in corn- and soybean-crop years, respectively. In only one runoff event during the 18 watershed-years it was applied did glyphosate concentration exceed its 700 μg L MCL and the highest, annual, flow-weighted concentration was 3.9 μg L. Planting glyphosate-tolerant corn and soybean and using glyphosate in lieu of some residual herbicides should reduce the impact of the production of these crops on surface water quality.
Collapse
|
14
|
Ghafoor A, Jarvis NJ, Thierfelder T, Stenström J. Measurements and modeling of pesticide persistence in soil at the catchment scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:1900-8. [PMID: 21353292 DOI: 10.1016/j.scitotenv.2011.01.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 01/19/2011] [Accepted: 01/26/2011] [Indexed: 05/30/2023]
Abstract
Degradation of pesticides in soils is both spatially variable and also one of the most sensitive factors determining losses to surface water and groundwater. To date, no general guidance is available on suitable approaches for dealing with spatial variation in pesticide degradation in catchment or regional scale modeling applications. The purpose of the study was therefore to study the influence of various soil physical, chemical and microbiological characteristics on pesticide persistence in the contrasting cultivated soils found in a small (13 km(2)) agricultural catchment in Sweden and to develop and test a simple model approach that could support catchment scale modeling. Persistence of bentazone, glyphosate and isoproturon was investigated in laboratory incubation experiments. Degradation rate constants were highly variable with coefficients of variation ranging between 42 and 64% for the three herbicides. Multiple linear regression analysis and Mallows Cp statistic were employed to select the best set of independent parameters accounting for the variation in degradation. Soil pH and the proportion of active microorganisms (r) together explained 69% of the variation in the bentazone degradation rate constant; the Freundlich sorption co-efficient (K(f)) and soil laccase activity together explained 88% of the variation in degradation rate of glyphosate, while soil pH was a significant predictor (p<0.05) for isoproturon persistence. However, correlations between many potential predictor variables made clear interpretations of the statistical analysis difficult. Multiplicative models based on two predictors chosen 'a priori', one accounting for microbial activity (e.g. microbial respiration, laccase activity or the surrogate variable soil organic carbon, SOC) and one accounting for the effects of sorption on bioavailability, showed promise to support predictions of degradation for large-scale modeling applications, explaining up to 50% of the variation in herbicide persistence.
Collapse
Affiliation(s)
- A Ghafoor
- Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), P.O. Box 7014, SE-75007 Uppsala, Sweden.
| | | | | | | |
Collapse
|
15
|
Ding W, Reddy KN, Zablotowicz RM, Bellaloui N, Arnold Bruns H. Physiological responses of glyphosate-resistant and glyphosate-sensitive soybean to aminomethylphosphonic acid, a metabolite of glyphosate. CHEMOSPHERE 2011; 83:593-8. [PMID: 21190714 DOI: 10.1016/j.chemosphere.2010.12.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 11/21/2010] [Accepted: 12/03/2010] [Indexed: 05/03/2023]
Abstract
Aminomethylphosphonic acid (AMPA) is formed in glyphosate-treated glyphosate-resistant (GR) and glyphosate-sensitive (GS) soybean [Glycine max (L.) Merr.] plants and is known to cause yellowing in soybean. Although, AMPA is less phytotoxic than glyphosate, its mode of action is different from that of glyphosate and is still unknown. Greenhouse studies were conducted at Stoneville, MS to determine the effects of AMPA on plant growth, chlorophyll content, photosynthesis, nodulation, nitrogenase activity, nitrate reductase activity, and shoot nitrogen content in GR and GS soybeans. AMPA was applied to one- to two-trifoliolate leaf stage soybeans at 0.1 and 1.0 kg ha(-1), representing a scenario of 10% and 100% degradation of glyphosate (1.0 kg ae ha(-1) use rate) to AMPA, respectively. Overall, AMPA effects were more pronounced at 1.0 kg ha(-1) than at 0.1 kg ha(-1) rate. Visual plant injury (18-27%) was observed on young leaves within 3d after treatment (DAT) with AMPA at the higher rate regardless of soybean type. AMPA injury peaked to 46-49% at 14 DAT and decreased to 17-18% by 28 DAT, in both soybean types. AMPA reduced the chlorophyll content by 37%, 48%, 66%, and 23% in GR soybean, and 17%, 48%, 57%, and 22% in GS soybean at 3, 7, 14, and 28 DAT, respectively. AMPA reduced the photosynthesis rate by 65%, 85%, and 77% in GR soybean and 59%, 88%, and 69% in GS soybean at 3, 7, and 14 DAT, respectively, compared to non-treated plants. Similarly, AMPA reduced stomatal conductance to water vapor and transpiration rates at 3, 7, and 14 DAT compared to non-treated plants in both soybean types. Photosynthesis rate, stomatal conductance, and transpiration rate recovered to the levels of non-treated plants by 28 DAT. Plant height and shoot dry weight at 28 DAT; nodulation, nitrogenase activity at 10 DAT, and nitrate reductase activity at 3 and 14 DAT were unaffected by AMPA. AMPA reduced root respiration and shoot nitrogen content at 10 DAT. These results suggest that a foliar application of AMPA could indirectly reduce photosynthesis through decreased chlorophyll content in GR and GS soybean up to 14 DAT, but affected plants can recover to normal growth by 28 DAT.
Collapse
Affiliation(s)
- Wei Ding
- US Department of Agriculture, Agricultural Research Service, Crop Production Systems Research Unit, P.O. Box 350, 141 Experiment Station Road, Stoneville, MS 38776, USA
| | | | | | | | | |
Collapse
|
16
|
Ermakova IT, Kiseleva NI, Shushkova T, Zharikov M, Zharikov GA, Leontievsky AA. Bioremediation of glyphosate-contaminated soils. Appl Microbiol Biotechnol 2010; 88:585-94. [PMID: 20676632 DOI: 10.1007/s00253-010-2775-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 07/09/2010] [Accepted: 07/10/2010] [Indexed: 10/19/2022]
Abstract
Based on the results of laboratory and field experiments, we performed a comprehensive assessment of the bioremediation efficiency of glyphosate-contaminated soddy-podzol soil. The selected bacterial strains Achromobacter sp. Kg 16 (VKM B-2534D) and Ochrobactrum anthropi GPK 3 (VKM B-2554D) were used for the aerobic degradation of glyphosate. They demonstrated high viability in soil with the tenfold higher content of glyphosate than the recommended dose for the single in situ treatment of weeds. The strains provided a two- to threefold higher rate of glyphosate degradation as compared to indigenous soil microbial community. Within 1-2 weeks after the strain introduction, the glyphosate content of the treated soil decreased and integral toxicity and phytotoxicity diminished to values of non-contaminated soil. The decrease in the glyphosate content restored soil biological activity, as is evident from a more than twofold increase in the dehydrogenase activity of indigenous soil microorganisms and their biomass (1.2-fold and 1.6-fold for saprotrophic bacteria and fungi, respectively). The glyphosate-degrading strains used in this study are not pathogenic for mammals and do not exhibit integral toxicity and phytotoxicity. Therefore, these strains are suitable for the efficient, ecologically safe, and rapid bioremediation of glyphosate-contaminated soils.
Collapse
Affiliation(s)
- Inna T Ermakova
- G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| | | | | | | | | | | |
Collapse
|