1
|
Nakanishi K, Li H, Ichino T, Tatsumi K, Osakabe K, Watanabe B, Shimomura K, Yazaki K. Peroxisomal 4-coumaroyl-CoA ligases participate in shikonin production in Lithospermum erythrorhizon. PLANT PHYSIOLOGY 2024; 195:2843-2859. [PMID: 38478427 DOI: 10.1093/plphys/kiae157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/18/2024] [Indexed: 08/02/2024]
Abstract
4-Coumaroyl-CoA ligase (4CL) is a key enzyme in the phenylpropanoid pathway, which is involved in the biosynthesis of various specialized metabolites such as flavonoids, coumarins, lignans, and lignin. Plants have several 4CLs showing divergence in sequence: Class I 4CLs involved in lignin metabolism, Class II 4CLs associated with flavonoid metabolism, and atypical 4CLs and 4CL-like proteins of unknown function. Shikonin, a Boraginaceae-specific specialized metabolite in red gromwell (Lithospermum erythrorhizon), is biosynthesized from p-hydroxybenzoic acid, and the involvement of 4CL in its biosynthesis has long been debated. In this study, we demonstrated the requirement of 4CL for shikonin biosynthesis using a 4CL-specific inhibitor. In silico analysis of the L. erythrorhizon genome revealed the presence of at least 8 4CL genes, among which the expression of 3 (Le4CL3, Le4CL4, and Le4CL5) showed a positive association with shikonin production. Phylogenetic analysis indicated that Le4CL5 belongs to Class I 4CLs, while Le4CL3 and Le4CL4 belong to clades that are distant from Class I and Class II. Interestingly, both Le4CL3 and Le4CL4 have peroxisome targeting signal 1 in their C-terminal region, and subcellular localization analysis revealed that both localize to the peroxisome. We targeted each of the 3 Le4CL genes by CRISPR/Cas9-mediated mutagenesis and observed remarkably lower shikonin production in Le4CL3-ge and Le4CL4-ge genome-edited lines compared with the vector control. We, therefore, conclude that peroxisomal Le4CL3 and Le4CL4 are responsible for shikonin production and propose a model for metabolite-specific 4CL distribution in L. erythrorhizon.
Collapse
Affiliation(s)
- Kohei Nakanishi
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hao Li
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Takuji Ichino
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
- Laboratory of Medicinal Cell Biology, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan
| | - Kanade Tatsumi
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Keishi Osakabe
- Graduate School of Technology, Industrial and Social Science, Tokushima University, Tokushima, Tokushima 770-8503, Japan
| | - Bunta Watanabe
- Chemistry Laboratory, The Jikei University School of Medicine, Chofu, Tokyo 182-8570, Japan
| | - Koichiro Shimomura
- Graduate School of Life Science, Toyo University, 1-1-1 Izumino, Itakura, Ora, Gunma 374-0193, Japan
| | - Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
2
|
Qi K, Li J, Hu Y, Qiao Y, Mu Y. Research progress in mechanism of anticancer action of shikonin targeting reactive oxygen species. Front Pharmacol 2024; 15:1416781. [PMID: 39076592 PMCID: PMC11284502 DOI: 10.3389/fphar.2024.1416781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/13/2024] [Indexed: 07/31/2024] Open
Abstract
Excessive buildup of highly reactive molecules can occur due to the generation and dysregulation of reactive oxygen species (ROS) and their associated signaling pathways. ROS have a dual function in cancer development, either leading to DNA mutations that promote the growth and dissemination of cancer cells, or triggering the death of cancer cells. Cancer cells strategically balance their fate by modulating ROS levels, activating pro-cancer signaling pathways, and suppressing antioxidant defenses. Consequently, targeting ROS has emerged as a promising strategy in cancer therapy. Shikonin and its derivatives, along with related drug carriers, can impact several signaling pathways by targeting components involved with oxidative stress to induce processes such as apoptosis, necroptosis, cell cycle arrest, autophagy, as well as modulation of ferroptosis. Moreover, they can increase the responsiveness of drug-resistant cells to chemotherapy drugs, based on the specific characteristics of ROS, as well as the kind and stage of cancer. This research explores the pro-cancer and anti-cancer impacts of ROS, summarize the mechanisms and research achievements of shikonin-targeted ROS in anti-cancer effects and provide suggestions for designing further anti-tumor experiments and undertaking further experimental and practical research.
Collapse
Affiliation(s)
- Ke Qi
- Department of Diagnostic Clinical Laboratory Science, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Jiayi Li
- Department of Clinical Test Center, Medical Laboratory, Peking University Cancer Hospital (Inner Mongolia Campus), Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yang Hu
- Department of Diagnostic Clinical Laboratory Science, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yiyun Qiao
- Department of Clinical Test Center, Peking University Cancer Hospital (Inner Mongolia Campus), Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yongping Mu
- Department of Clinical Test Center, Peking University Cancer Hospital (Inner Mongolia Campus), Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| |
Collapse
|
3
|
Dong H, Chang CD, Gao F, Zhang N, Yan XJ, Wu X, Wang YH. The anti-leukemia activity and mechanisms of shikonin: a mini review. Front Pharmacol 2023; 14:1271252. [PMID: 38026987 PMCID: PMC10651754 DOI: 10.3389/fphar.2023.1271252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Leukemia encompasses a group of highly heterogeneous diseases that pose a serious threat to human health. The long-term outcome of patients with leukemia still needs to be improved and new effective therapeutic strategies continue to be an unmet clinical need. Shikonin (SHK) is a naphthoquinone derivative that shows multiple biological function includes anti-tumor, anti-inflammatory, and anti-allergic effects. Numerous studies have reported the anti-leukemia activity of SHK during the last 3 decades and there are studies showing that SHK is particularly effective towards various leukemia cells compared to solid tumors. In this review, we will discuss the anti-leukemia effect of SHK and summarize the underlying mechanisms. Therefore, SHK may be a promising agent to be developed as an anti-leukemia drug.
Collapse
Affiliation(s)
- Han Dong
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Chun-Di Chang
- Department of Neurology, Jilin Province People’s Hospital, Changchun, China
| | - Fei Gao
- Endocrine Department, Qian Wei Hospital of Jilin Province, Changchun, China
| | - Na Zhang
- Electrodiagnosis Department, Jilin Province FAW General Hospital, Changchun, China
| | - Xing-Jian Yan
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Xue Wu
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Yue-Hui Wang
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Olatunde OZ, Yong J, Lu C, Ming Y. A Review on Shikonin and Its Derivatives as Potent Anticancer Agents Targeted against Topoisomerases. Curr Med Chem 2023; 31:CMC-EPUB-129356. [PMID: 36752292 DOI: 10.2174/0929867330666230208094828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/12/2022] [Accepted: 11/30/2022] [Indexed: 02/09/2023]
Abstract
The topoisomerases (TOPO) play indispensable roles in DNA metabolism, by regulating the topological state of DNA. Topoisomerase I and II are the well-established drug-targets for the development of anticancer agents and antibiotics. These drugs-targeting enzymes have been used to establish the relationship between drug-stimulated DNA cleavable complex formation and cytotoxicity. Some anticancer drugs (such as camptothecin, anthracyclines, mitoxantrone) are also widely used as Topo I and Topo II inhibitors, but the poor water solubility, myeloma suppression, dose-dependent cardiotoxicity, and multidrug resistance (MDR) limited their prolong use as therapeutics. Also, most of these agents displayed selective inhibition only against Topo I or II. In recent years, researchers focus on the design and synthesis of the dual Topo I and II inhibitors, or the discovery of the dual Topo I and II inhibitors from natural products. Shikonin (a natural compound with anthraquinone skeleton, isolated from the roots of Lithospermum erythrorhizon) has drawn much attention due to its wide spectrum of anticancer activities, especially due to its dual Topo inhibitive performance, and without the adverse side effects, and different kinds of shikonin derivatives have been synthesized as TOPO inhibitors for the development of anticancer agents. In this review, the progress of the shikonin and its derivatives together with their anticancer activities, anticancer mechanism, and their structure-activity relationship (SAR) was comprehensively summarized by searching the CNKI, PubMed, Web of Science, Scopus, and Google Scholar databases.
Collapse
Affiliation(s)
- Olagoke Zacchaeus Olatunde
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian,350002, China
| | - Jianping Yong
- Xiamen Institute of Rare-earth Materials, Chinese Academy of Sciences, Xiamen, Fujian, 361021, China
| | - Canzhong Lu
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian,350002, China
- Xiamen Institute of Rare-earth Materials, Chinese Academy of Sciences, Xiamen, Fujian, 361021, China
| | - Yanlin Ming
- Fujian Institute of Subtropical Botany, Xiamen, Fujian, 361006, China
| |
Collapse
|
5
|
Yadav S, Sharma A, Nayik GA, Cooper R, Bhardwaj G, Sohal HS, Mutreja V, Kaur R, Areche FO, AlOudat M, Shaikh AM, Kovács B, Mohamed Ahmed AE. Review of Shikonin and Derivatives: Isolation, Chemistry, Biosynthesis, Pharmacology and Toxicology. Front Pharmacol 2022; 13:905755. [PMID: 35847041 PMCID: PMC9283906 DOI: 10.3389/fphar.2022.905755] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
Shikonin and its derivatives, isolated from traditional medicinal plant species of the genus Lithospermum, Alkanna, Arnebia, Anchusa, Onosma, and Echium belonging to the Boraginaceae family, have numerous applications in foods, cosmetics, and textiles. Shikonin, a potent bioactive red pigment, has been used in traditional medicinal systems to cure various ailments and is well known for its diverse pharmacological potential such as anticancer, antithrombotic, neuroprotective, antidiabetic, antiviral, anti-inflammatory, anti-gonadotropic, antioxidants, antimicrobial and insecticidal. Herein, updated research on the natural sources, pharmacology, toxicity studies, and various patents filed worldwide related to shikonin and approaches to shikonin’s biogenic and chemical synthesis are reviewed. Furthermore, recent studies to establish reliable production systems to meet market demand, functional identification, and future clinical development of shikonin and its derivatives against various diseases are presented.
Collapse
Affiliation(s)
- Snehlata Yadav
- Department of Chemistry, Chandigarh University, Mohali, India
| | - Ajay Sharma
- Department of Chemistry, Chandigarh University, Mohali, India
- University Centre for Research and Development, Department of Chemistry, Chandigarh University, Chandigarh- Ludhiana Highway, Mohali, India
| | - Gulzar Ahmad Nayik
- Department of Food Science & Technology, Govt. Degree College Shopian, Srinagar, India
| | - Raymond Cooper
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Garima Bhardwaj
- Department of Chemistry, Sant Longowal Institute of Engineering and Technology, Longowal, Sangrur, India
| | | | - Vishal Mutreja
- Department of Chemistry, Chandigarh University, Mohali, India
| | - Ramandeep Kaur
- Department of Chemistry, Punjab Agricultural University, Ludhiana, India
| | - Franklin Ore Areche
- Professional School of Agroindustrial Engineering, National University of Huancavelica, Huancavelica, Peru
| | - Mohannad AlOudat
- Doctoral School of Food Science, Hungarian University of Agriculture and Life Sciences, Budapset, Hungary
| | | | - Béla Kovács
- Institute of Food Science, University of Debrecen, Debrecen, Hungary
| | - Abdelhakam Esmaeil Mohamed Ahmed
- Institute of Food Science, University of Debrecen, Debrecen, Hungary
- Faculty of Forestry, University of Khartoum, Khartoum North, Sudan
- *Correspondence: Abdelhakam Esmaeil Mohamed Ahmed,
| |
Collapse
|
6
|
Han H, He C, Chen X, Luo Y, Yang M, Wen Z, Hu J, Lin F, Han M, Yin T, Yang R, Lin H, Qi J, Yang Y. Shikonin N-benzyl matrinic acid ester derivatives as novel telomerase inhibitors with potent activity against lung cancer cell lines. Bioorg Med Chem Lett 2021; 57:128503. [PMID: 34922028 DOI: 10.1016/j.bmcl.2021.128503] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022]
Abstract
In this study, a series of novel shikonin N-benzyl matrinic acid ester derivatives (PMMB-299-PMMB-310) were synthesized and tested for their ability to inhibit the proliferation of cancer cells. Compared with shikonin and matrine, some of the ester derivatives were found to exhibit better anti-proliferative activity against seven different cancer cell lines, with less cytotoxicity toward non-cancerous cells. The strongest anti-proliferative activity was exhibited by PMMB-302, which had an IC50 value of 2.71 μM against A549 cells. The compound caused cell cycle arrest in the G2/M phase and induced apoptosis. Effects on the expression of apoptosis-related molecules such as Bcl2, Bcl-XL, caspase-3, caspase-9 and FADD suggested that PMMB-302 has tumor suppressive roles in lung cancer cells. In addition, PMMB-302 inhibited expression of telomerase core proteins, dyskerin and NHP2, and telomerase reverse transcriptase RNA. Moreover, molecular docking of PMMB-302 was subsequently conducted to determine the probable binding mode with telomerase. Taken together, the results indicate that PMMB-302 acts as a tumor suppressor in lung cancer cells by negatively regulating telomerase expression.
Collapse
Affiliation(s)
- Hongwei Han
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Cong He
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xingyu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yuelin Luo
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Minkai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zhongling Wen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jiabao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Faxiang Lin
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Mi Han
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Rongwu Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Hongyan Lin
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Jinliang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Yonghua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
7
|
Zhu L, Li K, Liu M, Liu K, Ma S, Cai W. Anti-cancer Research on Arnebiae Radix-derived Naphthoquinone in Recent Five Years. Recent Pat Anticancer Drug Discov 2021; 17:218-230. [PMID: 34886780 DOI: 10.2174/1574892816666211209164745] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/13/2021] [Accepted: 09/21/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND In recent years, many naphthoquinone compounds with anticancer activity have been identified in Arnebiae Radix, and some of them have the potential to be developed into anticancer drugs. OBJECTIVE This article aimed to provide a comprehensive overview of the anticancer effects of naphthoquinone compounds through a detailed review of literature and Chinese patents, and discuss their potential to be developed as anticancer drugs for clinical application. METHODS Research papers were collected through the databases of PubMed, Cnki and SciDirect using keyword searches "naphthoquinone compounds" and "anticancer". The keywords of "shikonin" and "shikonin derivatives" were also used in PubMed, Cnki and SciDirect databases to collect research articles. The Chinese patents were collected using the Cnki patent database. RESULTS Naphthoquinone compounds have been found to possess anti-cancer activity, and their modes of action are associated with inducing apoptosis, inhibiting cancer cell proliferation, promoting autophagy in cancer cells, anti-cancer angiogenesis and inhibition of cell adhesion, invasion and metastasis, inhibiting glycolysis and inhibiting DNA topoisomerase activity. CONCLUSION Most of the naphthoquinone compounds show effective anti-cancer activity in vitro. The structure modification of naphthoquinone aims to develop anti-cancer drugs with high efficacy and low toxicity.
Collapse
Affiliation(s)
- Lian Zhu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 41800. China
| | - Kailin Li
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 41800. China
| | - Mingjuan Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 41800. China
| | - Kexin Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 41800. China
| | - Shengjun Ma
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 41800. China
| | - Wei Cai
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 41800. China
| |
Collapse
|
8
|
Lawal B, Kuo YC, Sumitra MR, Wu ATH, Huang HS. In vivo Pharmacokinetic and Anticancer Studies of HH-N25, a Selective Inhibitor of Topoisomerase I, and Hormonal Signaling for Treating Breast Cancer. J Inflamm Res 2021; 14:4901-4913. [PMID: 34588796 PMCID: PMC8473721 DOI: 10.2147/jir.s329401] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/11/2021] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Breast cancer is the most frequently diagnosed cancer globally, and the leading cause of cancer-associated mortality among women. The efficacy of most clinical chemotherapies is often limited by poor pharmacokinetics and the development of drug resistance by tumors. In a continuing effort to explore small molecules as alternative therapies, we herein evaluated the therapeutic potential of HH-N25, a novel nitrogen-substituted anthra[1,2-c][1,2,5]thiadiazole-6,11-dione derivative. METHODS We evaluated the in vivo pharmacokinetic properties and maximum tolerated dose (MTD) of HH-N25 in rats. We also characterized the compound for in vitro and in vivo anticancer activities and its inhibitory effects against DNA topoisomerases and hormonal signaling in breast cancer. Furthermore, we used molecular docking to analyse the ligand-receptor interactions between the compound and the targets. RESULTS The maximum serum concentration (Cmax), half-life (t1/2 beta), mean residence time (MRT), oral clearance (CL/f), and apparent volume of distribution (VD/f) of HH-N25 were 1446.67 ± 312.05 ng/mL, 4.51 ± 0.27 h, 2.56 ± 0.16 h, 8.32 ± 1.45 mL/kg/h, and 1.26 ± 0.15 mL/kg, respectively, after single-dose iv administration at 3 mg/kg body weight. HH-N25 had potent anticancer activity against a panel of human breast cancer cell lines with 50% inhibitory concentrations (IC50) ranging 0.045±0.01~4.21±0.05 µM. The drug also demonstrated marked in vivo anticancer activity at a tolerated dose and prolonged the survival duration of mice without unacceptable toxicities based on body weight changes in human tumor xenograft models. In addition, HH-N25 exhibited a dose-dependent inhibition of topoisomerase I and ligand-mediated activities of progesterone and androgen receptors. CONCLUSION HH-N25 represents a new molecular entity that selective suppressed TOP1 and hormonal signaling, and shows potent antitumor activities in human breast cancer cells in vitro and in vivo. HH-N25 thus represents a promising anticancer agent that warrants further preclinical and clinical exploration.
Collapse
Affiliation(s)
- Bashir Lawal
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, 11031, Taiwan
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yu-Cheng Kuo
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Maryam Rachmawati Sumitra
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, 11031, Taiwan
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Alexander T H Wu
- The PhD Program of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Hsu-Shan Huang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, 11031, Taiwan
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, 11490, Taiwan
- School of Pharmacy, National Defense Medical Center, Taipei, 11490, Taiwan
- PhD Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| |
Collapse
|
9
|
Shen CC, Afraj SN, Hung CC, Barve BD, Kuo LMY, Lin ZH, Ho HO, Kuo YH. Synthesis, biological evaluation, and correlation of cytotoxicity versus redox potential of 1,4-naphthoquinone derivatives. Bioorg Med Chem Lett 2021; 41:127976. [PMID: 33766765 DOI: 10.1016/j.bmcl.2021.127976] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/11/2021] [Accepted: 03/14/2021] [Indexed: 11/19/2022]
Abstract
A series of 1,4-naphthoquinone derivatives of lawsone (1), 6-hydroxy-1,4-naphthoquinone (2), and juglone (3) were synthesized by alkylation, acylation, and sulfonylation reactions. The yields of lawsone derivatives 1a-1k (type A), 6-hydroxy-1,4-naphthoquinone derivatives 2a-2j (type B), and juglone derivatives 3a-3h (type C) were 52-99%, 53-96%, and 28-95%, respectively. All compounds were tested in vitro for the cytotoxicity against human oral epidermoid carcinoma (KB) and cervix epithelioid carcinoma (HeLa) cells and their structure-activity relationship was studied. Compound 3c was found to be most potent in KB cell line (IC50 = 1.39 µM). Some compounds were evaluated for DNA topoisomerase I inhibition. Compounds 2c, 3, 3a, and 3d showed topoisomerase inhibition activity with IC50 values of 8.3-91 µM. Standard redox potentials (E°) of all naphthoquinones in phosphate buffer at pH 7.2 were examined by means of cyclic voltammetry. A definite correlation has been found between the redox potentials and inhibitory effects of type A compounds.
Collapse
Affiliation(s)
- Chien-Chang Shen
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112, Taiwan, ROC
| | - Shakil N Afraj
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112, Taiwan, ROC
| | - Chia-Cheng Hung
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112, Taiwan, ROC
| | - Balaji D Barve
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112, Taiwan, ROC
| | - Li-Ming Yang Kuo
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112, Taiwan, ROC
| | - Zhi-Hu Lin
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112, Taiwan, ROC
| | - Hisu-O Ho
- School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan, ROC
| | - Yao-Haur Kuo
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112, Taiwan, ROC; Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan, ROC; Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan, ROC.
| |
Collapse
|
10
|
Synthesis and Pharmacological In Vitro Investigations of Novel Shikonin Derivatives with a Special Focus on Cyclopropane Bearing Derivatives. Int J Mol Sci 2021; 22:ijms22052774. [PMID: 33803437 PMCID: PMC7967198 DOI: 10.3390/ijms22052774] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/17/2022] Open
Abstract
Melanoma is the deadliest form of skin cancer and accounts for about three quarters of all skin cancer deaths. Especially at an advanced stage, its treatment is challenging, and survival rates are very low. In previous studies, we showed that the constituents of the roots of Onosma paniculata as well as a synthetic derivative of the most active constituent showed promising results in metastatic melanoma cell lines. In the current study, we address the question whether we can generate further derivatives with optimized activity by synthesis. Therefore, we prepared 31, mainly novel shikonin derivatives and screened them in different melanoma cell lines (WM9, WM164, and MUG-Mel2 cells) using the XTT viability assay. We identified (R)-1-(1,4-dihydro-5,8-dihydroxy-1,4-dioxonaphthalen-2-yl)-4-methylpent-3-enyl 2-cyclopropyl-2-oxoacetate as a novel derivative with even higher activity. Furthermore, pharmacological investigations including the ApoToxGloTM Triplex assay, LDH assay, and cell cycle measurements revealed that this compound induced apoptosis and reduced cells in the G1 phase accompanied by an increase of cells in the G2/M phase. Moreover, it showed hardly any effects on the cell membrane integrity. However, it also exhibited cytotoxicity against non-tumorigenic cells. Nevertheless, in summary, we could show that shikonin derivatives might be promising drug leads in the treatment of melanoma.
Collapse
|
11
|
Puckett DL, Alquraishi M, Chowanadisai W, Bettaieb A. The Role of PKM2 in Metabolic Reprogramming: Insights into the Regulatory Roles of Non-Coding RNAs. Int J Mol Sci 2021; 22:1171. [PMID: 33503959 PMCID: PMC7865720 DOI: 10.3390/ijms22031171] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/17/2023] Open
Abstract
Pyruvate kinase is a key regulator in glycolysis through the conversion of phosphoenolpyruvate (PEP) into pyruvate. Pyruvate kinase exists in various isoforms that can exhibit diverse biological functions and outcomes. The pyruvate kinase isoenzyme type M2 (PKM2) controls cell progression and survival through the regulation of key signaling pathways. In cancer cells, the dimer form of PKM2 predominates and plays an integral role in cancer metabolism. This predominance of the inactive dimeric form promotes the accumulation of phosphometabolites, allowing cancer cells to engage in high levels of synthetic processing to enhance their proliferative capacity. PKM2 has been recognized for its role in regulating gene expression and transcription factors critical for health and disease. This role enables PKM2 to exert profound regulatory effects that promote cancer cell metabolism, proliferation, and migration. In addition to its role in cancer, PKM2 regulates aspects essential to cellular homeostasis in non-cancer tissues and, in some cases, promotes tissue-specific pathways in health and diseases. In pursuit of understanding the diverse tissue-specific roles of PKM2, investigations targeting tissues such as the kidney, liver, adipose, and pancreas have been conducted. Findings from these studies enhance our understanding of PKM2 functions in various diseases beyond cancer. Therefore, there is substantial interest in PKM2 modulation as a potential therapeutic target for the treatment of multiple conditions. Indeed, a vast plethora of research has focused on identifying therapeutic strategies for targeting PKM2. Recently, targeting PKM2 through its regulatory microRNAs, long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) has gathered increasing interest. Thus, the goal of this review is to highlight recent advancements in PKM2 research, with a focus on PKM2 regulatory microRNAs and lncRNAs and their subsequent physiological significance.
Collapse
Affiliation(s)
- Dexter L. Puckett
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| | - Mohammed Alquraishi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| | - Winyoo Chowanadisai
- Department of Nutrition, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| |
Collapse
|
12
|
Shen GN, Li J, Jin YH, Sun HN, Hao YY, Jin MH, Liu R, Li WL, Zhang YQ, Yu JB, Yu NN, Wang WD, Yu LY, Kim JS, Kwon T, Han YH. The compound 2-benzylthio-5,8-dimethoxynaphthalene-1,4-dione leads to apoptotic cell death by increasing the cellular reactive oxygen species levels in Ras-mutated liver cancer cells. Exp Ther Med 2020; 20:82. [PMID: 32968439 PMCID: PMC7500053 DOI: 10.3892/etm.2020.9209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
The aim of the present study was to verify the pro-apoptotic anticancer potential of several 5,8-dimethoxy-1,4-phthoquinone (DMNQ) derivatives in Ras-mediated tumorigenesis. MTT assays were used to detect cellular viability and flow cytometry was performed to assess intracellular reactive oxygen species (ROS) levels and apoptosis. The expression levels of proteins were detected via western blotting. Among the 12 newly synthesized DMNQ derivatives, 2-benzylthio-5,8-dimethoxynaphthalene-1,4-dione (BZNQ; component #1) significantly reduced cell viability both in mouse NIH3T3 embryonic fibroblasts cells (NC) and H-RasG12V transfected mouse NIH3T3 embryonic fibroblasts cells (NR). Moreover, BZNQ resulted in increased cytotoxic sensitivity in Ras-mutant transfected cells. Furthermore, the reactive oxygen species (ROS) levels in H-RasG12V transfected HepG2 liver cancer cells (HR) were significantly higher compared with the levels in HepG2 liver cancer cells (HC) following BZNQ treatment, which further resulted in increased cellular apoptosis. Eliminating cellular ROS using an ROS scavenger N-acetyl-L-cysteine markedly reversed BZNQ-induced cellular ROS accumulation and cell apoptosis in HC and HR cells. Western blotting results revealed that BZNQ significantly downregulated H-Ras protein expression and inhibited the Ras-mediated downstream signaling pathways such as protein kinase B, extracellular signal-related kinase and glycogen synthase kinase phosphorylation and β-catenin protein expression. These results indicated that the novel DMNQ derivative BZNQ may be a therapeutic drug for Ras-mediated liver tumorigenesis. The results of the current study suggest that BZNQ exerts its effect by downregulating H-Ras protein expression and Ras-mediated signaling pathways.
Collapse
Affiliation(s)
- Gui-Nan Shen
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Jing Li
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Ying-Hua Jin
- Library and Information Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Hu-Nan Sun
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Ying-Ying Hao
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Mei-Hua Jin
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Ren Liu
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Wei-Long Li
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Yong-Qing Zhang
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Jia-Bin Yu
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Nan-Nan Yu
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Wei-Dong Wang
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Li-Yun Yu
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Ji-Su Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeonbuk 56216, Republic of Korea
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeonbuk 56216, Republic of Korea
| | - Ying-Hao Han
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| |
Collapse
|
13
|
Izuishi Y, Isaka N, Li H, Nakanishi K, Kageyama J, Ishikawa K, Shimada T, Masuta C, Yoshikawa N, Kusano H, Yazaki K. Apple latent spherical virus (ALSV)-induced gene silencing in a medicinal plant, Lithospermum erythrorhizon. Sci Rep 2020; 10:13555. [PMID: 32782359 PMCID: PMC7421898 DOI: 10.1038/s41598-020-70469-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/27/2020] [Indexed: 11/12/2022] Open
Abstract
Lithospermum erythrorhizon is a medicinal plant that produces shikonin, a red lipophilic naphthoquinone derivative that accumulates exclusively in roots. The biosynthetic steps required to complete the naphthalene ring of shikonin and its mechanism of secretion remain unclear. Multiple omics studies identified several candidate genes involved in shikonin production. The functions of these genes can be evaluated using virus-induced gene silencing (VIGS) systems, which have been shown advantageous in introducing iRNA genes into non-model plants. This study describes the development of a VIGS system using an apple latent spherical virus (ALSV) vector and a target gene, phytoene desaturase (LePDS1). Virus particles packaged in Nicotiana benthamiana were inoculated into L. erythrorhizon seedlings, yielding new leaves with albino phenotype but without disease symptoms. The levels of LePDS1 mRNAs were significantly lower in the albino plants than in mock control or escape plants. Virus-derived mRNA was detected in infected plants but not in escape and mock plants. Quantitative PCR and deep sequencing analysis indicated that transcription of another hypothetical PDS gene (LePDS2) also decreased in the defective leaves. Virus infection, however, had no effect on shikonin production. These results suggest that virus-based genetic transformation and the VIGS system silence target genes in soil-grown L. erythrorhizon.
Collapse
Affiliation(s)
- Yuki Izuishi
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, 611-0011, Japan
| | - Natsumi Isaka
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, 611-0011, Japan
| | - Hao Li
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, 611-0011, Japan
| | - Kohei Nakanishi
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, 611-0011, Japan
| | - Joji Kageyama
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, 611-0011, Japan
| | - Kazuya Ishikawa
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Tomoo Shimada
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Chikara Masuta
- Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Nobuyuki Yoshikawa
- Agri-Innovation Center, Iwate University, Morioka 3-18-8, Iwate, 020-8550, Japan
| | - Hiroaki Kusano
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, 611-0011, Japan
| | - Kazufumi Yazaki
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, 611-0011, Japan.
| |
Collapse
|
14
|
Li B, Zhu M, Ma H, Ma T, Dai Y, Li H, Li Y, Wu CZ. Biosynthesis of Novel Shikonin Glucosides by Enzymatic Glycosylation. Chem Pharm Bull (Tokyo) 2019; 67:1072-1075. [DOI: 10.1248/cpb.c19-00284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Bohan Li
- School of Pharmacy, Bengbu Medical College
| | - Meilin Zhu
- School of Pharmacy, Bengbu Medical College
| | - Hui Ma
- School of Pharmacy, Bengbu Medical College
| | - Tao Ma
- School of Pharmacy, Bengbu Medical College
| | - Yiqun Dai
- School of Pharmacy, Bengbu Medical College
| | - Hongmei Li
- School of Pharmacy, Bengbu Medical College
| | - Yu Li
- School of Pharmacy, Second Military Medical University
| | | |
Collapse
|
15
|
Analysis of the Mechanisms of Action of Naphthoquinone-Based Anti-Acute Myeloid Leukemia Chemotherapeutics. Molecules 2019; 24:molecules24173121. [PMID: 31466259 PMCID: PMC6749238 DOI: 10.3390/molecules24173121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/24/2019] [Accepted: 08/25/2019] [Indexed: 01/02/2023] Open
Abstract
Acute myeloid leukemia (AML) is a neoplastic disorder resulting from clonal proliferation of poorly differentiated immature myeloid cells. Distinct genetic and epigenetic aberrations are key features of AML that account for its variable response to standard therapy. Irrespective of their oncogenic mutations, AML cells produce elevated levels of reactive oxygen species (ROS). They also alter expression and activity of antioxidant enzymes to promote cell proliferation and survival. Subsequently, selective targeting of redox homeostasis in a molecularly heterogeneous disease, such as AML, has been an appealing approach in the development of novel anti-leukemic chemotherapeutics. Naphthoquinones are able to undergo redox cycling and generate ROS in cancer cells, which have made them excellent candidates for testing against AML cells. In addition to inducing oxidative imbalance in AML cells, depending on their structure, naphthoquinones negatively affect other cellular apparatus causing neoplastic cell death. Here we provide an overview of the anti-AML activities of naphthoquinone derivatives, as well as analysis of their mechanism of action, including induction of reduction-oxidation imbalance, alteration in mitochondrial transmembrane potential, Bcl-2 modulation, initiation of DNA damage, and modulation of MAPK and STAT3 activity, alterations in the unfolded protein response and translocation of FOX-related transcription factors to the nucleus.
Collapse
|
16
|
Wang F, Yao X, Zhang Y, Tang J. Synthesis, biological function and evaluation of Shikonin in cancer therapy. Fitoterapia 2019; 134:329-339. [DOI: 10.1016/j.fitote.2019.03.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 12/16/2022]
|
17
|
Xu DF, Guan PJ, Li SS. A convenient synthesis of 2-formyl-1,4,5,8-tetramethoxynaphthalene. JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.3184/030823406780199677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A convenient and concise synthesis of 1,4,5,8-tetramethoxynaphthalene can be achieved by methylation of 2,3-dihydronaphthazarin with dimethylsulfate in the presence of phase transfer catalytic in 90.3% yield, then formylation of 1,4,5,8-tetramethoxynaphthalene can afford 2-formyl-1,4,5,8-tetramethoxynaphthalene in 96.2% yield.
Collapse
Affiliation(s)
- De-Feng Xu
- School of Pharmacy, Shanghai Jiaotong University, Minhang, Shanghai 200240, P. R. China
| | - Peng-Jian Guan
- School of Pharmacy, Shanghai Jiaotong University, Minhang, Shanghai 200240, P. R. China
| | - Shao-Shun Li
- School of Pharmacy, Shanghai Jiaotong University, Minhang, Shanghai 200240, P. R. China
| |
Collapse
|
18
|
Liu Y, Liang Y, Jiang J, Qin Q, Wang L, Liu X. Design, synthesis and biological evaluation of 1,4-dihydroxyanthraquinone derivatives as anticancer agents. Bioorg Med Chem Lett 2019; 29:1120-1126. [PMID: 30846253 DOI: 10.1016/j.bmcl.2019.02.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 02/02/2023]
Abstract
The novel hydroxyanthraquinone derivatives containing nitrogen-mustard and thiophene group were designed to covalently bind to topoisomerase II, and their structures were confirmed by nuclear magnetic resonance and high resolution mass spectrometer technologies in this article. The in vitro cytotoxicity against different cancer cell lines and one normal liver cell line (L02) was evaluated by MTT assay. Compound A1 was the most potent anti-proliferative agent against the human liver cancer HepG-2 cells (IC50 = 12.5 μM), and there is no obvious growth inhibitory effect on normal liver tissue L02 cells. The good cytotoxicity and selectivity of compound A1 suggest that it could be a promising lead for further optimization. The mechanisms of action about compound A1 and A4 were further investigated through analysis of cell apoptosis. Confocal microscopy tracks the location of compound A1 in the cell, which could enter the cytoplasm and nucleus, and induce severe deformation of the nucleus. The docking study demonstrated that A1 could interact with the catalytic active site in topoisomerase II.
Collapse
Affiliation(s)
- Yanghou Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yuehui Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qing Qin
- Medicinal College, Guangxi University, Nanning 530004, China; School of Pharmaceutical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Lisheng Wang
- Medicinal College, Guangxi University, Nanning 530004, China
| | - Xu Liu
- Medicinal College, Guangxi University, Nanning 530004, China.
| |
Collapse
|
19
|
Sharma N, Gulati A, Kumar D, Padwad Y. Naphthazarins as cytotoxic agents isolated from Arnebia euchroma. Pharmacogn Mag 2019. [DOI: 10.4103/pm.pm_115_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
20
|
Synthesis of Novel Shikonin Derivatives and Pharmacological Effects of Cyclopropylacetylshikonin on Melanoma Cells. Molecules 2018; 23:molecules23112820. [PMID: 30380765 PMCID: PMC6278577 DOI: 10.3390/molecules23112820] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/25/2022] Open
Abstract
Despite much research in the last centuries, treatment of malignant melanoma is still challenging because of its mostly unnoticeable metastatic spreading and aggressive growth rate. Therefore, the discovery of novel drug leads is an important goal. In a previous study, we have isolated several shikonin derivatives from the roots of Onosma paniculata Bureau & Franchet (Boraginaceae) which evolved as promising anticancer candidates. β,β-Dimethylacrylshikonin (1) was the most cytotoxic derivative and exhibited strong tumor growth inhibitory activity, in particular, towards melanoma cells. In this study, we synthesized eighteen novel shikonin derivatives in order to obtain compounds which exhibit a higher cytotoxicity than 1. We investigated their cytotoxic potential against various melanoma cell lines and juvenile skin fibroblasts. The most active compound was (R)-1-(1,4-dihydro-5,8-dihydroxy-1,4-dioxonaphthalen-2-yl)-4-methylpent-3-enyl cyclopropylacetate (cyclopropylacetylshikonin) (6). It revealed significant stronger tumor growth inhibitory activity towards two melanoma cell lines derived from metastatic lesions (WM164 and MUG-Mel2). Further investigations have shown that 6 induced apoptosis caspase-dependently, increased the protein levels of cleaved PARP, and led to double-stranded DNA breaks as shown by phosphorylation of H2AX. Cell membrane damage and cell cycle arrest were not observed.
Collapse
|
21
|
Zhang Q, Dong J, Cui J, Huang G, Meng Q, Li S. Cytotoxicity of Synthesized 1,4-Naphthoquinone Oxime Derivatives on Selected Human Cancer Cell Lines. Chem Pharm Bull (Tokyo) 2018; 66:612-619. [PMID: 29863062 DOI: 10.1248/cpb.c18-00013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In an effort to develop potent and selective antitumor agents, a series of 1,4-naphthoquinone oxime derivatives were designed and synthesized. The cytotoxicity of these compounds were evaluated against five human cancer cell lines (colorectal cancer cell: HCT-15, breast cancer cell: MDA-MB-231, liver cancer cell: BEL-7402, colorectal cancer cell: HCT-116 and ovarian cancer cell: A2780) in vitro. Among them, compound 14 was found to be the most potent cytotoxic compound against three cell lines (MDA-MB-231, BEL-7402 and A2780) with IC50 values of 0.66±0.05, 5.11±0.12 and 8.26±0.22 µM, respectively. Additionally, the length of the side chains and the position of the substituent may also affect the cytotoxic activity of the naphthoquinone oxime derivatives. In general, compound 14 effectively inhibited breast cancer cell proliferation and may become a promising anticancer agent.
Collapse
Affiliation(s)
- Qijing Zhang
- School of Pharmacy, Shanghai Jiao Tong University
| | - Jinyun Dong
- School of Pharmacy, Shanghai Jiao Tong University
| | - Jiahua Cui
- School of Pharmacy, Shanghai Jiao Tong University
| | - Guang Huang
- School of Pharmacy, Shanghai Jiao Tong University
| | | | - Shaoshun Li
- School of Pharmacy, Shanghai Jiao Tong University
| |
Collapse
|
22
|
Mirzaei SA, Reiisi S, Ghiasi Tabari P, Shekari A, Aliakbari F, Azadfallah E, Elahian F. Broad blocking of MDR efflux pumps by acetylshikonin and acetoxyisovalerylshikonin to generate hypersensitive phenotype of malignant carcinoma cells. Sci Rep 2018; 8:3446. [PMID: 29472576 PMCID: PMC5823906 DOI: 10.1038/s41598-018-21710-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/05/2018] [Indexed: 12/11/2022] Open
Abstract
Cytotoxic activities of acetylshikonin and acetoxyisovalerylshikonin alone and in combination with chemotherapeutic agents against parental and drug resistant cell lines were determined using the MTT assay. Effects of Shikonin derivatives on BCRP, MDR1 and MRP transcript and protein levels were relatively measured. Finally, accumulation and efflux kinetics were conducted. The results revealed cell- and concentration-dependency of the cell cytotoxicity. Acetylshikonin and acetoxyisovalerylshikonin transiently made the mRNA ocean turbulent, but FACS analyses using fluorescent-labeled antibodies showed no significant change in the MDR-protein levels. Functional kinetics revealed significant block of MDR1, BCRP and MRP transporter in the presence of shikonin derivatives. Maximum accumulation fold changes was quantified to be 4.4 and consequently, acetoxyisovalerylshikonin pretreated EPG85.257RDB cells was chemosensitized to daunorubicin tension 3.1-fold. Although, the MDR blockage was reported to follow time- and cell-dependent patterns, MDR1, BCRP and MRP2 responses to the shikonins are concentration-independent. These data suggest uncompetitive transporter blockage behavior of these agents. The results indicated that shikonin derivatives stimulate uptake and reduce efflux of chemotherapeutic agents in the malignant cancer cells, suggesting that chemotherapy in combination with shikonin compounds may be beneficial to cancer cells that overexpress multidrug resistance transporters.
Collapse
Affiliation(s)
- Seyed Abbas Mirzaei
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | | | - Abolfazl Shekari
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Fatemeh Aliakbari
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elaheh Azadfallah
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Fatemeh Elahian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
23
|
Huang G, Zhao HR, Meng QQ, Zhang QJ, Dong JY, Zhu BQ, Li SS. Synthesis and biological evaluation of sulfur-containing shikonin oxime derivatives as potential antineoplastic agents. Eur J Med Chem 2017; 143:166-181. [PMID: 29174813 DOI: 10.1016/j.ejmech.2017.11.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/30/2017] [Accepted: 11/11/2017] [Indexed: 02/07/2023]
Abstract
As a continuation of our research on developing potent and potentially safe antineoplastic agents, a set of forty five sulfur-containing shikonin oxime derivatives were synthesized and evaluated for their in vitro cytotoxic activity against human colon cancer (HCT-15), gastric carcinoma (MGC-803), liver (Bel7402), breast (MCF-7) cancer cells and human skin fibroblast (HSF) cells. All the synthesized compounds exhibited potent cytotoxic activity selectively towards HCT-15 cells and did not display apparent toxicity to the normal HSF cells, some of which were more or comparatively effective to the parent compound against HCT-15, MGC-803 and Bel7402 cells. The most active agent 9m displayed high potency against human cancer cells with IC50 ranging from 0.27 ± 0.02 to 9.23 ± 0.12 μM. The structure-activity relationships (SARs) studies suggested that the nature of substituent group in the side chain is important for antitumor potency in vitro. Additionally, nitric oxide release studies revealed that the amount of nitric oxide generated from these oxime derivatives was relatively low. Furthermore, cellular mechanism investigations indicated that compound 9m could arrest cell cycle at G1 phase and induce a strong apoptotic response in HCT-15 cells. Moreover, western blot studies revealed that compound 9m induced apoptosis through the down-regulation of Bcl-2 and up-regulation of Bax, caspase 3 and 9. For all these reasons, compound 9m hold promising potential as antineoplastic agent.
Collapse
Affiliation(s)
- Guang Huang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Hui-Ran Zhao
- School of Pharmaceutical Sciences and Chemistry, Dali University, Dali 671000, China
| | - Qing-Qing Meng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi-Jing Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jin-Yun Dong
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bao-Quan Zhu
- Shanghai Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Shao-Shun Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
24
|
Yazaki K. Lithospermum erythrorhizon cell cultures: Present and future aspects. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2017; 34:131-142. [PMID: 31275019 PMCID: PMC6565996 DOI: 10.5511/plantbiotechnology.17.0823a] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/23/2017] [Indexed: 05/24/2023]
Abstract
Lithospermum erythrorhizon cell cultures have been used to produce plant secondary metabolites, as well as in biosynthetic studies. Shikonin, a representative secondary metabolite of L. erythrorhizon, was first produced industrially by dedifferentiated cell cultures in the 1980s. This culture system has since been used in research on various plant secondary metabolites. Other boraginaceaeous plant species, including Arnebia, Echium, Onosma and Alkanna, have been shown to produce shikonin, and studies have assessed shikonin regulation, including transgene expression, in these plants. This review summarizes current knowledge of shikonin production by L. erythrorhizon cell and hairy root cultures, including the historical aspect of large-scale production, and discusses future biochemical and biological research using this species.
Collapse
Affiliation(s)
- Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
25
|
Zhan H, Jagtiani T, Liang JF. A new targeted delivery approach by functionalizing drug nanocrystals through polydopamine coating. Eur J Pharm Biopharm 2017; 114:221-229. [PMID: 28161549 DOI: 10.1016/j.ejpb.2017.01.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/08/2017] [Accepted: 01/09/2017] [Indexed: 12/25/2022]
Abstract
Tumor target specificity via chemotherapy is widely considered to be very effective on tumor treatment. For an ideal chemotherapeutic agent like Camptothecin (CPT) (CPT is the abbreviation for Camptothecin), improved therapeutic efficacy and high selectivity are equally important. Inspired by adhesive proteins in mussels, here we developed a novel tumor targeting peptide XQ1 grafted CPT nanocrystals with polydopamine coating as a spacer. In this study, CPT nanocrystals were coated by polymerization of dopamine that was induced by plasma-activated water under an acidic environment, and then the tumor targeting peptide was grafted onto polydopamine (PDA) (PDA is the abbreviation for polydopamine) coated CPT nanocrystals through catechol chemistry. The PDA layer had negligible effects on drug crystallinity and structure but resulted in drug nanocrystals with excellent dispersion properties, improved dissolution rate and drug stability by preventing water hydrolysis. More importantly, tumor targeting peptide XQ1 facilitated a rapid cross-membrane translocation of drug nanocrystals via receptor-mediated endocytosis, leading to efficient intracellular drug delivery. Moreover, this novel drug formulation demonstrated more potent anti-cancer activity against tumor cells in comparison with free CPT and naked CPT nanocrystals and exhibited high selectivity, all of which are attributed to the tumor target specificity property and inherent pH-dependent drug release behavior.
Collapse
Affiliation(s)
- Honglei Zhan
- Department of Biomedical Engineering, Chemistry, and Biological Sciences, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Tina Jagtiani
- Department of Biomedical Engineering, Chemistry, and Biological Sciences, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Jun F Liang
- Department of Biomedical Engineering, Chemistry, and Biological Sciences, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| |
Collapse
|
26
|
Huang G, Meng QQ, Zhou W, Zhang QJ, Dong JY, Li SS. Design and synthesis of biotinylated dimethylation of alkannin oxime derivatives. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Advances in the Chemistry of Natural and Semisynthetic Topoisomerase I/II Inhibitors. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63929-5.00002-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
28
|
Hueso-Falcón I, Amesty Á, Anaissi-Afonso L, Lorenzo-Castrillejo I, Machín F, Estévez-Braun A. Synthesis and biological evaluation of naphthoquinone-coumarin conjugates as topoisomerase II inhibitors. Bioorg Med Chem Lett 2016; 27:484-489. [PMID: 28040393 DOI: 10.1016/j.bmcl.2016.12.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 12/23/2022]
Abstract
Based on previous Topoisomerase II docking studies of naphthoquinone derivatives, a series of naphthoquinone-coumarin conjugates was synthesized through a multicomponent reaction from aromatic aldehydes, 4-hydroxycoumarin and 2-hydroxynaphthoquinone. The hybrid structures were evaluated against the α isoform of human topoisomerase II (hTopoIIα), Escherichia coli DNA Gyrase and E. coli Topoisomerase I. All tested compounds inhibited the hTopoIIα-mediated relaxation of negatively supercoiled circular DNA in the low micromolar range. This inhibition was specific since neither DNA Gyrase nor Topoisomerase I were affected. Cleavage assays pointed out that naphthoquinone-coumarins act by catalytically inhibiting hTopoIIα. ATPase assays and molecular docking studies further pointed out that the mode of action is related to the hTopoIIα ATP-binding site.
Collapse
Affiliation(s)
- Idaira Hueso-Falcón
- Instituto Universitario de Bio-Orgánica (CIBICAN), Departamento de Química Orgánica, Universidad de La Laguna, 38206, Spain
| | - Ángel Amesty
- Instituto Universitario de Bio-Orgánica (CIBICAN), Departamento de Química Orgánica, Universidad de La Laguna, 38206, Spain
| | - Laura Anaissi-Afonso
- Unidad de Investigación Hospital Universitario Nuestra Señora de La Candelaria, 38010 Tenerife, Spain
| | | | - Félix Machín
- Unidad de Investigación Hospital Universitario Nuestra Señora de La Candelaria, 38010 Tenerife, Spain.
| | - Ana Estévez-Braun
- Instituto Universitario de Bio-Orgánica (CIBICAN), Departamento de Química Orgánica, Universidad de La Laguna, 38206, Spain.
| |
Collapse
|
29
|
Beretta GL, Ribaudo G, Menegazzo I, Supino R, Capranico G, Zunino F, Zagotto G. Synthesis and Evaluation of New Naphthalene and Naphthoquinone Derivatives as Anticancer Agents. Arch Pharm (Weinheim) 2016; 350. [DOI: 10.1002/ardp.201600286] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/23/2016] [Accepted: 11/24/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Giovanni L. Beretta
- Molecular Pharmacology Unit; Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori; Milano Italy
| | - Giovanni Ribaudo
- Department of Pharmaceutical and Pharmacological Sciences; University of Padova; Padova Italy
| | - Ileana Menegazzo
- Department of Chemical Sciences; University of Padova; Padova Italy
| | - Rosanna Supino
- Molecular Pharmacology Unit; Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori; Milano Italy
| | - Giovanni Capranico
- “G. Moruzzi” Department of Biochemistry; University of Bologna; Bologna Italy
| | - Franco Zunino
- Molecular Pharmacology Unit; Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori; Milano Italy
| | - Giuseppe Zagotto
- Department of Pharmaceutical and Pharmacological Sciences; University of Padova; Padova Italy
| |
Collapse
|
30
|
Zhao LM, Cao FX, Jin HS, Zhang JH, Szwaya J, Wang G. One-pot synthesis of 1,4-dihydroxy-2-((E)-1-hydroxy-4-phenylbut-3-enyl)anthracene-9,10-diones as novel shikonin analogs and evaluation of their antiproliferative activities. Bioorg Med Chem Lett 2016; 26:2691-4. [PMID: 27080175 PMCID: PMC5474392 DOI: 10.1016/j.bmcl.2016.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/23/2016] [Accepted: 04/05/2016] [Indexed: 02/08/2023]
Abstract
A series of shikonin analogs have been synthesized in a one-pot reaction of quinizarin with β,γ-unsaturated aldehydes in MeOH under mild conditions and investigated for their cytotoxicity against four cancer cell lines and one normal cell line. The synthesized compounds were found to be cytotoxic against HeLa cells with no apparent toxicity against normal cell line. Further modification led to the discovery of a novel tetracyclic anthraquinone (4b/4b') with potent cytotoxic activities against cervical, breast and pancreatic cancer cell lines with no significant effect on the growth of the control mammary epithelial cell line MCF-10. The good cytotoxicity and selectivity of compound 4b/4b' suggest that it could be a promising lead for further optimization.
Collapse
Affiliation(s)
- Li-Ming Zhao
- School of Chemistry and Chemical Engineering, and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China.
| | - Feng-Xia Cao
- School of Chemistry and Chemical Engineering, and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Hai-Shan Jin
- School of Chemistry and Chemical Engineering, and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Jie-Huan Zhang
- School of Chemistry and Chemical Engineering, and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Jeffrey Szwaya
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Guangdi Wang
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| |
Collapse
|
31
|
Armendáriz-Vidales G, Frontana C. Insights into dissociative electron transfer in esterified shikonin semiquinones by in situ ESR/UV-Vis spectroelectrochemistry. Phys Chem Chem Phys 2015; 17:29299-304. [PMID: 26467560 DOI: 10.1039/c5cp04306a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, electrogenerated anion and dianion species from shikonin and its ester derivative isovalerylshikonin were characterized by means of ESR/UV-Vis spectroelectrochemistry. Analysis of the spectra supported the proposal that stepwise dissociative electron transfer (DET) takes place during the second reduction process of the esterified compound. Quantum chemical calculations were performed for validating the occurrence of this mechanistic pathway and for obtaining thermodynamic information on the electron transfer process; ΔG(cleavage)(0) was estimated to be -0.45 eV, considering that the two possible products of the overall reaction scheme are both a quinone and carboxylate anions.
Collapse
Affiliation(s)
- G Armendáriz-Vidales
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro, Sanfandila, Pedro Escobedo, Querétaro 76703, Mexico.
| | - C Frontana
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro, Sanfandila, Pedro Escobedo, Querétaro 76703, Mexico.
| |
Collapse
|
32
|
Abstract
Polyphenols and n-3 polyunsaturated fatty acids (PUFAs) are two classes of natural compounds, which have been highlighted in epidemiological studies for their health benefits. The biological activities of those two families of metabolites on oxidation, inflammation, cancer, cardiovascular and degenerative diseases have been reported in vitro and in vivo. On the other hand, chemical bonding between the two structures leading to n-3 lipophenol derivatives (or phenolipids) has been studied in numerous works over the last decade, and some examples could also be found from natural sources. Interest in lipophilization of phenolic structures is various and depends on the domain of interest: in food industry, the development of lipidic antioxidants could be performed to protect lipidic food matrix from oxidation. Whereas, on pharmaceutical purpose, increasing the lipophilicity of polar phenolic drugs could be performed to improve their pharmacological profile. Moreover, combining both therapeutic aspects of n-3 PUFAs and of polyphenols in a single lipophenolic molecule could also be envisaged. An overview of the synthesis and of the natural sources of n-3 lipophenols is presented here, in addition to their biological activities which point out in several cases the benefit of the conjugated derivatives.
Collapse
|
33
|
Abstract
Shikonin, a natural naphthoquinone isolated from a traditional Chinese medicinal herb, can exert inhibitory effect on tumor cell growth. However, little has been known concerning the effect of shikonin on lung adenocarcinoma cell and underlying mechanisms. In the present study, we investigated the effect of shikonin on the proliferation, cell cycle arrest, and apoptosis in human lung adenocarcinoma cells. We found that shikonin significantly suppressed the proliferation of lung adenocarcinoma cells compared with control in dose- and time-dependent manner (P < 0.05). In the meantime, our results showed that shikonin markedly increased the proportion of A549 cells at stage G1 as well as induced apoptosis in A549 cells. Furthermore, suppressed CCND1 and elevated caspase3 and caspase7 expression levels at mRNA were found in this study, indicating that shikonin may inhibit the growth of lung adenocarcinoma cell by changing cell cycle and promoting cell apoptosis through the regulation of CCND1, caspase3, and caspase7. Although more studies are needed, this study suggests that shikonin has the potential to be used as an anti-cancer agent in the treatment of lung adenocarcinoma.
Collapse
|
34
|
Zhao Q, Kretschmer N, Bauer R, Efferth T. Shikonin and its derivatives inhibit the epidermal growth factor receptor signaling and synergistically kill glioblastoma cells in combination with erlotinib. Int J Cancer 2015; 137:1446-56. [PMID: 25688715 DOI: 10.1002/ijc.29483] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 02/04/2015] [Indexed: 01/26/2023]
Abstract
Overexpression and mutation of the epidermal growth factor receptor (EGFR) gene play a causal role in tumorigenesis and resistance to treatment of glioblastoma (GBM). EGFR inhibitors such as erlotinib are currently used for the treatment of GBM; however, their efficacy has been limited due to drug resistance. New treatment strategies are therefore urgently needed. Shikonin, a natural naphthoquinone, induces both apoptosis and necroptosis in human glioma cells, but the effectiveness of erlotinib-shikonin combination treatment as well as the underlying molecular mechanisms is unknown yet. In this study, we investigated erlotinib in combination with shikonin and 14 shikonin derivatives in parental U87MG and transfected U87MG.ΔEGFR GBM cells. Most of the shikonin derivatives revealed strong cytotoxicity. Shikonin together with five other derivatives, namely deoxyshikonin, isobutyrylshikonin, acetylshikonin, β,β-dimethylacrylshikonin and acetylalkannin showed synergistic cytotoxicity toward U87MG.ΔEGFR in combination with erlotinib. Moreover, the combined cytotoxic effect of shikonin and erlotinib was further confirmed with another three EGFR-expressing cell lines, BS153, A431 and DK-MG. Shikonin not only dose-dependently inhibited EGFR phosphorylation and decreased phosphorylation of EGFR downstream molecules, including AKT, P44/42MAPK and PLCγ1, but also together with erlotinib synergistically inhibited ΔEGFR phosphorylation in U87MG.ΔEGFR cells as determined by Loewe additivity and Bliss independence drug interaction models. These results suggest that the combination of erlotinib with shikonin or its derivatives might be a potential strategy to overcome drug resistance to erlotinib.
Collapse
Affiliation(s)
- Qiaoli Zhao
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Nadine Kretschmer
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Rudolf Bauer
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
35
|
Wellington KW. Understanding cancer and the anticancer activities of naphthoquinones – a review. RSC Adv 2015. [DOI: 10.1039/c4ra13547d] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Naphthoquinone moieties are present in drugs such as doxorubicin which are used clinically to treat solid cancers.
Collapse
|
36
|
Baloch SK, Ma L, Wang XL, Shi J, Zhu Y, Wu FY, Pang YJ, Lu GH, Qi JL, Wang XM, Gu HW, Yang YH. Design, synthesis and mechanism of novel shikonin derivatives as potent anticancer agents. RSC Adv 2015. [DOI: 10.1039/c5ra01872b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Novel shikonin derivatives were synthesised and probed as anticancer agents. Compound 40 showed the best anticancer activity with an IC50 of 1.26 μM, could induce apoptosis and cause cell cycle arrest at the G2/M phase via the P21 p-CDC2 (Tyr15) pathway independent of P53.
Collapse
|
37
|
Wang RB, Zhou W, Meng QQ, Zhang X, Ding J, Xu Y, Song HL, Yang K, Cui JH, Li SS. Design, synthesis, and biological evaluation of shikonin and alkannin derivatives as potential anticancer agents via a prodrug approach. ChemMedChem 2014; 9:2798-808. [PMID: 25234005 DOI: 10.1002/cmdc.201402224] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/24/2014] [Indexed: 11/10/2022]
Abstract
To minimize the cytotoxicity of shikonin and alkannin that arises through the generation of reactive oxygen species (ROS) and alkylation of the naphthazarin ring, two series of novel core-scaffold-modified shikonin and alkannin derivatives were designed. These derivatives, which differ in their configurational and positional isomerism (R-, S-, and 2- and 6-isomers) were synthesized in high enantiomeric excess (>99 % ee). The selectivity of the dimethylated derivatives was significantly higher than the parent shikonin in vitro, but some side effects were still observed in vivo. Surprisingly, the dimethylated diacetyl derivatives with poor anticancer activity in vitro showed tumor-inhibiting effects similar to paclitaxel without any toxicity in vivo. The anticancer activity of these derivatives is in agreement with their low ROS generation and alkylating capacity, emphasizing their potential as prodrugs. This strategy provides means to address the nonspecific cytotoxicity of naphthazarin analogues toward normal cells.
Collapse
Affiliation(s)
- Ru-Bing Wang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Armendáriz-Vidales G, Frontana C. Electrochemical and theoretical analysis of the reactivity of shikonin derivatives: dissociative electron transfer in esterified compounds. Org Biomol Chem 2014; 12:6393-8. [PMID: 25007856 DOI: 10.1039/c4ob01207k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electrochemical and theoretical analysis of a series of shikonin derivatives in aprotic media is presented. Results showed that the first electrochemical reduction signal is a reversible monoelectronic transfer, generating a stable semiquinone intermediate; the corresponding E(I)⁰ values were correlated with calculated values of electroaccepting power (ω(+)) and adiabatic electron affinities (A(Ad)), obtained with BH and HLYP/6-311++G(2d,2p) and considering the solvent effect, revealing the influence of intramolecular hydrogen bonding and the substituting group at position C-2 in the experimental reduction potential. For the second reduction step, esterified compounds isobutyryl and isovalerylshikonin presented a coupled chemical reaction following dianion formation. Analysis of the variation of the dimensionless cathodic peak potential values (ξ(p)) as a function of the scan rate (v) functions and complementary experiments in benzonitrile suggested that this process follows a dissociative electron transfer, in which the rate of heterogeneous electron transfer is slow (~0.2 cm s(-1)), and the rate constant of the chemical process is at least 10(5) larger.
Collapse
Affiliation(s)
- Georgina Armendáriz-Vidales
- Subdirección de Investigación, Centro de Investigación y Desarrollo Tecnológico en Electroquímica, SC, Parque Tecnologico Queretaro SN, Sanfandila, Pedro Escobedo, Queretaro, Mexico.
| | | |
Collapse
|
39
|
Wang R, Zhang X, Song H, Zhou S, Li S. Synthesis and evaluation of novel alkannin and shikonin oxime derivatives as potent antitumor agents. Bioorg Med Chem Lett 2014; 24:4304-7. [PMID: 25127868 DOI: 10.1016/j.bmcl.2014.07.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/15/2014] [Accepted: 07/05/2014] [Indexed: 11/29/2022]
Abstract
A set of forty alkannin and shikonin oxime derivatives were firstly designed and synthesized. Their cytotoxicities against three kinds of tumor cells and a normal cell line were tested and compared with alkannin and shikonin. The cell-based investigation demonstrated that some oxime derivatives were more or comparatively effective to the lead compounds, especially their selective and excellent antitumor activities towards K562 cells with no toxicity in normal cells. We may conclude that oximate modification to the mother nucleus of alkannin and shikonin is an available approach to acquire potent antitumor agents.
Collapse
Affiliation(s)
- Rubing Wang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xu Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Hualong Song
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Shanshan Zhou
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Shaoshun Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| |
Collapse
|
40
|
Guo J, Chen XF, Liu J, Lin HY, Han HW, Liu HC, Huang SC, Shahla BK, Kulek A, Qi JL, Wang XM, Ling LJ, Yang YH. Novel Shikonin Derivatives Targeting Tubulin as Anticancer Agents. Chem Biol Drug Des 2014; 84:603-15. [DOI: 10.1111/cbdd.12353] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/20/2014] [Accepted: 04/22/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Jing Guo
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing 210093 China
| | - Xiao-Feng Chen
- Department of oncology; the First Affiliated Hospital of Nanjing Medical University; Nanjing 210029 China
| | - Jing Liu
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing 210093 China
| | - Hong-Yan Lin
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing 210093 China
| | - Hong-Wei Han
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing 210093 China
| | - Hong-Chang Liu
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing 210093 China
| | - Shou-Cheng Huang
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing 210093 China
| | - Baloch K. Shahla
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing 210093 China
| | - Andrew Kulek
- Department of Emergency Medicine; Wayne State University School of Medicine; Detroit MI 48201 USA
| | - Jin-Liang Qi
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing 210093 China
| | - Xiao-Ming Wang
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing 210093 China
| | - Li-Jun Ling
- Department of Breast Surgery; the First Affiliated Hospital of Nanjing Medical University; Nanjing 210029 China
| | - Yong-Hua Yang
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing 210093 China
| |
Collapse
|
41
|
Kwak SY, Jeong YK, Kim BY, Lee JY, Ahn HJ, Jeong JH, Kim MS, Kim J, Han YH. β,β-Dimethylacrylshikonin sensitizes human colon cancer cells to ionizing radiation through the upregulation of reactive oxygen species. Oncol Lett 2014; 7:1812-1818. [PMID: 24932238 PMCID: PMC4049772 DOI: 10.3892/ol.2014.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 03/11/2014] [Indexed: 01/15/2023] Open
Abstract
Shikonin, a naphthoquinone derivative, has been shown to possess antitumor activity. In the present study, the effects of shikonin and its analog, β,β-dimethylacrylshikonin, were investigated as radiosensitizers on the human colon cancer cell line, HCT-116. Shikonin and, to a greater extent, its analog-induced apoptosis of HCT-116 cells further synergistically potentiated the induction of apoptosis when combined with ionizing radiation (IR) treatment. Shikonins also stimulated an increase in reactive oxygen species (ROS) production and IR-induced DNA damage. Pre-treatment with the ROS scavenger, N-acetylcysteine, suppressed the enhancement of IR-induced DNA damage and apoptosis stimulated by shikonins, indicating that shikonins exert their radiosensitizing effects through ROS upregulation. The radiosensitizing effect of shikonins was also examined in vivo using the xenograft mouse model. Consistent with the in vitro results, injection of β,β-dimethylacrylshikonin combined with IR treatment significantly suppressed tumor growth of the HCT-116 xenograft. Taken together, the results show that β,β-dimethylacrylshikonin is a promising agent for developing an improved strategy for radiotherapy against tumors.
Collapse
Affiliation(s)
- Seo-Young Kwak
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Nowon-gu, Seoul 139-706, Republic of Korea ; Laboratory of Biochemistry, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Youn Kyoung Jeong
- Research Center for Radiotherapy, Korea Institute of Radiological and Medical Sciences, Nowon-gu, Seoul 139-706, Republic of Korea
| | - Bu-Yeon Kim
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Nowon-gu, Seoul 139-706, Republic of Korea
| | - Ji Young Lee
- Research Center for Radiotherapy, Korea Institute of Radiological and Medical Sciences, Nowon-gu, Seoul 139-706, Republic of Korea
| | - Hyun-Joo Ahn
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Nowon-gu, Seoul 139-706, Republic of Korea
| | - Jae-Hoon Jeong
- Research Center for Radiotherapy, Korea Institute of Radiological and Medical Sciences, Nowon-gu, Seoul 139-706, Republic of Korea
| | - Mi-Sook Kim
- Research Center for Radiotherapy, Korea Institute of Radiological and Medical Sciences, Nowon-gu, Seoul 139-706, Republic of Korea
| | - Joon Kim
- Laboratory of Biochemistry, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Young-Hoon Han
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Nowon-gu, Seoul 139-706, Republic of Korea
| |
Collapse
|
42
|
Effect of Salicylic Acid on the Activity of PAL and PHB Geranyltransferase and Shikonin Derivatives Production in Cell Suspension Cultures of Arnebia euchroma (Royle) Johnst—a Medicinally Important Plant Species. Appl Biochem Biotechnol 2014; 173:248-58. [DOI: 10.1007/s12010-014-0838-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 02/27/2014] [Indexed: 10/25/2022]
|
43
|
Wang XM, Lin HY, Kong WY, Guo J, Shi J, Huang SC, Qi JL, Yang RW, Gu HW, Yang YH. Synthesis and biological evaluation of heterocyclic carboxylic acyl shikonin derivatives. Chem Biol Drug Des 2013; 83:334-43. [PMID: 24118825 DOI: 10.1111/cbdd.12247] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 09/02/2013] [Accepted: 10/04/2013] [Indexed: 01/03/2023]
Abstract
A series of shikonin derivatives (1-13) that were acylated selectively by various thiophene or indol carboxylic acids at the side chain of shikonin were synthesized, and their biological activities were also evaluated as potential tubulin inhibitors. Among them, compound 3 ((R)-1-(5,8-dihydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)-4-methylpent-3-enyl 3-(1H-indol-3-yl)propanoate) and compound 8 ((R)-1-(5,8-dihydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)-4-methylpent-3-enyl 2-(thiophen-3-yl)acetate) exhibited good antiproliferative activity of A875 (IC50 = 0.005 ± 0.001 μm, 0.009 ± 0.002 μm) and HeLa (IC50 = 11.84 ± 0.64 μm, 4.62 ± 0.31 μm) cancer cell lines in vitro, respectively. Shikonin (IC50 = 0.46 ± 0.002 μm, 4.80 ± 0.48 μm) and colchicine (IC50 = 0.75 ± 0.05 μm, 17.79 ± 0.76 μm) were used as references. Meanwhile, they also showed the most potent growth inhibitory activity against tubulin (IC50 of 3.96 ± 0.13 μm and 3.05 ± 0.30 μm, respectively), which were compared with shikonin (IC50 = 15.20 ± 0.25 μm) and colchicine (IC50 = 3.50 ± 0.35 μm). Furthermore, from the results of flow cytometer, we found compound 3 can really inhibit HeLa cell proliferation and has low cell toxicity. Based on the preliminary results, compound 3 with potent inhibitory activity in tumor growth may be a potential anticancer agent.
Collapse
Affiliation(s)
- Xiao-Ming Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210093, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Xiong Y, Ma XY, Zhang Z, Shao ZJ, Zhang YY, Zhou LM. Apoptosis induced by β,β-dimethylacrylshikonin is associated with Bcl-2 and NF-κB in human breast carcinoma MCF-7 cells. Oncol Lett 2013; 6:1789-1793. [PMID: 24260077 PMCID: PMC3834065 DOI: 10.3892/ol.2013.1613] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 09/26/2013] [Indexed: 11/06/2022] Open
Abstract
β,β-dimethylacrylshikonin (DA) is a natural naphthoquinone derivative compound of Lithospermum erythrorhizon with various biological activities. The present study aimed to investigate the inhibitory effects and underlying mechanisms of DA in human breast carcinoma MCF-7 cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that DA inhibited the proliferation of MCF-7 cells in a dose- and time-dependent manner. The half maximal inhibitory concentration of DA with regard to the proliferation of MCF-7 cells was 0.050±0.016 mM. The characteristics of cell apoptosis, including cell shrinkage, nuclear pyknosis and chromatin condensation, were all observed in DA-treated cells. DA decreased the expression levels of Bcl-2 and increased the expression of Bax and caspase-3 compared with those in the control. DA inhibited the activity of the nuclear factor (NF)-κB pathway, by downregulating the expression of the p65 subunit, and inhibited the Iκb phosphorylation. DA inhibits the proliferation of MCF-7 cells in vitro by inducing apoptosis through the downregulation of Bcl-2, upregulation of Bax and partial inactivation of the NF-κB pathway.
Collapse
Affiliation(s)
- Yao Xiong
- Department of Pharmacology, Preclinical and Forensic Medical College, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | | | | | | | | | | |
Collapse
|
45
|
Kong WY, Chen XF, Shi J, Baloch SK, Qi JL, Zhu HL, Wang XM, Yang YH. Design and Synthesis of Fluoroacylshikonin as an Anticancer Agent. Chirality 2013; 25:757-62. [DOI: 10.1002/chir.22209] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/29/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Wen-Yao Kong
- State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing People's Republic of China
| | - Xiao-Feng Chen
- Department of oncology; the First Affiliated Hospital of Nanjing Medical University; Nanjing People's Republic of China
| | - Jing Shi
- State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing People's Republic of China
| | - Shahla Karim Baloch
- State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing People's Republic of China
| | - Jin-Liang Qi
- State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing People's Republic of China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing People's Republic of China
| | - Xiao-Ming Wang
- State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing People's Republic of China
| | - Yong-Hua Yang
- State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing People's Republic of China
| |
Collapse
|
46
|
Wu H, Xie J, Pan Q, Wang B, Hu D, Hu X. Anticancer agent shikonin is an incompetent inducer of cancer drug resistance. PLoS One 2013; 8:e52706. [PMID: 23300986 PMCID: PMC3536779 DOI: 10.1371/journal.pone.0052706] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 11/19/2012] [Indexed: 01/17/2023] Open
Abstract
PURPOSE Cancer drug resistance is a major obstacle for the success of chemotherapy. Since most clinical anticancer drugs could induce drug resistance, it is desired to develop candidate drugs that are highly efficacious but incompetent to induce drug resistance. Numerous previous studies have proven that shikonin and its analogs not only are highly tumoricidal but also can bypass drug-transporter and apoptotic defect mediated drug resistance. The purpose of this study is to investigate if or not shikonin is a weak inducer of cancer drug resistance. EXPERIMENTAL DESIGN Different cell lines (K562, MCF-7, and a MDR cell line K562/Adr), after repeatedly treated with shikonin for 18 months, were assayed for drug resistance and gene expression profiling. RESULTS After 18-month treatment, cells only developed a mere 2-fold resistance to shikonin and a marginal resistance to cisplatin and paclitaxel, without cross resistance to shikonin analogs and other anticancer agents. Gene expression profiles demonstrated that cancer cells did strongly respond to shikonin treatment but failed to effectively mobilize drug resistant machineries. Shikonin-induced weak resistance was associated with the up-regulation of βII-tubulin, which physically interacted with shikonin. CONCLUSION Taken together, apart from potent anticancer activity, shikonin and its analogs are weak inducers of cancer drug resistance and can circumvent cancer drug resistance. These merits make shikonin and its analogs potential candidates for cancer therapy with advantages of avoiding induction of drug resistance and bypassing existing drug resistance.
Collapse
Affiliation(s)
- Hao Wu
- Cancer Institute, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiansheng Xie
- Cancer Institute, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiangrong Pan
- Cancer Institute, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Beibei Wang
- Cancer Institute, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Danqing Hu
- Cancer Institute, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xun Hu
- Cancer Institute, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
47
|
Kim SH, Song GY, Sok DE, Ahn BZ. Anti-cell adhesive effect of phenylacetylshikonin analogues related to their cytotoxicity in A549 cells. Arch Pharm Res 2012; 20:155-7. [PMID: 18975194 DOI: 10.1007/bf02974003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/1996] [Indexed: 10/21/2022]
Abstract
An attempt to estabilish the relationship between anti-cell adhesive action of phenylacetylshikonin anallogues and their cytotoxicity against A549 cells was done. In the one hour incubation with A549 cells, alpha-methoxyphenylacetyl-(9), alpha-acetoxyphenylacetyl-(13), 3,4-methylen-edioxyphenylacetyl-(15) and 4-(N,N-dimethylamino)-phenylacetylshikonin (17) analogues showed a high anti-cell adhesive activity (IC(100) value, 4-8 mug/ml), while halophenylacetyl-and dimethoxy-or trimethoxyphenylacetyl analogues expressed no activity at 40 mug/ml, indicating that the presence of a bulky group at C'-alpha and a polar group at C-4 of phenylacetyl moiety may be important. A similar structure activity relationship exists for the 48 hr cytotoxocity (ED(50)) of phenylacetylshikonin analogues in A 549 cells, but not in either K562 or L1210 cells. Furthermore, the difference between IC(100) values for anti-cell adhesive activity and ED(50) values for cytotoxicity of potent compound in A549 cells was not so great (1.5 to 3 times). Based on these observations, it is proposed that the anti-cell adhesive action of phenylacetylshikonins might be responsible for their cytotoxicity in A549 cells.
Collapse
Affiliation(s)
- S H Kim
- College of Pharmacy, Chungnam National University, 305-764, Taejon, Korea
| | | | | | | |
Collapse
|
48
|
Wang R, Yin R, Zhou W, Xu D, Li S. Shikonin and its derivatives: a patent review. Expert Opin Ther Pat 2012; 22:977-97. [PMID: 22834677 DOI: 10.1517/13543776.2012.709237] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Shikonin and its derivatives are the main components of red pigment extracts from Lithospermum erythrorhizon, whose medicinal properties have been confirmed for a long history, and have aroused great interest as the hallmark molecules responsible for their significant biological activities, especially for their striking anticancer effects. AREAS COVERED Areas covered in this paper include a review of the total synthesis, biological effects and mechanisms of shikonin and its derivatives for their anticancer activities in the past decade, basing on literature and patents. The current state and problems are also discussed. EXPERT OPINION At present, screening for anticancer shikonin derivatives is based on cellular level to find compounds with stronger cytotoxicity. Though several compounds have been discovered with striking cytotoxicity in vitro, however, no selectivity was observed and undoubtedly, the further outcomes have been disappointing because of their great damage to normal cells. Meanwhile, the presumed mechanisms of action are also established in terms of their cytotoxicity. From a pharmacological point of view, most of the shikonin derivatives are at an early stage of their development, and thus it is difficult to determine the exact effectiveness in cancer treatment. With research in this field going deeper, it can be expected that, despite the difficulties, shikonin derivatives as potential anticancer agents will soon follow.
Collapse
Affiliation(s)
- Rubing Wang
- Shanghai Jiaotong University, School of Pharmacy, 800 Dongchun Road, Shanghai 200240, PR China.
| | | | | | | | | |
Collapse
|
49
|
Han W, Xie J, Fang Y, Wang Z, Pan H. Nec-1 enhances shikonin-induced apoptosis in leukemia cells by inhibition of RIP-1 and ERK1/2. Int J Mol Sci 2012; 13:7212-7225. [PMID: 22837689 PMCID: PMC3397521 DOI: 10.3390/ijms13067212] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 04/23/2012] [Accepted: 06/07/2012] [Indexed: 11/16/2022] Open
Abstract
Necrostatin-1 (Nec-1) inhibits necroptosis by allosterically inhibiting the kinase activity of receptor-interacting protein 1 (RIP1), which plays a critical role in necroptosis. RIP1 is a crucial adaptor kinase involved in the activation of NF-κB, production of reactive oxygen species (ROS) and the phosphorylation of mitogen activated protein kinases (MAPKs). NF-κB, ROS and MAPKs all play important roles in apoptotic signaling. Nec-1 was regarded as having no effect on apoptosis. Here, we report that Nec-1 increased the rate of nuclear condensation and caspases activation induced by a low concentration of shikonin (SHK) in HL60, K562 and primary leukemia cells. siRNA-mediated knockdown of RIP1 significantly enhanced shikonin-induced apoptosis in K562 and HL60 cells. Shikonin treatment alone could slightly inhibit the phosphorylation of ERK1/2 in leukemia cells, and the inhibitory effect on ERK1/2 was significantly augmented by Nec-1. We also found that Nec-1 could inhibit NF-κB p65 translocation to the nucleus at a later stage of SHK treatment. In conclusion, we found that Nec-1 can promote shikonin-induced apoptosis in leukemia cells. The mechanism by which Nec-1 sensitizes shikonin-induced apoptosis appears to be the inhibition of RIP1 kinase-dependent phosphorylation of ERK1/2. To our knowledge, this is the first study to document Nec-1 sensitizes cancer cells to apoptosis.
Collapse
Affiliation(s)
- Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, China; E-Mails: (W.H.); (Y.F.); (Z.W.)
| | - Jiansheng Xie
- The Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; E-Mail:
| | - Yong Fang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, China; E-Mails: (W.H.); (Y.F.); (Z.W.)
| | - Zhanggui Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, China; E-Mails: (W.H.); (Y.F.); (Z.W.)
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, China; E-Mails: (W.H.); (Y.F.); (Z.W.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-571-8600-6922; Fax: +86-571-8643-6673
| |
Collapse
|
50
|
Synthesis and preclinical pharmacological evaluation of a novel 99mTc–shikonin as a potential tumor imaging agent. J Radioanal Nucl Chem 2012. [DOI: 10.1007/s10967-012-1701-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|