1
|
Colasanto A, Disca V, Travaglia F, Bordiga M, Coïsson JD, Arlorio M, Locatelli M. Bioaccessibility of phenolic compounds during simulated gastrointestinal digestion of black rice (Oryza sativa L., cv. Artemide). Food Chem 2025; 472:142889. [PMID: 39832402 DOI: 10.1016/j.foodchem.2025.142889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/21/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
Black rice can be defined as a natural functional food, due to its high content of antioxidant polyphenols, particularly anthocyanins and phenolic acids. The objective of this study was to assess the fate of the main phenolic compounds in cooked black rice through in vitro digestion, defining both their soluble and insoluble fractions at the different digestive phases. The digestion significantly impacted the stability of the molecules, more specifically anthocyanins, which tend to be stable up to the gastric level and then degrade during the intestinal phase; after gastrointestinal digestion the total recovery of cyanidin-3-O-glucoside, the most abundant anthocyanin, was 52.4 %. On the other hand, bioaccessibility of free phenolic acids progressively increases up to the intestinal phase, with a total recovery of protocatechuic acid, the most represented phenolic acid in free form, of 84.3 %. Finally bound phenolic acids were not significantly released during the digestive phases.
Collapse
Affiliation(s)
- Antonio Colasanto
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale, 28100, Novara, Italy.
| | - Vincenzo Disca
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale, 28100, Novara, Italy.
| | - Fabiano Travaglia
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale, 28100, Novara, Italy.
| | - Matteo Bordiga
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale, 28100, Novara, Italy.
| | - Jean Daniel Coïsson
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale, 28100, Novara, Italy.
| | - Marco Arlorio
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale, 28100, Novara, Italy.
| | - Monica Locatelli
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale, 28100, Novara, Italy.
| |
Collapse
|
2
|
Martin M, Boulaire M, Lucas C, Peltier A, Pourtau L, Gaudout D, Layé S, Pallet V, Joffre C, Dinel AL. Plant Extracts and ω-3 Improve Short-Term Memory and Modulate the Microbiota-Gut-Brain Axis in D-galactose Model Mice. J Nutr 2024; 154:3704-3717. [PMID: 39332773 DOI: 10.1016/j.tjnut.2024.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
BACKGROUND Aging, characterized by a slow and progressive alteration of cognitive functions, is associated with gut microbiota dysbiosis, low-grade chronic inflammation, as well as increased oxidative stress and neurofunctional alterations. Some nutrients, such as polyphenols, carotenoids, and omega (ω)-3 (n-3), are good candidates to prevent age-related cognitive decline, because of their immunomodulatory, antioxidant, and neuroprotective properties. OBJECTIVES The objective of this study was to demonstrate the preventive effect of a combination of plant extracts (PE) containing Memophenol™ (grapes and blueberries polyphenols) and a patented saffron extract (saffron carotenoids and safranal) and ω-3 on cognitive function in a mouse model of accelerated aging and to understand the biological mechanisms involved. METHODS We used an accelerated-aging model by injecting 3-mo-old male C57Bl6/J mice with D-galactose for 8 wk, during which they were fed with a balanced control diet and supplemented or not with PE and/or ω-3 (n = 15-16/group). Short-term memory was evaluated by Y-maze test, following analyses of hippocampal and intestinal RNA expressions, brain fatty acid and oxylipin amounts, and gut microbiota composition (16S rRNA gene sequencing). Statistical analyses were performed (t test, analysis of variance, and Pearson correlation). RESULTS Our results showed that oral administration of PE, ω-3, or both (mix) prevented hippocampus-dependent short-term memory deficits induced by D-galactose (P < 0.05). This effect was accompanied by the modulation of gut microbiota, altered by the treatment. PE and the mix increased the expression of antioxidative and neurogenesis markers, such as catalase and doublecortin, in hippocampus (P < 0.05 for both). Moreover, ω-3 and the mix showed a higher ω-3 amounts (P < 0.05) and EPA-derived 18- hydroxyeicosapentaenoic acid (P < 0.001) in prefrontal cortex. These changes may contribute to the improvement in memory. CONCLUSIONS These results suggest that the mix of PE and ω-3 could be more efficient at attenuating age-related cognitive decline than individual supplementations because it targeted, in mice, the different pathways impaired with aging.
Collapse
Affiliation(s)
- Marie Martin
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France; Activ'Inside, 12 route de Beroy, ZA du Grand Cazeau, Beychac-et-Caillau
| | - Milan Boulaire
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France
| | - Céline Lucas
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France; NutriBrain Research and Technology Transfer, NutriNeuro, Bordeaux, France
| | - Adrien Peltier
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France; NutriBrain Research and Technology Transfer, NutriNeuro, Bordeaux, France
| | - Line Pourtau
- Activ'Inside, 12 route de Beroy, ZA du Grand Cazeau, Beychac-et-Caillau
| | - David Gaudout
- Activ'Inside, 12 route de Beroy, ZA du Grand Cazeau, Beychac-et-Caillau
| | - Sophie Layé
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France
| | - Véronique Pallet
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France
| | - Corinne Joffre
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France
| | - Anne-Laure Dinel
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France; NutriBrain Research and Technology Transfer, NutriNeuro, Bordeaux, France.
| |
Collapse
|
3
|
Saha R, Majie A, Baidya R, Sarkar B. Verbascoside: comprehensive review of a phenylethanoid macromolecule and its journey from nature to bench. Inflammopharmacology 2024:10.1007/s10787-024-01555-3. [PMID: 39162902 DOI: 10.1007/s10787-024-01555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
Polyphenolic compounds are among the most widely researched compounds for various therapeutic applications. However, naturally occurring phenylethanoid glycosides are least explored under this class of compounds. One such phenylethanoid glycoside, verbascoside (Vb), abundantly found among 200 species of 23 families, has gained recent attention due to its wide-spectrum therapeutic properties such as antioxidant, antimicrobial, anti-inflammatory, neuroprotective, cardioprotective, skin-protective, and anti-cancer. Despite having multiple therapeutic benefits, due to its large size, the compound has poor bioavailability for oral and topical applications. To meet these limitations, current research on Vb focuses on delivering it through nanoformulations. Presently, most developed formulations are liposome based for various applications, such as corneal epithelial wound healing, anti-neuropathic, anti-wrinkle, anti-hyperalgesia, atopic dermatitis, alopecia, and cutaneous wound healing. Multiple studies have confirmed the least acute and sub-acute toxicity for Vb. Few clinical studies have been performed for the therapeutic application of Vb to manage COVID-19, nephropathy, platelet aggregation, chronic primary glomerulonephritis, and acute hepatitis. Recent studies have shown the immense therapeutic potential of Vb in wound healing, dermatitis, neuroprotection, and anti-cancer activities, which creates a need for developing novel formulations for their respective uses. Long-term toxicity studies and techniques for scaling up Vb production by biotechnological approaches should be emphasized.
Collapse
Affiliation(s)
- Rajdeep Saha
- Group Polyphenol-BIT, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Ankit Majie
- Group Polyphenol-BIT, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Ritika Baidya
- Group Polyphenol-BIT, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Biswatrish Sarkar
- Group Polyphenol-BIT, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India.
| |
Collapse
|
4
|
Billowria K, Ali R, Rangra NK, Kumar R, Chawla PA. Bioactive Flavonoids: A Comprehensive Review on Pharmacokinetics and Analytical Aspects. Crit Rev Anal Chem 2024; 54:1002-1016. [PMID: 35930461 DOI: 10.1080/10408347.2022.2105641] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Flavonoids are a diversified group of natural substances which were discovered to provide a variety of health benefits in human beings. Vegetables, fruits, wine and tea are the primary flavonoid dietary sources for humans and as the flavonoids are so closely connected to human dietary items and health, it is vital to explore the structural-activity connection. The arrangement, replacement of functional groups, and total number of hydroxyl groups around flavonoid's nucleus structure affect their biological activity, metabolism, and bioavailability. Various flavonoids have been proven to have hepatoprotective properties, that help in the prevention of coronary heart disease. Similarly, these flavonoids also possess anticancer, and anti-inflammatory activities. Flavonoids have been found to have a functional and structural link with their enzyme inhibitory action, that appears to have antiviral effect through acting as antioxidants, damaging cell membranes, blocking enzymes, activating mechanisms of host self-defense, and limiting virus penetration and attaching to cells. Identification, characterization, isolation, and biological role of flavonoids, as well as their uses on health advantages, are all major topics in research and development currently. This review represents a summary of various sources of flavonoids, class, subclass, their chemical structures, biological activities, the pharmacokinetics of flavonoids and various analytical, bioanalytical and electrochemical methods for determination of flavonoids from different matrices.
Collapse
Affiliation(s)
- Koushal Billowria
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, India
| | - Rouchan Ali
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, India
| | | | - Ram Kumar
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, India
| | - Pooja A Chawla
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, India
| |
Collapse
|
5
|
Qin S, Li R, McClements DJ, Chen Y, Duan Z, Chen M, Dai Y, Liao L, Zhou W, Li J. Macronutrient digestion and polyphenol bioaccessibility in oat milk tea products: an in vitro gastrointestinal tract study. Food Funct 2024; 15:7478-7490. [PMID: 38915263 DOI: 10.1039/d4fo01439a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
People are increasingly preparing milk tea using plant-based milks rather than cow's milk, e.g., vegans, those with lactose intolerance, and those with flavor preferences. However, adding plant-based milks to tea may impact the digestion, release, and bioaccessibility of nutrients and nutraceuticals in both the tea and milk. In this study, oat milk tea model systems (OMTMSs) containing different fat and tea polyphenol concentrations were used to explore the impact of tea on macronutrient digestion in oat milk, as well as the impact of oat milk matrix on the polyphenol bioaccessibility in the tea. An in vitro gastrointestinal model that mimics the mouth, stomach, and small intestine was used. Tea polyphenols (>0.25%) significantly reduced the glucose and free fatty acids released from oat milk after intestinal digestion. Tea polyphenols (>0.10%) also inhibited protein digestion in oat milk during gastric digestion but not during intestinal digestion. The bioaccessibility of the polyphenols in the tea depended on the fat content of oat milk, being higher for medium-fat (3.0%) and high-fat (5.8%) oat milk than low-fat (1.5%) oat milk. Liquid chromatography-tandem mass spectrometry (UPLC-ESI-MS/MS) analysis showed that lipids improved the tea polyphenol bioaccessibility by influencing the release of flavonoids and phenolic acids from the food matrices. These results provide important information about the impact of tea on the gastrointestinal fate of oat milk, and vice versa, which may be important for enhancing the healthiness of plant-based beverages.
Collapse
Affiliation(s)
- Sirui Qin
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ruyi Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | | | - Ying Chen
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| | - Zhihao Duan
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| | - Mianhong Chen
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| | - Yaping Dai
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| | - Liangkun Liao
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| | - Wei Zhou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| | - Jihua Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| |
Collapse
|
6
|
Ośko J, Nasierowska K, Grembecka M. Application of In Vitro Digestion Models in the Evaluation of Dietary Supplements. Foods 2024; 13:2135. [PMID: 38998641 PMCID: PMC11240933 DOI: 10.3390/foods13132135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Nowadays, dietary supplements are a permanent part of our diet. Using various simulated in vitro digestive models, the bioavailability of dietary supplement ingredients has also been investigated. In most cases, static models are used instead of dynamic ones. This article focuses on the division of applications of in vitro methods, such as assessing the quality of dietary supplements (in chemical and pharmaceutical form), the impact of diet on the assessment of the bioavailability of product ingredients, the impact of supplement ingredients on the state of intestinal microflora, and the development of new products using various encapsulation methods. The review included publications from 2000 to 2024 showing the use of in vitro methods in dietary supplements containing polysaccharides, proteins, elements, vitamins, and bioactive substances, as well as probiotic and prebiotic products. The impact of components in dietary supplements on the human digestive tract and their degree of bioaccessibility were determined through the use of in vitro methods. The application of in vitro methods has also become an effective tool for designing new forms of dietary supplements in order to increase the availability and durability of labile ingredients in these products.
Collapse
Affiliation(s)
- Justyna Ośko
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, Gen. J. Hallera Avenue 107, 80-416 Gdańsk, Poland
| | - Katarzyna Nasierowska
- Student Scientific Circle, Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, Gen. J. Hallera Avenue 107, 80-416 Gdańsk, Poland
| | - Małgorzata Grembecka
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, Gen. J. Hallera Avenue 107, 80-416 Gdańsk, Poland
| |
Collapse
|
7
|
Mishra AK, Singh R, Rawat H, Kumar V, Jagtap C, Jain A. The influence of food matrix on the stability and bioavailability of phytochemicals: A comprehensive review. FOOD AND HUMANITY 2024; 2:100202. [DOI: 10.1016/j.foohum.2023.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
8
|
Ferreira C, Vieira P, Sá H, Malva J, Castelo-Branco M, Reis F, Viana S. Polyphenols: immunonutrients tipping the balance of immunometabolism in chronic diseases. Front Immunol 2024; 15:1360065. [PMID: 38558823 PMCID: PMC10978763 DOI: 10.3389/fimmu.2024.1360065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Mounting evidence progressively appreciates the vital interplay between immunity and metabolism in a wide array of immunometabolic chronic disorders, both autoimmune and non-autoimmune mediated. The immune system regulates the functioning of cellular metabolism within organs like the brain, pancreas and/or adipose tissue by sensing and adapting to fluctuations in the microenvironment's nutrients, thereby reshaping metabolic pathways that greatly impact a pro- or anti-inflammatory immunophenotype. While it is agreed that the immune system relies on an adequate nutritional status to function properly, we are only just starting to understand how the supply of single or combined nutrients, all of them termed immunonutrients, can steer immune cells towards a less inflamed, tolerogenic immunophenotype. Polyphenols, a class of secondary metabolites abundant in Mediterranean foods, are pharmacologically active natural products with outstanding immunomodulatory actions. Upon binding to a range of receptors highly expressed in immune cells (e.g. AhR, RAR, RLR), they act in immunometabolic pathways through a mitochondria-centered multi-modal approach. First, polyphenols activate nutrient sensing via stress-response pathways, essential for immune responses. Second, they regulate mammalian target of rapamycin (mTOR)/AMP-activated protein kinase (AMPK) balance in immune cells and are well-tolerated caloric restriction mimetics. Third, polyphenols interfere with the assembly of NLR family pyrin domain containing 3 (NLRP3) in endoplasmic reticulum-mitochondria contact sites, inhibiting its activation while improving mitochondrial biogenesis and autophagosome-lysosome fusion. Finally, polyphenols impact chromatin remodeling and coordinates both epigenetic and metabolic reprogramming. This work moves beyond the well-documented antioxidant properties of polyphenols, offering new insights into the multifaceted nature of these compounds. It proposes a mechanistical appraisal on the regulatory pathways through which polyphenols modulate the immune response, thereby alleviating chronic low-grade inflammation. Furthermore, it draws parallels between pharmacological interventions and polyphenol-based immunonutrition in their modes of immunomodulation across a wide spectrum of socioeconomically impactful immunometabolic diseases such as Multiple Sclerosis, Diabetes (type 1 and 2) or even Alzheimer's disease. Lastly, it discusses the existing challenges that thwart the translation of polyphenols-based immunonutritional interventions into long-term clinical studies. Overcoming these limitations will undoubtedly pave the way for improving precision nutrition protocols and provide personalized guidance on tailored polyphenol-based immunonutrition plans.
Collapse
Affiliation(s)
- Carolina Ferreira
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Pedro Vieira
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| | - Helena Sá
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Institute of Immunology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
| | - João Malva
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT)/Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Flávio Reis
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sofia Viana
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| |
Collapse
|
9
|
Qiu C, Liu Y, Chen C, Lee YY, Wang Y. Effect of Diacylglycerol Crystallization on W/O/W Emulsion Stability, Controlled Release Properties and In Vitro Digestibility. Foods 2023; 12:4431. [PMID: 38137235 PMCID: PMC10743223 DOI: 10.3390/foods12244431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Water-in-oil-in-water (W/O/W) emulsions with high-melting diacylglycerol (DAG) crystals incorporated in the oil droplets were fabricated and the compositions were optimized to achieve the best physical stability. The stability against osmotic pressure, encapsulation efficiency and in vitro release profiles of both water- and oil-soluble bioactives were investigated. The presence of interfacial crystallized DAG shells increased the emulsion stability by reducing the swelling and shrinkage of emulsions against osmotic pressure and heating treatment. DAG crystals located at the inner water/oil (W1/O) interface and the gelation of the inner phase by gelatin helped reduce the oil droplet size and slow down the salt release rate. The DAG and gelatin-contained double emulsion showed improved encapsulation efficiency of bioactives, especially for the epigallocatechin gallate (EGCG) during storage. The double emulsions with DAG had a lower digestion rate but higher bioaccessibility of EGCG and curcumin after in vitro digestion. DAG-stabilized double emulsions with a gelled inner phase thus can be applied as controlled delivery systems for bioactives by forming robust interfacial crystalline shells.
Collapse
Affiliation(s)
- Chaoying Qiu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; (C.Q.); (C.C.)
| | - Yingwei Liu
- Hunan Edible Fungi Institute, Changsha 410013, China;
| | - Canfeng Chen
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; (C.Q.); (C.C.)
| | - Yee Ying Lee
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia;
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; (C.Q.); (C.C.)
| |
Collapse
|
10
|
Li Y, Niu L, Sun C, Li D, Zeng Z, Xiao J. Effect of Medium Chain Triglycerides on the Digestion and Quality Characteristics of Tea Polyphenols-Fortified Cooked Rice. Foods 2023; 12:4366. [PMID: 38231872 DOI: 10.3390/foods12234366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 01/19/2024] Open
Abstract
Nowadays, medium chain triglycerides (MCT) with special health benefits have been increasingly applied for fortifying food products. Therefore, the present work aimed to investigate the effects of MCT on traditional tea polyphenols-fortified cooked rice (TP-FCR). It was visualized by DSC, CLSM, XRD, FT-IR, and Raman spectroscopy. The higher content of starch-MCT complexes with an increase in the relative crystallinity and the generation of short-range ordered structures contributed to a more ordered and compact molecular arrangement, which can hinder the action of digestive enzymes on starch. SEM demonstrated that MCT transformed the microstructure of TP-FCR into a denser and firmer character, making it an essential component hindering the accessibility of digestive enzymes to starch granules and slowing the release of tea polyphenols in TP-FCR to attenuate starch digestion. Consequently, the addition of MCT reduced the polyphenol-regulated starch digestibility from 74.28% in cooked white rice to 64.43% in TP-FCR, and further down to 50.82%. Besides, MCT also reduced the adhesiveness and improved the whiteness of TP-FCR. The findings suggested that MCT incorporation could be a potential strategy in cooked rice production to achieve high sensory quality and low glycemic cooked rice.
Collapse
Affiliation(s)
- Ying Li
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
| | - Liya Niu
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
| | - Chao Sun
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
| | - Dongming Li
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
| | - Zicong Zeng
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
| | - Jianhui Xiao
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
11
|
Ou SJL, Yang D, Pranata HP, Tai ES, Liu MH. Postprandial glycemic and lipidemic effects of black rice anthocyanin extract fortification in foods of varying macronutrient compositions and matrices. NPJ Sci Food 2023; 7:59. [PMID: 37914734 PMCID: PMC10620212 DOI: 10.1038/s41538-023-00233-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/17/2023] [Indexed: 11/03/2023] Open
Abstract
Anthocyanin (ACN) fortification of commonly consumed foods is significant as a dietary strategy against the development of metabolic complications by delivering ACNs at high doses. However, its bioactivity and translated metabolic effects in the presence of varying food matrices and macro-constituents is particularly unclear. This end-to-end study investigates the metabolic effects of black rice ACN extract (BRAE) fortification-from in-vitro enzyme inhibitory activities and digestibility, to downstream in vivo impacts on GI, postprandial glycemia and lipidemia. The in vivo effects were investigated in two separate crossover randomised controlled trials (RCT) of 24 healthy participants each-the first RCT determined the postprandial blood glucose, insulin, and ACN bioavailability to a starch-rich single food over 2 h, while the second RCT determined the postprandial blood glucose, insulin, lipid panel, and lipoprotein particles and subfractions to a starch- and fat-rich composite meal over 4 h. In-vitro findings confirmed the inhibitory activities of major black rice ACNs on carbohydrases (p = 0.0004), lipases (p = 0.0002), and starch digestibility (p < 0.0001). in vivo, a 27-point mean GI reduction of wheat bread was observed with BRAE fortification, despite a non-significant attenuation in postprandial glycemia. Conversely, there were no differences in postprandial glycemia when fortified bread was consumed as a composite meal, but acute lipid profiles were altered: (1) improved plasma HDL-c, ([0.0140 mmol/L, 95% CI: (0.00639, 0.0216)], p = 0.0028), Apo-A1 ([0.0296 mmol/L, 95% CI: (0.00757, 0.0515)], p = 0.0203), and Apo-B ([0.00880 mmol/L, 95% CI: (0.00243, 0.0152)], p = 0.0185), (2) modified LDL and HDL subfractions (p < 0.05), and (3) remodelled lipid distributions in HDL and LDL particles. This end-to-end study indicates the potential of ACN fortification in GI reduction and modulating postprandial lipoprotein profiles to starch- and fat-rich composite meals.
Collapse
Affiliation(s)
- Sean Jun Leong Ou
- Division of Endocrinology, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
- Department of Food Science and Technology, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Dimeng Yang
- Division of Endocrinology, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
- Department of Food Science and Technology, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Hanny Putri Pranata
- Department of Food Science and Technology, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - E Shyong Tai
- Division of Endocrinology, University Medicine Cluster, National University Hospital, 5 Lower Kent Ridge Road, Singapore, 119074, Singapore
| | - Mei Hui Liu
- Department of Food Science and Technology, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
| |
Collapse
|
12
|
Sahoo DK, Heilmann RM, Paital B, Patel A, Yadav VK, Wong D, Jergens AE. Oxidative stress, hormones, and effects of natural antioxidants on intestinal inflammation in inflammatory bowel disease. Front Endocrinol (Lausanne) 2023; 14:1217165. [PMID: 37701897 PMCID: PMC10493311 DOI: 10.3389/fendo.2023.1217165] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, relapsing gastrointestinal (GI) disorder characterized by intestinal inflammation. The etiology of IBD is multifactorial and results from a complex interplay between mucosal immunity, environmental factors, and host genetics. Future therapeutics for GI disorders, including IBD, that are driven by oxidative stress require a greater understanding of the cellular and molecular mechanisms mediated by reactive oxygen species (ROS). In the GI tract, oxidative stressors include infections and pro-inflammatory responses, which boost ROS generation by promoting the production of pro-inflammatory cytokines. Nuclear factor kappa B (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2) represent two important signaling pathways in intestinal immune cells that regulate numerous physiological processes, including anti-inflammatory and antioxidant activities. Natural antioxidant compounds exhibit ROS scavenging and increase antioxidant defense capacity to inhibit pro-oxidative enzymes, which may be useful in IBD treatment. In this review, we discuss various polyphenolic substances (such as resveratrol, curcumin, quercetin, green tea flavonoids, caffeic acid phenethyl ester, luteolin, xanthohumol, genistein, alpinetin, proanthocyanidins, anthocyanins, silymarin), phenolic compounds including thymol, alkaloids such as berberine, storage polysaccharides such as tamarind xyloglucan, and other phytochemicals represented by isothiocyanate sulforaphane and food/spices (such as ginger, flaxseed oil), as well as antioxidant hormones like melatonin that target cellular signaling pathways to reduce intestinal inflammation occurring with IBD.
Collapse
Affiliation(s)
- Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Romy M. Heilmann
- Department for Small Animals, Veterinary Teaching Hospital, College of Veterinary Medicine, University of Leipzig, Leipzig, SN, Germany
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - David Wong
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
13
|
Scrob T, Filip GA, Baldea I, Varodi SM, Cimpoiu C. Sweeteners' Influence on In Vitro α-Glucosidase Inhibitory Activity, Cytotoxicity, Stability and In Vivo Bioavailability of the Anthocyanins from Lingonberry Jams. Foods 2023; 12:2569. [PMID: 37444306 DOI: 10.3390/foods12132569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/19/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Several lines of evidence demonstrate the multiple health-promoting properties of anthocyanins, but little is known regarding the bioavailability of these phytochemicals. Therefore, the stability during storage and bioavailability of anthocyanins from lingonberries jams were determined by HPLC, together with the impact of used sweeteners on their adsorption. Further, the in vitro α-glucosidase inhibition using spectrophotometric methods and cytotoxicity determined on normal and colon cancer cells were communicated. The content of anthocyanins was significantly decreased during storage in coconut sugar-based jam, but was best preserved in jam with fructose and stevia. Fructose and stevia-based jams showed the highest inhibition activity upon α-glucosidase. Lingonberry jams showed no cytotoxic effects on normal cells, but at low concentration reduced the tumor cells viability. Anthocyanins were still detectable in rats' blood streams after 24 h, showing a prolonged bioavailability in rats. This study brings important results that will enable the development of functional food products.
Collapse
Affiliation(s)
- Teodora Scrob
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania
- Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics, 11 Arany Janos, 400028 Cluj-Napoca, Romania
| | - Gabriela Adriana Filip
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Ioana Baldea
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Sânziana Maria Varodi
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania
| | - Claudia Cimpoiu
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania
- Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics, 11 Arany Janos, 400028 Cluj-Napoca, Romania
| |
Collapse
|
14
|
Song C, Fang L, Hao G, Xing L, Fan L, Hu G, Qiu L, Song J, Meng S, Xie Y, Giesy JP. Assessment of the benefits of essential fatty acids and risks associated with antimicrobial residues in aquatic products: A case study of Chinese mitten crab (Eriocheir sinensis). JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131162. [PMID: 36907059 DOI: 10.1016/j.jhazmat.2023.131162] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/02/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Much attention has been given to the safety and quality of aquatic products, including consuming Chinese mitten crab (Eriocheir sinensis), which offers both nutritional benefits and toxicological risks. Eighteen sulfonamides, 9 quinolones and 37 fatty acids were analyzed in 92 crab samples from primary aquaculture provinces in China. Enrofloxacin and ciprofloxacin have been mentioned as typical antimicrobials occurring at the greatest concentrations (>100 μg/kg, wm). By use of an in vitro method, the proportions of enrofloxacin, ciprofloxacin and essential fatty acids (EFAs, DHA and EPA) in ingested nutrients were determined to be 12 %, none and 95 %, respectively. The risk-benefit quotient (HQ) between the adverse effects of antimicrobials and nutritional benefits of EFAs in crabs found that HQs based on data after digestion were significantly less (HQ = 0.0086) than that of the control group where no digestion occurred (HQ = 0.055). This result suggested that (1) there was less risk posed by antimicrobials due to the consumption of crab, and (2) ignoring the bioaccessible fraction of antimicrobials in crabs might overestimate risks to the health of humans due to dietary exposure. Meaning bioaccessibility can improve the accuracy of the risk assessment process. Realistic risk evaluation should be recommended to achieve a quantified assessment of the dietary risks and benefits of aquatic products.
Collapse
Affiliation(s)
- Chao Song
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, Wuxi 214081, China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing 100000, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Longxiang Fang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, Wuxi 214081, China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing 100000, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Guijie Hao
- Key laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Luchang Xing
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Limin Fan
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, Wuxi 214081, China
| | - Gengdong Hu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, Wuxi 214081, China
| | - Liping Qiu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, Wuxi 214081, China
| | - Jinglong Song
- Chinese Academy of Fishery Sciences, Beijing 100000, China
| | - Shunlong Meng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, Wuxi 214081, China.
| | - Yuwei Xie
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan SK S7N 5B3, Canada.
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan SK S7N 5B3, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada; Department of Integrative Biology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, US; Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, US.
| |
Collapse
|
15
|
Odriozola-Serrano I, Nogueira DP, Esparza I, Vaz AA, Jiménez-Moreno N, Martín-Belloso O, Ancín-Azpilicueta C. Stability and Bioaccessibility of Phenolic Compounds in Rosehip Extracts during In Vitro Digestion. Antioxidants (Basel) 2023; 12:antiox12051035. [PMID: 37237901 DOI: 10.3390/antiox12051035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Rosehips, particularly dog rose fruits (Rosa canina L.), are a great source of antioxidant compounds, mainly phenolics. However, their health benefits directly depend on the bioaccessibility of these compounds affected by gastrointestinal digestion. Thus, the purpose of this research was to study the impact of gastrointestinal and colonic in vitro digestions on the concentration of total and individual bioaccessible phenolic compounds from a hydroalcoholic extract of rosehips (Rosa canina) and also their antioxidant capacity. A total of 34 phenolic compounds were detected in the extracts using UPLC-MS/MS. Ellagic acid, taxifolin, and catechin were the most abundant compounds in the free fraction, while gallic and p-coumaric acids were the main compounds in the bound phenolic fraction. Gastric digestion negatively affected the content of free phenolic compounds and the antioxidant activity measured using the DPPH radical method. However, there was an enhancement of antioxidant properties in terms of phenolic content and antioxidant activity (DPPH (2,2-diphenyl-1-picrylhydrazyl): 18.01 ± 4.22 mmol Trolox Equivalent (TE)/g; FRAP (Ferric Reducing Antioxidant Power): 7.84 ± 1.83 mmol TE/g) after the intestinal stage. The most bioaccessible phenolic compounds were flavonols (73.3%) and flavan-3-ols (71.4%). However, the bioaccessibility of phenolic acids was 3%, probably indicating that most of the phenolic acids were still bound to other components of the extract. Ellagic acid is an exception since it presented a high bioaccessibility (93%) as it was mainly found in the free fraction of the extract. Total phenolic content decreased after in vitro colonic digestion, probably due to chemical transformations of the phenolic compounds by gut microbiota. These results demonstrated that rosehip extracts have a great potential to be used as a functional ingredient.
Collapse
Affiliation(s)
- Isabel Odriozola-Serrano
- Department of Food Technology, University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Danielle P Nogueira
- Department of Sciences, Institute for Advanced Materials (INAMAT2), Universidad Pública de Navarra, Campus Arrosadía s/n, 31006 Pamplona, Spain
| | - Irene Esparza
- Department of Sciences, Institute for Advanced Materials (INAMAT2), Universidad Pública de Navarra, Campus Arrosadía s/n, 31006 Pamplona, Spain
| | - Ana A Vaz
- Department of Food Technology, University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Nerea Jiménez-Moreno
- Department of Sciences, Institute for Advanced Materials (INAMAT2), Universidad Pública de Navarra, Campus Arrosadía s/n, 31006 Pamplona, Spain
| | - Olga Martín-Belloso
- Department of Food Technology, University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Carmen Ancín-Azpilicueta
- Department of Sciences, Institute for Advanced Materials (INAMAT2), Universidad Pública de Navarra, Campus Arrosadía s/n, 31006 Pamplona, Spain
| |
Collapse
|
16
|
Qin S, Li R, Chen M, Zeng F, Dai Y, Wu G, Zhou W, Li J. Oat Milk Tea Model System: Exploring the Stability of Milk Tea and the Bioaccessibility of Green Tea Polyphenols. Foods 2023; 12:foods12071402. [PMID: 37048223 PMCID: PMC10093375 DOI: 10.3390/foods12071402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Oat milk has become preferential because of its low calorie nature and high dietary fiber content, but its ability to “curdle” when mixed with tea can affect the consumer acceptability for oat milk tea. In this study, a model system for oat milk tea was made by combining oat milk and green tea extract to evaluate the impacts of the oat milk matrix and green tea extract concentration on the stability and polyphenol bioaccessibility. The stability analysis results showed that adding green tea extract to oat milk influenced the stability of the oat milk tea model systems. In contrast, the 3.0% fat oat milk tea model system exhibited a higher stability than the 1.5% fat oat milk tea model system. In simulated gastrointestinal digestive experiments, tea polyphenols in the oat milk tea model systems were relatively stable in oral and stomach digestive stages, while they clearly degraded in the small intestine digestive stage. Furthermore, the bioaccessibility of tea polyphenols was higher for the 3.0% fat oat milk tea model system than for the 1.5% fat oat milk tea model system, especially at low concentrations of green tea extracts (0.05%~0.25%). These results may provide a theoretical reference and data for the formulation of oat milk tea and the bioaccessibility of tea polyphenols in food matrices.
Collapse
Affiliation(s)
- Sirui Qin
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruyi Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
- Correspondence: ; Tel.: +86-0759-2221090
| | - Mianhong Chen
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Fanke Zeng
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Yaping Dai
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Guang Wu
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Zhou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Jihua Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| |
Collapse
|
17
|
Nieto JA, Fernández-Jalao I, Siles-Sánchez MDLN, Santoyo S, Jaime L. Implication of the Polymeric Phenolic Fraction and Matrix Effect on the Antioxidant Activity, Bioaccessibility, and Bioavailability of Grape Stem Extracts. Molecules 2023; 28:molecules28062461. [PMID: 36985434 PMCID: PMC10051231 DOI: 10.3390/molecules28062461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
The bioaccessibility and bioavailability of phenolics compounds of two grape stem extracts with different composition were studied. High polymeric extract (HPE) presented a higher content of total phenolics (TPC), procyanidins, hemicelluloses, proteins, and ashes, whereas low procyanidin extract (LPE) showed a higher fat, soluble sugars, and individual phenolic compounds content. Corresponding to its higher total phenolics content, HPE possesses a higher antioxidant activity (TEAC value). The digestion process reduced the antioxidant activity of the HPE up to 69%, due to the decrease of TPC (75%) with a significant loss of polymeric compounds. LPE antioxidant activity was stable, and TPC decreased by only 13% during the digestion process. Moreover, a higher antioxidant phenolic compounds bioavailability was shown in LPE in contrast to HPE. This behaviour was ascribed mainly to the negative interaction of polymeric fractions and the positive interaction of lipids with phenolic compounds. Therefore, this study highlights the convenience of carrying out previous studies to identify the better extraction conditions of individual bioavailable phenolic compounds with antioxidant activity, along with those constituents that could increase their bioaccessibility and bioavailability, such as lipids, although the role played by other components, such as hemicelluloses, cannot be ruled out.
Collapse
Affiliation(s)
- Juan Antonio Nieto
- Institute of Food Science Research (CIAL), Autonomous University of Madrid (Universidad Autónoma de Madrid (CEI UAM + CSIC)), 28049 Madrid, Spain
| | - Irene Fernández-Jalao
- Institute of Food Science Research (CIAL), Autonomous University of Madrid (Universidad Autónoma de Madrid (CEI UAM + CSIC)), 28049 Madrid, Spain
| | - María de Las Nieves Siles-Sánchez
- Institute of Food Science Research (CIAL), Autonomous University of Madrid (Universidad Autónoma de Madrid (CEI UAM + CSIC)), 28049 Madrid, Spain
| | - Susana Santoyo
- Institute of Food Science Research (CIAL), Autonomous University of Madrid (Universidad Autónoma de Madrid (CEI UAM + CSIC)), 28049 Madrid, Spain
| | - Laura Jaime
- Institute of Food Science Research (CIAL), Autonomous University of Madrid (Universidad Autónoma de Madrid (CEI UAM + CSIC)), 28049 Madrid, Spain
| |
Collapse
|
18
|
Tamargo A, de Llano DG, Cueva C, Del Hierro JN, Martin D, Molinero N, Bartolomé B, Victoria Moreno-Arribas M. Deciphering the interactions between lipids and red wine polyphenols through the gastrointestinal tract. Food Res Int 2023; 165:112524. [PMID: 36869526 DOI: 10.1016/j.foodres.2023.112524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/09/2023] [Accepted: 01/21/2023] [Indexed: 01/29/2023]
Abstract
This paper investigates the mutual interactions between lipids and red wine polyphenols at different stages of the gastrointestinal tract by using the simgi® dynamic simulator. Three food models were tested: a Wine model, a Lipid model (olive oil + cholesterol) and a Wine + Lipid model (red wine + olive oil + cholesterol). With regard to wine polyphenols, results showed that co-digestion with lipids slightly affected the phenolic profile after gastrointestinal digestion. In relation to lipid bioaccessibility, the co-digestion with red wine tended to increase the percentage of bioaccessible monoglycerides, although significant differences were not found (p > 0.05). Furthermore, co-digestion with red wine tended to reduce cholesterol bioaccessibility (from 80 to 49 %), which could be related to the decrease in bile salt content observed in the micellar phase. For free fatty acids, almost no changes were observed. At the colonic level, the co-digestion of red wine and lipids conditioned the composition and metabolism of colonic microbiota. For instance, the growth [log (ufc/mL)] of lactic acid bacteria (6.9 ± 0.2) and bifidobacteria (6.8 ± 0.1) populations were significantly higher for the Wine + Lipid food model respect to the control colonic fermentation (5.2 ± 0.1 and 5.3 ± 0.2, respectively). Besides, the production of total SCFAs was greater for the Wine + Lipid food model. Also, the cytotoxicity of the colonic-digested samples towards human colon adenocarcinoma cells (HCT-116 and HT-29) was found to be significantly lower for the Wine and Wine + Lipid models than for the Lipid model and the control (no food addition). Overall, the results obtained using the simgi® model were consistent with those reported in vivo in the literature. In particular, they suggest that red wine may favourably modulate lipid bioaccessibility - a fact that could explain the hypocholesterolemic effects of red wine and red wine polyphenols observed in humans.
Collapse
Affiliation(s)
- Alba Tamargo
- Institute of Food Science Research, CIAL, CSIC-UAM, C/Nicolas Cabrera 9, 28049 Madrid, Spain
| | | | - Carolina Cueva
- Institute of Food Science Research, CIAL, CSIC-UAM, C/Nicolas Cabrera 9, 28049 Madrid, Spain
| | | | - Diana Martin
- Institute of Food Science Research, CIAL, CSIC-UAM, C/Nicolas Cabrera 9, 28049 Madrid, Spain
| | - Natalia Molinero
- Institute of Food Science Research, CIAL, CSIC-UAM, C/Nicolas Cabrera 9, 28049 Madrid, Spain
| | - Begoña Bartolomé
- Institute of Food Science Research, CIAL, CSIC-UAM, C/Nicolas Cabrera 9, 28049 Madrid, Spain
| | | |
Collapse
|
19
|
Polyphenols: a route from bioavailability to bioactivity addressing potential health benefits to tackle human chronic diseases. Arch Toxicol 2023; 97:3-38. [PMID: 36260104 DOI: 10.1007/s00204-022-03391-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/26/2022] [Indexed: 02/07/2023]
Abstract
Chronic pathologies or non-communicable diseases (NCDs) include cardiovascular diseases, metabolic syndrome, neurological diseases, respiratory disorders and cancer. They are the leading global cause of human mortality and morbidity. Given their chronic nature, NCDs represent a growing social and economic burden, hence urging the need for ameliorating the existing preventive strategies, and for finding novel tackling therapies. NCDs are highly correlated with unhealthy lifestyle habits (such as high-fat and high-glucose diet, or sedentary life). In general, lifestyle approaches that might improve these habits, including dietary consumption of fresh vegetables, fruits and fibers, may contrast NCD symptoms and prolong life expectancy of affected people. Polyphenols (PPLs) are plant-derived molecules with demonstrated biological activities in humans, which include: radical scavenging and anti-oxidant activities, capability to modulate inflammation, as well as human enzymes, and even to bind nuclear receptors. For these reasons, PPLs are currently tested, both preclinically and clinically, as dietary adjuvants for the prevention and treatment of NCDs. In this review, we describe the human metabolism and bioactivity of PPLs. Also, we report what is currently known about PPLs interaction with gastro-intestinal enzymes and gut microbiota, which allows their biotransformation in many different metabolites with several biological functions. The systemic bioactivity of PPLs and the newly available PPL-delivery nanosystems are also described in detail. Finally, the up-to-date clinical studies assessing both safety and efficacy of dietary PPLs in individuals with different NCDs are hereby reported. Overall, the clinical results support the notion that PPLs from fruits, vegetables, but also from leaves or seeds extracts, are safe and show significant positive results in ameliorating symptoms and improving the whole quality of life of people with NCDs.
Collapse
|
20
|
Cheung M, Robinson JA, Phillip G, Pegg RB. Evaluating the phenolic composition and antioxidant properties of Georgia pecans after in vitro digestion. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
21
|
Sirovec S, Tušek AJ, Benković M, Valinger D, Cvetnić TS, Kljusurić JG, Jurina T. Emulsification of Rosemary and Oregano Aqueous Extracts and Their In Vitro Bioavailability. PLANTS (BASEL, SWITZERLAND) 2022; 11:3372. [PMID: 36501410 PMCID: PMC9736180 DOI: 10.3390/plants11233372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Due to their richness in phenolic compounds, Mediterranean plants such as rosemary and oregano are increasingly recommended for consumption for their numerous health benefits. The pH shift and the presence of digestive enzymes significantly reduce the bioavailability of these biochemicals as they pass through the gastrointestinal tract. To prevent this degradation of phenolic compounds, methods such as emulsification of plant aqueous extracts are used. The aim of this study was to investigate the effects of emulsification conditions on the chemical properties (total polyphenolic content and antioxidant activity) of emulsified rosemary and oregano extracts. Response surface methodology was applied to optimize sunflower oil concentration, rotational speed, and emulsifier concentration (commercial pea protein). The emulsions prepared under optimal conditions were then used in bioavailability studies (in vitro digestion). The antioxidant activity of the emulsified rosemary/oregano extracts, measured by the DPPH method, remained largely stable when simulating in vitro digestion. Analysis of antioxidant activity after in vitro simulation of the gastrointestinal system revealed a higher degree of maintenance (up to 76%) for emulsified plant extracts compared to aqueous plant extracts. This article contributes to our understanding of how plant extracts are prepared to preserve their biological activity and their application in the food industry.
Collapse
|
22
|
Cattivelli A, Di Lorenzo A, Conte A, Martini S, Tagliazucchi D. Red-skinned onion phenolic compounds stability and bioaccessibility: A comparative study between deep-frying and air-frying. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Stinco CM, Benítez-González AM, Hernanz D, Vicario IM. Assessment of in vitro bioaccessibility of carotenoids and phenolic compounds in a model milk-mandarine beverage. Food Funct 2022; 13:10535-10545. [PMID: 36156618 DOI: 10.1039/d2fo01808j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mandarine juice is one of the richest sources of β-cryptoxanthin and flavonoids, which have been positively associated with bone mineral density. Carotenoids are lipophilic isoprenoid compounds with a complex absorption process that can be affected by different factors. In this study, we have evaluated the effect of the food matrix on the in vitro bioaccessibility of carotenoids and phenolic compounds in a model milk-mandarine beverage (MMB). MMBs were formulated with mandarine juice and different dairy products to achieve three fat levels (0.2%, 1.7% and 3.2%) and three calcium levels (120, 310 and 500 mg Ca2+ per 100 ml). The bioaccessibility was evaluated using a harmonised in vitro digestion method. The results showed that the content of milk fat increased the bioaccessibility in vitro of phenolic compounds (p < 0.05), while a moderate fat level (1.7%) resulted in the highest bioaccessibility for bioactive carotenoids. On the other hand, calcium fortification at the highest level (500 mg Ca2+ per 100 mL) decreased the bioaccessibility of bioactive carotenoids from 76% to 43% (66% for the major β-cryptoxanthin) compared to the lower calcium fortification level (120 mg Ca2+ per 100 mL). The bioaccessibility of hesperidin, the main flavanone in mandarine juice, was significantly (p < 0.05) reduced in the MMB with the highest calcium level. The bioaccessibility of carotenoids and phenolic compounds is affected by fat and calcium levels. When formulating functional beverages, the impact of the formulation should be carefully considered to optimize the bioaccessibility of the bioactive compounds.
Collapse
Affiliation(s)
- Carla M Stinco
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012, Sevilla, Spain
| | - Ana M Benítez-González
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012, Sevilla, Spain
| | - Dolores Hernanz
- Department of Analytical Chemistry, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Isabel M Vicario
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012, Sevilla, Spain
| |
Collapse
|
24
|
Costa M, Costa V, Lopes M, Paiva-Martins F. A biochemical perspective on the fate of virgin olive oil phenolic compounds in vivo. Crit Rev Food Sci Nutr 2022; 64:1403-1428. [PMID: 36094444 DOI: 10.1080/10408398.2022.2116558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The chemistry of the phenolic compounds found in virgin olive oil (VOO) is very complex due, not only to the different classes of polyphenols that can be found in it, but, above all, due to the existence of a very specific phenol class found only in oleaceae plants: the secoiridoids. Searching in the Scopus data base the keywords flavonoid, phenolic acid, lignin and secoiridoid, we can find a number of 148174, 79435, 11326 and 1392 research articles respectively, showing how little is devote to the latter class of compounds. Moreover, in contrast with other classes, that include only phenolic compounds, secoiridoids may include phenolic and non-phenolic compounds, being the articles concerning phenolic secoiridoids much less than the half of the abovementioned articles. Therefore, it is important to clarify the structures of these compounds and their chemistry, as this knowledge will help understand their bioactivity and metabolism studies, usually performed by researchers with a more health science's related background. In this review, all the structures found in many research articles concerning VOO phenolic compounds chemistry and metabolism was gathered, with a special attention devoted to the secoiridoids, the main phenolic compound class found in olives, VOO and olive leaf.
Collapse
Affiliation(s)
- Marlene Costa
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Vânia Costa
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Margarida Lopes
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Fátima Paiva-Martins
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
25
|
Cianciosi D, Forbes-Hernández TY, Regolo L, Alvarez-Suarez JM, Navarro-Hortal MD, Xiao J, Quiles JL, Battino M, Giampieri F. The reciprocal interaction between polyphenols and other dietary compounds: Impact on bioavailability, antioxidant capacity and other physico-chemical and nutritional parameters. Food Chem 2022; 375:131904. [PMID: 34963083 DOI: 10.1016/j.foodchem.2021.131904] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 02/08/2023]
Abstract
Polyphenols are plant secondary metabolites, whose biological activity has been widely demonstrated. However, the research in this field is a bit reductive, as very frequently the effect of individual compound is investigated in different experimental models, neglecting more complex, but common, relationships that are established in the diet. This review summarizes the data that highlighted the interaction between polyphenols and other food components, especially macro- (lipids, proteins, carbohydrates and fibers) and micronutrients (minerals, vitamins and organic pigments), paying particular attention on their bioavailability, antioxidant capacity and chemical, physical, organoleptic and nutritional characteristics. The topic of food interaction has yet to be extensively studied because a greater knowledge of the food chemistry behind these interactions and the variables that modify their effects, could offer innovations and improvements in various fields ranging from organoleptic, nutritional to health and economic field.
Collapse
Affiliation(s)
- Danila Cianciosi
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Tamara Y Forbes-Hernández
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Centre, University of Granada, Granada 1800, Spain
| | - Lucia Regolo
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - José M Alvarez-Suarez
- Departamento de Ingeniería en Alimentos. Colegio de Ciencias e Ingenierías. Universidad San Francisco de Quito, Quito, Ecuador 170157, Ecuador; Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito, Quito, Ecuador; King Fahd Medical Research Center, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Maria Dolores Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Centre, University of Granada, Granada 1800, Spain
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, China
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Centre, University of Granada, Granada 1800, Spain; Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander 39011, Spain
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona 60131, Italy; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, China.
| | - Francesca Giampieri
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander 39011, Spain; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
26
|
Bioaccessibility and bioavailability changes of phenolic compounds in pumpkins (Cucurbita moschata): A review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Yin Z, Zheng T, Ho CT, Huang Q, Wu Q, Zhang M. Improving the stability and bioavailability of tea polyphenols by encapsulations: a review. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Luo J, Li M, Wu H, Liu Z, Barrow C, Dunshea F, Suleria HAR. Bioaccessibility of phenolic compounds from sesame seeds (
Sesamum indicum
L.) during in vitro gastrointestinal digestion and colonic fermentation. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jiani Luo
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences The University of Melbourne Parkville Victoria Australia
| | - Minhao Li
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences The University of Melbourne Parkville Victoria Australia
| | - Hanjing Wu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences The University of Melbourne Parkville Victoria Australia
| | - Ziyao Liu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences The University of Melbourne Parkville Victoria Australia
| | - Colin Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences Deakin University Waurn Ponds Victoria Australia
| | - Frank Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences The University of Melbourne Parkville Victoria Australia
- Faculty of Biological Sciences The University of Leeds Leeds UK
| | - Hafiz A. R. Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences The University of Melbourne Parkville Victoria Australia
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences Deakin University Waurn Ponds Victoria Australia
| |
Collapse
|
29
|
Co-delivery of insulin and quercetin in W/O/W double emulsions stabilized by different hydrophilic emulsifiers. Food Chem 2022; 369:130918. [PMID: 34455318 DOI: 10.1016/j.foodchem.2021.130918] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 01/08/2023]
Abstract
Insulin (hydrophilic) and quercetin (hydrophobic) have broad biological benefits; however, their rapid hydrolysis (via protease degradation) during digestion hinders their stability and delivery for absorption before degrading. In this study, we encapsulated insulin and quercetin using a self-assembled water-in-oil-in-water (W/O/W) double emulsion. We prepared the co-delivery emulsion by two-step emulsification and investigated the effects of the type of hydrophilic emulsifier for the outer water phase on the physicochemical properties, stability, and digestive properties. The black-bean-protein-stabilized W/O/W double emulsion had a higher absolute zeta potential value (52.80 mV), higher encapsulation efficiency (insulin: 95.7%, quercetin: 93.4%), lower viscosity, better emulsifying properties (EAI: 122.26 m2/g, ESI: 224 min), and lower levels of hydroperoxides (0.86 mmol/L) and TBARS (25.80 μmol/L) than emulsions stabilized by other hydrophilic emulsifiers. The emulsion yielded a 2.60- and 4.56-fold increase in the bioaccessibility of insulin and quercetin, respectively, while increasing their chemical stability and solubility under simulated gastrointestinal conditions.
Collapse
|
30
|
Sik B, Székelyhidi R, Lakatos E, Kapcsándi V, Ajtony Z. Analytical procedures for determination of phenolics active herbal ingredients in fortified functional foods: an overview. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03908-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AbstractFortification of foods with phenolic compounds is becoming increasingly popular due to their beneficial physiological effects. The biological activities reported include antioxidant, anticancer, antidiabetic, anti-inflammatory, or neuroprotective effects. However, the analysis of polyphenols in functional food matrices is a difficult task because of the complexity of the matrix. The main challenge is that polyphenols can interact with other food components, such as carbohydrates, proteins, or lipids. The chemical reactions that occur during the baking technologies in the bakery and biscuit industry may also affect the results of measurements. The analysis of polyphenols found in fortified foods can be done by several techniques, such as liquid chromatography (HPLC and UPLC), gas chromatography (GC), or spectrophotometry (TPC, DPPH, FRAP assay etc.). This paper aims to review the available information on analytical methods to fortified foodstuffs while as presenting the advantages and limitations of each technique.
Collapse
|
31
|
Li Y, Li M, Wang L, Li Z. Effect of particle size on the release behavior and functional properties of wheat bran phenolic compounds during in vitro gastrointestinal digestion. Food Chem 2021; 367:130751. [PMID: 34384987 DOI: 10.1016/j.foodchem.2021.130751] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022]
Abstract
Wheat bran is a rich source of phenolic compounds, and the health benefits of phenolic compounds depend on its bioaccessibility. The release behavior and functional properties of phenolic compounds in different particle size wheat bran during in vitro digestion were investigated. Coarse wheat bran (CWB, 1110.39 μm) was milled by airflow impact mill to produce medium wheat bran (MWB, 235.68 μm), fine wheat bran (FWB, 83.73 μm) and superfine wheat bran (SWB, 19.16 μm). The reduction in particle size increased the release of phenolic compounds, mainly ferulic acid, after digestion. The free p-coumaric acid content in SWB was nearly five times higher than that in CWB, MWB and FWB due to the complete destruction of aleurone cell walls. Moreover, SWB showed higher bioaccessible phenolic compounds content (65.51%) than CWB. The improved phenolic bioaccessibility increased the antioxidant capacities and carbohydrate-digestive enzymes inhibitory activities of SWB and significantly reduced its starch digestibility.
Collapse
Affiliation(s)
- Yang Li
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghuadonglu, Haidian, Beijing 100083, PR China
| | - Mengli Li
- Beijing Institute of Collaborative Innovation, No. 13, Cuihu Nanhuan Road, Haidian District, Beijing 100094, PR China
| | - Lili Wang
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, No. 2, Yuan Ming Yuan West Road, Haidian District, Beijing 100193, PR China.
| | - Zaigui Li
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghuadonglu, Haidian, Beijing 100083, PR China; Department of Nutrition and Health, China Agricultural University, No. 17, Qinghuadonglu, Haidian, Beijing 100083, PR China.
| |
Collapse
|
32
|
Yañez O, Osorio MI, Areche C, Vasquez-Espinal A, Bravo J, Sandoval-Aldana A, Pérez-Donoso JM, González-Nilo F, Matos MJ, Osorio E, García-Beltrán O, Tiznado W. Theobroma cacao L. compounds: Theoretical study and molecular modeling as inhibitors of main SARS-CoV-2 protease. Biomed Pharmacother 2021; 140:111764. [PMID: 34051617 PMCID: PMC8141698 DOI: 10.1016/j.biopha.2021.111764] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/07/2021] [Accepted: 05/20/2021] [Indexed: 11/23/2022] Open
Abstract
Cocoa beans contain antioxidant molecules with the potential to inhibit type 2 coronavirus (SARS-CoV-2), which causes a severe acute respiratory syndrome (COVID-19). In particular, protease. Therefore, using in silico tests, 30 molecules obtained from cocoa were evaluated. Using molecular docking and quantum mechanics calculations, the chemical properties and binding efficiency of each ligand was evaluated, which allowed the selection of 5 compounds of this series. The ability of amentoflavone, isorhoifolin, nicotiflorin, naringin and rutin to bind to the main viral protease was studied by means of free energy calculations and structural analysis performed from molecular dynamics simulations of the enzyme/inhibitor complex. Isorhoifolin and rutin stand out, presenting a more negative binding ΔG than the reference inhibitor N-[(5-methylisoxazol-3-yl)carbonyl]alanyl-l-valyl-N~1~-((1R,2Z)-4-(benzyloxy)-4-oxo-1-{[(3R)-2-oxopyrrolidin-3-yl]methyl}but-2-enyl)-L-leucinamide (N3). These results are consistent with high affinities of these molecules for the major SARS-CoV-2. The results presented in this paper are a solid starting point for future in vitro and in vivo experiments aiming to validate these molecules and /or test similar substances as inhibitors of SARS-CoV-2 protease.
Collapse
Affiliation(s)
- Osvaldo Yañez
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, República 498, Santiago, Chile; Center of New Drugs for Hypertension (CENDHY), Santiago, Chile; Department of Pharmaceutical Science and Technology, School of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Manuel Isaías Osorio
- Facultad de Medicina, Centro de Investigación Biomédica, Universidad Diego Portales, Ejército 141, Santiago 837007, Chile; Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República 330, Santiago 8370146, Chile
| | - Carlos Areche
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Nuñoa, Santiago 7800024, Chile
| | - Alejandro Vasquez-Espinal
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, República 498, Santiago, Chile
| | - Jessica Bravo
- Facultad de Medicina, Centro de Investigación Biomédica, Universidad Diego Portales, Ejército 141, Santiago 837007, Chile
| | - Angélica Sandoval-Aldana
- Grupo Interdisciplinario de Investigación en Fruticultura Tropical, Facultad de Ingeniería Agronómica, Universidad del Tolima, Ibagué 730006, Colombia
| | - José M Pérez-Donoso
- Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República 330, Santiago 8370146, Chile
| | - Fernando González-Nilo
- Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República 330, Santiago 8370146, Chile
| | - Maria João Matos
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Edison Osorio
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 calle 67, Ibagué 730002, Colombia
| | - Olimpo García-Beltrán
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 calle 67, Ibagué 730002, Colombia; Universidad Bernardo O'Higgins, Centro Integrativo de Biología y Química Aplicada (CIBQA), General Gana 1702, Santiago, Chile, 8370854.
| | - William Tiznado
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, República 498, Santiago, Chile.
| |
Collapse
|
33
|
|
34
|
Diez-Sánchez E, Quiles A, Hernando I. Interactions between Blackcurrant Polyphenols and Food Macronutrients in Model Systems: In Vitro Digestion Studies. Foods 2021; 10:foods10040847. [PMID: 33924602 PMCID: PMC8070145 DOI: 10.3390/foods10040847] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/22/2022] Open
Abstract
Blackcurrant pomace, rich in fiber and polyphenols, can be used as added-value ingredient for food formulation. However, the bounding of polyphenols to pomace and the interactions that take place with food nutrients modify polyphenol bioaccessibility. This work studied the interactions between polyphenols and the main macronutrients in foods, and the changes that occurred during in vitro digestion, using model systems. Model systems were formulated with (i) water, (ii) wheat starch, (iii) olive oil, (iv) whey protein, and (v) a model combining all the ingredients. Polyphenols were added from two sources: as pomace and as a polyphenolic pomace extract. Interactions between polyphenols and macronutrients were studied using light microscopy; total phenolic content (TPC) and antioxidant capacity (AC) were determined before and after the in vitro digestion process. Lastly, the bioaccessibility of the samples was calculated. Polyphenols incorporated into the model systems as pomace increased their bioaccessibility if compared to polyphenols added as extract. For single-nutrient model systems formulated with pomace, the bioaccessibility was higher than when the system contained all the nutrients. Of all the components studied, the greatest effect on bioaccessibility was observed for proteins.
Collapse
|
35
|
Rashidinejad A, Tarhan O, Rezaei A, Capanoglu E, Boostani S, Khoshnoudi-Nia S, Samborska K, Garavand F, Shaddel R, Akbari-Alavijeh S, Jafari SM. Addition of milk to coffee beverages; the effect on functional, nutritional, and sensorial properties. Crit Rev Food Sci Nutr 2021; 62:6132-6152. [PMID: 33703975 DOI: 10.1080/10408398.2021.1897516] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
To date, there exists a debate on the effect of milk added to coffee infusions/beverages concerning the nutritional quality of coffee and the functional properties of its phenolic compounds. Yet, the full nutritional quality and functional properties of a coffee beverage without a significant negative impact on its sensorial profile are highly desired by the consumers. Negative/masking, positive, and neutral effects of milk on the antioxidant activity and bioavailability of coffee phenolics (particularly, chlorogenic acids) have been reported. Some potential factors including the type and amount of milk added, type of coffee beverage, the composition of both milk (protein and fat) and coffee (phenolic compounds), preparation method, assays used to measure antioxidant properties, and sampling size may account for the various reported findings. Interactions between phenolic compounds in coffee and milk proteins could account as the main responsible aspect for the reported masking/negative impact of milk on the antioxidant activity and bioaccessibility/bioavailability of coffee bioactives. However, considering the interactions between milk components and coffee phenolics, which result in the loss of their functionality, the role of milk fat globules and the milk fat globule membrane can also be crucial, but this has not been addressed in the literature so far.HighlightsIn most cases, milk is added to the coffee beverages in several various ways.Effect of milk on the nutritional/functional properties of coffee is controversial.Enough evidence suggests negative effects of milk addition on properties of coffee.Interactions of coffee phenolics and milk proteins could account as the main aspect.The role of milk fat globules and milk fat globule membrane may also be crucial.
Collapse
Affiliation(s)
- A Rashidinejad
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - O Tarhan
- Department of Food Engineering, Faculty of Engineering, Uşak University, Uşak, Turkey
| | - A Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - E Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - S Boostani
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - S Khoshnoudi-Nia
- Seafood Processing Research Group, School of Agriculture, Shiraz University, Shiraz, Iran
| | - K Samborska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences WULS-SGGW, Warsaw, Poland
| | - F Garavand
- Department of Food Chemistry & Technology, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - R Shaddel
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - S Akbari-Alavijeh
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - S M Jafari
- Department of Food Materials & Process Design Engendering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
36
|
Lee SY, Lee DY, Hur SJ. Changes in the stability and antioxidant activities of different molecular weight bioactive peptide extracts obtained from beef during in vitro human digestion by gut microbiota. Food Res Int 2021; 141:110116. [PMID: 33641983 DOI: 10.1016/j.foodres.2021.110116] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/16/2020] [Accepted: 01/04/2021] [Indexed: 01/12/2023]
Abstract
This study was conducted to determine changes in the stability and antioxidant activity of extracts of bioactive peptides with different molecular weights (<3 and <10 kDa) obtained from beef myofibrillar protein using commercial enzymes (alkaline-AK and papain) during in vitro human digestion by gut microbiota. After the digestion in the large intestine, the stability of the bioactive peptide extracts decreased regardless of their molecular weight. However, the peptides obtained following alkaline-AK treatment were less stable than those obtained following papain digestion. The radical scavenging activities of the peptide extracts also decreased during in vitro human digestion, regardless of the molecular weights of the peptides and the commercial enzymes used. These results indicate that the stability and antioxidative activity of the bioactive peptides were affected by the digestion process by the gut microbiota. This study provides data supporting the changes in the stability and bioavailability of functional materials within the human body.
Collapse
Affiliation(s)
- Seung Yun Lee
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daeduk-myeon, Anseong-si, Gyeonggi-do 456-756, Republic of Korea
| | - Da Young Lee
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daeduk-myeon, Anseong-si, Gyeonggi-do 456-756, Republic of Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daeduk-myeon, Anseong-si, Gyeonggi-do 456-756, Republic of Korea.
| |
Collapse
|
37
|
Eran Nagar E, Berenshtein L, Hanuka Katz I, Lesmes U, Okun Z, Shpigelman A. The impact of chemical structure on polyphenol bioaccessibility, as a function of processing, cell wall material and pH: A model system. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110304] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
38
|
Food (Matrix) Effects on Bioaccessibility and Intestinal Permeability of Major Olive Antioxidants. Foods 2020; 9:foods9121831. [PMID: 33317079 PMCID: PMC7764665 DOI: 10.3390/foods9121831] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND olive pomace extract (OPE) is a rich source of health promoting polyphenols (hydroxytyrosol (HTS) and tyrosol (TS)) and can be used as a nutraceutical ingredient of dietary supplements and functional foods. Its adequate bioavailability is a prerequisite for excreting biological activity and can be significantly and specifically affected by different food matrices. METHODS in order to investigate food effects on polyphenol bioaccessibility, OPE was co-digested with different foods according to internationally harmonized in vitro digestibility method. Impact of particular nutrients on HTS and TS permeability was assessed on Caco-2 cell monolayer. RESULTS HTS and TS bioaccessibility and transepithelial permeability can be significantly affected by foods (nutrients), especially by casein and certain types of dietary fiber. Those effects are polyphenol-and nutrient-specific and are achieved either through complexation in gastrointestinal lumen and/or through direct effects of nutrients on intestinal monolayer. CONCLUSIONS obtained results emphasize the significance and complexity of polyphenol interactions within the food matrix and the necessity of individual investigational approaches with respect to particular food/nutrient and interacting phenolic compounds.
Collapse
|
39
|
Rojo-Poveda O, Barbosa-Pereira L, El Khattabi C, Youl EN, Bertolino M, Delporte C, Pochet S, Stévigny C. Polyphenolic and Methylxanthine Bioaccessibility of Cocoa Bean Shell Functional Biscuits: Metabolomics Approach and Intestinal Permeability through Caco-2 Cell Models. Antioxidants (Basel) 2020; 9:E1164. [PMID: 33266403 PMCID: PMC7700373 DOI: 10.3390/antiox9111164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/27/2022] Open
Abstract
Cocoa bean shell (CBS), a by-product with considerable concentrations of bioactive compounds and proven biofunctional potential, has been demonstrated to be a suitable ingredient for high-fiber functional biscuits adapted to diabetic consumers. In this work, the in vitro bioaccessibility and intestinal absorption of polyphenols and methylxanthines contained in these biscuits were evaluated, and the effect of the food matrix was studied. Biscuits containing CBS and the CBS alone underwent in vitro digestion followed by an intestinal permeability study. The results confirmed that compounds were less bioavailable in the presence of a food matrix, although the digestion contributed to their release from this matrix, increasing the concentrations available at the intestinal level and making them capable of promoting antioxidant and antidiabetic activities. After digestion, CBS biscuits were shown to possess α-glucosidase inhibition capacity comparable to that of acarbose. Moreover, the presence of the food matrix improved the stability of polyphenols throughout the digestion process. Intestinal absorption of flavan-3-ols seemed to be limited to a maximum threshold and was therefore independent of the sample, while procyanidin was not absorbed. Methylxanthine absorption was high and was boosted by the presence of the food matrix. The results confirmed the biofunctional potential of CBS-based biscuits.
Collapse
Affiliation(s)
- Olga Rojo-Poveda
- RD3 Department-Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université Libre de Bruxelles, 1050 Brussels, Belgium; (C.D.); (C.S.)
- Department of Agriculture, Forestry and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, Italy; (L.B.-P.); (M.B.)
| | - Letricia Barbosa-Pereira
- Department of Agriculture, Forestry and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, Italy; (L.B.-P.); (M.B.)
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Charaf El Khattabi
- Laboratory of Pharmacology, Pharmacotherapy and Pharmaceutical Care, Université Libre de Bruxelles, 1050 Brussels, Belgium; (C.E.K.); (E.N.H.Y.); (S.P.)
| | - Estelle N.H. Youl
- Laboratory of Pharmacology, Pharmacotherapy and Pharmaceutical Care, Université Libre de Bruxelles, 1050 Brussels, Belgium; (C.E.K.); (E.N.H.Y.); (S.P.)
- Laboratory of Drug Development, Faculty of Medicine and Pharmacy, Université Joseph Ki-Zerbo, BP 958 Ouagadougou 09, Burkina Faso
| | - Marta Bertolino
- Department of Agriculture, Forestry and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, Italy; (L.B.-P.); (M.B.)
| | - Cédric Delporte
- RD3 Department-Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université Libre de Bruxelles, 1050 Brussels, Belgium; (C.D.); (C.S.)
- Analytical Platform of the Faculty of Pharmacy (APFP), Faculty of Pharmacy, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Stéphanie Pochet
- Laboratory of Pharmacology, Pharmacotherapy and Pharmaceutical Care, Université Libre de Bruxelles, 1050 Brussels, Belgium; (C.E.K.); (E.N.H.Y.); (S.P.)
| | - Caroline Stévigny
- RD3 Department-Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université Libre de Bruxelles, 1050 Brussels, Belgium; (C.D.); (C.S.)
| |
Collapse
|
40
|
Sefrin Speroni C, Rigo Guerra D, Beutinger Bender AB, Stiebe J, Ballus CA, Picolli da Silva L, Lozano-Sánchez J, Emanuelli T. Micronization increases the bioaccessibility of polyphenols from granulometrically separated olive pomace fractions. Food Chem 2020; 344:128689. [PMID: 33277120 DOI: 10.1016/j.foodchem.2020.128689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023]
Abstract
The effect of micronization of granulometrically fractionated olive pomace (OP) on the bioaccessibility of polyphenols and the antioxidant capacity was investigated during sequential in vitro static digestion. Crude OP was fractionated in a 2-mm sieve (F1: > 2 mm; F2: < 2 mm) and then micronized (300 r min-1, 5 h) generating F1AG (17.8 μm) and F2AG (15.6 μm). Micronization increased the release of hydroxytyrosol, oleuropein, caffeic acid, and decarboxymethyl oleuropein aglycone (3,4-DHPEA-EDA) in the salivary and gastric phase, beyond luteolin in the gastric phase. Micronization also increased the intestinal bioaccessibility of hydroxytyrosol, 3,4-DHPEA-EDA, oleuropein, luteolin, and apigenin; it was more effective for F2AG than F1AG. Micronized samples increased antioxidant capacity in the gastric phase. F2AG exhibited the highest antioxidant capacity in the insoluble intestinal fraction. Thus, micronization can be further exploited to improve the nutraceutical properties of OP by increasing the bioaccessibility and antioxidant capacity of phenolic compounds.
Collapse
Affiliation(s)
- Caroline Sefrin Speroni
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Daniela Rigo Guerra
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Ana Betine Beutinger Bender
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Jessica Stiebe
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Cristiano Augusto Ballus
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Leila Picolli da Silva
- Department of Animal Science, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Jesús Lozano-Sánchez
- Department of Nutrition and Bromatology, Faculty of Sciences, University of Granada, 18071 Granada, Spain; Research and Development of Functional Food Centre (CIDAF), Bioregion Building, PTS Granada, Avda. del Conocimiento s/n, 18016 Granada, Spain
| | - Tatiana Emanuelli
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
41
|
In vitro bioaccessibility of amino acids and bioactive amines in 70% cocoa dark chocolate: What you eat and what you get. Food Chem 2020; 343:128397. [PMID: 33406569 DOI: 10.1016/j.foodchem.2020.128397] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/06/2020] [Accepted: 10/11/2020] [Indexed: 12/11/2022]
Abstract
Chocolate is an important source of free bioactive amines and amino acids which play important roles in human health. Considering the limited information on the bioaccessibility of these compounds from chocolate, the objective of this study was to characterize their profiles and bioaccessibility in 70% cocoa dark chocolate through in vitro simulation of oral, gastric and intestinal digestions. Seven amines were detected; polyamines were predominant before in vitro digestion, whereas tyramine, cadaverine and spermidine after digestion. All amines showed high bioaccessibility with slight influence of digestive enzymes. Amines increased after gastrointestinal digestion: tyramine (13-fold), tryptamine (9-fold), others (2.4-4.2-fold) and histamine appeared. All amino acids, GABA and ammonia were detected in chocolate, and their contents increased after in vitro digestion due to digestive enzymes (4.6, 2.8 and 2.1, respectively). Dark chocolate protein is a good source of tryptophan, phenylalanine + tyrosine, isoleucine, histidine, but limiting for lysine, leucine, and threonine.
Collapse
|
42
|
Koudoufio M, Desjardins Y, Feldman F, Spahis S, Delvin E, Levy E. Insight into Polyphenol and Gut Microbiota Crosstalk: Are Their Metabolites the Key to Understand Protective Effects against Metabolic Disorders? Antioxidants (Basel) 2020; 9:E982. [PMID: 33066106 PMCID: PMC7601951 DOI: 10.3390/antiox9100982] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Lifestyle factors, especially diet and nutrition, are currently regarded as essential avenues to decrease modern-day cardiometabolic disorders (CMD), including obesity, metabolic syndrome, type 2 diabetes, and atherosclerosis. Many groups around the world attribute these trends, at least partially, to bioactive plant polyphenols given their anti-oxidant and anti-inflammatory actions. In fact, polyphenols can prevent or reverse the progression of disease processes through many distinct mechanisms. In particular, the crosstalk between polyphenols and gut microbiota, recently unveiled thanks to DNA-based tools and next generation sequencing, unravelled the central regulatory role of dietary polyphenols and their intestinal micro-ecology metabolites on the host energy metabolism and related illnesses. The objectives of this review are to: (1) provide an understanding of classification, structure, and bioavailability of dietary polyphenols; (2) underline their metabolism by gut microbiota; (3) highlight their prebiotic effects on microflora; (4) discuss the multifaceted roles of their metabolites in CMD while shedding light on the mechanisms of action; and (5) underscore their ability to initiate host epigenetic regulation. In sum, the review clearly documents whether dietary polyphenols and micro-ecology favorably interact to promote multiple physiological functions on human organism.
Collapse
Affiliation(s)
- Mireille Koudoufio
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada; (M.K.); (F.F.); (S.S.); (E.D.)
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Francis Feldman
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada; (M.K.); (F.F.); (S.S.); (E.D.)
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Schohraya Spahis
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada; (M.K.); (F.F.); (S.S.); (E.D.)
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Edgard Delvin
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada; (M.K.); (F.F.); (S.S.); (E.D.)
- Department of Biochemistry, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Emile Levy
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada; (M.K.); (F.F.); (S.S.); (E.D.)
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada;
- Department of Pediatrics, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
43
|
Kamiloglu S, Tomas M, Ozdal T, Capanoglu E. Effect of food matrix on the content and bioavailability of flavonoids. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.10.030] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Gu C, Suleria HAR, Dunshea FR, Howell K. Dietary Lipids Influence Bioaccessibility of Polyphenols from Black Carrots and Affect Microbial Diversity under Simulated Gastrointestinal Digestion. Antioxidants (Basel) 2020; 9:antiox9080762. [PMID: 32824607 PMCID: PMC7464840 DOI: 10.3390/antiox9080762] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/20/2022] Open
Abstract
The bioaccessibility and activity of polyphenols is dependent on their structure and entrapment in the food matrix. While dietary lipids are known to transit into the colon, the impact of different lipids on the microbiome, and their interactions with dietary polyphenols are largely unknown. Here, we investigated the effect of dietary lipids on the bioaccessibility of polyphenols from purple/black carrots and adaptation of the gut microbiome in a simulated in vitro digestion-fermentation. Coconut oil, sunflower oil, and beef tallow were selected to represent common dietary sources of medium-chain fatty acids (MCFAs), long-chain polyunsaturated fatty acids (PUFAs), and long-chain polysaturated fatty acids (SFAs), respectively. All lipids promoted the bioaccessibility of both anthocyanins and phenolic acids during intestinal digestion with coconut oil exhibiting the greatest protection of anthocyanins. Similar trends were shown in antioxidant assays (2,2-Diphenyl-1-pricrylhydrazyl (DPPH), ferric reducing ability (FRAP), and total phenolic content (TPC)) with higher phytochemical bioactivities observed with the addition of dietary lipids. Most bioactive polyphenols were decomposed during colonic fermentation. Black carrot modulated diversity and composition of a simulated gut microbiome. Dramatic shifts in gut microbiome were caused by coconut oil. Inclusion of sunflower oil improved the production of butyrate, potentially due to the presence of PUFAs. The results show that the impact of polyphenols in the digestive tract should be considered in the context of other components of the diet, particularly lipids.
Collapse
Affiliation(s)
- Chunhe Gu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, VIC, Australia; (C.G.); (H.A.R.S.); (F.R.D.)
| | - Hafiz A. R. Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, VIC, Australia; (C.G.); (H.A.R.S.); (F.R.D.)
| | - Frank R. Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, VIC, Australia; (C.G.); (H.A.R.S.); (F.R.D.)
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| | - Kate Howell
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, VIC, Australia; (C.G.); (H.A.R.S.); (F.R.D.)
- Correspondence: ; Tel.: +61-470-439-67
| |
Collapse
|
45
|
Jurinjak Tušek A, Marić L, Benković M, Valinger D, Jurina T, Gajdoš Kljusurić J. In-vitro digestion of the bioactives originating from the Lamiaceae family herbal teas: A kinetic and PLS modeling study. J Food Biochem 2020; 44:e13233. [PMID: 32490545 DOI: 10.1111/jfbc.13233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/09/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022]
Abstract
The stability of lavender, lemon balm, mint, sage, and thyme teas was investigated using in-vitro simulation of the digestive system. Kinetics of changes in the total polyphenolic content (TPC) and the antioxidant activity during the in-vitro trials were also evaluated. Results showed that TPC of mint teas decreases the fastest. Mathematical models for prediction of the TPC and the antioxidant activity of prepared teas based on UV-VIS and NIR spectra collected before, during, and after simulation showed that the best prediction was obtained for the wavelength ranges from 410 to 900 nm, 904 to 928 nm, and 1,399 to 1699 nm. It was concluded that the NIR can be used for calibration, validation, and classification of teas prepared from Lamiaceae plants. PRACTICAL APPLICATIONS: The bioactives' in-vitro digestion process can successfully be characterized by chemical, spectroscopic, and mathematical analysis. Application of NIR spectroscopy, in combination with multivariate analysis, leads to a reduction of time, costs, and chemical consumption and gives reliable results that pharmaceutical, food, and chemical industries can benefit from.
Collapse
Affiliation(s)
- Ana Jurinjak Tušek
- Faculty of Food Technology and Biotechnology, Department of Process Engineering, University of Zagreb, Zagreb, Croatia
| | - Lucija Marić
- Faculty of Food Technology and Biotechnology, Department of Process Engineering, University of Zagreb, Zagreb, Croatia
| | - Maja Benković
- Faculty of Food Technology and Biotechnology, Department of Process Engineering, University of Zagreb, Zagreb, Croatia
| | - Davor Valinger
- Faculty of Food Technology and Biotechnology, Department of Process Engineering, University of Zagreb, Zagreb, Croatia
| | - Tamara Jurina
- Faculty of Food Technology and Biotechnology, Department of Process Engineering, University of Zagreb, Zagreb, Croatia
| | - Jasenka Gajdoš Kljusurić
- Faculty of Food Technology and Biotechnology, Department of Process Engineering, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
46
|
Wojtunik-Kulesza K, Oniszczuk A, Oniszczuk T, Combrzyński M, Nowakowska D, Matwijczuk A. Influence of In Vitro Digestion on Composition, Bioaccessibility and Antioxidant Activity of Food Polyphenols-A Non-Systematic Review. Nutrients 2020; 12:E1401. [PMID: 32414132 PMCID: PMC7284996 DOI: 10.3390/nu12051401] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022] Open
Abstract
There is increased interest in following a healthy lifestyle and consuming a substantial portion of secondary plant metabolites, such as polyphenols, due to their benefits for the human body. Food products enriched with various forms of fruits and vegetables are sources of pro-health components. Nevertheless, in many cases, the level of their activities is changed in in vivo conditions. The changes are strictly connected with processes in the digestive system that transfigure the structure of the active compounds and simultaneously keep or modify their biological activities. Much attention has focused on their bioavailability, a prerequisite for further physiological functions. As human studies are time consuming, costly and restricted by ethical concerns, in vitro models for investigating the effects of digestion on these compounds have been developed to predict their release from the food matrix, as well as their bioaccessibility. Most typically, models simulate digestion in the oral cavity, the stomach, the small intestine and, occasionally, the large intestine. The presented review aims to discuss the impact of in vitro digestion on the composition, bioaccessibility and antioxidant activity of food polyphenols. Additionally, we consider the influence of pH on antioxidant changes in the aforementioned substances.
Collapse
Affiliation(s)
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Tomasz Oniszczuk
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland
| | - Maciej Combrzyński
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland
| | - Dominika Nowakowska
- Department of General Ophthalmology, Medical University of Lublin, Chmielna 1, 20-079 Lublin, Poland;
| | - Arkadiusz Matwijczuk
- Department of Physics, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| |
Collapse
|
47
|
Dias R, Oliveira H, Fernandes I, Simal-Gandara J, Perez-Gregorio R. Recent advances in extracting phenolic compounds from food and their use in disease prevention and as cosmetics. Crit Rev Food Sci Nutr 2020; 61:1130-1151. [PMID: 32338035 DOI: 10.1080/10408398.2020.1754162] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Phenolic compounds in plants are essential components of human nutrition, which provide various health benefits. However, some missing links became the research in phenolic compounds structures and potential applications in a challenging work. Despite universal extraction methods with mixtures of different organic solvents are generally adopted in the analysis of phenolic compounds, a need for establish a specific procedure is still open. The great heterogeneity in food and food by-products matrices and the lack of standardized methods which combine chromatographic with spectrophotometric techniques to calculate the amount of phenolic compounds joined with the absence of specific standards hamper to accurate know the real amount of phenolic compounds. Indeed, the high complexity in nature and chemistry of phenolic compounds clearly difficult to establish a daily intake to obtain certain healthy outcomes. Hence, despite the potential of phenolic compounds to use them in cosmetic and healthy applications have been widely analyzed, some concerns must be considered. The chemical complexity, the interactions between phenolic compounds and other food components and the structural changes induced by food processing joined with the lack in the understanding of phenolic compounds metabolism and bioavailability undergo the need to conduct a comprehensive review of each factors influencing the final activity of phenolic compounds. This paper summarizes the potential of phenolic compounds for disease prevention and cosmetics production, as well as their many other uses derived from their antioxidant activity. This paper illustrates the potential of phenolic compounds for disease prevention and cosmetics production, as well as their many other uses derived from their antioxidant activity.
Collapse
Affiliation(s)
- Ricardo Dias
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Helder Oliveira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Iva Fernandes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Rosa Perez-Gregorio
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| |
Collapse
|
48
|
Yao Y, Xu F, Ju X, Li Z, Wang L. Lipid-Lowering Effects and Intestinal Transport of Polyphenol Extract from Digested Buckwheat in Caco-2/HepG2 Coculture Models. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4205-4214. [PMID: 32141744 DOI: 10.1021/acs.jafc.0c00321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polyphenol extracts derived from gastrointestinal digestates of buckwheat (Fagopyrum Mill) were studied for their intestinal transport and lipid-lowering effects in Caco-2/HepG2 coculture models. The relative amounts of all phenolic compounds throughout the digestion and intestinal absorption process were determined by UHPLC-Q-Orbitrap mass spectrometry. The digestible and easily transported phenolic compounds in buckwheat extract were identified. Herein, four main phenolic compounds and their metabolites were found on both the apical and basolateral sides of the Caco-2 cell transwell model. The transepithelial transport rates in the Caco-2 cell monolayer were scoparone (0.97) > hydroxycinnamic acid (0.40) > rutin (0.23) > quercetin (0.20). The main metabolism of hydroxycinnamic acid, quercetin, and scoparone in transepithelial transport was found to be methylation. Furthermore, results indicated that triglyceride, low-density lipoprotein cholesterol, total cholesterol, aspartate aminotransferase, and alanine aminotransferase levels in HepG2 cells on the basolateral side of coculture models can be suppressed by 53.64, 23.44, 36.49, 27.98, and 77.42% compared to the oleic acid-induced group (p < 0.05). In addition, the mRNA expression of Fabp4 relative to the control was found to be significantly upregulated (85.82 ± 10.64 to 355.18 ± 65.83%) by the easily transported buckwheat polyphenol components in HepG2 cells (p < 0.01).
Collapse
Affiliation(s)
- Yijun Yao
- National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, No. 3 Wenyuan Road, Nanjing, Jiangsu 210023, People's Republic of China
| | - Feiran Xu
- National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Xingrong Ju
- National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, No. 3 Wenyuan Road, Nanjing, Jiangsu 210023, People's Republic of China
| | - Zhifang Li
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, No. 3 Wenyuan Road, Nanjing, Jiangsu 210023, People's Republic of China
| | - Lifeng Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, No. 3 Wenyuan Road, Nanjing, Jiangsu 210023, People's Republic of China
| |
Collapse
|
49
|
Cömert ED, Gökmen V. Physiological relevance of food antioxidants. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 93:205-250. [PMID: 32711863 DOI: 10.1016/bs.afnr.2020.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Dietary antioxidants are associated with prevention of oxidative stress related chronic diseases including certain types of cancer, cardiovascular diseases, diabetes, and neurodegenerative diseases. In recent years, there has been a growing interest in extending the knowledge on their physiological effects in human body. There are numbers of epidemiological, clinical, meta-analysis, and in vitro studies to explain formation mechanisms of each chronic diseases as well as the potential effects of dietary antioxidants on these diseases and gut health. Comprehensive studies for food antioxidants' journey from dietary intake to target tissues/organs deserve a serious consideration to have a clear understanding on the physiological effects of dietary antioxidants. Therefore, absorption and metabolism of dietary antioxidants, and the factors affecting their absorption, such as solubility of antioxidants, food matrix, and interaction between antioxidants have been evaluated in several research articles. This chapter provides an overview about potential health effects of dietary antioxidants considering with their absorption and metabolism in human body.
Collapse
Affiliation(s)
- Ezgi Doğan Cömert
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, Ankara, Turkey
| | - Vural Gökmen
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
50
|
Kruger J, Sus N, Frank J. Ascorbic acid, sucrose and olive oil lipids mitigate the inhibitory effects of pectin on the bioaccessibility and Caco-2 cellular uptake of ferulic acid and naringenin. Food Funct 2020; 11:4138-4145. [DOI: 10.1039/d0fo00129e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sucrose and olive oil successfully negate the inhibitory effect of pectin on the overall in vitro availability of ferulic acid and naringenin by substantially increasing the bioaccessibility and not cellular uptake of the phenolics.
Collapse
Affiliation(s)
- Johanita Kruger
- Institute of Nutritional Sciences
- University of Hohenheim
- 70599 Stuttgart
- Germany
| | - Nadine Sus
- Institute of Nutritional Sciences
- University of Hohenheim
- 70599 Stuttgart
- Germany
| | - Jan Frank
- Institute of Nutritional Sciences
- University of Hohenheim
- 70599 Stuttgart
- Germany
| |
Collapse
|