1
|
Kapoor R, Karabulut G, Mundada V, Feng H. Non-thermal ultrasonic contact drying of pea protein isolate suspensions: Effects on physicochemical and functional properties. Int J Biol Macromol 2023; 253:126816. [PMID: 37690656 DOI: 10.1016/j.ijbiomac.2023.126816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/21/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Pea protein isolate (PPI) is a popular plant-based ingredient, typically produced through alkaline-isoelectric precipitation and thermal drying. However, high temperatures and long drying times encountered in thermal drying can denature PPI and cause loss of functionality. This study investigated the use of an innovative ultrasonic dryer (US-D) at 30 °C for drying PPI suspensions, compared to conventional hot air drying (HA-D) at 60 °C. US-D led to an increase in the drying rate and correspondingly reduced the drying time by 55 %, when compared to HA-D. The average effective moisture diffusivity in the US-D process was 325 % higher than that in the HA-D process. The resulting PPI exhibited higher solubility, emulsification, and foaming properties than HA-D PPI, with a unique surface morphology and higher surface area. This study demonstrated that drying with acoustic energy is a promising approach for producing dried plant protein ingredients with improved functional properties, reduced processing time, and increased production efficiency.
Collapse
Affiliation(s)
- Ragya Kapoor
- Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
| | - Gulsah Karabulut
- Sakarya University, Faculty of Engineering, Department of Food Engineering, 54187, Sakarya, Turkiye
| | - Vedant Mundada
- Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
| | - Hao Feng
- Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA; Department of Family and Consumer Sciences, North Carolina A&T State University, Greensboro, NC 27411, USA.
| |
Collapse
|
2
|
Abdulstar AR, Altemimi AB, Al-Hilphy AR. Exploring the Power of Thermosonication: A Comprehensive Review of Its Applications and Impact in the Food Industry. Foods 2023; 12:foods12071459. [PMID: 37048278 PMCID: PMC10094072 DOI: 10.3390/foods12071459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Thermosonication (TS) has been identified as a smart remedy for the shortcomings of heat treatment, which typically requires prolonged exposure to high temperatures. This technique combines moderate heat treatment with acoustic energy to eliminate harmful microorganisms and enzymes in food products. Unlike conventional heat treatment, thermosonication utilizes short holding times, allowing for the preservation of food products’ phytochemical compounds and sensory characteristics. The benefits and challenges of this emerging technology, such as equipment cost, limited availability of data, inconsistent results, high energy consumption, and scale-up challenges, have been assessed, and the design process for using ultrasound in combination with mild thermal treatment has been discussed. TS has proven to be a promising technique for eliminating microorganisms and enzymes without compromising the nutritional or sensory quality of food products. Utilizing natural antimicrobial agents such as ascorbic acid, Nisin, and ε-polylysine (ε-PL) in combination with thermosonication is a promising approach to enhancing the safety and shelf life of food products. Further research is required to enhance the utilization of natural antimicrobial agents and to acquire a more comprehensive comprehension of their impact on the safety and quality of food products.
Collapse
|
3
|
Kilic-Akyilmaz M, Kurt C, Uzunoglu T, Turkmen F, Gunes G, Erem E. Comparison of high intensity ultrasound and heat treatment for extending shelf life of a fermented milk beverage. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
4
|
Physicochemical and Rheological Properties of Stirred Yoghurt during Storage Induced from High-Intensity Thermosonicated Goat and Cow Milk. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The effect of high-intensity thermosonication (HIT) pretreatment (20 kHz frequency, output power 4000 W and 25% amplitude for 5, 10 and 15 min) on the physicochemical and rheological properties of stirred yoghurt made from goat milk was studied. Various parameters of the milk were evaluated, such as the particle size, pH and soluble calcium and phosphorus, while other parameters of the stirred yoghurt were evaluated during storage (up to 18 days), such as the rheological measurements, syneresis, pH values, titratable acidity, color, and sensory properties. The microstructure had more interconnected chains than the stirred yoghurt made from homogenized milk on the first day of the storage period. Moreover, the HIT process reduced the diameter of the fat globules in the goat milk, making them smaller than those of homogenized milk. This pretreatment could be used successfully in the production of stirred yoghurt to improve major quality parameters such as delayed syneresis, increased viscosity and enhanced sensory properties during storage.
Collapse
|
5
|
Silva M, Kadam MR, Munasinghe D, Shanmugam A, Chandrapala J. Encapsulation of Nutraceuticals in Yoghurt and Beverage Products Using the Ultrasound and High-Pressure Processing Technologies. Foods 2022; 11:2999. [PMID: 36230075 PMCID: PMC9564056 DOI: 10.3390/foods11192999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Dairy and beverage products are considered highly nutritious. The increase demand for added nutritional benefits within the food systems consumed by the consumers paves the pathway towards fortifying nutraceuticals into these products. However, nutraceuticals are highly unstable towards harsh processing conditions. In addition, the safety of dairy and beverage products plays a very important role. Therefore, various heat treatments are in practice. As the heat-treated dairy and beverage products tends to illustrate several alterations in their organoleptic characteristics and nutritional properties, the demand for alternative non-thermal processing technologies has increased extensively within the food industry. Ultrasound and high-pressure processing technologies are desirable for this purpose as well as a safe and non-destructive technology towards encapsulation of nutraceuticals into food systems. There are benefits in implementing these two technologies in the production of dairy and beverage products with encapsulants, such as manufacturing high-quality products with improved nutritional value while simultaneously enhancing the sensory characteristics such as flavour, taste, texture, and colour and attaining the microbial quality. The primary objective of this review is to provide detailed information on the encapsulation of nutraceuticals and mechanisms involved with using US and HPP technologies on producing encapsulated yoghurt and beverage products.
Collapse
Affiliation(s)
- Mayumi Silva
- School of Science, RMIT University, Bundoora, VIC 3083, Australia
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana 10206, Sri Lanka
| | - Mayur Raghunath Kadam
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur 613005, India
| | - Dilusha Munasinghe
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Akalya Shanmugam
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur 613005, India
- Centre for Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur 613005, India
| | | |
Collapse
|
6
|
Pathak R, Bhangu SK, Martin GJO, Separovic F, Ashokkumar M. Ultrasound-induced protein restructuring and ordered aggregation to form amyloid crystals. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:335-352. [PMID: 35576075 PMCID: PMC9233657 DOI: 10.1007/s00249-022-01601-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/09/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022]
Abstract
Amyloid crystals, a form of ordered protein aggregates documented relatively recently, have not been studied as extensively as amyloid fibres. This study investigates the formation of amyloid crystals with low frequency ultrasound (20 kHz) using β-lactoglobulin, as a model protein for amyloid synthesis. Acoustic cavitation generates localised zones of intense shear, with extreme heat and pressure that could potentially drive the formation of amyloid structures at ambient bulk fluid temperatures (20 ± 1 °C). Thioflavin T fluorescence and electron microscopy showed that low-frequency ultrasound at 20 W/cm3 input power induced β-stacking to produce amyloid crystals in the mesoscopic size range, with a mean length of approximately 22 µm. FTIR spectroscopy indicated a shift towards increased intermolecular antiparallel β-sheet content. An increase in sonication time (0-60 min) and input power (4-24 W/cm3) increased the mean crystal length, but this increase was not linearly proportional to sonication time and input power due to the delayed onset of crystal growth. We propose that acoustic cavitation causes protein unfolding and aggregation and imparts energy to aggregates to cross the torsion barrier, to achieve their lowest energy state as amyloid crystals. The study contributes to a further understanding of protein chemistry relating to the energy landscape of folding and aggregation. Ultrasound presents opportunities for practical applications of amyloid structures, presenting a more adaptable and scalable approach for synthesis.
Collapse
Affiliation(s)
- Rachana Pathak
- School of Chemistry, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC, 3010, Australia
- The ARC Dairy Innovation Hub, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | | | - Gregory J O Martin
- Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC, 3010, Australia
- The ARC Dairy Innovation Hub, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Frances Separovic
- School of Chemistry, The University of Melbourne, Melbourne, VIC, 3010, Australia.
- Bio21 Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Muthupandian Ashokkumar
- School of Chemistry, The University of Melbourne, Melbourne, VIC, 3010, Australia.
- The ARC Dairy Innovation Hub, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
7
|
Mudgil P, Alkaabi A, Maqsood S. Ultrasonication as a novel processing alternative to pasteurization for camel milk: Effects on microbial load, protein profile, and bioactive properties. J Dairy Sci 2022; 105:6548-6562. [PMID: 35691745 DOI: 10.3168/jds.2021-20979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 04/05/2022] [Indexed: 01/24/2023]
Abstract
Ultrasonic technology presents a promising novel tool in the food industry for the processing of milk and dairy products. In this study, we investigated the effects of ultrasonication (US) as an alternative to thermal pasteurization for stabilization of the bioactive properties of camel milk. Camel and bovine milk samples were subjected to US at 6 different power levels (US1-US6), and 1 set of each type of milk was concurrently subjected to flash heat pasteurization (FHP) for comparative analysis (100 mL; n = 4). The microbiological and bioactive parameters of the samples were analyzed during 7 d of storage at 4°C. In both milk types subjected to US ≥ 140 W (US3), the bacterial load was reduced by almost 4 log cycles and complete reduction of microbial load was achieved with US = 170 W and US = 210 W (US5 and US6 treatments, respectively). No significant changes in protein patterns were observed with either FHP or US treatment. In addition, bioactive properties (cholesteryl esterase and pancreatic lipase inhibition) were either enhanced or retained at US3 or higher. 2,2'-Azino-bis-3-ethylbenzthiazoline-6-sulfonic acid and ferric reducing antioxidant power activities in camel milk were decreased after FHP treatment but increased or retained upon US, particularly at US3 and US4 (160 W). Overall, under our experimental conditions, US4 was effective in completely reducing the microbial count, while concomitantly retaining different bioactive properties of both camel and bovine milk. These outcomes highlight the potential of US at 160 W as an efficient nonthermal alternative processing method for milk.
Collapse
Affiliation(s)
- Priti Mudgil
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Amani Alkaabi
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates; Zayed Centre of Health Sciences, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| |
Collapse
|
8
|
Mahmoud MZ, Davidson R, Abdelbasset WK, Fagiry MA. The new achievements in ultrasonic processing of milk and dairy products. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Can ultrasound treatment replace conventional high temperature short time pasteurization of milk? A critical review. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
10
|
Kaur GJ, Orsat V, Singh A. Application of central composite face centered design for the optimization of multiple-pass ultrasonication with mechanical homogenization (MPUMH) for carrot puree processing. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Glover Z, Gregersen SB, Wiking L, Hammershøj M, Simonsen AC. Microstructural changes in acid milk gels due to temperature‐controlled high‐intensity ultrasound treatment: Quantification by analysis of super‐resolution microscopy images. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zachary Glover
- Department of Physics, Chemistry and Pharmacy University of Southern Denmark Campusvej 55 Odense M 5230 Denmark
| | | | - Lars Wiking
- Department of Food Science Aarhus University Agro Food Park 48 Aarhus N 8200 Denmark
| | - Mariannne Hammershøj
- Department of Food Science Aarhus University Agro Food Park 48 Aarhus N 8200 Denmark
| | - Adam Cohen Simonsen
- Department of Physics, Chemistry and Pharmacy University of Southern Denmark Campusvej 55 Odense M 5230 Denmark
| |
Collapse
|
12
|
Scudino H, Guimarães JT, Cabral L, Centurion VB, Gomes A, Orsi AS, Cunha RL, Sant’Ana AS, Cruz AG. Raw milk processing by high‐intensity ultrasound and conventional heat treatments: Microbial profile by amplicon sequencing and physical stability during storage. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Hugo Scudino
- Department of Food Technology Faculty of Veterinary Fluminense Federal University Niterói RJ Brazil
| | - Jonas T Guimarães
- Department of Food Technology Faculty of Veterinary Fluminense Federal University Niterói RJ Brazil
| | - Lucélia Cabral
- Department of General and Applied Biology Institute of Biosciences São Paulo State University (UNESP) Rio Claro SP Brazil
| | - Victor Borin Centurion
- Microbial Resources Division (DRM), Research Center for Chemistry Biology and Agriculture (CPQBA) University of Campinas Campinas SP Brazil
| | - Andresa Gomes
- Department of Food Engineering and Technology Faculty of Food Engineering University of Campinas Campinas SP Brazil
| | - Arthur S Orsi
- Department of Food Technology Faculty of Veterinary Fluminense Federal University Niterói RJ Brazil
- Department of Food Science and Nutrition Faculty of Food Engineering University of Campinas Campinas SP Brazil
| | - Rosiane L Cunha
- Department of Food Engineering and Technology Faculty of Food Engineering University of Campinas Campinas SP Brazil
| | - Anderson S Sant’Ana
- Department of Food Science and Nutrition Faculty of Food Engineering University of Campinas Campinas SP Brazil
| | - Adriano G Cruz
- Department of Food Federal Institute of Science and Technology of Rio de Janeiro Rio de Janeiro RJ Brazil
| |
Collapse
|
13
|
Sullca Grimaldez L, Martínez KD. Concentration trend study on foaming properties for native soy protein isolate treated by ultrasound and heating. Journal of Food Science and Technology 2021; 58:4666-4673. [PMID: 34629531 DOI: 10.1007/s13197-020-04954-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/06/2020] [Accepted: 12/21/2020] [Indexed: 01/05/2023]
Abstract
Given the non-linearity of many protein properties with a short range of concentration which cannot be predicted a priori, and due to the lack of references in the food industry, we proceeded to analyze the foaming ones. The existing bibliography belongs to other fields of research but it is scarcely found for this area. For the food industry, ultrasound is considered one of the most environment-friendly processing. In addition, heating combination would alter their results considerably by synergistic or additive phenomena. Native soy protein isolate was obtained in our laboratory to use it as starting material; ultrasound with temperature was applied at 2, 4 and 6%w/w protein concentrations. Therefore, the objective of this paper was to determine the effect of ultrasound+temperature (50 or 90 °C) simultaneously applied, on the foamability by relating with the relative viscoelasticity, aggregates particle size distribution and their surface charge by zeta potential. The results indicated that treatments promoted changes on the functional parameters depending on the protein concentration. The analysis showed that at 4%wt/wt was adequate to improve foam formation and stability at same time. Dynamic rheology of continuous phase was relation with foamability showing the higher relative viscoelasticity at 4% of concentration after the combined treatment. Light scattering studies could partially explain this observation, taking into account both, the bulk viscosity and the low number of large particles formed after treating. Surface charge was increased for all concentrations equally leading to the aggregates formation of greater colloidal stability for all concentration and treatment conditions investigated. Supplementary Information The online version contains supplementary material available at (10.1007/s13197-020-04954-w).
Collapse
Affiliation(s)
- Lourdes Sullca Grimaldez
- Facultad de Ingeniería, Consejo Nacional de Investigación Científica y Técnicas de la República Argentina, ITPN-CONICET, Universidad de Buenos Aires, Las Heras 2214 CP 11, Buenos Aires, Argentina
| | - Karina D Martínez
- Facultad de Ingeniería, Consejo Nacional de Investigación Científica y Técnicas de la República Argentina, ITPN-CONICET, Universidad de Buenos Aires, Las Heras 2214 CP 11, Buenos Aires, Argentina
| |
Collapse
|
14
|
Hammam ARA, Martínez-Monteagudo SI, Metzger LE. Progress in micellar casein concentrate: Production and applications. Compr Rev Food Sci Food Saf 2021; 20:4426-4449. [PMID: 34288367 DOI: 10.1111/1541-4337.12795] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/12/2021] [Accepted: 06/06/2021] [Indexed: 01/11/2023]
Abstract
Micellar casein concentrate (MCC) is a novel ingredient with high casein content. Over the past decade, MCC has emerged as one of the most promising dairy ingredients having applications in beverages, yogurt, cheese, and process cheese products. Industrially, MCC is manufactured by microfiltration (MF) of skim milk and is commercially available as a liquid, concentrated, or dried containing ≥9, ≥22, and ≥80% total protein, respectively. As an ingredient, MCC not only imparts a bland flavor but also offers unique functionalities such as foaming, emulsifying, wetting, dispersibility, heat stability, and water-binding ability. The high protein content of MCC represents a valuable source of fortification in a number of food formulations. For the last 20 years, MCC is utilized in many applications due to the unique physiochemical and functional characteristics. It also has promising applications to eliminate the cost of drying by producing concentrated MCC. This work aims at providing a succinct overview of the historical progress of the MCC, a review on the manufacturing methods, a discussion of MCC properties, varieties, and applications.
Collapse
Affiliation(s)
- Ahmed R A Hammam
- Dairy and Food Science Department, South Dakota State University, Brookings, South Dakota.,Dairy Science Department, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Sergio I Martínez-Monteagudo
- Department of Family and Consumer Sciences, New Mexico State University, Las Cruces, New Mexico.,Department of Chemical & Materials Engineering, New Mexico State University, Las Cruces, New Mexico
| | - Lloyd E Metzger
- Dairy and Food Science Department, South Dakota State University, Brookings, South Dakota
| |
Collapse
|
15
|
Hammam ARA, Martinez‐Monteagudo SI, Metzger LE, Alsaleem KA. Effect of ultrasound intensity on the functional characteristics of rennet‐coagulated skim milk. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ahmed R. A. Hammam
- Dairy and Food Science Department South Dakota State University Brookings South Dakota USA
- Dairy Science Department, Faculty of Agriculture Assiut University Assiut Egypt
| | - Sergio I. Martinez‐Monteagudo
- Department of Family and Consumer Sciences New Mexico State University Las Cruces New Mexico USA
- Department of Chemical & Materials Engineering New Mexico State University Las Cruces New Mexico USA
| | - Lloyd E. Metzger
- Dairy and Food Science Department South Dakota State University Brookings South Dakota USA
| | - Khalid A. Alsaleem
- Dairy and Food Science Department South Dakota State University Brookings South Dakota USA
- Food Science and Human Nutrition Department Qassim University Al‐Qassim Saudi Arabia
| |
Collapse
|
16
|
Hong Bui AT, Cozzolino D, Zisu B, Chandrapala J. Infrared analysis of ultrasound treated milk systems with different levels of caseins, whey proteins and fat. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.104983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Impact of High-Power Ultrasound for Barrel Regeneration on the Extraction of Wood Volatile and Non-Volatile Compounds. Processes (Basel) 2021. [DOI: 10.3390/pr9060959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
High-power ultrasound (HPU) is an innovative cleaning method used in wineries for oak barrel sanitation and regeneration. The process is associated with hot water (HPUhw) to ensure microbial stabilization and has been proved to be highly effective in recent years. This study thus examines the impact of different cleaning treatments on the subsequent extraction of wood compounds in wine and their impact on organoleptic properties. Red wines aging in barrels treated (HPUhw and steam) in different years (1, 2, and 3 years) were examined during the first 12 months for chemical exchange from wood to wine. Specific analyses were realized on ellagitannins, the physicochemical composition, and oak wood volatile compounds. Only a small increase in some wood volatile compounds occurred in the case of HPUhw, including furfural, 5-methylfurfural, trans-whisky lactone, vanillin, and syringaldehyde. The sensory analysis carried out by a panel of experts showed that the impact on the organoleptic properties of wines is similar with both processes (HPUhw and steam). However, since HPUhw treatment requires lower energy for the same efficiency, it could be an interesting alternative to steam treatment, given the promising prior microbial results.
Collapse
|
18
|
Carrillo-Lopez LM, Garcia-Galicia IA, Tirado-Gallegos JM, Sanchez-Vega R, Huerta-Jimenez M, Ashokkumar M, Alarcon-Rojo AD. Recent advances in the application of ultrasound in dairy products: Effect on functional, physical, chemical, microbiological and sensory properties. ULTRASONICS SONOCHEMISTRY 2021; 73:105467. [PMID: 33508590 PMCID: PMC7840480 DOI: 10.1016/j.ultsonch.2021.105467] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 05/03/2023]
Abstract
Alternative methods for improving traditional food processing have increased in the last decades. Additionally, the development of novel dairy products is gaining importance due to an increased consumer demand for palatable, healthy, and minimally processed products. Ultrasonic processing or sonication is a promising alternative technology in the food industry as it has potential to improve the technological and functional properties of milk and dairy products. This review presents a detailed summary of the latest research on the impact of high-intensity ultrasound techniques in dairy processing. It explores the ways in which ultrasound has been employed to enhance milk properties and processes of interest to the dairy industry, such as homogenization, emulsification, yogurt and fermented beverages production, and food safety. Special emphasis has been given to ultrasonic effects on milk components; fermentation and spoilage by microorganisms; and the technological, functional, and sensory properties of dairy foods. Several current and potential applications of ultrasound as a processing technique in milk applications are also discussed in this review.
Collapse
Affiliation(s)
- Luis M Carrillo-Lopez
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih. 31453, Mexico; National Council of Science and Technology, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez, Ciudad de México C.P. 03940, Mexico
| | - Ivan A Garcia-Galicia
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih. 31453, Mexico
| | - Juan M Tirado-Gallegos
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih. 31453, Mexico
| | - Rogelio Sanchez-Vega
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih. 31453, Mexico
| | - Mariana Huerta-Jimenez
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih. 31453, Mexico; National Council of Science and Technology, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez, Ciudad de México C.P. 03940, Mexico.
| | | | - Alma D Alarcon-Rojo
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih. 31453, Mexico.
| |
Collapse
|
19
|
Effects of Pulsed Electric Fields and Ultrasound Processing on Proteins and Enzymes: A Review. Processes (Basel) 2021. [DOI: 10.3390/pr9040722] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There is increasing demand among consumers for food products free of chemical preservatives, minimally processed and have fresh-like natural flavors. To meet these growing demands, the industries and researchers are finding alternative processing methods, which involve nonthermal methods to obtain a quality product that meets the consumer demands and adheres to the food safety protocols. In the past two decades’ various research groups have developed a wide range of nonthermal processing methods, of which few have shown potential in replacing the traditional thermal processing systems. Among all the methods, ultrasonication (US) and pulsed electric field (PEF) seem to be the most effective in attaining desirable food products. Several researchers have shown that these methods significantly affect various major and minor nutritional components present in food, including proteins and enzymes. In this review, we are going to discuss the effect of nonthermal methods on proteins, including enzymes. This review comprises results from the latest studies conducted from all over the world, which would help the research community and industry investigate the future pathway for nonthermal processing methods, especially in preserving the nutritional safety and integrity of the food.
Collapse
|
20
|
Influence of Fat Concentration on the Volatile Production in Model Whey Protein Systems as Affected by Low Frequency Ultrasound. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02619-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Bui ATH, Cozzolino D, Zisu B, Chandrapala J. The production of volatile compounds in model casein systems with varying fat levels as affected by low‐frequency ultrasound. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anh Thi Hong Bui
- School of Sciences RMIT University Melbourne Victoria3083Australia
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences The University of Queensland Brisbane Queensland4072Australia
| | - Bogdan Zisu
- Fluid Air Spraying Systems Co. Pty Ltd Melbourne Victoria3029Australia
| | | |
Collapse
|
22
|
Ultrasound as an emerging technology for the elimination of chemical contaminants in food: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Sun X, Xuan X, Ji L, Chen S, Liu J, Zhao S, Park S, Yoon JY, Om AS. A novel continuous hydrodynamic cavitation technology for the inactivation of pathogens in milk. ULTRASONICS SONOCHEMISTRY 2021; 71:105382. [PMID: 33276234 PMCID: PMC7786570 DOI: 10.1016/j.ultsonch.2020.105382] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 05/07/2023]
Abstract
Hydrodynamic cavitation is a powerful tool for the enhancement of various processing applications. This study utilizes continuous hydrodynamic cavitation (CHC) for the inactivation of pathogens in milk for the first time. The thermal characteristics, inactivation performance, damage on the nutritional composition, product safety, and cost of the advanced rotational hydrodynamic cavitation reactor at pilot scale were comprehensively investigated. The inactivation results demonstrated that 5.89, 5.53, and 2.99 ± 0.08 log reductions of Escherichia coli, Staphylococcus aureus, and Bacillus cereus were achieved, respectively, at a final treatment temperature of 70 °C for 1-2 s. Moreover, the detrimental effect of CHC on the nutritional composition of milk, including mineral, fat, protein, and vitamin contents, was similar to that of high-temperature short-time method. The change in the concentrations of general bacteria and E. coli, as well as the pH value and acidity of the CHC treated milk stored at 5 °C for 14 days was found to be close to that of low-temperature long-time pasteurized milk. The cost of the present CHC treatment was $0.00268/L with a production rate of 4.2 L/min. CHC appears to be a remarkable method for the continuous processing of milk, as well as other liquid foods with high nutrition and "fresh-picked" flavor, due to its high efficacy, good scalability, high production capacity, and low operating and equipment costs.
Collapse
Affiliation(s)
- Xun Sun
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| | - Xiaoxu Xuan
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| | - Li Ji
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| | - Songying Chen
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| | - Jingting Liu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| | - Shan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Seulgi Park
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Republic of Korea.
| | - Joon Yong Yoon
- Department of Mechanical Engineering, Hanyang University, Ansan 15588, Republic of Korea.
| | - Ae Son Om
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
24
|
Gregersen SB, Glover ZJ, Wiking L, Simonsen AC, Bertelsen K, Pedersen B, Poulsen KR, Andersen U, Hammershøj M. Microstructure and rheology of acid milk gels and stirred yoghurts –quantification of process-induced changes by auto- and cross correlation image analysis. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Recent Advancements of UF-Based Separation for Selective Enrichment of Proteins and Bioactive Peptides—A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031078] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Proteins are one of the primary building blocks that have significant functional properties to be applied in food and pharmaceutical industries. Proteins could be beneficial in their concentrated products or isolates, of which membrane-based filtration methods such as ultrafiltration (UF) encompass application in broad spectra of protein sources. More importantly, selective enrichment by UF is of immense interest due to the presence of antinutrients that may dominate their perspicuous bioactivities. UF process is primarily obstructed by concentration polarization and fouling; in turn, a trade-off between productivity and selectivity emerges, especially when pure isolates are an ultimate goal. Several factors such as operating conditions and membrane equipment could leverage those pervasive contributions; therefore, UF protocols should be optimized for each unique protein mixture and mode of configuration. For instance, employing charged UF membranes or combining UF membranes with electrodialysis enables efficient separation of proteins with a similar molecular weight, which is hard to achieve by the conventional UF membrane. Meanwhile, some proposed strategies, such as utilizing ultrasonic waves, tuning operating conditions, and modifying membrane surfaces, can effectively mitigate fouling issues. A plethora of advancements in UF, from their membrane material modification to the arrangement of new configurations, contribute to the quest to actualize promising potentials of protein separation by UF, and they are reviewed in this paper.
Collapse
|
26
|
Galanakis CM. Functionality of Food Components and Emerging Technologies. Foods 2021; 10:128. [PMID: 33435589 PMCID: PMC7826514 DOI: 10.3390/foods10010128] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 01/08/2023] Open
Abstract
This review article introduces nutrition and functional food ingredients, explaining the widely cited terms of bioactivity, bioaccessibility, and bioavailability. The factors affecting these critical properties of food components are analyzed together with their interaction and preservation during processing. Ultimately, the effect of emerging (non-thermal) technologies on different food components (proteins, carbohydrates, lipids, minerals, vitamins, polyphenols, glucosinolates, polyphenols, aroma compounds, and enzymes) is discussed in spite of preserving their functional properties. Non-thermal technologies can maintain the bioavailability of food components, improve their functional and technological properties, and increase the recovery yields from agricultural products. However, the optimization of operational parameters is vital to avoid degradation of macromolecules and the oxidation of labile compounds.
Collapse
Affiliation(s)
- Charis M. Galanakis
- Research & Innovation Department, Galanakis Laboratories, P.C. 73131 Chania, Greece;
- Food Waste Recovery Group, ISEKI Food Association, P.C. 1190 Vienna, Austria
| |
Collapse
|
27
|
Alcántara-Zavala AE, Figueroa-Cárdenas JDD, Pérez-Robles JF, Arámbula-Villa G, Miranda-Castilleja DE. Thermosonication as an alternative method for processing, extending the shelf life, and conserving the quality of pulque: A non-dairy Mexican fermented beverage. ULTRASONICS SONOCHEMISTRY 2021; 70:105290. [PMID: 32769043 PMCID: PMC7786563 DOI: 10.1016/j.ultsonch.2020.105290] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/16/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study was to evaluate thermosonication as an alternative method for the pasteurization of pulque in order to improve its shelf life and retain its quality parameters. Thermosonication was carried out at 50 °C using amplitudes of 75% (for 6 and for 9 min), 85% (for 4 and for 6 min), and 95% (for 3 and for 5 min). These were the optimal conditions found for processing pulque by thermosonication. Physicochemical (acidity, color, alcohol content, and sensory analysis) and microbiological (lactic acid bacteria and yeasts) parameters were determined during 30 days for storage at 4 ± 1 °C. Conventional pasteurization (63 °C, 30 min) and raw pulque were used as controls. According to the results, the shelf life of pulque was extended up to 24 days storage at 4 °C. After this time, the quality of beverage decreased, due that the microbial load increases. Thermosonication treatments at 75% and 85% showed a higher content of LAB (6.58-6.77 log CFU/mL) and yeasts (7.08-7.27 log CFU/mL) than conventional pasteurization (3.64 log CFU/mL of LAB and 3.97 log CFU/mL of yeasts) at 24 days of storage. Raw pulque demonstrated up to 7.77 log CFU/mL of yeasts and 7.51 log CFU/mL of LAB. Pulque processed by thermosonication exhibited greater lightness, sensory acceptance, a maximal acidity of 0.83 g/lactic acid, and an alcohol content of 4.48-4.95% v/v. The thermosonication process preserves sensory and physicochemical properties better than conventional pasteurization. Lactic acid bacteria such as Lactobacillus kefiri, Lactobacillus acidophilus, and Lactobacillus hilgardii and yeasts such as Saccharomyces cereviasiae were identified in thermosonicated pulque.
Collapse
Affiliation(s)
- Alejandra Elizabeth Alcántara-Zavala
- Centro de Investigación y de Estudios Avanzados (CINVESTAV-Unidad Querétaro), Libramiento Norponiente 2000, Real de Juriquilla, 76230 Querétaro, Qro, Mexico.
| | - Juan de Dios Figueroa-Cárdenas
- Centro de Investigación y de Estudios Avanzados (CINVESTAV-Unidad Querétaro), Libramiento Norponiente 2000, Real de Juriquilla, 76230 Querétaro, Qro, Mexico.
| | - Juan Francisco Pérez-Robles
- Centro de Investigación y de Estudios Avanzados (CINVESTAV-Unidad Querétaro), Libramiento Norponiente 2000, Real de Juriquilla, 76230 Querétaro, Qro, Mexico.
| | - Gerónimo Arámbula-Villa
- Centro de Investigación y de Estudios Avanzados (CINVESTAV-Unidad Querétaro), Libramiento Norponiente 2000, Real de Juriquilla, 76230 Querétaro, Qro, Mexico.
| | - Dalia E Miranda-Castilleja
- Universidad Autónoma de Querétaro, Departamento de Investigación y Posgrado de Alimentos. C.U., Cerro de las Campanas s/n, Col. Las Campanas, 76010 Querétaro, Qro, Mexico.
| |
Collapse
|
28
|
Effects of high and low frequency ultrasound on the production of volatile compounds in milk and milk products - a review. J DAIRY RES 2020; 87:501-512. [PMID: 33353571 DOI: 10.1017/s0022029920001107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The effects of low and high frequency ultrasound on the production of volatile compounds along with their derivation and corresponding off-flavours in milk and milk products are discussed in this review. The review will simultaneously discuss possible mechanisms of applied ultrasound and their respective chemical and physical effects on milk components in relation to the production of volatile compounds. Ultrasound offers potential benefits in dairy applications over conventional heat treatment processes. Physical effects enhance the positive alteration of the physicochemical properties of milk proteins and fat. However, chemical effects propagated by free radical generation cause redox oxidations which in turn produce undesirable volatile compounds such as aldehydes, ketones, acids, esters, alcohols and sulphur, producing off-flavours. The extent of volatile compounds produced depends on ultrasonic processing conditions such as sonication time, temperature and frequency. Low frequency ultrasound limits free radical formation and results in few volatile compounds, while high ultrasonic frequency induces greater level of free radical formation. Furthermore, the compositional variations in terms of milk proteins and fat within the milk systems influence the production of volatile compounds. These factors could be controlled and optimized to reduce the production of undesirable volatiles, eliminate off-flavours, and promote the application of ultrasound technology in the dairy field.
Collapse
|
29
|
Gregersen SB, Wiking L, Metto DJ, Bertelsen K, Pedersen B, Poulsen KR, Andersen U, Hammershøj M. Hydrodynamic cavitation of raw milk: Effects on microbial inactivation, physical and functional properties. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104790] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Sert D, Mercan E. Characterisation of physicochemical, microbiological, thermal, oxidation properties and fatty acid composition of butter produced from thermosonicated cream. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Wu S, Li G, Xue Y, Ashokkumar M, Zhao H, Liu D, Zhou P, Sun Y, Hemar Y. Solubilisation of micellar casein powders by high-power ultrasound. ULTRASONICS SONOCHEMISTRY 2020; 67:105131. [PMID: 32339869 DOI: 10.1016/j.ultsonch.2020.105131] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
High protein milk ingredients, such as micellar casein powder (MCP), exhibit poor solubility upon reconstitution in water, particularly after long-time storage. In this study, ultrasonication (20 kHz, power density of 0.75 W/ml) was used to improve the solubility of aged MCP powders. For all the MCP powders (concentration varying from 0.5 to 5%, and storage of MCP at 50 °C for up to 10 days) it was found that short time ultrasonication (2.5 min) reduced the size of the protein particles from >30 μm to ∼0.1 μm, as measured by light scattering. This resulted in an improvement of solubility (>95%) for all the MCP powders. Cryo-electron microscopy and small x-ray angle scattering showed that the MCP powders dissolved into particles with morphologies and internal structure similar to native casein micelles in bovine milk. SDS-PAGE and RP-HLPC showed that ultrasonication did not affect the molecular weight of the individual casein molecules. Compared to overhead stirring using a 4-blade stirrer, ultrasonication required less than 10 times the drawn electrical energy density to achieve a particle size 10 times smaller.
Collapse
Affiliation(s)
- Sinong Wu
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Guantian Li
- School of Chemical Sciences, The University of Auckland, New Zealand
| | - Yu Xue
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | | | - Haibo Zhao
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Dasong Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Peng Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Yang Sun
- School of Food Science and Technology, and School of Chemical Engineering, Hubei University of Arts and Science, Hubei, Xiangyang 441053, China
| | - Yacine Hemar
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
32
|
Scudino H, Silva EK, Gomes A, Guimarães JT, Cunha RL, Sant'Ana AS, Meireles MAA, Cruz AG. Ultrasound stabilization of raw milk: Microbial and enzymatic inactivation, physicochemical properties and kinetic stability. ULTRASONICS SONOCHEMISTRY 2020; 67:105185. [PMID: 32474185 DOI: 10.1016/j.ultsonch.2020.105185] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study was to evaluate the effects of non-thermal and thermal high-intensity ultrasound (HIUS) treatment on the microbial and enzymatic inactivation, physicochemical properties, and kinetic stability of the raw milk by applying different energy densities (1, 3, 5, and 7 kJ/mL). Two HIUS treatments were evaluated based on different nominal powers, named HIUS-A and HIUS-B, using 100 W and 475 W, respectively. HIUS-A treatment was non-thermal processing while HIUS-B was a thermal treatment only for the energy densities of 5 and 7 kJ/mL since the final temperature was above 70 °C. The HIUS-B treatment showed to be more efficient. Log reductions up to 3.9 cycles of aerobic mesophilic heterotrophic bacteria (AMHB) were achieved. Significant reductions of the fat globule size, with diameters lower than 1 µm, better color parameters, and kinetic stability during the storage were observed. Also, HIUS-B treatment inactivated the alkaline phosphatase and lactoperoxidase. The HIUS-B treatment at 3 kJ/mL worked below 57 °C being considered a border temperature since it did not cause unwanted physicochemical effects. Furthermore, a microbial inactivation of 1.8 ± 0.1 log cycles of AMHB was observed. A proper inactivation of only the Alkaline phosphatase and a significant reduction of the fat globules sizes, which kept the milk kinetically stable during storage was achieved.
Collapse
Affiliation(s)
- Hugo Scudino
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University, Niterói, RJ, Brazil
| | - Eric Keven Silva
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| | - Andresa Gomes
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Jonas T Guimarães
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University, Niterói, RJ, Brazil
| | - Rosiane L Cunha
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - M Angela A Meireles
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Adriano G Cruz
- Department of Food, Federal Institute of Science and Technology of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
33
|
Shao YH, Zhang Y, Zhu MF, Liu J, Tu ZC. Glycation of β-lactoglobulin combined by sonication pretreatment reduce its allergenic potential. Int J Biol Macromol 2020; 164:1527-1535. [PMID: 32738325 DOI: 10.1016/j.ijbiomac.2020.07.223] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/23/2020] [Accepted: 07/24/2020] [Indexed: 01/09/2023]
Abstract
β-lactoglobulin (β-Lg) was treated through different ultrasonic power and subsequently glycated with galactose to investigate its structural changes and immunological properties, and then evaluated by high-resolution mass spectrometry, enzyme-linked immunosorbent assay and basophil histamine release test. Ultrasonication combined with glycation (UCG) modification significantly reduced the IgE/IgG-binding capacity, and the release of β-hexosaminidase, histamine and interleukin-6, accompanied with changes in the secondary and tertiary structures. The decrease in the allergenicity of β-Lg depended not only on the glycation of K47, 60, 83, 91 and 135 within the linear epitopes, but also on the denaturation of conformational epitopes, which was supported by the glycation-induced alterations of the secondary and tertiary structures. This study confirmed that UCG modification is a promising method for decreasing the allergenic potential of allergic proteins, which is likely to develop a practical technology to produce hypo-allergenic milk.
Collapse
Affiliation(s)
- Yan-Hong Shao
- National R&D Branch Center for Conventional Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; Engineering Research Center of Freshwater Fish High-Value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yao Zhang
- National R&D Branch Center for Conventional Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; Engineering Research Center of Freshwater Fish High-Value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Min-Fang Zhu
- National R&D Branch Center for Conventional Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; Engineering Research Center of Freshwater Fish High-Value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Jun Liu
- National R&D Branch Center for Conventional Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; Engineering Research Center of Freshwater Fish High-Value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | - Zong-Cai Tu
- National R&D Branch Center for Conventional Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; Engineering Research Center of Freshwater Fish High-Value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
34
|
Mohan MS, O'Callaghan TF, Kelly P, Hogan SA. Milk fat: opportunities, challenges and innovation. Crit Rev Food Sci Nutr 2020; 61:2411-2443. [PMID: 32649226 DOI: 10.1080/10408398.2020.1778631] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Milk fat is a high-value milk component that is processed mainly as butter, cheese, cream and whole milk powder. It is projected that approximately 35 million tonnes of milk fat will be produced globally by 2025. This surplus, enhances the need for diversification of milk fat products and the milk pool in general. Infant milk formula producers, for instance, have incorporated enzyme modified ("humanised") milk fat and fat globule phospholipids to better mimic human milk fat structures. Minor components like mono- and di-glycerides from milk fat are increasingly utilized as emulsifiers, replacing palm esters in premium-priced food products. This review examines the chemistry of milk fat and the technologies employed for its modification, fractionation and enrichment. Emerging processing technologies such as ultrasound, high pressure processing, supercritical fluid extraction and fractionation, can be employed to improve the nutritional and functional attributes of milk fat. The potential of recent developments in biological intervention, through dietary manipulation of milk fatty acid profiles in cattle also offers significant promise. Finally, this review provides evidence to help redress the imbalance in reported associations between milk fat consumption and human health, and elucidates the health benefits associated with consumption of milk fat and dairy products.
Collapse
Affiliation(s)
- Maneesha S Mohan
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Tom F O'Callaghan
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Phil Kelly
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Sean A Hogan
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| |
Collapse
|
35
|
Formation of cheddar cheese analogues using canola oil and ultrasonication – A comparison between single and double emulsion systems. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104683] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Yang F, Zou L, Wu Y, Wu Z, Yang A, Chen H, Li X. Structure and allergenicity assessments of bovine β-lactoglobulin treated by sonication-assisted irradiation. J Dairy Sci 2020; 103:4109-4120. [DOI: 10.3168/jds.2019-17070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 12/18/2019] [Indexed: 12/19/2022]
|
37
|
Hemar Y, Xu C, Wu S, Ashokkumar M. Size reduction of "reformed casein micelles" by high-power ultrasound and high hydrostatic pressure. ULTRASONICS SONOCHEMISTRY 2020; 63:104929. [PMID: 31945573 DOI: 10.1016/j.ultsonch.2019.104929] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/05/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
We investigated the effect of ultrasound (US) and high hydrostatic pressure (HHP) on the size of reformed casein micelles (RMCs) obtained by titrating calcium and phosphorous solution into sodium caseinate solutions. Both US and HHP reduced the size of the RMCs. A decrease in size from ~200 nm to ~170 nm when US (20 kHz, 0.46 W/mL) was applied for 30 min; and down to ~85 nm when HHP was applied 500 MPa for 15 min. Electron microscopic analysis showed that the RMCs before and after US are similar to milk native casein micelles, and that HHP extensively disintegrated the RMCs. Small angle X-ray scattering and SDS-PAGE showed that the internal structure of the RMCs as well as the casein molecules are not affected by the US and HHP treatments.
Collapse
Affiliation(s)
- Yacine Hemar
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; The Riddet Institute, Palmerston North, New Zealand.
| | - Cheng Xu
- School of Chemical Sciences. The University of Auckland, New Zealand
| | - Sinong Wu
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | | |
Collapse
|
38
|
Carrillo-Lopez LM, Juarez-Morales MG, Garcia-Galicia IA, Alarcon-Rojo AD, Huerta-Jimenez M. The Effect of High-Intensity Ultrasound on the Physicochemical and Microbiological Properties of Mexican Panela Cheese. Foods 2020; 9:foods9030313. [PMID: 32182832 PMCID: PMC7142555 DOI: 10.3390/foods9030313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 11/16/2022] Open
Abstract
High-intensity ultrasound could be an alternative to pasteurization for cheeses made with fresh raw milk, the properties of which must be preserved as part of their intangible cultural heritage, such as Panela cheese in Mexico. This research aimed to study the effect of the amplitude (50% and 100%) and application time (0, 5, and 10 min) of ultrasound treatment of fresh raw milk, on the yield and microbiological and physicochemical qualities of Panela cheese after 24 h of storage at 4 °C. The yield was increased to 24.29% with 10 min of ultrasonication, although the amount of exudate was higher in the ultrasonic product than in the control (20.33%). As the ultrasonication time increased, the yellowness (b*) increased significantly, while the hue angle decreased (with values close to 90°), resulting in evident yellow tones in cheeses made with milk treated for 10 min. The pH significantly increased from 6.6 to 6.74 with 5 min of ultrasound, but decreased to 6.37 with 10 min of ultrasonication. Although no significant differences were found in fat content, the protein significantly increased with 5 min of sonication, but it decreased markedly when ultrasound was applied for 10 min. Ultrasound treatment with amplitudes of 50% effectively decreased the counts of coliform bacteria regardless of ultrasonication time. However, the mesophilic bacteria increased by a 0.9 log with an amplitude of 100% and 10 min treatment. The results showed that ultrasound improved the yield and microbial, nutritional, and physicochemical properties of Panela cheese.
Collapse
Affiliation(s)
- Luis M. Carrillo-Lopez
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih 31453, Mexico
- National Council of Science and Technology, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez, Ciudad de México 03940, Mexico
- Correspondence: (L.M.C.-L.); (A.D.A.-R.); Tel.: +52-595-112-3693 (L.M.C.-L.); +52-614-216-8099 (A.D.A.-R.)
| | - Monica G. Juarez-Morales
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih 31453, Mexico
| | - Ivan A. Garcia-Galicia
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih 31453, Mexico
| | - Alma D. Alarcon-Rojo
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih 31453, Mexico
- Correspondence: (L.M.C.-L.); (A.D.A.-R.); Tel.: +52-595-112-3693 (L.M.C.-L.); +52-614-216-8099 (A.D.A.-R.)
| | - Mariana Huerta-Jimenez
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih 31453, Mexico
- National Council of Science and Technology, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez, Ciudad de México 03940, Mexico
| |
Collapse
|
39
|
Pathak R, Leong TSH, Martin GJO, Ashokkumar M. Amino Acid and Secondary Structure Integrity of Sonicated Milk Proteins. Aust J Chem 2020. [DOI: 10.1071/ch19372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study investigated the effect of low-frequency (20kHz) and high-frequency (414kHz) ultrasound treatment on the amino acid and secondary structural integrity of dairy proteins. Sonicated skim milk proteins were hydrolysed and analysed with reverse-phase high-performance liquid chromatography to investigate the amino acid content of the processed samples. It was successfully demonstrated that both low-frequency and high-frequency ultrasound did not adversely affect the amino acid content, even after prolonged extreme processing conditions (6h, 355kHz). This finding was supplemented with protein secondary structure data (Fourier-transform (FT)-IR secondary derivatives of the amide I band, 1700–1600cm−1) that showed that ultrasound was capable of causing structural modifications to the dairy proteins. This study shows that ultrasound can be used to influence protein–protein interactions in skim milk via alterations to the secondary structure without degrading the amino acids in the proteins.
Collapse
|
40
|
Cruz-Diaz K, Cobos Á, Fernández-Valle ME, Díaz O, Cambero MI. Characterization of edible films from whey proteins treated with heat, ultrasounds and/or transglutaminase. Application in cheese slices packaging. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2019.100397] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Wu D, Tu M, Wang Z, Wu C, Yu C, Battino M, El-Seedi HR, Du M. Biological and conventional food processing modifications on food proteins: Structure, functionality, and bioactivity. Biotechnol Adv 2019; 40:107491. [PMID: 31756373 DOI: 10.1016/j.biotechadv.2019.107491] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/07/2019] [Accepted: 11/18/2019] [Indexed: 12/23/2022]
Abstract
Food proteins are important nutrients for human health and thus make significant contributions to the unique functions of different foods. The modification of proteins through physical and biological processing could improve the functional and nutritional properties of food products; these changes can be attributed to modifications in particle size, solubility, emulsion stability, secondary structure, as well as the bioactivities of the proteins. Physical processing treatments might promote physical phenomena, such as combined friction, collision, shear forces, turbulence, and cavitation of particles, and lead to changes in the particle sizes of proteins. The objective of this review is to illustrate the effect of physical and biological processing on the structure, and physical and chemical properties of food-derived proteins and provide insights into the mechanism underlying structural changes. Many studies have suggested that physical and biological processes, such as ultrasound treatment, high pressure homogenization, ball mill treatment, and enzymatic hydrolysis could affect the structure, physical properties, and chemical properties of food-derived proteins. Some important applications of food-derived proteins are also discussed based on the relationships between their physical, chemical, and functional properties. Perspectives from fundamental or practical research are also brought in to provide a complete picture of the currently available relevant data.
Collapse
Affiliation(s)
- Di Wu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Maolin Tu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Zhenyu Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Chao Wu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Cuiping Yu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Maurizio Battino
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, Spain
| | - Hesham R El-Seedi
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China.
| |
Collapse
|
42
|
Gregersen SB, Wiking L, Bertelsen KB, Tangsanthatkun J, Pedersen B, Poulsen KR, Andersen U, Hammershøj M. Viscosity reduction in concentrated protein solutions by hydrodynamic cavitation. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2019.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
43
|
Ahmad T, Butt MZ, Aadil RM, Inam‐ur‐Raheem M, Abdullah, Bekhit AE, Guimarães JT, Balthazar CF, Rocha RS, Esmerino EA, Freitas MQ, Silva MC, Sameen A, Cruz AG. Impact of nonthermal processing on different milk enzymes. INT J DAIRY TECHNOL 2019. [DOI: 10.1111/1471-0307.12622] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Talha Ahmad
- National Institute of Food Science and Technology University of Agriculture Faisalabad 38000Pakistan
| | - Muhammad Zubair Butt
- National Institute of Food Science and Technology University of Agriculture Faisalabad 38000Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology University of Agriculture Faisalabad 38000Pakistan
| | - Muhammad Inam‐ur‐Raheem
- National Institute of Food Science and Technology University of Agriculture Faisalabad 38000Pakistan
| | - Abdullah
- Department of Food Science and Human Nutrition University of Veterinary and Animal Sciences Lahore54000Pakistan
| | | | - Jonas T Guimarães
- Faculdade de Medicina Veterinária Universidade Federal Fluminense (UFF) Niterói Rio de Janeiro24230‐340Brazil
| | - Celso F Balthazar
- Faculdade de Medicina Veterinária Universidade Federal Fluminense (UFF) Niterói Rio de Janeiro24230‐340Brazil
| | - Ramom S Rocha
- Faculdade de Medicina Veterinária Universidade Federal Fluminense (UFF) Niterói Rio de Janeiro24230‐340Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ) Mestrado Profissional em Ciência e Tecnologia de Alimentos (PCTA) Rua Senador Furtado 121 Rio de Janeiro20270‐021Brazil
| | - Erick A Esmerino
- Faculdade de Medicina Veterinária Universidade Federal Fluminense (UFF) Niterói Rio de Janeiro24230‐340Brazil
| | - Mônica Q Freitas
- Faculdade de Medicina Veterinária Universidade Federal Fluminense (UFF) Niterói Rio de Janeiro24230‐340Brazil
| | - Márcia C Silva
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ) Mestrado Profissional em Ciência e Tecnologia de Alimentos (PCTA) Rua Senador Furtado 121 Rio de Janeiro20270‐021Brazil
| | - Aysha Sameen
- National Institute of Food Science and Technology University of Agriculture Faisalabad 38000Pakistan
| | - Adriano G Cruz
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ) Mestrado Profissional em Ciência e Tecnologia de Alimentos (PCTA) Rua Senador Furtado 121 Rio de Janeiro20270‐021Brazil
| |
Collapse
|
44
|
Gregersen SB, Wiking L, Hammershøj M. Acceleration of acid gel formation by high intensity ultrasound is linked to whey protein denaturation and formation of functional milk fat globule-protein complexes. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2019.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Chen L, Ettelaie R, Akhtar M. Improved enzymatic accessibility of peanut protein isolate pre-treated using thermosonication. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.02.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
46
|
Dars AG, Hu K, Liu Q, Abbas A, Xie B, Sun Z. Effect of Thermo-Sonication and Ultra-High Pressure on the Quality and Phenolic Profile of Mango Juice. Foods 2019; 8:E298. [PMID: 31362421 PMCID: PMC6723886 DOI: 10.3390/foods8080298] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/18/2019] [Accepted: 07/26/2019] [Indexed: 11/16/2022] Open
Abstract
Consumer demand for safe and nutritious fruit juices has led to the development of a number of food processing techniques. To compare the effect of two processing technologies, thermo-sonication (TS) and ultra-high pressure (UHP), on the quality of mango juice, fresh mango juice was treated with TS at 25, 45, 65 and 95 °C for 10 min and UHP at 400 MPa for 10 min. The phenolic profile of mango was also analyzed using the newly developed ultra-performance liquid chromatography-electrospray ionization-quadrupole time of flight-mass spectrometry (UPLC-Q-TOF-HRMSn) and, based on this result, the effect of TS and UHP on the phenolics of mango juice was evaluated. Both treatments had minimal effects on the oBrix, pH, and titratable acidity of mango juice. The residual activities of three enzymes (polyphenol oxidase, peroxidase, and pectin methylesterase), antioxidant compounds (vitamin C, Total phenolics, mangiferin derivatives, gallotannins, and quercetin derivatives) and antioxidant activity sharply decreased with the increase in the temperature of the TS treatment. Nevertheless, the UHP treatment retained antioxidants and antioxidant activity at a high level. The UHP process is likely superior to TS in bioactive compounds and antioxidant activity preservation. Therefore, the mango juice products obtained by ultra-high-pressure processing might be more beneficial to health.
Collapse
Affiliation(s)
- Abdul Ghani Dars
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kai Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiudou Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Aqleem Abbas
- Department of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bijun Xie
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhida Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
47
|
Zhang R, Huang Y, Sun C, Xiaozhen L, Bentian X, Wang Z. Study on ultrasonic techniques for enhancing the separation process of membrane. ULTRASONICS SONOCHEMISTRY 2019; 55:341-347. [PMID: 30852155 DOI: 10.1016/j.ultsonch.2018.12.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 12/29/2018] [Accepted: 12/29/2018] [Indexed: 05/12/2023]
Abstract
In this paper, the mechanism of enhanced membrane separation by ultrasound is analyzed. The main factors affecting the separation of enhanced membrane by ultrasonic technology is studied, the application and research progress of ultrasonic technology in membrane separation are studied. The conclusion are (a) cavitation caused by ultrasonic radiation is the main factor that increases the permeation flux of dextran solution (b) higher intensity of sound is helpful to the cleaning of the film; (c) ultrasound enhancement is related to temperature and operating pressure; (d) the film assembly shell material also affect the ultrasonic effect. In addition, the influence of ultrasonic wave on membrane structure is also discussed. Result indicates that the membrane separation process under the action of ultrasound does improve its permeability, but sometimes ultrasound can also cause damage to the membrane. Application of ultrasonic techniques for enhancing the separation process of membrane is also reviewed.
Collapse
Affiliation(s)
- Ruiyang Zhang
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yu Huang
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China.
| | - Chunbao Sun
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Liang Xiaozhen
- School of Management, Shanghai University, Shanghai 200444, China
| | | | - Zhenjun Wang
- University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
48
|
Van Hekken DL, Renye J, Bucci AJ, Tomasula PM. Characterization of the physical, microbiological, and chemical properties of sonicated raw bovine milk. J Dairy Sci 2019; 102:6928-6942. [PMID: 31202661 DOI: 10.3168/jds.2018-15775] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/23/2018] [Indexed: 11/19/2022]
Abstract
Innovative processing technologies, such as ultrasonication, can change the properties of milk, allowing for the improvement or development of dairy foods. Yet taking bench-scale equipment to pilot plant scale has been challenging. Raw milk, standardized to 3% fat and warmed to inlet temperatures of 42 or 54°C, was exposed to continuous, high-intensity, low-frequency ultrasonication (16/20 kHz, 1.36 kW/pass) at flow rates of 0.15, 0.30, and 0.45 L/min that resulted in resident times within the reaction cell of 6, 3, and 2 min per pass, respectively. Multiple passes (3, 5, and 7, respectively) were required to obtain a total exposure time of 14 to 18 min. Evaluation of fat droplet sizes, enzyme coagulation properties, and microstructure of milk and milk gels, as well as determining compositional and lipid properties, were conducted to determine the potential of the ultrasound system to effectively modify milk. Laser scanning particle sizing and confocal microscopy showed that the largest droplets (2.26 ± 0.13 µm) found in raw milk were selectively reduced in size with a concomitant increase in the number of submicron droplets (0.37 ± 0.06 µm), which occurred sooner when exposed to shorter bursts of ultrasonication (0.45 L/min flow rates) and at an inlet temperature of 54°C. Ultrasound processing with milk entering at 42°C resulted in faster gelling times and firmer curds at 30 min; however, extended processing at inlet temperature of 54°C reduced curd firmness and lengthened coagulation time. This showed that ultrasonication altered protein-protein and protein-lipid interactions, thus the strength of the enzyme-set curds. Scanning electron microscopy revealed a denser curd matrix with less continuous and more irregular shaped and clustered strands, whereas transmission electron microscopy showed submicron lipid droplets embedded within the protein strands of the curd matrix. Processing at inlet temperature of 54°C with flow rates of 0.30 and 0.45 L/min also reduced the total aerobic bacterial count by more than 1 log cfu/mL, and the number of psychrophiles below the limit of detection (10 cfu/mL) for this study. Ultrasonication exposures of 14 to 18 min had minimal effect on the milk composition, fatty acid profiles, and lipid heat capacity and enthalpy. The findings show that this continuous ultrasound system, which is conducive to commercial scale-up, modifies the physical and functional properties of milk under the parameters used in this study and has potential use in dairy processing.
Collapse
Affiliation(s)
- D L Van Hekken
- Dairy & Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, USDA, Wyndmoor, PA 19038
| | - J Renye
- Dairy & Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, USDA, Wyndmoor, PA 19038
| | - A J Bucci
- Dairy & Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, USDA, Wyndmoor, PA 19038
| | - P M Tomasula
- Dairy & Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, USDA, Wyndmoor, PA 19038.
| |
Collapse
|
49
|
Jo Y, Choi M, Chun J. Effect of high‐energy emulsification on properties of commercial low‐temperature pasteurised milk. INT J DAIRY TECHNOL 2019. [DOI: 10.1111/1471-0307.12596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yeon‐Ji Jo
- Department of Agricultural, Food and Nutritional Science University of Alberta Alberta T6G 2P5 Canada
| | - Mi‐Jung Choi
- Department of Food Science and Biotechnology of Animal Resources Konkuk University Seoul 05029Korea
| | - Ji‐Yeon Chun
- Department of Food Bioengineering Jeju National University Jeju 63243 South Korea
| |
Collapse
|
50
|
Pan M, Tong L, Chi X, Ai N, Cao Y, Sun B. Comparison of Sensory and Electronic Tongue Analysis Combined with HS-SPME-GC-MS in the Evaluation of Skim Milk Processed with Different Preheating Treatments. Molecules 2019; 24:E1650. [PMID: 31035485 PMCID: PMC6539690 DOI: 10.3390/molecules24091650] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 12/20/2022] Open
Abstract
It is well known that the flavor of skim milk is inferior to whole milk due to the lack of fat. With the popularity of low-fat dairy products, improving the flavor of skim milk is a main focus for food scientists. During the production of skim milk, preheating treatments have a significant effect for the flavor of skim milk. In this study, to explore the optimal processing conditions, milk was preheated at 30 °C, 40 °C, 50 °C, 60 °C for 30 min prior to defatting. When the optimal temperature was determined, milk was then preheated at the optimal temperature for 10 min, 20 min, 30 min, 40 min and 50 min, respectively, to obtain the best preheating time. Distinctions between skim milk samples with different processing conditions were studied by sensory evaluation, e-tongue and HS-SPME-GC-MS analysis. Principle components analysis (PCA) and cluster analysis (CA) were selected to associate with e-tongue results and compare the similarities and differences among the skim milks. Sensory and e-tongue results matched and both showed that a preheating temperature of 50 °C and 30 min time might be the optimal combination of processing conditions. Thirteen volatiles, including ketones, acids, aldehydes, alcohols, alkanes and sulfur compounds, were analyzed to evaluate flavor of the skim milks produced by different preheating treatments. Combined with previous studies, the results indicated that most volatile compounds were decreased by reducing the fat concentration and the typical compound 2-heptanone was not detected in our skim milk samples.
Collapse
Affiliation(s)
- Minghui Pan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology & Business University, Beijing 100048, China.
| | - Lingjun Tong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology & Business University, Beijing 100048, China.
| | - Xuelu Chi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology & Business University, Beijing 100048, China.
| | - Nasi Ai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology & Business University, Beijing 100048, China.
| | - Yungang Cao
- School of Food and Biological Engineering, Shanxi University of Science & Technology, Xi'an 710021, China.
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology & Business University, Beijing 100048, China.
| |
Collapse
|