1
|
Zhou Z, Niu H, Bian M, Zhu C. Kidney tea [ Orthosiphon aristatus (Blume) Miq.] improves diabetic nephropathy via regulating gut microbiota and ferroptosis. Front Pharmacol 2024; 15:1392123. [PMID: 38962302 PMCID: PMC11220284 DOI: 10.3389/fphar.2024.1392123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. Due to its complex pathogenesis, new therapeutic agents are urgently needed. Orthosiphon aristatus (Blume) Miq., commonly known as kidney tea, is widely used in DN treatment in China. However, the mechanisms have not been fully elucidated. Methods We used db/db mice as the DN model and evaluated the efficacy of kidney tea in DN treatment by measuring fasting blood glucose (FBG), serum inflammatory cytokines, renal injury indicators and histopathological changes. Furthermore, 16S rDNA gene sequencing, untargeted serum metabolomics, electron microscope, ELISA, qRT-PCR, and Western blotting were performed to explore the mechanisms by which kidney tea exerted therapeutic effects. Results Twelve polyphenols were identified from kidney tea, and its extract ameliorated FBG, inflammation and renal injury in DN mice. Moreover, kidney tea reshaped the gut microbiota, reduced the abundance of Muribaculaceae, Lachnoclostridium, Prevotellaceae_UCG-001, Corynebacterium and Akkermansia, and enriched the abundance of Alloprevotella, Blautia and Lachnospiraceae_NK4A136_group. Kidney tea altered the levels of serum metabolites in pathways such as ferroptosis, arginine biosynthesis and mTOR signaling pathway. Importantly, kidney tea improved mitochondrial damage, increased SOD activity, and decreased the levels of MDA and 4-HNE in the renal tissues of DN mice. Meanwhile, this functional tea upregulated GPX4 and FTH1 expression and downregulated ACSL4 and NCOA4 expression, indicating that it could inhibit ferroptosis in the kidneys. Conclusion Our findings imply that kidney tea can attenuate DN development by modulating gut microbiota and ferroptosis, which presents a novel scientific rationale for the clinical application of kidney tea.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongjuan Niu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Meng Bian
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunsheng Zhu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Chiang KH, Cheng TJ, Kan WC, Wang HY, Li JC, Cai YL, Cheng CH, Liu YC, Chang CY, Chuu JJ. Orthosiphon aristatus (Blume) Miq. Extracts attenuate Alzheimer-like pathology through anti-inflammatory, anti-oxidative, and β-amyloid inhibitory activities. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117132. [PMID: 37704121 DOI: 10.1016/j.jep.2023.117132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Orthosiphon aristatus (Blume) Miq. (OA) is a traditional folk-herb, which is usually used to treat acute and chronic nephritis, epilepsy, cystitis, and other diseases. Phenols and flavonoids are the main active compound compounds of OA, with proven anti-inflammatory and antioxidant activities. AIMS OF THIS STUDY Based on evidenced therapeutic activities, we aimed to investigate the impact of OA on Alzheimer's disease (AD) which is the most common age-related neurodegenerative disease, and the pathological features include accumulation of beta-amyloid (Aβ) and neurofibrillary tangles (NFT). MATERIALS AND METHODS OA was extracted with water, methanol, chloroform, and ethyl acetate, and determined its total flavonoid and phenolic contents. Initially, Aβ1-42 based cytotoxicity was induced in BV2 cells and C6 cells to investigate the therapeutic impact of OA therapy by MTT, RT-PCR, Western blot, and ELISA. Further, Aβ1-42 Oligomer (400 pmol)-induced AD mice model was established to evaluate the impact of OA extract on improving learning and memory impairment. RESULTS The results showed that the extract of OA could increase cell survival, inhibit the expression of TNF-α, IL-6, IL-1β, COX-2, and iNOS, and increase BDNF levels. We infer that the OA extract may attenuate Aβ-induced cytotoxicity by retarding the production of inflammatory-related factors. In the animal behavior test, the number of mice entering darkroom and the time of arriving at the platform were significantly reduced, indicating the learning and memory-improving ability of OA extract. CONCLUSIONS These findings imply that the OA ethanolic extract demonstrated an improving effect on memory and hence could serve as a potential therapeutic target for the treatment of neurodegenerative diseases like AD.
Collapse
Affiliation(s)
- Kuang-Hsing Chiang
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan; Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Tain-Junn Cheng
- Department of Neurology, Chi Mei Medical Center, Yong-Kang District, Tainan 71004, Taiwan; Department of Occupational Medicine Chi Mei Medical Center, Yong-Kang District, Tainan 71004, Taiwan
| | - Wei-Chih Kan
- Division of Nephrology, Chi Mei Medical Center, Yong-Kang District, Tainan 71004, Taiwan; Department of Medical Laboratory Science and Biotechnology, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan
| | - Hsien-Yi Wang
- Division of Nephrology, Chi Mei Medical Center, Yong-Kang District, Tainan 71004, Taiwan; Department of Sport Management, College of Leisure and Recreation Management, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Jui-Chen Li
- Pharmacy Department, Wei-Gong Memorial Hospital, Miaoli 35159, Taiwan
| | - Yan-Ling Cai
- Department of Biotechnology and Food Technology, College of Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan
| | - Chia-Hui Cheng
- Department of Biotechnology and Food Technology, College of Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan
| | - Yi-Chien Liu
- Department of Biotechnology and Food Technology, College of Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan
| | - Chia-Yu Chang
- Department of Neurology, Chi Mei Medical Center, Yong-Kang District, Tainan 71004, Taiwan; Center for General Education, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan.
| | - Jiunn-Jye Chuu
- Pharmacy Department, Wei-Gong Memorial Hospital, Miaoli 35159, Taiwan; Department of Biotechnology and Food Technology, College of Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan.
| |
Collapse
|
3
|
Pandaleke TA, Handono K, Widasmara D, Susianti H. The immunomodulatory activity of Orthosiphon aristatus against atopic dermatitis: Evidence-based on network pharmacology and molecular simulations. J Taibah Univ Med Sci 2024; 19:164-174. [PMID: 38047238 PMCID: PMC10692725 DOI: 10.1016/j.jtumed.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/11/2023] [Accepted: 10/26/2023] [Indexed: 12/05/2023] Open
Abstract
Objectives To explore the potential activity of Orthosiphon aristatus (OA) against atopic dermatitis (AD). Methods Phytocompounds from OA were identified through chromatography analysis, then continued to target identification and functional annotation to explore the potential target of OA. Then, network pharmacology from annotated proteins determined protein targets for OA phytocompounds. Protein with highest rank according to the betweenness and closeness algorithm then continued to molecular docking and validated through molecular dynamics analysis. Results Chromatography data analysis revealed thirty-six compounds, predominantly classified as carboxylic acid, fatty acyls, and polyphenols. Upon identifying these compounds, network biology-based target identification revealed their potential bioactivity in modulating inflammation in AD. Tumour Necrosis Factor-alpha (TNF-α) and Prostaglandin G/H synthase 2 (PTGS2) emerged as the most probable targets based on hub centrality in the protein-protein interaction network. Later, molecular docking analyses highlighted sixteen compounds with good inhibitory activity against these two proteins. Notably, molecular dynamics simulation revealed that three compounds out of the previous sixteen potential compounds were more likely to act as the TNF-α and PTGS2 inhibitor as well as their native inhibitor. Those compounds are (1R,9R)-5-Cyclohexyl-11- (propylsulfonyl)-7,11- diazatricyclo[7.3.1.02,7]trideca- 2,4-dien-6-one, also known as ZINC8297940, as the best TNF-α inhibitor along with dl-Leucineamide and Benazol P as the potential inhibitor of PTGS2. Conclusions These findings suggest that OA may exert therapeutic effects against AD by controlling inflammation through TNF-α and PTGS2 signalling pathways.
Collapse
Affiliation(s)
- Thigita A. Pandaleke
- Doctoral Program of Medical Science, Universitas Brawijaya, Malang, East Java, Indonesia
- Department of Dermatology and Venereology, Faculty of Medicine, Sam Ratulangi University, RD Kandou Hospital, Jl. Raya Tanawangko No.56, Manado 95163, North Sulawesi, Indonesia
| | - Kusworini Handono
- Department of Clinical Pathology, Faculty of Medicine, Universitas Brawijaya – Saiful Anwar Hospital, Malang, East Java, Indonesia
| | - Dhelya Widasmara
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Brawijaya – Saiful Anwar Hospital, Malang, East Java, Indonesia
| | - Hani Susianti
- Department of Clinical Pathology, Faculty of Medicine, Universitas Brawijaya – Saiful Anwar Hospital, Malang, East Java, Indonesia
| |
Collapse
|
4
|
Mohmad Saberi SE, Chua LS. Potential of rosmarinic acid from Orthosiphon aristatus extract for inflammatory induced diseases and its mechanisms of action. Life Sci 2023; 333:122170. [PMID: 37827234 DOI: 10.1016/j.lfs.2023.122170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Orthosiphon aristatus has been traditionally used as a medicinal herb for various illnesses in Southeast Asia and Europe. The most dominant bioactive compound of the herb is rosmarinic acid (RosA) which has been demonstrated for its remarkable anti-inflammatory properties. This review describes the recent progress of studies on multi-target molecular pathways of RosA in relation to targeted inflammatory-associated diseases. An inclusive literature search was conducted using electronic databases such as Google Scholar, Scopus, Springer Link, PubMed, Medline, Wiley and Science Direct for studies reporting on the anti-inflammatory actions of RosA from 2008 until 2023. The keywords of the search were RosA and anti-inflammatory in relation to hepatoprotective, chondroprotective, cardioprotective, neuroprotective and toxicity. Only publications that are written in English are included in this review. The inhibition and deactivation of pro-inflammatory biomolecules by RosA were explained based on the initial inflammation stimuli and their location in the body. The activation of Nrf2/HO-1 expression to inhibit NF-κB pathway is the key mechanism for hepatoprotection. Besides NF-κB inhibition, RosA activates PPARγ to alleviate ischemia/reperfusion (I/R)-induced myocardial injury for cardioprotection. The regulation of MAPK and T-cell activation is important for chondroprotection, whereas the anti-oxidant property of RosA is the main contributor of neuroprotection. Even though less studies on the anti-inflammation of RosA extracts from O. aristatus, but the effective pharmacological properties of RosA has promoted it as a natural potent lead for further investigation.
Collapse
Affiliation(s)
- Salfarina Ezrina Mohmad Saberi
- Herbal and Phytochemical Unit, Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Johor, Malaysia
| | - Lee Suan Chua
- Herbal and Phytochemical Unit, Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Johor, Malaysia; Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Johor, Malaysia.
| |
Collapse
|
5
|
Wang X, Zhao W, Zhang X, Wang Z, Han C, Xu J, Yang G, Peng J, Li Z. An integrative analysis to predict the active compounds and explore polypharmacological mechanisms of Orthosiphon stamineus Benth. Comput Biol Med 2023; 163:107160. [PMID: 37321099 DOI: 10.1016/j.compbiomed.2023.107160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Orthosiphon stamineus Benth is a dietary supplement and traditional Chinese herb with widespread clinical applications, but a comprehensive understanding of its active compounds and polypharmacological mechanisms is lacking. This study aimed to systematically investigate the natural compounds and molecular mechanisms of O. stamineus via network pharmacology. METHODS Information on compounds from O. stamineus was collected via literature retrieval, while physicochemical properties and drug-likeness were evaluated using SwissADME. Protein targets were screened using SwissTargetPrediction, while the compound-target networks were constructed and analyzed via Cytoscape with CytoHubba for seed compounds and core targets. Enrichment analysis and disease ontology analysis were then carried out, generating target-function and compound-target-disease networks to intuitively explore potential pharmacological mechanisms. Lastly, the relationship between active compounds and targets was confirmed via molecular docking and dynamics simulation. RESULTS A total of 22 key active compounds and 65 targets were identified and the main polypharmacological mechanisms of O. stamineus were addressed. The molecular docking results suggested that nearly all core compounds and their targets possess good binding affinity. In addition, the separation of receptor and ligands was not observed in all dynamics simulation processes, whereas complexes of orthosiphol Z-AR and Y-AR performed best in simulations of molecular dynamics. CONCLUSION This study successfully identified the polypharmacological mechanisms of the main compounds in O. stamineus, and predicted five seed compounds along with 10 core targets. Moreover, orthosiphol Z, orthosiphol Y, and their derivatives can be utilized as lead compounds for further research and development. The findings here provide improved guidance for subsequent experiments, and we identified potential active compounds for drug discovery or health promotion.
Collapse
Affiliation(s)
- Xingqiang Wang
- Department of Rheumatology, The No.1 Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, 650021, PR China; Yunnan Provincial Clinical Medicine Research Center of Rheumatism in TCM, Yunnan Provincial Hospital of Traditional Chinese Medicine, Yunnan, 650021, PR China.
| | - Weiqing Zhao
- Department of Rheumatology and Immunology, The First People's Hospital of Yunnan Province and The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650034, PR China
| | - Xiaoyu Zhang
- Department of Rheumatology, The No.1 Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, 650021, PR China
| | - Zongqing Wang
- Department of Rheumatology, The No.1 Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, 650021, PR China
| | - Chang Han
- Department of Rheumatology, The No.1 Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, 650021, PR China
| | - Jiapeng Xu
- Department of Yi Medicine, Traditional Chinese Medicine Hospital of Chuxiong Yi Autonomous Prefecture (Traditional Yi Medicine Hospital of Yunnan Province), Chuxiong, Yunnan, 675000, PR China
| | - Guohui Yang
- Department of Medical Research Information, Traditional Chinese Medicine Hospital of Chuxiong Yi Autonomous Prefecture (Traditional Yi Medicine Hospital of Yunnan Province), Chuxiong, Yunnan, 675000, PR China
| | - Jiangyun Peng
- Department of Rheumatology, The No.1 Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, 650021, PR China; Yunnan Provincial Clinical Medicine Research Center of Rheumatism in TCM, Yunnan Provincial Hospital of Traditional Chinese Medicine, Yunnan, 650021, PR China.
| | - Zhaofu Li
- Department of Rheumatology, The No.1 Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, 650021, PR China; Yunnan Provincial Clinical Medicine Research Center of Rheumatism in TCM, Yunnan Provincial Hospital of Traditional Chinese Medicine, Yunnan, 650021, PR China.
| |
Collapse
|
6
|
Wong YS, Yusoff R, Ngoh GC. Phenolic compounds extraction by assistive technologies and natural deep eutectic solvents. REV CHEM ENG 2023. [DOI: 10.1515/revce-2022-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Abstract
Phenolic compounds are known to have a significant effect on human defense system due to their anti-inflammatory efficacy. This can slow down the aging process and strengthen the human immune system. With the growing interest in green chemistry concept, extraction of phenolic compounds from plants has been geared towards a sustainable path with the use of green and environmentally friendly solvents such as natural deep eutectic solvents (NADES). This review discusses both the conventional extraction and the advanced extraction methods of phenolic compounds using NADES with focus on microwave-assisted extraction (MAE) and ultrasound-assisted extraction (UAE) techniques ensued by a rationale comparison between them. Employing choline chloride-based natural deep eutectic solvents (NADES) is highlighted as one of the promising strategies in green solvent extraction of phenolic compounds in terms of their biodegradability and extraction mechanism. The review also discusses assistive extraction technologies using NADES for a better understanding of their relationship with extraction efficiency. In addition, the review includes an overview of the challenges of recovering phenolic compounds from NADES after extraction, the potential harmful effects of NADES as well as their future perspective.
Collapse
|
7
|
Solubility of Rosmarinic Acid in Supercritical Carbon Dioxide Extraction from Orthosiphon stamineus Leaves. CHEMENGINEERING 2022. [DOI: 10.3390/chemengineering6040059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Rosmarinic acid (RA) is present in a broad variety of plants, including those in the Lamiaceae family, and has a wide range of pharmacological effects, particularly antioxidant activity. To extract RA from Orthosiphon stamineus (OS) leaves, a Lamiaceae plant, a suitable extraction process is necessary. The present study used a green extraction method of supercritical carbon dioxide (SCCO2) extraction with the addition of ethanol as a modifier to objectively measure and correlate the solubility of RA from OS leaves. The solubility of RA in SCCO2 was determined using a dynamic extraction approach, and the solubility data were correlated using three density-based semi-empirical models developed by Chrastil, del Valle-Aguilera, and Gonzalez. Temperatures of 40, 60, and 80 °C and pressures of 10, 20, and 30 MPa were used in the experiments. The maximum RA solubility was found at 80 °C and 10 MPa with 2.004 mg of rosmarinic acid/L solvent. The RA solubility data correlated strongly with the three semi-empirical models with less than 10% AARD. Furthermore, the fastest RA extraction rate of 0.0061 mg/g min−1 was recorded at 80 °C and 10 MPa, and the correlation using the Patricelli model was in strong agreement with experimental results with less than 15% AARD.
Collapse
|
8
|
Chao J, Chen TY, Pao LH, Deng JS, Cheng YC, Su SY, Huang SS. Ethnobotanical Survey on Bitter Tea in Taiwan. Front Pharmacol 2022; 13:816029. [PMID: 35250565 PMCID: PMC8894760 DOI: 10.3389/fphar.2022.816029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
Ethnopharmacological evidence: In Taiwan, herbal tea is considered a traditional medicine and has been consumed for hundreds of years. In contrast to regular tea, herbal teas are prepared using plants other than the regular tea plant, Camellia sinensis (L.) Kuntze. Bitter tea (kǔ-chá), a series of herbal teas prepared in response to common diseases in Taiwan, is often made from local Taiwanese plants. However, the raw materials and formulations have been kept secret and verbally passed down by store owners across generations without a fixed recipe, and the constituent plant materials have not been disclosed. Aim of the study: The aim was to determine the herbal composition of bitter tea sold in Taiwan, which can facilitate further studies on pharmacological applications and conserve cultural resources. Materials and methods: Interviews were conducted through a semi-structured questionnaire. The surveyed respondents were traditional sellers of traditional herbal tea. The relevant literature was collated for a systematic analysis of the composition, characteristics, and traditional and modern applications of the plant materials used in bitter tea. We also conducted an association analysis of the composition of Taiwanese bitter tea with green herb tea (qing-cao-cha tea), another commonly consumed herbal tea in Taiwan, as well as herbal teas in neighboring areas outside Taiwan. Results: After visiting a total of 59 stores, we identified 32 bitter tea formulations and 73 plant materials. Asteraceae was the most commonly used family, and most stores used whole plants. According to a network analysis of nine plant materials used in high frequency as drug pairs, Tithonia diversifolia and Ajuga nipponensis were found to be the core plant materials used in Taiwanese bitter tea. Conclusion: Plant materials used in Taiwanese bitter tea were distinct, with multiple therapeutic functions. Further research is required to clarify their efficacy and mechanisms.
Collapse
Affiliation(s)
- Jung Chao
- Chinese Medicine Research Center, Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, Master Program for Food and Drug Safety, China Medical University, Taichung, Taiwan
| | - Ting-Yang Chen
- Chinese Medicine Research Center, Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Li-Heng Pao
- Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jeng-Shyan Deng
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | - Shan-Yu Su
- Department of Chinese Medicine, China Medical University Hospital, School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- *Correspondence: Shan-Yu Su, ; Shyh-Shyun Huang,
| | - Shyh-Shyun Huang
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
- School of Pharmacy, China Medical University, Taichung, Taiwan
- *Correspondence: Shan-Yu Su, ; Shyh-Shyun Huang,
| |
Collapse
|
9
|
Qiu J, Chen X, Liang P, Zhang L, Xu Y, Gong M, Qiu X, Zhang J, Xu W. Integrating approach to discover novel bergenin derivatives and phenolics with antioxidant and anti-inflammatory activities from bio-active fraction of Syzygium brachythyrsum. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
10
|
Jia Z, Li W, Bian P, Yang L, Liu H, Pan D, Dou Z. Ursolic acid treats renal tubular epithelial cell damage induced by calcium oxalate monohydrate via inhibiting oxidative stress and inflammation. Bioengineered 2021; 12:5450-5461. [PMID: 34506233 PMCID: PMC8806476 DOI: 10.1080/21655979.2021.1955176] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/21/2023] Open
Abstract
Ursolic acid (UA) has been proved to have antioxidant and anti-inflammatory effects. However, it is not clear whether it has a protective impact on kidney damage induced by crystals of calcium oxalate monohydrate (COM). This work aimed to make clear the potential mechanism of UA protecting COM-induced kidney damage. The results manifested that high- and low-dose UA reduced COM crystals in COM rats' kidney, down-regulated urea, creatinine, and neutrophil gelatinase-associated lipocalin (NGAL) levels in rat plasma, declined kidney tissue and HK-2 cell apoptosis, inhibited Bax expression but elevated Bcl-2 expression. Additionally, UA alleviated renal fibrosis in COM rats, repressed α-SMA and collagen I protein expressions in the kidney and COM rats' HK-2 cells, depressed COM-induced oxidative damage in vivo and in vitro via up-regulating Nrf2/HO-1 pathway, up-regulated SOD levels and reduced MDA levels, down-regulated TNF-α, IL-1β, and IL-6 levels in vivo and in vitro via suppressing activation of TLR4/NF-κB pathway. In summary, the results of this study suggest that COM-induced renal injury can be effectively improved via UA, providing powerful data support for the development of effective clinical drugs for renal injury in the future.
Collapse
Affiliation(s)
- Zhaohui Jia
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang City, Henan Province, China
| | - Wensheng Li
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang City, Henan Province, China
| | - Pan Bian
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang City, Henan Province, China
| | - Liuyang Yang
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang City, Henan Province, China
| | - Hui Liu
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang City, Henan Province, China
| | - Dong Pan
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang City, Henan Province, China
| | - Zhongling Dou
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang City, Henan Province, China
| |
Collapse
|
11
|
Abdul Aziz AH, Putra NR, Nian Yian L, Mohd Rasidek NA, Che Yunus MA. Parametric and kinetic study of supercritical carbon dioxide extraction on sinensetin from Orthosiphon stamineus Benth. leaves. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1917613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ahmad Hazim Abdul Aziz
- Centre of Lipids Engineering and Applied Research (CLEAR), Ibnu Sina Institute for Scientific & Industrial Research, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Nicky Rahmana Putra
- Centre of Lipids Engineering and Applied Research (CLEAR), Ibnu Sina Institute for Scientific & Industrial Research, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Lee Nian Yian
- Centre of Lipids Engineering and Applied Research (CLEAR), Ibnu Sina Institute for Scientific & Industrial Research, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
- Eco Bee Shop Sdn Bhd, Johor, Kulai, Malaysia
| | - Noor Azwani Mohd Rasidek
- Centre of Lipids Engineering and Applied Research (CLEAR), Ibnu Sina Institute for Scientific & Industrial Research, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Mohd Azizi Che Yunus
- Centre of Lipids Engineering and Applied Research (CLEAR), Ibnu Sina Institute for Scientific & Industrial Research, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| |
Collapse
|
12
|
Yang Y, Li C, Liu N, Wang M, Zhou X, Kim IH, Wu Z. Ursolic acid alleviates heat stress-induced lung injury by regulating endoplasmic reticulum stress signaling in mice. J Nutr Biochem 2021; 89:108557. [PMID: 33249187 DOI: 10.1016/j.jnutbio.2020.108557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/11/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023]
Abstract
Acute lung injury has been reported to be associated with heat stress in various animals. Ursolic acid is a natural pentacyclic triterpenoid compound with multiple bioactivities. However, it remains unknown whether ursolic acid supplementation alleviates heat stress-induced lung injury. In the present study, male Institute of Cancer Research mice were left untreated under a normal temperature condition (23±1°C), receiving orally administrated with vehicle (phosphate buffered saline) or ursolic acid (40 mg/kg BW-1·d-1 for 2 d), and then were subjected to high temperature (41±1°C) for 2 h. Histological alterations, activities of antioxidative enzymes, apoptosis, generation of reactive oxygen species, abundance of inflammatory cytokines, and endoplasmic reticulum stress-related proteins were analyzed. Compared with the controls, heat stress treatment led to enhanced apoptosis, increased H2O2 production, and upregulated protein levels of inflammatory cytokines in the serum, including tumor necrosis factor alpha, interleukin-6, and interleukin-1 beta. Activities of malondialdehyde, lactate dehydrogenase, and myeloperoxidase were increased, while the activities for superoxide dismutase and catalase were reduced in lung tissues of mice. All these alterations were significantly prevented by ursolic acid administration. Further study showed that heat stress led to activation of protein kinase-like ER kinase eukaryotic initiation factor 2 alpha -the transcription factor CCAAT-enhancer-binding protein homologous protein (CHOP) signaling, which was attenuated by ursolic acid supplementation. These findings indicated that ursolic acid pretreatment protected lung tissues against heat stress-induced injury by regulating inflammatory cytokines and unfolded protein response in mice. Ursolic acid supplementation might be a therapeutic strategy to alleviate high temperature-induced lung injury in humans and animals.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Science and Feed Science, China Agricultural University, Beijing, China.
| | - Changwu Li
- State Key Laboratory of Animal Nutrition, Department of Animal Science and Feed Science, China Agricultural University, Beijing, China
| | - Ning Liu
- State Key Laboratory of Animal Nutrition, Department of Animal Science and Feed Science, China Agricultural University, Beijing, China
| | - Mengmeng Wang
- State Key Laboratory of Animal Nutrition, Department of Animal Science and Feed Science, China Agricultural University, Beijing, China
| | - Xiumin Zhou
- State Key Laboratory of Animal Nutrition, Department of Animal Science and Feed Science, China Agricultural University, Beijing, China
| | - In Ho Kim
- Department of Animal Resource & Science, Dankook University, Cheonan, Korea
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Science and Feed Science, China Agricultural University, Beijing, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Han Jie L, Jantan I, Yusoff SD, Jalil J, Husain K. Sinensetin: An Insight on Its Pharmacological Activities, Mechanisms of Action and Toxicity. Front Pharmacol 2021; 11:553404. [PMID: 33628166 PMCID: PMC7898666 DOI: 10.3389/fphar.2020.553404] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022] Open
Abstract
Sinensetin, a plant-derived polymethoxylated flavonoid found in Orthosiphon aristatus var. aristatus and several citrus fruits, has been found to possess strong anticancer activities and a variety of other pharmacological benefits and promising potency in intended activities with minimal toxicity. This review aims to compile an up-to-date reports of published scientific information on sinensetin pharmacological activities, mechanisms of action and toxicity. The present findings about the compound are critically analyzed and its prospect as a lead molecule for drug discovery is highlighted. The databases employed for data collection are mainly through Google Scholar, PubMed, Scopus and Science Direct. In-vitro and in-vivo studies showed that sinensetin possessed strong anticancer activities and a wide range of pharmacological activities such as anti-inflammatory, antioxidant, antimicrobial, anti-obesity, anti-dementia and vasorelaxant activities. The studies provided some insights on its several mechanisms of action in cancer and other disease states. However, more detail mechanistic studies are needed to understand its pharmacological effects. More in vivo studies in various animal models including toxicity, pharmacokinetic, pharmacodynamic and bioavailability studies are required to assess its efficacy and safety before submission to clinical studies. In this review, an insight on sinensetin pharmacological activities and mechanisms of action serves as a useful resource for a more thorough and comprehensive understanding of sinensetin as a potential lead candidate for drug discovery.
Collapse
Affiliation(s)
- Lee Han Jie
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ibrahim Jantan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Syaratul Dalina Yusoff
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Juriyati Jalil
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Khairana Husain
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Chen WD, Zhao YL, Dai Z, Zhou ZS, Zhu PF, Liu YP, Zhao LX, Luo XD. Bioassay-guided isolation of anti-inflammatory diterpenoids with highly oxygenated substituents from kidney tea (Clerodendranthus spicatus). J Food Biochem 2020; 44:e13511. [PMID: 33103258 DOI: 10.1111/jfbc.13511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/17/2020] [Accepted: 09/14/2020] [Indexed: 11/30/2022]
Abstract
The whole plant of Clerodendranthus spicatus (Thunb.) is one of popular functional food in south of China, named as "kidney tea" and used to ameliorate renal inflammation. In order to verify this potential function and explore the accurate compounds responsible for inflammation, the ethanol extract, fractions, and subfractions of this plant were prepared to evaluate anti-inflammation effect on xylene-induced acute inflammatory mice model, and the results indicated that two subfractions from EtOAc fraction show potential activities. Subsequent bioassay-guided isolation of the bioactive subfractions led to isolation of 25 compounds. Among them, compounds 2, 4, 5, 9-11, 13, 16, 17, and 20-22 inhibited the productions of pro-inflammation factors TNF-α, IL-1β, and IL-8 in lipopolysaccharide (LPS) -induced renal epithelia (HK-2) cells, respectively. Further anti-inflammation evaluation in vivo indicated that the major bioactive compounds 1, 2, 5-7, 17, 21, and 22 from C. spicatus were even better than aspirin. PRACTICAL APPLICATIONS: C. spicatus as a healthy tea has been available in the Chinese market and as a medicine for various disorders such as nephritis, rheumatism, inflammation, gout, and diabetes. Previous pharmacological investigation of the plant revealed the potential anti-inflammatory activities, but the material basis of anti-inflammatory activity remains to be elucidated. In our study, the anti-inflammatory fractions and compounds were obtained by the bioassay-guide isolation and the results showed that the highly oxygenated diterpenoids were major anti-inflammatory compounds, in which 1, 2, 5-7, 17, 21, and 22 were even better than aspirin. This information supported kidney tea as a functional food for treatment of renal inflammation reasonably and may add a new dimension to biological activity of this plant in the field of agriculture as a functional food were cultivated.
Collapse
Affiliation(s)
- Wei-Di Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, People's Republic of China.,State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yun-Li Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, People's Republic of China.,State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China
| | - Zhi Dai
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, People's Republic of China
| | - Zhong-Shun Zhou
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, People's Republic of China.,State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China
| | - Pei-Feng Zhu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ya-Ping Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China
| | - Li-Xing Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, People's Republic of China
| | - Xiao-Dong Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, People's Republic of China.,State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China
| |
Collapse
|
15
|
Abdullah FI, Chua LS, Mohd Bohari SP, Sari E. Rationale of Orthosiphon aristatus for Healing Diabetic Foot Ulcer. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20953308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Orthosiphon aristatus (Blume) Miq. is traditionally used for wound healing in South East Asia and scientifically proven for its antidiabetic potential. Wounds due to diabetes, especially diabetic foot ulcer (DFU), always involve a complicated healing process. The present work aims to review the information on the rationale of the phytochemicals from O. aristatus in promoting DFU healing. The findings showed that the DFU healing potential of O. aristatus was characterized by a reduction in the blood glucose level, mainly attributed to the significant concentration of constituents such as caffeic acid, rosmarinic acid, and sinensetin in the plant extract. These phytochemicals possibly induce insulin secretion and sensitivity, improve the lipid profile, and stimulate glucose uptake. Furthermore, the healing effect may also be contributed to the antioxidant, anti-inflammatory, and antihyperglycemic properties of the plant. The roles of phytochemicals have been systematically postulated in the 4 phases of the healing process. Moreover, no adverse toxic sign or abnormality has been reported upon oral administration of the plant extract. This suggests that O. aristatus extract could be a potential diabetic wound healing phytomedicine for further preclinical and clinical studies.
Collapse
Affiliation(s)
- Farah Izana Abdullah
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
- Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Faculty of Engineering, Johor Bahru, Johor, Malaysia
| | - Lee Suan Chua
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
- Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Faculty of Engineering, Johor Bahru, Johor, Malaysia
| | | | - Eka Sari
- Bioengineering and Biomedical Engineering Laboratory, Research Centre of Sultan Ageng Tirtayasa University, Serang, Banten, Indonesia
| |
Collapse
|
16
|
Di Y, Xu T, Tian Y, Ma T, Qu D, Wang Y, Lin Y, Bao D, Yu L, Liu S, Wang A. Ursolic acid protects against cisplatin‑induced ototoxicity by inhibiting oxidative stress and TRPV1‑mediated Ca2+‑signaling. Int J Mol Med 2020; 46:806-816. [PMID: 32626955 PMCID: PMC7307815 DOI: 10.3892/ijmm.2020.4633] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 05/13/2020] [Indexed: 12/14/2022] Open
Abstract
Cisplatin (CDDP) is widely used in clinical settings for the treatment of various cancers. However, ototoxicity is a major side effect of CDDP, and there is an associated risk of irreversible hearing loss. We previously demonstrated that CDDP could induce ototoxicity via activation of the transient receptor potential vanilloid receptor 1 (TRPV1) pathway and subsequent induction of oxidative stress. The present study investigated whether ursolic acid (UA) treatment could protect against CDDP‑induced ototoxicity. UA is a triterpenoid with strong antioxidant activity widely used in China for the treatment of liver diseases. This traditional Chinese medicine is mainly isolated from bearberry, a Chinese herb. The present results showed that CDDP increased auditory brainstem response threshold shifts in frequencies associated with observed damage to the outer hair cells. Moreover, CDDP increased the expression of TRPV1, calpain 2 and caspase‑3 in the cochlea, and the levels of Ca2+ and 4‑hydroxynonenal. UA co‑treatment significantly attenuated CDDP‑induced hearing loss and inhibited TRPV1 pathway activation. In addition, UA enhanced CDDP‑induced growth inhibition in the human ovarian cancer cell line SKOV3, suggesting that UA synergizes with CDDP in vitro. Collectively, the present data suggested that UA could effectively attenuate CDDP‑induced hearing loss by inhibiting the TRPV1/Ca²+/calpain‑oxidative stress pathway without impairing the antitumor effects of CDDP.
Collapse
Affiliation(s)
| | - Tao Xu
- Life Science Institute, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
To DC, Hoang DT, Tran MH, Pham MQ, Huynh NT, Nguyen PH. PTP1B Inhibitory Flavonoids From Orthosiphon stamineus Benth. and Their Growth Inhibition on Human Breast Cancer Cells. Nat Prod Commun 2020. [DOI: 10.1177/1934578x19899517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In our preliminary screening study on the protein tyrosine phosphatase 1B (PTP1B) inhibitory and cytotoxic activities, an ethyl acetate soluble fraction of the aerial part of Orthosiphon stamineus Benth. was found to inhibit PTP1B activity. Thus, based on assay-guided isolation of this active fraction, ten compounds (1-10) were purified and evaluated for their inhibitory effects on PTP1B and their growth inhibition on MCF7, tamoxifen-resistant MCF7 (MCF7/TAMR), and MDA-MB-231 human breast cancer cell lines. Among the isolates, compounds 5, 6, 9, and 10 showed potencies against PTP1B with IC50 values of 9.76, 10.12, 6.88, and 8.92 μM, respectively, followed by compounds 1 and 4 with IC50 values of 16.92 and 22.25 μM. Kinetic study showed that the active compounds (1, 5, 9, and 10) possessed mixed-competitive inhibition, which was similar to the positive control (ursolic acid, IC50 value of 3.42 μM, mixed-competitive). The others showed noncompetitive inhibition (4 and 6). In addition, all these active compounds (1, 4-6, and 9-10) displayed growth inhibition on three cancer cell lines, especially the most PTP1B inhibitory flavanones (9 and 10) exhibited comparable inhibitory effects on MCF7, MCF7/TAMR, and MDA-MB-231 cancer cells (IC50 values of 11.5 and 15.4, 8.9 and 10.5, and 17.6 and 21.3 μM, respectively) with tamoxifen, the positive control used in this assay (IC50 values of 11.9, 12.1, and 12.7 μM, respectively). The results suggest that these active constituents from O. stamineus might be considered as new natural compounds for the development of anticancer agents via PTP1B inhibition.
Collapse
Affiliation(s)
- Dao-Cuong To
- Faculty of Pharmacy, Phenikaa University, Hanoi, Vietnam
- Phenikaa Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, Hanoi, Vietnam
| | - Duc-Thuan Hoang
- Faculty of Chemistry, Hanoi National University of Education, Vietnam
| | - Manh-Hung Tran
- Biomedical Sciences Department, Institute for Research and Executive Education (VNUK), The University of Danang, Vietnam
| | - Minh-Quan Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Graduate University of Science and Technology, VAST, Hanoi, Vietnam
| | - Nhu-Tuan Huynh
- Faculty of Pharmacy, Dong A University, Da Nang, Vietnam
| | - Phi-Hung Nguyen
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Graduate University of Science and Technology, VAST, Hanoi, Vietnam
| |
Collapse
|
18
|
Nguyen PH, Tuan HN, Hoang DT, Vu QT, Pham MQ, Tran MH, To DC. Glucose Uptake Stimulatory and PTP1B Inhibitory Activities of Pimarane Diterpenes from Orthosiphon stamineus Benth. Biomolecules 2019; 9:biom9120859. [PMID: 31835878 PMCID: PMC7017366 DOI: 10.3390/biom9120859] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 11/16/2022] Open
Abstract
Seven pimarane diterpenes (1–7) were isolated from Orthosiphon stamineus Benth. by assay-guided isolation. All of the isolates possessed a 2-deoxy-2-((7-nitro-2,1,3-benzoxadiazol-4-yl)amino)-d-glucose uptake effect in 3T3-L1 adipocytes at concentrations of 5 and 10 μM. Most of them showed potent inhibition against protein tyrosine phosphatase 1B with IC50 values ranging from 0.33 to 9.84 μM. In the kinetic study, all inhibition types were exposed for the examined potencies, including mixed-competitive (1), non-competitives (3 and 5), competitive (6), and uncompetitive (7). The results suggested that O. stamineus and its pimarane diterpenes might exert the hypoglycemic effect via the insulin signaling pathway targeting inhibition of protein tyrosine phosphatase 1B (PTP1B) activity.
Collapse
Affiliation(s)
- Phi Hung Nguyen
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 122100, Vietnam;
- Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi 122100, Vietnam
- Correspondence: (P.H.N.); (D.C.T.)
| | - Huynh Nhu Tuan
- Faculty of Pharmacy, Dong A University, 33 Xo Viet Nghe Tinh, Hai Chau District, Da Nang 550000, Vietnam;
| | - Duc Thuan Hoang
- Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi 123106, Vietnam; (D.T.H.); (Q.T.V.)
| | - Quoc Trung Vu
- Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi 123106, Vietnam; (D.T.H.); (Q.T.V.)
| | - Minh Quan Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 122100, Vietnam;
- Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi 122100, Vietnam
| | - Manh Hung Tran
- Biomedical Sciences Department, Institute for Research & Executive Education (VNUK), The University of Danang, 158A Le Loi, Hai Chau, Danang 551000, Vietnam;
| | - Dao Cuong To
- Faculty of Pharmacy, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Vietnam
- Phenikaa Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, No.167 Hoang Ngan, Trung Hoa, Cau Giay, Hanoi 11313, Vietnam
- Correspondence: (P.H.N.); (D.C.T.)
| |
Collapse
|
19
|
In Vitro Antidiabetic Effects of Isolated Triterpene Glycoside Fraction from Gymnema sylvestre. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:7154702. [PMID: 30158997 PMCID: PMC6106959 DOI: 10.1155/2018/7154702] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/30/2018] [Accepted: 06/10/2018] [Indexed: 12/29/2022]
Abstract
A triterpene glycoside (TG) fraction isolated and purified from ethanolic extract of Gymnema sylvestre (EEGS) was investigated for blood glucose control benefit using in vitro methods. The HPLC purified active fraction TG was characterized using FTIR, LC-MS, and NMR. The purified fraction (TG) exhibited effective inhibition of yeast α-glucosidase, sucrase, maltase, and pancreatic α-amylase with IC50 values 3.16 ± 0.05 μg/mL, 74.07 ± 0.51, 5.69 ± 0.02, and 1.17 ± 0.24 μg/mL, respectively, compared to control. TG was characterized to be a mixture of triterpene glycosides: gymnemic acids I, IV, and VII and gymnemagenin. In vitro studies were performed using mouse pancreatic β-cell lines (MIN6). TG did not exhibit any toxic effects on β-cell viability and showed protection against H2O2 induced ROS generation. There was up to 1.34-fold increase in glucose stimulated insulin secretion (p<0.05) in a dose-dependent manner relative to standard antidiabetic drug glibenclamide. Also, there was further one-fold enhancement in the expression of GLUT2 compared to commercial standard DAG (deacylgymnemic acid). Thus, the present study highlights the effective isolation and therapeutic potential of TG, making it a functional food ingredient and a safe nutraceutical candidate for management of diabetes.
Collapse
|
20
|
Ashraf K, Sultan S, Adam A. Orthosiphon stamineus Benth. is an Outstanding Food Medicine: Review of Phytochemical and Pharmacological Activities. J Pharm Bioallied Sci 2018; 10:109-118. [PMID: 30237681 PMCID: PMC6142889 DOI: 10.4103/jpbs.jpbs_253_17] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Orthosiphon stamineus Benth. (Lamiaceae) is a valued medicinal plant in traditional folk medicine. Many pharmacological studies have demonstrated the ability of this plant to exhibit antimicrobial, antioxidant, hepatoprotection, antigenotoxic, antiplasmodial, cytotoxic, cardioactive, antidiabetic, anti-inflammatory activies. This review is a comprehensive summary of the presently available chemical, pharmacological investigations as well as the traditional and therapeutic uses of this plant. Important and different experimental data have been addressed along with a review of all phytochemicals identified in this plant, including flavonoids, terpenoids, and essential oils. O. stamineus has wide traditional and pharmacological uses in various pathophysiological conditions. Therefore, it is an attractive subject for further experimental and clinical investigations.
Collapse
Affiliation(s)
- Kamran Ashraf
- Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.,Atta-urRahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Sadia Sultan
- Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.,Atta-urRahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Aishah Adam
- Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
21
|
Meng D, Zhang P, Zhang L, Wang H, Ho CT, Li S, Shahidi F, Zhao H. Detection of cellular redox reactions and antioxidant activity assays. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.08.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
22
|
Yuk HJ, Oh KY, Kim DY, Song HH, Kim JY, Oh SR, Ryu HW. Metabolomic Profiling, Antioxidant and Anti-inflammatory Activities of Hypericum Species Growing in South Korea. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Although Hypericum species are best known as plants that produce hypericin and are used in folk medicine, their other chemical constituents are poorly understood. Polyphenolic secondary metabolites from whole plants of representative Korean Hypericum species ( H. laxum Koidz., H. erectum Thunb., and H. ascyron L.) were analyzed using a ultra performance liquid chromatography-quadrupole time-of-flight/mass spectrometry (UPLC-Q-TOF/MS)-based approach combined with unsupervised principal component analysis (PCA) multivariate analysis. On the loading scatter plot, significant changes in metabolites were found between species, and three flavonol glycosides (8: quercetin-3- O-galactoside, 12: kaempferol-3- O-glucoside, and 13: quercetin-3- O-rhamnoside) were evaluated as key markers among 17 isolated metabolites. The extracts of H. laxum Koidz. exhibited significant quenching effects on DPPH and ABTS radicals, with IC50 values of 10–20 μg/mL, and were slightly higher in total phenol (TP) and total flavonoid (TF) contents than other species. Additionally, anti-inflammatory activity was observed by reduced nitric oxide (NO) and interleukin-6 (IL-6) production from lipopolysaccharide (LPS)-stimulated macrophages (RAW 264.7 cells). This is the first study to report the presence of bioactive metabolites and their correlating biological activities in H. laxum Koidz.
Collapse
Affiliation(s)
- Heung Joo Yuk
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30-Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, 28116, Republic of Korea
| | - Kyeong Yeol Oh
- Sancheong Oriental Medicinal Herb Institute, Sancheonggun, Gyeongnam, 52215, Republic of Korea
| | - Doo-Young Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30-Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, 28116, Republic of Korea
| | - Hyuk-Hwan Song
- Agency for Korea National Food Cluster (AnFC), Iksan, 570-749, Republic of Korea
| | - Jun Young Kim
- Center of Food & Drug Analysis, Korea Ministry of Food and Drug Safety, 356-Shinseon-Ro, Nam-Gu, Busan, 48562, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30-Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, 28116, Republic of Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30-Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, 28116, Republic of Korea
| |
Collapse
|
23
|
Aqueous Extract of Clerodendranthus spicatus Exerts Protective Effect on UV-Induced Photoaged Mice Skin. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:9623957. [PMID: 27847530 PMCID: PMC5101404 DOI: 10.1155/2016/9623957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/11/2016] [Accepted: 09/18/2016] [Indexed: 12/20/2022]
Abstract
Clerodendranthus spicatus (Thunb.) C.Y.Wu (CS) is commonly used to treat kidney diseases in traditional Chinese medicine for its prominent anti-inflammatory effect and nourishing function to kidneys. In this study, aqueous extract of CS was assessed for its protective effect on UV-induced skin damage of mice. The chemical compositions of CS aqueous extract were determined by HPLC-ESI-MS/MS, in which 10 components were identified. During the experimental period, CS (0.9, 1.8, and 3.6 g/mL) was externally applied to shaved dorsal skins of mice prior to UV irradiation, daily for ten weeks. The results presented that CS (3.6 g/mL) apparently improved photodamaged skin appearance such as erythema, edema, and coarseness. The abnormal epidermal thickening was significantly reduced, and the dermal structures became more complete. The underlying protective mechanisms were associated with improving antioxidant enzymes activities including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), downregulating inflammatory cytokines (IL-1β, IL-6, TNF-α, COX-2, and PGE2) expressions, recovering collagen density, and reducing matrix metalloproteinases productions. Sun protection factor of CS (3.6 g/mL) was 16.21 ± 0.03. Our findings for the first time demonstrated that CS had therapeutic effect on the photoaged skin. The results indicated that CS is a potential agent for photoprotective cosmetics.
Collapse
|
24
|
Suroowan S, Mahomoodally MF. A comparative ethnopharmacological analysis of traditional medicine used against respiratory tract diseases in Mauritius. JOURNAL OF ETHNOPHARMACOLOGY 2016; 177:61-80. [PMID: 26593215 DOI: 10.1016/j.jep.2015.11.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/11/2015] [Accepted: 11/15/2015] [Indexed: 05/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Despite laudable advances in conventional medicine, respiratory tract diseases (RTD) induced morbidity and mortality continue to inflict a substantial burden on healthcare systems worldwide. Similarly, in the tropical island of Mauritius, 13,320 hospital admissions and 8.2% mortality rates were attributed to RTD solely in the year 2013. Consequently, the therapeutic benefits and relief experienced with traditional medicine (TM) against RTD by the local inhabitants cannot be underestimated. The present study aims to report and quantitatively determine the extent of utilization of plant based therapies and other miscellaneous TM preparations concocted against RTD over the island. Additionally, a similarity index was generated which is indicative of the extent of harmonisation of individual plant species against RTD when the uses mentioned in the study are compared to previous ethnobotanical studies. MATERIALS AND METHODS Data was compiled using a semi-structured questionnaire via face-to-face interviews with TM users and practitioners (n=384). Three quantitative ethnopharmacological indices (the use value (UV), informant consensus factor (ICF), and ethnobotanicity index (EI)) were calculated. We also calculated the similarity ratio, similarity percentage, new uses for each plant species and percentage of new use against RTD to compare primary data collected in the present study. RESULTS Fifty five plants were documented to be in use against 18 RTD. The most used plant species belonged to the following taxa; Lamiaceae (9%), Fabaceae (7%) and Rutaceae (7%). Thirty two plants recorded in this study have been reported to be used against RTD in previous ethnobotanical studies, of which 22 of these plants have been attributed new uses against RTD based on the results of the present study. The remaining 23 plants species have been recorded for the first time to be used traditionally against RTD. Altogether, 81 different recipes were concocted from the medicinal plants and the most common route of administration was oral intake. Common methods of obtaining medicinal plants were from the wild, cultivation and as imported herbal products. Cough was the most common RTD managed by plant species. The largest proportion of plants were employed against cold. The preference ranking both for UV placed Curcuma longa L., Zingiber officinale Roscoe, Citrus×limonia Osbeck and Cymbopogon citratus (DC.) Stapf as the most useful plant species. Only a small proportion of the indigenous plants (7.73%) proved to be useful in TM. CONCLUSION This study provides empirical primary ethnopharmacological data on the use of TM to manage and/or treat RTD and can contribute in preserving indigenous knowledge in Mauritius. It is anticipated that these primary data will open new avenues to identify novel drugs that can help to alleviate sufferings.
Collapse
Affiliation(s)
- Shanoo Suroowan
- Department of Health Sciences, Faculty of Science, University of Mauritius, 230 Réduit, Mauritius
| | - M Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Science, University of Mauritius, 230 Réduit, Mauritius.
| |
Collapse
|
25
|
Kuo CT, Liu TH, Hsu TH, Lin FY, Chen HY. Antioxidant and antiglycation properties of different solvent extracts from Chinese olive ( Canarium album L.) fruit. ASIAN PAC J TROP MED 2015; 8:1013-1021. [DOI: 10.1016/j.apjtm.2015.11.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/20/2015] [Accepted: 11/03/2015] [Indexed: 10/22/2022] Open
|
26
|
Haarberg KMK, Wymore Brand MJ, Overstreet AMC, Hauck CC, Murphy PA, Hostetter JM, Ramer-Tait AE, Wannemuehler MJ. Orally administered extract from Prunella vulgaris attenuates spontaneous colitis in mdr1a -/- mice. World J Gastrointest Pharmacol Ther 2015; 6:223-237. [PMID: 26558156 PMCID: PMC4635162 DOI: 10.4292/wjgpt.v6.i4.223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/17/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the ability of a Prunella vulgaris (P. vulgaris) ethanolic extract to attenuate spontaneous typhlocolitis in mdr1a-/- mice.
METHODS: Vehicle (5% ethanol) or P. vulgaris ethanolic extract (2.4 mg/d) were administered daily by oral gavage to mdr1a-/- or wild type FVBWT mice from 6 wk of age up to 20 wk of age. Clinical signs of disease were noted by monitoring weight loss. Mice experiencing weight loss in excess of 15% were removed from the study. At the time mice were removed from the study, blood and colon tissue were collected for analyses that included histological evaluation of lesions, inflammatory cytokine levels, and myeloperoxidase activity.
RESULTS: Administration of P. vulgaris extracts to mdr1a-/- mice delayed onset of colitis and reduced severity of mucosal inflammation when compared to vehicle-treated mdr1a-/- mice. Oral administration of the P. vulgaris extract resulted in reduced (P < 0.05) serum levels of IL-10 (4.6 ± 2 vs 19.4 ± 4), CXCL9 (1319.0 ± 277 vs 3901.0 ± 858), and TNFα (9.9 ± 3 vs 14.8 ± 1) as well as reduced gene expression by more than two-fold for Ccl2, Ccl20, Cxcl1, Cxcl9, IL-1α, Mmp10, VCAM-1, ICAM, IL-2, and TNFα in the colonic mucosa of mdr1a-/- mice compared to vehicle-treated mdr1a-/- mice. Histologically, several microscopic parameters were reduced (P < 0.05) in P. vulgaris-treated mdr1a-/- mice, as was myeloperoxidase activity in the colon (2.49 ± 0.16 vs 3.36 ± 0.06, P < 0.05). The numbers of CD4+ T cells (2031.9 ± 412.1 vs 5054.5 ± 809.5) and germinal center B cells (2749.6 ± 473.7 vs 4934.0 ± 645.9) observed in the cecal tonsils of P. vulgaris-treated mdr1a-/- were significantly reduced (P < 0.05) from vehicle-treated mdr1a-/- mice. Vehicle-treated mdr1a-/- mice were found to produce serum antibodies to antigens derived from members of the intestinal microbiota, indicative of severe colitis and a loss of adaptive tolerance to the members of the microbiota. These serum antibodies were greatly reduced or absent in P. vulgaris-treated mdr1a-/- mice.
CONCLUSION: The anti-inflammatory activity of P. vulgaris ethanolic extract effectively attenuated the severity of intestinal inflammation in mdr1a-/- mice.
Collapse
|
27
|
Singh MK, Gidwani B, Gupta A, Dhongade H, Kaur CD, Kashyap PP, Tripathi D. A Review of the Medicinal Plants of Genus Orthosiphon (Lamiaceae). ACTA ACUST UNITED AC 2015. [DOI: 10.3923/ijbc.2015.318.331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Kim MH, Kim JN, Han SN, Kim HK. Ursolic acid isolated from guava leaves inhibits inflammatory mediators and reactive oxygen species in LPS-stimulated macrophages. Immunopharmacol Immunotoxicol 2015; 37:228-35. [PMID: 25753845 DOI: 10.3109/08923973.2015.1021355] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Psidium guajava (guava) leaves have been frequently used for the treatment of rheumatism, fever, arthritis and other inflammatory conditions. The purpose of this study was to identify major anti-inflammatory compounds from guava leaf extract. The methanol extract and its hexane-, dichloromethane-, ethylacetate-, n-butanol- and water-soluble phases derived from guava leaves were evaluated to determine their inhibitory activity on nitric oxide (NO) production by RAW 264.7 cells stimulated with lipopolysaccharide (LPS). The methanol extract decreased NO production in a dose-dependent manner without cytotoxicity at a concentration range of 0-100 μg/mL. The n-butanol soluble phase was the most potent among the five soluble phases. Four compounds were isolated by reversed-phase HPLC from the n-butanol soluble phase and identified to be avicularin, guaijaverin, leucocyanidin and ursolic acid by their NMR spectra. Among these compounds, ursolic acid inhibited LPS-induced NO production in a dose-dependent manner without cytotoxity at a concentration range of 1-10 µM, but the other three compounds had no effect. Ursolic acid also inhibited LPS-induced prostaglandin E2 production. A western blot analysis showed that ursolic acid decreased the LPS-stimulated inducible nitric oxide synthase and cyclooxygenase protein levels. In addition, ursolic acid suppressed the production of intracellular reactive oxygen species in LPS-stimulated RAW 264.7 cells, as measured by flow cytometry. Taken together, these results identified ursolic acid as a major anti-inflammatory compound in guava leaves.
Collapse
Affiliation(s)
- Min-Hye Kim
- Department of Food Science and Nutrition, The Catholic University of Korea , Bucheon , Republic of Korea and
| | | | | | | |
Collapse
|
29
|
Maneenoon K, Khuniad C, Teanuan Y, Saedan N, Prom-In S, Rukleng N, Kongpool W, Pinsook P, Wongwiwat W. Ethnomedicinal plants used by traditional healers in Phatthalung Province, Peninsular Thailand. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2015; 11:43. [PMID: 26025447 PMCID: PMC4469324 DOI: 10.1186/s13002-015-0031-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 05/06/2015] [Indexed: 05/21/2023]
Abstract
BACKGROUND In rural communities of Thailand, traditional healers still play an important role in local health care systems even though modern medicine is easily accessible. Meanwhile, natural forests in Thailand which are important sources of materia medica are being greatly destroyed. This has led to an erosion of traditional Thai medicine. Furthermore, the concept of medicinal plant selection as medicine based on their tastes is still an important component of traditional Thai medicine, but no or little publications have been reported. Thus the aim of the present study is to collect ethnomedicinal data, medicinal plant tastes and relevant information from experienced traditional healers before they are lost. METHODS An ethnobotanical survey was carried out to collect information from nine experienced traditional healers on the utilization of medicinal plants in Phatthalung Province, Peninsular Thailand. Data were obtained using semi-structured interviews and participant observations. Plant specimens were also collected and identified according to the plant taxonomic method. RESULTS A total of 151 medicinal plants were documented and 98 of these are reported in the study. Local names, medicinal uses, parts used, modes of preparation, and the relationship between ailments and tastes of medicinal plant species are presented. CONCLUSIONS This research suggests that traditional healers are still considered important for public health among Thai communities and that many people trust the healing properties of medicinal plants. In the future, it is hoped that traditional Thai medicine will be promoted and therefore will help reduce national public health expense.
Collapse
Affiliation(s)
- Katesarin Maneenoon
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Songkhla, 90110, Thailand.
| | - Chuanchom Khuniad
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Songkhla, 90110, Thailand.
- Faculty of Health and Sports Science, Thaksin University, Phatthalung, 93110, Thailand.
| | - Yaowalak Teanuan
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Songkhla, 90110, Thailand.
- Faculty of Science and Technology, Songkhla Rajabhat University, Songkhla, 90000, Thailand.
| | - Nisachon Saedan
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Songkhla, 90110, Thailand.
| | - Supatra Prom-In
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Songkhla, 90110, Thailand.
| | - Nitiphol Rukleng
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Songkhla, 90110, Thailand.
| | - Watid Kongpool
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Songkhla, 90110, Thailand.
| | - Phongsura Pinsook
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Songkhla, 90110, Thailand.
| | - Winyu Wongwiwat
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Songkhla, 90110, Thailand.
| |
Collapse
|
30
|
Immunomodulatory effects of selected Malaysian plants on the CD18/11a expression and phagocytosis activities of leukocytes. Asian Pac J Trop Biomed 2015. [DOI: 10.1016/s2221-1691(15)30170-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
31
|
Sreekeesoon DP, Mahomoodally MF. Ethnopharmacological analysis of medicinal plants and animals used in the treatment and management of pain in Mauritius. JOURNAL OF ETHNOPHARMACOLOGY 2014; 157:181-200. [PMID: 25261690 DOI: 10.1016/j.jep.2014.09.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 08/17/2014] [Accepted: 09/17/2014] [Indexed: 05/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pain is a multi-faceted and multi-factorial condition which is challenging to manage and treat. Conventional therapies such as analgesics, Non-steroidal anti-inflammatory drugs (NSAIDs), and corticosteroids amongst others have been successful to some extent in its management and treatment. Nonetheless, such therapies tend to be accompanied by undesirable effects and have a limited therapeutic range. Consequently, there is a pressing need to probe for novel analgesic and anti-nociceptive drugs from traditional medicines (TM). This study was designed to record, document and analyze herbal and animal-based therapies used for the management and treatment of pain in the tropical of Mauritius. MATERIALS AND METHODS Data was collected via face-to-face interviews with TM users (n=332) and practitioners (n=20). Seven quantitative ethnopharmacological indexes, namely family use value (FUV), use value (UV), informant agreement ratio (IAR), relative frequency of citation (RFC), fidelity level (FL), relative importance (RI) and ethnobotanicity index (EI) were calculated. RESULTS A total of 79 plant species distributed within 40 families and 20 polyherbal preparations was recorded. Interestingly, 6 indigenous/endemic plants have been reported for the first time to be in common use for pain management and treatment in Mauritius. The most significant biologically important plant family was Xanthorrhoeaceae with highest FUV. The species which ranked highest according to its UV was Morinda citrifolia L. Morinda citrifolia L. and Ricinus communis L. also scored the highest RFC. The IAR values for the disease categories were high (0.95-0.97). Based on EI, plants species which are known to be useful in TM accounted for 11.5% of the total flora in Mauritius. Coix lacryma-jobi L. (FL=100%) had highest FL for lower back ache. Morinda citrifolia L. scored highest on most of the quantitative indices calculated including RI, which is endorsed by extensive documentation on its versatility and particularly its anti-nociceptive properties. Seven animal species were recorded to be in common use. CONCLUSION The present ethnopharmacological study revealed a panoply of TM to be in common use for pain management and treatment in Mauritius. This study has documented for the first time medicinal plants and animal species with potential analgesic and/or anti-nociceptive properties. This study has therefore provided important baseline primary data for the discovery of new lead molecules for drug development geared towards pain management and treatment.
Collapse
Affiliation(s)
- D Priyamka Sreekeesoon
- Department of Health Sciences, Faculty of Science, University of Mauritius, 230 Réduit, Mauritius
| | - M Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Science, University of Mauritius, 230 Réduit, Mauritius.
| |
Collapse
|
32
|
Optimization of Cat's Whiskers Tea (Orthosiphon stamineus) Using Supercritical Carbon Dioxide and Selective Chemotherapeutic Potential against Prostate Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:396016. [PMID: 25276215 PMCID: PMC4170752 DOI: 10.1155/2014/396016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/29/2014] [Indexed: 11/21/2022]
Abstract
Cat's whiskers (Orthosiphon stamineus) leaves extracts were prepared using supercritical CO2 (SC-CO2) with full factorial design to determine the optimum extraction parameters. Nine extracts were obtained by varying pressure, temperature, and time. The extracts were analysed using FTIR, UV-Vis, and GC-MS. Cytotoxicity of the extracts was evaluated on human (colorectal, breast, and prostate) cancer and normal fibroblast cells. Moderate pressure (31.1 MPa) and temperature (60°C) were recorded as optimum extraction conditions with high yield (1.74%) of the extract (B2) at 60 min extraction time. The optimized extract (B2) displayed selective cytotoxicity against prostate cancer (PC3) cells (IC50 28 µg/mL) and significant antioxidant activity (IC50 42.8 µg/mL). Elevated levels of caspases 3/7 and 9 in B2-treated PC3 cells suggest the induction of apoptosis through nuclear and mitochondrial pathways. Hoechst and rhodamine assays confirmed the nuclear condensation and disruption of mitochondrial membrane potential in the cells. B2 also demonstrated inhibitory effects on motility and colonies of PC3 cells at its subcytotoxic concentrations. It is noteworthy that B2 displayed negligible toxicity against the normal cells. Chemometric analysis revealed high content of essential oils, hydrocarbon, fatty acids, esters, and aromatic sesquiterpenes in B2. This study highlights the therapeutic potentials of SC-CO2 extract of cat's whiskers in targeting prostate carcinoma.
Collapse
|
33
|
Yang G, Yang T, Zhang W, Lu M, Ma X, Xiang G. In vitro and in vivo antitumor effects of folate-targeted ursolic acid stealth liposome. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:2207-15. [PMID: 24528163 DOI: 10.1021/jf405675g] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The antitumor efficacy of ursolic acid (UA) was limited by poor hydrophilicity and low bioavailability. To overcome this issue, UA was encapsulated in liposomes modified with folate conjugates for better solubility and bioavailability. This novel agent was prepared by a thin-film dispersion method and characterized by mean diameter, zeta potential, and entrapment efficiency (160.1 nm, -21.2 mV, and 88.9%, respectively). In vitro, cellular uptake efficiency, cytotoxicity, apoptosis, and cell cycle analyses were performed to show that folate-receptor (FR) positive cells endocytose more FR-targeted liposome (FTL-UA) than nontargeted PEGylated liposome (PL-UA) and that FTL-UA induced more cytotoxicity and higher apoptosis than PL-UA. Pharmacokinetic assessments showed advantages of systemic bioavailability of FTL-UA (AUC = 218.32 mg/L·h, t1/2 = 7.61 h) over free UA (AUC = 36.88 mg/L·h, t1/2 = 0.78 h). In vivo, FTL-UA showed significantly higher human epidermoid carcinoma (KB) inhibition in Balb/c nu/nu mice compared to PL-UA or free UA. The results indicate the great potential of FTL-UA against KB tumor.
Collapse
Affiliation(s)
- Guang Yang
- Pharmacy School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | | | | | | | | | | |
Collapse
|
34
|
Si CL, Shen T, Jiang YY, Wu L, Yu GJ, Ren XD, Xu GH, Hu WC. Antioxidant properties and neuroprotective effects of isocampneoside II on hydrogen peroxide-induced oxidative injury in PC12 cells. Food Chem Toxicol 2013; 59:145-52. [PMID: 23770344 DOI: 10.1016/j.fct.2013.05.051] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 05/29/2013] [Accepted: 05/30/2013] [Indexed: 01/08/2023]
Abstract
Oxidative stress has been considered as a major cause of cell damage in various neurodegenerative disorders. One of the reasonable strategies for delaying the disease's progression is to prevent reactive oxygen species (ROS) mediated cellular injury by dietary or pharmaceutical augmentation of free radical scavengers. Isocampneoside II (ICD) is an active phenylethanoid glycoside isolated from the medicinal hardwood genus Paulownia. This study was designed to explore free radical scavenging potential of ICD in different in vitro systems and its protective role in hydrogen peroxide (H₂O₂)-induced oxidative stress and apoptotic death in cultured rat pheochromocytoma (PC12) cells. The results showed ICD eliminated approximately 80.75% superoxide radical at the concentration of 0.1mg/ml and inhibited metal chelating by 22.07% at 8 mg/ml. Additionally, ICD showed a strong ability on reducing power and provided protection against oxidative protein damage induced by hydroxyl radicals. Pretreatment of PC12 cells with ICD prior to H₂O₂ exposure elevated cell viability, enhanced activity of superoxide dismutase and catalase, and decreased levels of malondialdehyde and intracellular ROS. Furthermore, ICD inhibited cell apoptosis and Bax/Bcl-2 ratio induced by H₂O₂. These findings suggested ICD may be considered as a potential antioxidant agent and should encourage for further research in neurodegenerative diseases.
Collapse
Affiliation(s)
- Chuan-Ling Si
- Tianjin Key Laboratory of Pulp & Paper, College of Materials Science & Chemical Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Wu CH, Hsieh HT, Lin JA, Yen GC. Alternanthera paronychioides protects pancreatic β-cells from glucotoxicity by its antioxidant, antiapoptotic and insulin secretagogue actions. Food Chem 2013; 139:362-70. [PMID: 23561118 DOI: 10.1016/j.foodchem.2013.01.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 12/24/2012] [Accepted: 01/10/2013] [Indexed: 11/19/2022]
Abstract
The antioxidant and antiglucotoxic effects of Alternanthera paronychioides on pancreatic β-cell were investigated. Antioxidant assays demonstrated that ethanol extracts of A. paronychioides (EEAP) exhibited the highest antioxidant activity, which also had the highest phenolic and flavonoid contents. Two major polyphenolics, ferulic acid and quercetin, were identified from EEAP by HPLC-DAD. Effects of EEAP, ferulic acid and quercetin on high glucose (25 mmol/L)-induced pancreatic β-cell apoptosis and dysfunction were further evaluated. Results showed that EEAP and quercetin but not ferulic acid protected β-cells from glucotoxicity through several mechanisms, including: (1) maintaining β-cell viability; (2) suppressing reactive oxygen species production; (3) reducing characteristic features of apoptosis; (4) inhibiting the activation of caspase-9 and caspase-3 and the cleavage of poly (ADP-ribose) polymerase; (5) upregulating pancreatic and duodenal homeobox 1 gene expression and the insulin secretagogue action of pancreatic β-cells. These findings may shed light on the preventive actions of A. paronychioides on diabetic glucotoxicity.
Collapse
Affiliation(s)
- Chi-Hao Wu
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110, Taiwan
| | | | | | | |
Collapse
|
36
|
Woerdenbag HJ, Nguyen TM, Vu DV, Tran H, Nguyen DT, Tran TV, De Smet PAGM, Brouwers JRBJ. Vietnamese traditional medicine from a pharmacist's perspective. Expert Rev Clin Pharmacol 2013; 5:459-77. [PMID: 22943125 DOI: 10.1586/ecp.12.34] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Traditional medicine plays an important role in the healthcare system of Vietnam. Vietnamese traditional medicine (VTM) is underpinned by the oriental philosophy and theory of healing. VTM is largely influenced by traditional Chinese medicine, but differs to a certain extent. VTM is largely not evidence-based from a clinical perspective but subclinical research data from the past decades support the traditional use of many herbal VTM drugs. For safe use, knowledge of the occurrence of adverse reactions and herb-drug interactions is necessary. The Vietnamese government supports further development of VTM in a scientific way and integration of VTM with Western medicine. This article first gives an overview of the general aspects of VTM (historical perspective, regulatory aspects, comparison with traditional Chinese medicine, philosophical background, the Vietnamese market situation, quality assurance and formulations), and subsequently focuses on its safe and effective use in Vietnamese clinical pharmacy and medical practice.
Collapse
Affiliation(s)
- Herman J Woerdenbag
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Liew SY, Stanbridge EJ, Yusoff K, Shafee N. Hypoxia affects cellular responses to plant extracts. JOURNAL OF ETHNOPHARMACOLOGY 2012; 144:453-6. [PMID: 23022321 DOI: 10.1016/j.jep.2012.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 09/04/2012] [Accepted: 09/16/2012] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Microenvironmental conditions contribute towards varying cellular responses to plant extract treatments. Hypoxic cancer cells are known to be resistant to radio- and chemo-therapy. New therapeutic strategies specifically targeting these cells are needed. Plant extracts used in Traditional Chinese Medicine (TCM) can offer promising candidates. Despite their widespread usage, information on their effects in hypoxic conditions is still lacking. In this study, we examined the cytotoxicity of a series of known TCM plant extracts under normoxic versus hypoxic conditions. MATERIALS AND METHODS Pereskia grandifolia, Orthosiphon aristatus, Melastoma malabathricum, Carica papaya, Strobilanthes crispus, Gynura procumbens, Hydrocotyle sibthorpioides, Pereskia bleo and Clinacanthus nutans leaves were dried, blended into powder form, extracted in methanol and evaporated to produce crude extracts. Human Saos-2 osteosarcoma cells were treated with various concentrations of the plant extracts under normoxia or hypoxia (0.5% oxygen). 24h after treatment, an MTT assay was performed and the IC(50) values were calculated. Effect of the extracts on hypoxia inducible factor (HIF) activity was evaluated using a hypoxia-driven firefly luciferase reporter assay. RESULTS The relative cytotoxicity of each plant extract on Saos-2 cells was different in hypoxic versus normoxic conditions. Hypoxia increased the IC(50) values for Pereskia grandifola and Orthosiphon aristatus extracts, but decreased the IC(50) values for Melastoma malabathricum and Carica papaya extracts. Extracts of Strobilanthes crispus, Gynura procumbens, Hydrocotyle sibthorpioides had equivalent cytotoxic effects under both conditions. Pereskia bleo and Clinacanthus nutans extracts were not toxic to cells within the concentration ranges tested. The most interesting result was noted for the Carica papaya extract, where its IC(50) in hypoxia was reduced by 3-fold when compared to the normoxic condition. This reduction was found to be associated with HIF inhibition. CONCLUSION Hypoxia variably alters the cytotoxic effects of TCM plant extracts on cancer cells. Carica papaya showed enhanced cytotoxic effect on hypoxic cancer cells by inhibiting HIF activities. These findings provide a plausible approach to killing hypoxic cancer cells in solid tumors.
Collapse
Affiliation(s)
- Sien-Yei Liew
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | | | | |
Collapse
|
38
|
Functional components in Luffa cylindrica and their effects on anti-inflammation of macrophage cells. Food Chem 2012; 135:386-95. [DOI: 10.1016/j.foodchem.2012.04.128] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/26/2012] [Accepted: 04/23/2012] [Indexed: 11/23/2022]
|
39
|
Development of a simple 96-well plate method for evaluation of antioxidant activity based on the oxidative haemolysis inhibition assay (OxHLIA). Food Chem 2012. [DOI: 10.1016/j.foodchem.2012.02.086] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
40
|
Hamed MA, Ali SA, El-Rigal NS. Therapeutic potential of ginger against renal injury induced by carbon tetrachloride in rats. ScientificWorldJournal 2012; 2012:840421. [PMID: 22566780 PMCID: PMC3329925 DOI: 10.1100/2012/840421] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 12/19/2011] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to evaluate the potential of successive ginger extracts (petroleum ether, chloroform, and ethanol) against nephrotoxicity induced by CCl(4) in rats. The evaluation was done through measuring kidney antioxidant parameters: glutathione (GSH), lipid peroxides (LPO), and superoxide dismutase (SOD). Renal function test: urea, creatinine and serum protein values, were also evaluated. The work was extended to examine tissue inflammatory mediators, prostaglandin-E(2) (PGE(2)), collagen content and the kidney histopathology. Severe alterations in all biomarkers were observed after injury with CCl(4). Treatment with ginger extracts resulted in markedly decreased levels of LPO, PGE(2), collagen and kidney function tests, while increased levels of GSH, SOD and serum protein were observed. In conclusion, extracts of ginger, particularly the ethanol, resulted in an attractive candidate for the treatment of nephropathy induced by CCl(4) through scavenging free radicals, improved kidney functions, inhibition of inflammatory mediators, and normalizing the kidney histopathological architecture. Further studies are required in order to identify the molecules responsible of the pharmacological activity.
Collapse
Affiliation(s)
- Manal A Hamed
- Therapeutic Chemistry Department, National Research Center, Dokki 12311, Cairo, Egypt.
| | | | | |
Collapse
|
41
|
The Anti-Inflammatory, Phytoestrogenic, and Antioxidative Role of Labisia pumila in Prevention of Postmenopausal Osteoporosis. Adv Pharmacol Sci 2012; 2012:706905. [PMID: 22611381 PMCID: PMC3353141 DOI: 10.1155/2012/706905] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 01/08/2012] [Indexed: 11/17/2022] Open
Abstract
Osteoporosis is characterized by skeletal degeneration with low bone mass and destruction of microarchitecture of bone tissue which is attributed to various factors including inflammation. Women are more likely to develop osteoporosis than men due to reduction in estrogen during menopause which leads to decline in bone-formation and increase in bone-resorption activity. Estrogen is able to suppress production of proinflammatory cytokines such as IL-1, IL-6, IL-7, and TNF-α. This is why these cytokines are elevated in postmenopausal women. Studies have shown that estrogen reduction is able to stimulate focal inflammation in bone. Labisia pumila (LP) which is known to exert phytoestrogenic effect can be used as an alternative to ERT which can produce positive effects on bone without causing side effects. LP contains antioxidant as well as exerting anti-inflammatory effect which can act as free radical scavenger, thus inhibiting TNF-α production and COX-2 expression which leads to decline in RANKL expression, resulting in reduction in osteoclast activity which consequently reduces bone loss. Hence, it is the phytoestrogenic, anti-inflammatory, and antioxidative properties that make LP an effective agent against osteoporosis.
Collapse
|
42
|
Rao VS, de Melo CL, Queiroz MGR, Lemos TLG, Menezes DB, Melo TS, Santos FA. Ursolic acid, a pentacyclic triterpene from Sambucus australis, prevents abdominal adiposity in mice fed a high-fat diet. J Med Food 2011; 14:1375-82. [PMID: 21612453 DOI: 10.1089/jmf.2010.0267] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Currently, there is renewed interest in plant-based medicines and functional foods for the prevention and cure of obesity and its associated risk of cardiovascular disease and metabolic syndrome. In the search for potential anti-obesity compounds from natural sources, the effects of ursolic acid (UA), a pentacyclic triterpenoid widely found in medicinal herbs and fruits, was evaluated for its effects on blood glucose, lipids, and abdominal fat deposition in mice fed a high-fat diet (HFD). Adult male Swiss mice treated or not with UA (0.05%, 50 mg/L, in drinking water) were fed HFD for 15 weeks. A sibutramine (SIB)-treated group (0.05% in drinking water) was included as the positive control. Weekly body weights and food and water consumption were measured, and at the end of the study period, the levels of blood glucose and lipids, the plasma hormones insulin, ghrelin, and leptin, and the abdominal fat accumulation were analyzed. Mice treated with UA and fed HFD showed significantly (P<.05) decreased body weights, visceral adiposity, and levels of blood glucose and plasma lipids relative to their respective controls not fed UA. Also, a significant increase was observed in plasma leptin with a decrease in ghrelin, as well as of amylase and lipase activities. The SIB-treated group also manifested effects similar to those of UA except for the blood glucose level, which was not different from the HFD control. These findings suggest that UA ameliorates abdominal adiposity and decreases the levels of blood glucose and plasma lipids in mice and thus manifests an anti-obesity potential through absorptive and metabolic targets.
Collapse
Affiliation(s)
- Vietla S Rao
- Department of Physiology and Pharmacology, Biomedical Institute of Brazilian Semiarid, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| | | | | | | | | | | | | |
Collapse
|
43
|
Weng CJ, Chen MJ, Yeh CT, Yen GC. Hepatoprotection of quercetin against oxidative stress by induction of metallothionein expression through activating MAPK and PI3K pathways and enhancing Nrf2 DNA-binding activity. N Biotechnol 2011; 28:767-77. [DOI: 10.1016/j.nbt.2011.05.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 11/30/2022]
|
44
|
Wang CY, Kao TC, Lo WH, Yen GC. Glycyrrhizic acid and 18β-glycyrrhetinic acid modulate lipopolysaccharide-induced inflammatory response by suppression of NF-κB through PI3K p110δ and p110γ inhibitions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:7726-33. [PMID: 21644799 DOI: 10.1021/jf2013265] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The roots and rhizomes of licorice ( Glycyrrhia ) species have been used extensively as natural sweeteners and herbal medicines. The aim of this work was to determine the in vitro anti-inflammatory effects of glycyrrhizic acid (GA) and 18β-glycyrrhetinic acid (18βGA) from licorice in a lipopolysaccharide (LPS)-stimulated macrophage model. The results showed that treatment with 25-75 μM GA or 18βGA did not reduce RAW 264.7 cell viability but did significantly inhibit the production of LPS-induced nitric oxide (NO), prostaglandin E(2) (PGE(2)), and intracellular reactive oxygen species (ROS). Western blotting and reverse transcriptase polymerase chain reaction (RT-PCR) analyses revealed that GA and 18βGA significantly reduced the protein and mRNA levels of iNOS and COX-2 in LPS-induced macrophages. Both GA and 18βGA inhibited the activation of NF-κB and the activities of phosphoinositide-3-kinase (PI3K) p110δ and p110γ isoforms and then reduced the production of LPS-induced tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1β in a dose-dependent manner. In conclusion, these results indicate that GA and 18βGA may provide an anti-inflammatory effect by attenuating the generation of excessive NO, PGE(2), and ROS and by suppressing the expression of pro-inflammatory genes through the inhibition of NF-κB and PI3K activity. Thus, the results suggest that GA and 18βGA might serve as potential agents for the treatment of inflammatory-mediated diseases.
Collapse
Affiliation(s)
- Chung-Yi Wang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | | | | | | |
Collapse
|
45
|
Pozzatti P, dos Reis GO, Pereira DF, Heller M, Micke GA, Horst H, Pizzolatti MG, Fröde TS. Esenbeckia leiocarpa Engl. inhibits inflammation in a carrageenan-induced murine model of pleurisy. ACTA ACUST UNITED AC 2011; 63:1091-102. [PMID: 21718293 DOI: 10.1111/j.2042-7158.2011.01311.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVES The aim of this study was to investigate the anti-inflammatory effects of the crude hydroalcoholic extract (CHE) isolated from Esenbeckia leiocarpa Engl., and fractions and subfractions derived from it. METHODS Dried E. leiocarpa Engl. bark was macerated and extracted with ethanol to obtain the CHE. The n-hexane, ethyl acetate, aqueous and alkaloid fractions, as well as two alkaloid subfractions (polar and nonpolar) were obtained from the CHE. A preliminary analysis using thin-layer chromatography was performed. Capillary electrophoresis, physical characteristics and spectral data produced by IR analysis and nuclear magnetic resonance (¹H and ¹³C NMR), and mass spectrometry analysis were used to identify and elucidate the structure of the major compounds. Swiss mice were used in a carrageenan-induced pleurisy model. Pro-inflammatory parameters (leukocyte and exudate concentrations, myeloperoxidase and adenosine-deaminase activity, and nitrate/nitrite, interleukin 1β and tumour necrosis factor α levels) were quantified in exudates at 4 h after carrageenan-induced pleurisy in mice. KEY FINDINGS The dihydrocorynantheol alkaloid was isolated as the majority compound in the CHE, ethyl acetate and alkaloid fractions, and in the polar and nonpolar alkaloid subfractions. The CHE, fractions and subfractions inhibited the increases in leukocyte and exudate concentrations, myeloperoxidase and adenosine-deaminase activity, and nitrite/nitrate, interleukin 1β, and tumour necrosis factor α levels (P<0.05) in the fluid secreted from the pleural cavity of the carrageenan-treated mice. CONCLUSIONS E. leiocarpa Engl. showed significant in vivo anti-inflammatory action by inhibiting the inflammation caused by carrageenan. This effect may be, in part, due to the dihydrocorynantheol alkaloid, which was identified as the majority compound isolated from E. leiocarpa bark.
Collapse
Affiliation(s)
- Patrícia Pozzatti
- Department of Clinical Analysis, Centre for Health Sciences, Federal University of Santa Catarina, Campus Universitário, Trindade, Florianópolis, SC, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Waye MMY. New insights into how adenovirus might lead to obesity: An oxidative stress theory. Free Radic Res 2011; 45:880-7. [DOI: 10.3109/10715762.2011.571684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
47
|
Lin CC, Huang CY, Mong MC, Chan CY, Yin MC. Antiangiogenic potential of three triterpenic acids in human liver cancer cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:755-62. [PMID: 21175131 DOI: 10.1021/jf103904b] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Three triterpenic acids, oleanolic acid, ursolic acid and maslinic acid, at 2 or 4 μmol/L were used to study their antiangiogenic potential in human liver cancer Hep3B, Huh7 and HA22T cell lines. The effects of these compounds upon the level and/or expression of hypoxia-inducible factor (HIF)-1α, basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), interleukin (IL)-8, urokinase plasminogen activator (uPA), reactive oxygen species (ROS), nitric oxide (NO) and cell invasion and migration were examined. Results showed that these triterpenic acids at 4 μmol/L significantly suppressed HIF-1α expression in three cell lines (P < 0.05); and these compounds at test doses failed to affect bFGF expression (P > 0.05). Three triterpenic acids dose-dependently decreased production and expression of VEGF and IL-8, retained glutathione level, lowered ROS and NO levels, and declined cell invasion and migration in test cell lines (P < 0.05). These compounds also dose-dependently reduced uPA production and expression in Hep3B and Huh7 cell lines (P < 0.05); but these agents only at 4 μmol/L significantly suppressed uPA production and expression in HA22T cells (P < 0.05). These findings suggest that these triterpenic acids are potent antiangiogenic agents to retard invasion and migration in liver cancer cells.
Collapse
Affiliation(s)
- Chun-Che Lin
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung City, Taiwan
| | | | | | | | | |
Collapse
|
48
|
GC-MS Analysis of Chemical Composition and Free Radical Scavenging Activity of Elaeagnus angustifolia Bark. ACTA ACUST UNITED AC 2011. [DOI: 10.4028/www.scientific.net/amr.183-185.854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Elaeagnus angustifolia L., a hardwood species in the family of Elaeagnaceae, has long been used as part of traditional medicines to treat various diseases. However, limited study is available on the chemical composition and antioxidant activity of E. angustifolia bark. In this study, we undertook a phytochemical investigation of E. angustifolia bark by gas chromatographic and mass spectrometric (GC-MS) analysis. And antioxidant activity of the crude and following soluble fractions of E. angustifolia bark was evaluated by DPPH free radical scavenging assay. GC-MS investigation of 95% EtOH crude extracts from E. angustifolia bark detected 40 compounds, and DPPH free radical scavenging assay indicated that the bark EtOAc and BuOH soluble fractions exhibited significant antioxidant potential (IC50 values of 12.1 and 12.4 µg/ml, respectively) comparing with α-tocopherol and BHT (IC50 values 12.3 and 13.8 µg/ml, respectively), which were used as positive controls.
Collapse
|