1
|
Shalbi F, Ali AR. A mini-review on integrase inhibitors: The cornerstone of next-generation HIV treatment. Eur J Med Chem 2024; 279:116900. [PMID: 39332384 DOI: 10.1016/j.ejmech.2024.116900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Integrase inhibitors represent one of the most remarkable and effective advances in the treatment of HIV-1 infection. Their lack of human cellular equivalence has established integrase as a unique and ideal target for HIV-1 treatment. Over the last two decades, a variety of drugs and small molecule inhibitors have been developed to control or treat HIV infection. Many of these FDA-approved drugs are considered first-line options for AIDS patients. Unfortunately, resistance to these drugs has dictated the development of novel and more efficacious antiretroviral drugs. In this review article, we illustrate the key classes of antiretroviral integrase inhibitors available. We provide a comprehensive analysis of recent advancements in the development of integrase inhibitors, focusing on novel compounds and their distinct mechanisms of action. Our literature review highlights emerging allosteric integrase inhibitors that offer improved efficacy, resistance profiles, and pharmacokinetics. By integrating these recent advancements and clinical insights, this review aims to provide a thorough and updated understanding of integrase inhibitors, emphasizing their evolving role in HIV treatment.
Collapse
Affiliation(s)
- Fathi Shalbi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed R Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
2
|
Pham MT, Tran TTA, Zayabaatar E. Discovery of inhibitors against mycobacterium branched-chain amino acid aminotransferases through in silico screening and experimental evaluation. Lett Appl Microbiol 2022; 75:942-950. [PMID: 35687522 DOI: 10.1111/lam.13763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB) is one of the most dangerous infectious diseases and is caused by Mycobacterium bovis (Mb) and Mycobacterium tuberculosis (Mt). Branched-chain amino acid aminotransferases (BCATs) were reported to be the key enzyme for methionine synthesis in Mycobacterium. Blocking the methionine synthesis in Mycobacterium can inhibit the growth of Mycobacterium. Therefore, in silico screening of inhibitors can be a good way to develop a potential drug for treating TB. A pyridoxal 5'-phosphate (PLP)-form of Mycobacterium bovis branched-chain amino acid aminotransferases (MbBCAT), an active form of MbBCAT, was constructed manually for docking approximately 150 000 compounds and the free energy was calculated in Autodock Vina. The 10 compounds which had the highest affinity to MbBCAT were further evaluated for their inhibitory effects against MbBCAT. Within the selected compounds, compound 4 (ZINC12359007) was found to be the best inhibitor against MbBCAT with the inhibitory constant Ki of 0·45 μmol l-1 and IC50 of 2·37 μmol l-1 . Our work provides potential candidates to develop effective drugs to prevent TB since the well-known structural information would be beneficial in the structure-based modification and design.
Collapse
Affiliation(s)
- M T Pham
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - T T A Tran
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, Ho Chi Minh City, Vietnam
| | - E Zayabaatar
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| |
Collapse
|
3
|
Crifar C, Dücker FL, Nguyen Thanh S, Kairouz V, Lubell WD. Heumann Indole Flow Chemistry Process. J Org Chem 2019; 84:10929-10937. [DOI: 10.1021/acs.joc.9b01516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Cynthia Crifar
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, Quebec H3C 3J7, Canada
| | - Fenja L. Dücker
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, Quebec H3C 3J7, Canada
| | - Sacha Nguyen Thanh
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, Quebec H3C 3J7, Canada
| | - Vanessa Kairouz
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, Quebec H3C 3J7, Canada
| | - William D. Lubell
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
4
|
Siwe-Noundou X, Musyoka TM, Moses V, Ndinteh DT, Mnkandhla D, Hoppe H, Tastan Bishop Ö, Krause RWM. Anti-HIV-1 integrase potency of methylgallate from Alchornea cordifolia using in vitro and in silico approaches. Sci Rep 2019; 9:4718. [PMID: 30886338 PMCID: PMC6423119 DOI: 10.1038/s41598-019-41403-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/05/2019] [Indexed: 01/18/2023] Open
Abstract
According to the 2018 report of the United Nations Programme on HIV/AIDS (UNAIDS), acquired immune deficiency syndrome (AIDS), a disease caused by the human immunodeficiency virus (HIV), remains a significant public health problem. The non-existence of a cure or effective vaccine for the disease and the associated emergence of resistant viral strains imply an urgent need for the discovery of novel anti-HIV drug candidates. The current study aimed to identify potential anti-retroviral compounds from Alchornea cordifolia. Bioactive compounds were identified using several chromatographic and spectroscopic techniques and subsequently evaluated for cytotoxicity and anti-HIV properties. Molecular modelling studies against HIV-1 integrase (HIV-1 IN) were performed to decipher the mode of action of methylgallate, the most potent compound (IC50 = 3.7 nM) and its analogues from ZINC database. Cytotoxicity assays showed that neither the isolated compounds nor the crude methanolic extract displayed cytotoxicity effects on the HeLa cell line. A strong correlation between the in vitro and in silico results was observed and important HIV-1 IN residues interacting with the different compounds were identified. These current results indicate that methylgallate is the main anti-HIV-1 compound in A. cordifolia stem bark, and could be a potential platform for the development of new HIV-1 IN inhibitors.
Collapse
Affiliation(s)
- Xavier Siwe-Noundou
- Department of Chemistry, Rhodes University, Grahamstown, 6140, South Africa.
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.
| | - Thommas M Musyoka
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Vuyani Moses
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Derek T Ndinteh
- Department of Applied Chemistry, University of Johannesburg, Doornfontein, Johannesburg, 2028, South Africa
| | - Dumisani Mnkandhla
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Heinrich Hoppe
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.
| | - Rui W M Krause
- Department of Chemistry, Rhodes University, Grahamstown, 6140, South Africa.
| |
Collapse
|
5
|
A structure-based design approach to advance the allyltyrosine-based series of HIV integrase inhibitors. Tetrahedron 2018. [DOI: 10.1016/j.tet.2017.11.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Priya P, Kesheri M, Sinha RP, Kanchan S. Molecular Dynamics Simulations for Biological Systems. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.4018/978-1-5225-1762-7.ch040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Molecular dynamics simulation is an important tool to capture the dynamicity of biological molecule and the atomistic insights. These insights are helpful to explore biological functions. Molecular dynamics simulation from femto seconds to milli seconds scale give a large ensemble of conformations that can reveal many biological mysteries. The main focus of the chapter is to throw light on theories, requirement of molecular dynamics for biological studies and application of molecular dynamics simulations. Molecular dynamics simulations are widely used to study protein-protein interaction, protein-ligand docking, effects of mutation on interactions, protein folding and flexibility of the biological molecules. This chapter also deals with various methods/algorithms of protein tertiary structure prediction, their strengths and weaknesses.
Collapse
|
7
|
Holzapfel C, Dasilva E, Den Drijver L, Bredenkamp T. Hydroformylation of 2-Alkynylanilines: Toward an Alternative Methodology for the Synthesis of 3-Substituted Indoles. ChemCatChem 2016. [DOI: 10.1002/cctc.201600659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Cedric Holzapfel
- Research Centre for Synthesis and Catalysis; Department of Chemistry; University of Johannesburg; PO Box 524 Auckland Park 2006 South Africa
| | - Etelinda Dasilva
- Research Centre for Synthesis and Catalysis; Department of Chemistry; University of Johannesburg; PO Box 524 Auckland Park 2006 South Africa
| | - Laetitia Den Drijver
- Research Centre for Synthesis and Catalysis; Department of Chemistry; University of Johannesburg; PO Box 524 Auckland Park 2006 South Africa
| | - Tyler Bredenkamp
- Research Centre for Synthesis and Catalysis; Department of Chemistry; University of Johannesburg; PO Box 524 Auckland Park 2006 South Africa
| |
Collapse
|
8
|
Crosby DC, Lei X, Gibbs CG, Reinecke MG, Robinson WE. Mutagenesis of Lysines 156 and 159 in Human Immunodeficiency Virus Type 1 Integrase (IN) Reveals Differential Interactions between these Residues and Different IN Inhibitors. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Human immunodeficiency virus (HIV) type 1 integrase (IN) active site, and viral DNA-binding residues K156 and K159 are predicted to interact both with strand transfer-selective IN inhibitors (STI), e.g. L-731,988, Elvitegravir (EVG), and the FDA-approved IN inhibitor, Raltegravir (RGV), and strand transfer non-selective inhibitors, e.g. dicaffeoyltartaric acids (DCTAs), e.g. L-chicoric acid (L-CA). To test posited roles for these two lysine residues in inhibitor action we assayed the potency of L-CA and several STI against a panel of K156 and K159 mutants. Mutagenesis of K156 conferred resistance to L-CA and mutagenesis of either K156 or K159 conferred resistance to STI indicating that the cationic charge at these two viral DNA-binding residues is important for inhibitor potency. IN K156N, a reported polymorphism associated with resistance to RGV, conferred resistance to L-CA and STI as well. To investigate the apparent preference L-CA exhibits for interactions with K156, we assayed the potency of several hybrid inhibitors containing combinations of DCTA and STI pharmacophores against recombinant IN K156A or K159A. Although K156A conferred resistance to diketo acid-branched bis-catechol hybrid inhibitors, neither K156A nor K159A conferred resistance to their monocatechol counterparts, suggesting that bis-catechol moieties direct DCTAs toward K156. In contrast, STI were more promiscuous in their interaction with K156 and K159. Taken together, the results of this study indicate that DCTAs interact with IN in a manner different than that of STI and suggest that DCTAs are an attractive candidate chemotype for development into drugs potent against STI-resistant IN.
Collapse
Affiliation(s)
- David C. Crosby
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697-4800, USA
| | - Xiangyang Lei
- Department of Chemistry, Texas Christian University, Fort Worth, TX 76129, USA
| | - Charles G. Gibbs
- Department of Chemistry, Texas Christian University, Fort Worth, TX 76129, USA
| | - Manfred G. Reinecke
- Department of Chemistry, Texas Christian University, Fort Worth, TX 76129, USA
| | - W. Edward Robinson
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697-4800, USA
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697-4800, USA
| |
Collapse
|
9
|
Zhang X, Deng D, Tan J, He Y, Li C, Wang C. Pharmacophore and docking-based 3D-QSAR studies on HIV-1 integrase inhibitors. Chem Res Chin Univ 2014. [DOI: 10.1007/s40242-014-3395-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
|
11
|
Viral enzymes containing magnesium: Metal binding as a successful strategy in drug design. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.07.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Craig IR, Pfleger C, Gohlke H, Essex JW, Spiegel K. Pocket-space maps to identify novel binding-site conformations in proteins. J Chem Inf Model 2011; 51:2666-79. [PMID: 21910474 DOI: 10.1021/ci200168b] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The identification of novel binding-site conformations can greatly assist the progress of structure-based ligand design projects. Diverse pocket shapes drive medicinal chemistry to explore a broader chemical space and thus present additional opportunities to overcome key drug discovery issues such as potency, selectivity, toxicity, and pharmacokinetics. We report a new automated approach to diverse pocket selection, PocketAnalyzer(PCA), which applies principal component analysis and clustering to the output of a grid-based pocket detection algorithm. Since the approach works directly with pocket shape descriptors, it is free from some of the problems hampering methods that are based on proxy shape descriptors, e.g. a set of atomic positional coordinates. The approach is technically straightforward and allows simultaneous analysis of mutants, isoforms, and protein structures derived from multiple sources with different residue numbering schemes. The PocketAnalyzer(PCA) approach is illustrated by the compilation of diverse sets of pocket shapes for aldose reductase and viral neuraminidase. In both cases this allows identification of novel computationally derived binding-site conformations that are yet to be observed crystallographically. Indeed, known inhibitors capable of exploiting these novel binding-site conformations are subsequently identified, thereby demonstrating the utility of PocketAnalyzer(PCA) for rationalizing and improving the understanding of the molecular basis of protein-ligand interaction and bioactivity. A Python program implementing the PocketAnalyzer(PCA) approach is available for download under an open-source license ( http://sourceforge.net/projects/papca/ or http://cpclab.uni-duesseldorf.de/downloads ).
Collapse
Affiliation(s)
- Ian R Craig
- Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham, West Sussex RH12 5AB, UK.
| | | | | | | | | |
Collapse
|
13
|
Singh DV, Adeppa K, Misra K. Mechanism of isoproturon resistance in Phalaris minor: in silico design, synthesis and testing of some novel herbicides for regaining sensitivity. J Mol Model 2011; 18:1431-45. [DOI: 10.1007/s00894-011-1169-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 06/28/2011] [Indexed: 10/18/2022]
|
14
|
Synthesis and in vitro anti-HIV activity of N-1,3-benzo[d]thiazol-2-yl-2-(2-oxo-2H-chromen-4-yl)acetamide derivatives using MTT method. Bioorg Med Chem Lett 2011; 21:3443-6. [DOI: 10.1016/j.bmcl.2011.03.105] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 03/24/2011] [Accepted: 03/28/2011] [Indexed: 01/31/2023]
|
15
|
Gupta P, Garg P, Roy N. Comparative docking and CoMFA analysis of curcumine derivatives as HIV-1 integrase inhibitors. Mol Divers 2011; 15:733-50. [DOI: 10.1007/s11030-011-9304-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 01/05/2011] [Indexed: 12/01/2022]
|
16
|
Bodiwala HS, Sabde S, Gupta P, Mukherjee R, Kumar R, Garg P, Bhutani KK, Mitra D, Singh IP. Design and synthesis of caffeoyl-anilides as portmanteau inhibitors of HIV-1 integrase and CCR5. Bioorg Med Chem 2011; 19:1256-63. [DOI: 10.1016/j.bmc.2010.12.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/26/2010] [Accepted: 12/13/2010] [Indexed: 11/28/2022]
|
17
|
Crosby DC, Lei X, Gibbs CG, McDougall BR, Robinson WE, Reinecke MG. Design, synthesis, and biological evaluation of novel hybrid dicaffeoyltartaric/diketo acid and tetrazole-substituted L-chicoric acid analogue inhibitors of human immunodeficiency virus type 1 integrase. J Med Chem 2010; 53:8161-75. [PMID: 20977258 DOI: 10.1021/jm1010594] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fourteen analogues of the anti-HIV-1 integrase (IN) inhibitor L-chicoric acid (L-CA) were prepared. Their IC(50) values for 3'-end processing and strand transfer against recombinant HIV-1 IN were determined in vitro, and their cell toxicities and EC(50) against HIV-1 were measured in cells (ex vivo). Compounds 1-6 are catechol/β-diketoacid hybrids, the majority of which exhibit submicromolar potency against 3'-end processing and strand transfer, though only with modest antiviral activities. Compounds 7-10 are L-CA/p-fluorobenzylpyrroloyl hybrids, several of which were more potent against strand transfer than 3'-end processing, a phenomenon previously attributed to the β-diketo acid pharmacophore. Compounds 11-14 are tetrazole bioisosteres of L-CA and its analogues, whose in vitro potencies were comparable to L-CA but with enhanced antiviral potency. The trihydroxyphenyl analogue 14 was 30-fold more potent than L-CA at relatively nontoxic concentrations. These data indicate that L-CA analogues are attractive candidates for development into clinically relevant inhibitors of HIV-1 IN.
Collapse
Affiliation(s)
- David C Crosby
- Department of Pathology and Laboratory Medicine, University of California, Irvine, California 92697-4800, USA
| | | | | | | | | | | |
Collapse
|
18
|
Active site binding modes of dimeric phloroglucinols for HIV-1 reverse transcriptase, protease and integrase. Bioorg Med Chem Lett 2010; 20:4427-31. [DOI: 10.1016/j.bmcl.2010.06.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 06/03/2010] [Accepted: 06/09/2010] [Indexed: 11/18/2022]
|
19
|
Baig MS, Manickam N. Homology modeling and docking studies of Comamonas testosteroni B-356 biphenyl-2,3-dioxygenase involved in degradation of polychlorinated biphenyls. Int J Biol Macromol 2009; 46:47-53. [PMID: 19879892 DOI: 10.1016/j.ijbiomac.2009.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 10/19/2009] [Accepted: 10/20/2009] [Indexed: 10/20/2022]
Abstract
Biphenyl dioxygenase is a microbial enzyme which catalyzes the stereospecific dioxygenation of aromatic rings of biphenyl congeners leading to their degradation. Hence, it has attracted the attention of researchers due to its ability to oxidize chlorinated biphenyls, which are one of the serious environmental contaminants. In the present study, the three-dimensional model of alpha-subunit of biphenyl dioxygenase (BphA) from Comamonas testosteroni B-356 has been constructed. The resulting model was further validated and used for docking studies with a class of chlorinated biphenyls such as biphenyl,3,3'-dichlorobiphenyl and 4,4'-dichlorobiphenyl. The kinetic parameters of these biphenyl compounds were well matched with the docking results in terms of conformational and distance constraints. The binding properties of these biphenyl compounds along with identification of critical active site residues could be used for further site-directed mutagenesis experiments in order to identify their role in activity and substrate specificity, ultimately leading to improved mutants for degradation of these toxic compounds.
Collapse
Affiliation(s)
- M S Baig
- Environmental Biotechnology Division, Indian Institute of Toxicology Research, Council of Scientific and Industrial Research, Lucknow, Uttar Pradesh 226001, India
| | | |
Collapse
|
20
|
Singh DV, Misra K. Curcuminoids as inhibitors of thioredoxin reductase: a receptor based pharmacophore study with distance mapping of the active site. Bioinformation 2009; 4:187-92. [PMID: 20461157 PMCID: PMC2859574 DOI: 10.6026/97320630004187] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Revised: 08/05/2009] [Accepted: 09/11/2009] [Indexed: 11/23/2022] Open
Abstract
Curcumin is the yellow pigment of turmeric that interacts irreversibly forming an adduct with thioredoxin reductase (TrxR), an enzyme responsible for redox control of cell and defence against oxidative stress. Docking at both the active sites of TrxR was performed to compare the potency of three naturally occurring curcuminoids, namely curcumin, demethoxy curcumin and bis-demethoxy curcumin. Results show that active sites of TrxR occur at the junction of E and F chains. Volume and area of both cavities is predicted. It has been concluded by distance mapping of the most active conformations that Se atom of catalytic residue SeCYS498, is at a distance of 3.56 from C13 of demethoxy curcumin at the E chain active site, whereas C13 carbon atom forms adduct with Se atom of SeCys 498. We report that at least one methoxy group in curcuminoids is necessary for interation with catalytic residues of thioredoxin. Pharmacophore of both active sites of the TrxR receptor for curcumin and demethoxy curcumin molecules has been drawn and proposed for design and synthesis of most probable potent antiproliferative synthetic drugs.
Collapse
Affiliation(s)
- Durg Vijay Singh
- Deptartment of Bioinformatics, Indian Institute of information Technology, Deoghat Jhalwa, Allahabad 211012, India
| | | |
Collapse
|
21
|
Design, synthesis, molecular modeling, and anti-HIV-1 integrase activity of a series of photoactivatable diketo acid-containing inhibitors as affinity probes. Antiviral Res 2009; 81:267-76. [PMID: 19135482 DOI: 10.1016/j.antiviral.2008.12.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Revised: 12/06/2008] [Accepted: 12/11/2008] [Indexed: 11/23/2022]
Abstract
The diketo acid (DKA) class of HIV-1 integrase (IN) inhibitors is thought to function by chelating divalent metal ions on the enzyme catalytic site. However, differences in mutations conferring resistance to various DKA inhibitors suggest that multiple binding orientations may exist. In order to facilitate identification of DKA binding sites, a series of photoactivable analogues of two potent DKAs was prepared as novel photoaffinity probes. In cross-linking assays designed to measure disruption of substrate DNA binding, the photoprobes behaved similarly to a reference DKA inhibitor. Molecular modeling studies suggest that such photoprobes interact within the IN active site in a manner similar to that of the parent DKAs. Analogues Ia-c are novel photoaffinity ligands useful in clarifying the HIV-1 binding interactions of DKA inhibitors.
Collapse
|
22
|
Langley DR, Samanta HK, Lin Z, Walker MA, Krystal MR, Dicker IB. The terminal (catalytic) adenosine of the HIV LTR controls the kinetics of binding and dissociation of HIV integrase strand transfer inhibitors. Biochemistry 2009; 47:13481-8. [PMID: 18991395 DOI: 10.1021/bi801372d] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Specific HIV integrase strand transfer inhibitors are thought to bind to the integrase active site, positioned to coordinate with two catalytic magnesium atoms in a pocket flanked by the end of the viral LTR. A structural role for the 3' terminus of the viral LTR in the inhibitor-bound state has not previously been examined. This study describes the kinetics of binding of a specific strand transfer inhibitor to integrase variants assembled with systematic changes to the terminal 3' adenosine. Kinetic experiments are consistent with a two-step binding model in which there are different functions for the terminal adenine base and the terminal deoxyribose sugar. Adenine seems to act as a "shield" which retards the rate of inhibitor association with the integrase active site, possibly by acting as an internal competitive inhibitor. The terminal deoxyribose is responsible for retarding the rate of inhibitor dissociation, either by sterically blocking inhibitor egress or by a direct interaction with the bound inhibitor. These findings further our understanding of the details of the inhibitor binding site of specific strand transfer inhibitors.
Collapse
Affiliation(s)
- David R Langley
- Department of Computer Assisted Drug Design, Bristol-Myers Squibb Research & Development, Wallingford, Connecticut 06492, USA
| | | | | | | | | | | |
Collapse
|
23
|
Exploring the binding of HIV-1 integrase inhibitors by comparative residue interaction analysis (CoRIA). J Mol Model 2008; 15:233-45. [DOI: 10.1007/s00894-008-0399-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 09/06/2008] [Indexed: 11/26/2022]
|
24
|
Bacchi A, Biemmi M, Carcelli M, Carta F, Compari C, Fisicaro E, Rogolino D, Sechi M, Sippel M, Sotriffer CA, Sanchez TW, Neamati N. From Ligand to Complexes. Part 2. Remarks on Human Immunodeficiency Virus type 1 Integrase Inhibition by β-Diketo Acid Metal Complexes. J Med Chem 2008; 51:7253-64. [DOI: 10.1021/jm800893q] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alessia Bacchi
- Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Dipartimento di Scienze Farmacologiche, Biologiche e Chimiche Applicate, Università di Parma, V.le Usberti 17/A, Campus Universitario, 43100 Parma, Italy, Dipartimento Farmaco Chimico Tossicologico, Università di Sassari, Via Muroni 23/A, 07100 Sassari, Italy, Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany, Department of Pharmacology and Pharmaceutical Sciences,
| | - Mariano Biemmi
- Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Dipartimento di Scienze Farmacologiche, Biologiche e Chimiche Applicate, Università di Parma, V.le Usberti 17/A, Campus Universitario, 43100 Parma, Italy, Dipartimento Farmaco Chimico Tossicologico, Università di Sassari, Via Muroni 23/A, 07100 Sassari, Italy, Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany, Department of Pharmacology and Pharmaceutical Sciences,
| | - Mauro Carcelli
- Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Dipartimento di Scienze Farmacologiche, Biologiche e Chimiche Applicate, Università di Parma, V.le Usberti 17/A, Campus Universitario, 43100 Parma, Italy, Dipartimento Farmaco Chimico Tossicologico, Università di Sassari, Via Muroni 23/A, 07100 Sassari, Italy, Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany, Department of Pharmacology and Pharmaceutical Sciences,
| | - Fabrizio Carta
- Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Dipartimento di Scienze Farmacologiche, Biologiche e Chimiche Applicate, Università di Parma, V.le Usberti 17/A, Campus Universitario, 43100 Parma, Italy, Dipartimento Farmaco Chimico Tossicologico, Università di Sassari, Via Muroni 23/A, 07100 Sassari, Italy, Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany, Department of Pharmacology and Pharmaceutical Sciences,
| | - Carlotta Compari
- Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Dipartimento di Scienze Farmacologiche, Biologiche e Chimiche Applicate, Università di Parma, V.le Usberti 17/A, Campus Universitario, 43100 Parma, Italy, Dipartimento Farmaco Chimico Tossicologico, Università di Sassari, Via Muroni 23/A, 07100 Sassari, Italy, Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany, Department of Pharmacology and Pharmaceutical Sciences,
| | - Emilia Fisicaro
- Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Dipartimento di Scienze Farmacologiche, Biologiche e Chimiche Applicate, Università di Parma, V.le Usberti 17/A, Campus Universitario, 43100 Parma, Italy, Dipartimento Farmaco Chimico Tossicologico, Università di Sassari, Via Muroni 23/A, 07100 Sassari, Italy, Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany, Department of Pharmacology and Pharmaceutical Sciences,
| | - Dominga Rogolino
- Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Dipartimento di Scienze Farmacologiche, Biologiche e Chimiche Applicate, Università di Parma, V.le Usberti 17/A, Campus Universitario, 43100 Parma, Italy, Dipartimento Farmaco Chimico Tossicologico, Università di Sassari, Via Muroni 23/A, 07100 Sassari, Italy, Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany, Department of Pharmacology and Pharmaceutical Sciences,
| | - Mario Sechi
- Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Dipartimento di Scienze Farmacologiche, Biologiche e Chimiche Applicate, Università di Parma, V.le Usberti 17/A, Campus Universitario, 43100 Parma, Italy, Dipartimento Farmaco Chimico Tossicologico, Università di Sassari, Via Muroni 23/A, 07100 Sassari, Italy, Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany, Department of Pharmacology and Pharmaceutical Sciences,
| | - Martin Sippel
- Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Dipartimento di Scienze Farmacologiche, Biologiche e Chimiche Applicate, Università di Parma, V.le Usberti 17/A, Campus Universitario, 43100 Parma, Italy, Dipartimento Farmaco Chimico Tossicologico, Università di Sassari, Via Muroni 23/A, 07100 Sassari, Italy, Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany, Department of Pharmacology and Pharmaceutical Sciences,
| | - Christoph A. Sotriffer
- Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Dipartimento di Scienze Farmacologiche, Biologiche e Chimiche Applicate, Università di Parma, V.le Usberti 17/A, Campus Universitario, 43100 Parma, Italy, Dipartimento Farmaco Chimico Tossicologico, Università di Sassari, Via Muroni 23/A, 07100 Sassari, Italy, Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany, Department of Pharmacology and Pharmaceutical Sciences,
| | - Tino W. Sanchez
- Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Dipartimento di Scienze Farmacologiche, Biologiche e Chimiche Applicate, Università di Parma, V.le Usberti 17/A, Campus Universitario, 43100 Parma, Italy, Dipartimento Farmaco Chimico Tossicologico, Università di Sassari, Via Muroni 23/A, 07100 Sassari, Italy, Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany, Department of Pharmacology and Pharmaceutical Sciences,
| | - Nouri Neamati
- Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Dipartimento di Scienze Farmacologiche, Biologiche e Chimiche Applicate, Università di Parma, V.le Usberti 17/A, Campus Universitario, 43100 Parma, Italy, Dipartimento Farmaco Chimico Tossicologico, Università di Sassari, Via Muroni 23/A, 07100 Sassari, Italy, Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany, Department of Pharmacology and Pharmaceutical Sciences,
| |
Collapse
|
25
|
Healy EF, Sanders J, King PJ, Robinson WE. A docking study of L-chicoric acid with HIV-1 integrase. J Mol Graph Model 2008; 27:584-9. [PMID: 19004651 DOI: 10.1016/j.jmgm.2008.09.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 09/18/2008] [Accepted: 09/22/2008] [Indexed: 10/21/2022]
Abstract
Human immunodeficiency virus 1 integrase (HIV-1 IN) is the enzyme responsible for integrating the viral DNA into the host genome, and is essential to the replication of the virus. L-Chicoric acid (L-CA) is a bidentate catechol that has been identified as a potent inhibitor of HIV-1 IN. Using the new Autodock 4.0 free-energy function we have obtained a L-CA binding mode that explains its observed potency and is consistent with available experimental data. Because of the alpha,beta-unsaturated ester functionality of the side arms of L-CA we first performed an extensive conformational analysis of L-CA using semiempirical and ab initio calculations. As a result we have identified two distinct L-CA binding modes, one for the s-cis/s-cis and another for the s-cis/s-trans isomers. The most stable conformer was found to be the structure with the alpha,beta-unsaturated ester in the s-cis conformation for both arms of L-CA. This conformer also gave the top-ranked docking solution. Analysis of the interactions with key IN residues, combined with results using a L-CA tetraacetylated derivative and a Q148A IN mutant, correlate well with the experimental data.
Collapse
Affiliation(s)
- Eamonn F Healy
- Department of Chemistry, St. Edward's University, Austin, TX 78704, USA.
| | | | | | | |
Collapse
|
26
|
Sechi M, Azzena U, Delussu MP, Dallocchio R, Dessì A, Cosseddu A, Pala N, Neamati N. Design and synthesis of bis-amide and hydrazide-containing derivatives of malonic acid as potential HIV-1 integrase inhibitors. Molecules 2008; 13:2442-61. [PMID: 18830166 PMCID: PMC6245433 DOI: 10.3390/molecules13102442] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 09/19/2008] [Accepted: 09/19/2008] [Indexed: 12/03/2022] Open
Abstract
HIV-1 integrase (IN) is an attractive and validated target for the development of novel therapeutics against AIDS. In the search for new IN inhibitors, we designed and synthesized three series of bis-amide and hydrazide-containing derivatives of malonic acid. We performed a docking study to investigate the potential interactions of the title compounds with essential amino acids on the IN active site.
Collapse
Affiliation(s)
- Mario Sechi
- Dipartimento Farmaco Chimico Tossicologico, Università di Sassari, Via Muroni 23/A, 07100 Sassari, Italy; E-mails: (M-P. D.); (N. P.)
- Authors to whom correspondence should be addressed; E-mail: (M. S.); (N. N.); Tel.: +39 079228 753 (M. S.); Tel.: +1 323-442-2341 (N. N.); Fax: +39 079 228 720 (M. S.); Fax: +1 323-442-1390 (N. N.)
| | - Ugo Azzena
- Dipartimento di Chimica, Università di Sassari, Via Vienna 2, 07100 Sassari, Italy; E-mail:
| | - Maria Paola Delussu
- Dipartimento Farmaco Chimico Tossicologico, Università di Sassari, Via Muroni 23/A, 07100 Sassari, Italy; E-mails: (M-P. D.); (N. P.)
| | - Roberto Dallocchio
- CNR-Istituto di Chimica Biomolecolare, Sassari, 07040 Li Punti, Italy; E-mails: (R. D.); (A. D.)
| | - Alessandro Dessì
- CNR-Istituto di Chimica Biomolecolare, Sassari, 07040 Li Punti, Italy; E-mails: (R. D.); (A. D.)
| | - Alessia Cosseddu
- Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via A. Moro, 53100 Siena, Italy; E-mail:
| | - Nicolino Pala
- Dipartimento Farmaco Chimico Tossicologico, Università di Sassari, Via Muroni 23/A, 07100 Sassari, Italy; E-mails: (M-P. D.); (N. P.)
| | - Nouri Neamati
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy, 1985 Zonal Avenue, PSC 304, Los Angeles, California, 90089, USA
- Authors to whom correspondence should be addressed; E-mail: (M. S.); (N. N.); Tel.: +39 079228 753 (M. S.); Tel.: +1 323-442-2341 (N. N.); Fax: +39 079 228 720 (M. S.); Fax: +1 323-442-1390 (N. N.)
| |
Collapse
|
27
|
Effects of varying the spacing within the D,D-35-E motif in the catalytic region of retroviral integrase. Virology 2008; 379:223-33. [DOI: 10.1016/j.virol.2008.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 03/05/2008] [Accepted: 07/01/2008] [Indexed: 11/20/2022]
|
28
|
Rhee SY, Liu TF, Kiuchi M, Zioni R, Gifford RJ, Holmes SP, Shafer RW. Natural variation of HIV-1 group M integrase: implications for a new class of antiretroviral inhibitors. Retrovirology 2008; 5:74. [PMID: 18687142 PMCID: PMC2546438 DOI: 10.1186/1742-4690-5-74] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2008] [Accepted: 08/07/2008] [Indexed: 11/10/2022] Open
Abstract
HIV-1 integrase is the third enzymatic target of antiretroviral (ARV) therapy. However, few data have been published on the distribution of naturally occurring amino acid variation in this enzyme. We therefore characterized the distribution of integrase variants among more than 1,800 published group M HIV-1 isolates from more than 1,500 integrase inhibitor (INI)-naïve individuals. Polymorphism rates equal or above 0.5% were found for 34% of the central core domain positions, 42% of the C-terminal domain positions, and 50% of the N-terminal domain positions. Among 727 ARV-naïve individuals in whom the complete pol gene was sequenced, integrase displayed significantly decreased inter- and intra-subtype diversity and a lower Shannon's entropy than protease or RT. All primary INI-resistance mutations with the exception of E157Q--which was present in 1.1% of sequences--were nonpolymorphic. Several accessory INI-resistance mutations including L74M, T97A, V151I, G163R, and S230N were also polymorphic with polymorphism rates ranging between 0.5% to 2.0%.
Collapse
Affiliation(s)
- Soo-Yon Rhee
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Tommy F Liu
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Mark Kiuchi
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Rafael Zioni
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Robert J Gifford
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Susan P Holmes
- Department of Statistics, Stanford University, Stanford, CA, USA
| | - Robert W Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
29
|
Marchetti M, Paganelli S, Carboni D, Ulgheri F, Del Ponte G. Synthesis of indole derivatives by domino hydroformylation/indolization of 2-nitrocinnamaldehydes. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.molcata.2008.03.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Rajakrishnan V, Manoj VR, Rao GS. Computer-Aided, Rational Design of a Potent and Selective Small Peptide Inhibitor of Cyclooxygenase 2 (COX2). J Biomol Struct Dyn 2008; 25:535-42. [DOI: 10.1080/07391102.2008.10507200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Study on the drug resistance and the binding mode of HIV-1 integrase with LCA inhibitor. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s11426-007-0043-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Huang M, Richards WG, Grant GH. Diketoacid HIV-1 integrase inhibitors: An ab initio study. J Phys Chem A 2007; 109:5198-202. [PMID: 16833876 DOI: 10.1021/jp045247n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The stable tautomeric forms of two representative arene-substituted diketoacid HIV-1 integrase inhibitors, 5-ClTEP and L-731,988, were investigated by B3LYP with 6-31G*, 6-31G(d,p), and 6-31+G(d,p) basis sets. Optimization with MP2/6-31G* was also performed for 5-ClTEP. The solvation effect was considered using a conductor-like screening model. With the density functional theory method, the trans diketo conformations are more stable than the cis conformers. The difference is 14 kJ mol(-1) for 5-ClTEP and 33 kJ mol(-1) for L-731,988. Two trans diketo structures were obtained. The difference between these two trans diketo structures is less than 4 kJ mol(-1) calculated at the B3LYP/6-311+G(3df,2p) level. Two enol forms prevail over the diketo tautomers and are calculated to have the same free energy. Because there is no barrier observed between these two enol forms, they can interchange easily such that a delocalized transition state is suggested to be the observed form. Contradictory to the results of the MP2 method that predicts a preference for the trans diketo forms, the B3LYP method predicts a preference for the enol tautomers, which is in agreement with the experimental results.
Collapse
Affiliation(s)
- Meilan Huang
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QH, United Kingdom
| | | | | |
Collapse
|
33
|
Tchertanov L, Mouscadet JF. Target recognition by catechols and beta-ketoenols: potential contribution of hydrogen bonding and Mn/Mg chelation to HIV-1 integrase inhibition. J Med Chem 2007; 50:1133-45. [PMID: 17302399 DOI: 10.1021/jm061375j] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Catechol and beta-ketoenol are important pharmacophores of HIV-1 integrase (IN) inhibitors. We investigated their recognition of the divalent metals, Mg and Mn, and of hydrogen bond donors (HBD) and acceptors (HBA). We used data retrieved from the Cambridge Structural Database (CSD), applying a 3-D structure-based, in silico-driven approach. We found that both biophores were stabilized by intramolecular H-bonding (IHB), which was weak in catechols and very strong in beta-ketoenols. Catechols tended to recognize environmental HBD and HBA, demonstrating their ability to make use of both hydroxyl groups to form multiple, strong intermolecular H-bonds. In contrast, beta-ketoenols stabilized by strong IHB inefficiently formed intermolecular H-bonds. beta-Ketoenolate chelated both Mg and Mn ions much more efficiently than dioxolene, which was highly selective for Mn cations. The significant differences in the ability of these two pharmacophores to bind HBD and HBA and in their ability to chelate Mg and Mn have important consequences for competitive inhibitor binding and selectivity for metals and integrase DNA-binding sites.
Collapse
Affiliation(s)
- Luba Tchertanov
- Laboratoire de Biotechnologie et Pharmacologie Génétique Appliquée, CNRS UMR 8113, Ecole Normale Supérieure de Cachan, 61 av. Président Wilson, 94235 Cachan, France.
| | | |
Collapse
|
34
|
Lee-Huang S, Huang PL, Zhang D, Lee JW, Bao J, Sun Y, Chang YT, Zhang J, Huang PL. Discovery of small-molecule HIV-1 fusion and integrase inhibitors oleuropein and hydroxytyrosol: part II. integrase inhibition. Biochem Biophys Res Commun 2007; 354:879-84. [PMID: 17261269 PMCID: PMC1857318 DOI: 10.1016/j.bbrc.2007.01.058] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 01/09/2007] [Indexed: 10/23/2022]
Abstract
We report molecular modeling and functional confirmation of Ole and HT binding to HIV-1 integrase. Docking simulations identified two binding regions for Ole within the integrase active site. Region I encompasses the conserved D64-D116-E152 motif, while region II involves the flexible loop region formed by amino acid residues 140-149. HT, on the other hand, binds to region II. Both Ole and HT exhibit favorable interactions with important amino acid residues through strong H-bonding and van der Waals contacts, predicting integrase inhibition. To test and confirm modeling predictions, we examined the effect of Ole and HT on HIV-1 integrase activities including 3'-processing, strand transfer, and disintegration. Ole and HT exhibit dose-dependent inhibition on all three activities, with EC(50)s in the nanomolar range. These studies demonstrate that molecular modeling of target-ligand interaction coupled with structural-activity analysis should facilitate the design and identification of innovative integrase inhibitors and other therapeutics.
Collapse
Affiliation(s)
- Sylvia Lee-Huang
- Department of Biochemistry, New York University School of Medicine, New York, NY 10016, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Johnson AA, Marchand C, Patil SS, Costi R, Di Santo R, Burke TR, Pommier Y. Probing HIV-1 integrase inhibitor binding sites with position-specific integrase-DNA cross-linking assays. Mol Pharmacol 2006; 71:893-901. [PMID: 17172465 DOI: 10.1124/mol.106.030817] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
HIV-1 integrase binds site-specifically to the ends of the viral cDNA. We used two HIV-1 integrase-DNA cross-linking assays to probe the binding sites of integrase inhibitors from different chemical families and with different strand transfer selectivities. The disulfide assay probes cross-linking between the integrase residue 148 and the 5'-terminal cytosine of the viral cDNA, and the Schiff base assay probes cross-linking between an integrase lysine residue and an abasic site placed at selected positions in the viral cDNA. Cross-linking interference by eight integrase inhibitors shows that the most potent cross-linking inhibitors are 3'-processing inhibitors, indicating that cross-linking assays probe the donor viral cDNA (donor binding site). In contrast, strand transfer-selective inhibitors provide weak cross-linking interference, consistent with their binding to a specific acceptor (cellular DNA) site. Docking and crystal structure studies illustrate specific integrase-inhibitor contacts that prevent cross-linking formation. Four inhibitors that prevented Schiff base cross-linking to the conserved 3'-terminal adenine position were examined for inhibition at various positions within the terminal 21 bases of the viral cDNA. Two of them selectively inhibited upper strand cross-linking, whereas the other two had a more global effect on integrase-DNA binding. These findings have implications for elucidating inhibitor binding sites and mechanisms of action. The cross-linking assays also provide clues to the molecular interactions between integrase and the viral cDNA.
Collapse
Affiliation(s)
- Allison A Johnson
- Laboratory of Molecular Pharmacology, Building 37, Room 5068, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Meadows DC, Tantillo DJ, Gervay-Hague J. Correlation of Biological Activity with Active Site Binding Modes of Geminal Disulfone HIV-1 Integrase Inhibitors. ChemMedChem 2006; 1:959-64. [PMID: 16952140 DOI: 10.1002/cmdc.200600040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
37
|
Abstract
Currently, there are three distinct mechanistic classes of antiretrovirals: inhibitors of the HIV- 1 reverse transcriptase and protease enzymes and inhibitors of HIV entry, including receptor and coreceptor binding and cell fusion. A new drug class that inhibits the HIV-1 integrase enzyme (IN) is in development and may soon be available in the clinic. IN is an attractive drug target because it is essential for a stable and productive HIV-1 infection and there is no mammalian homologue of IN. Inhibitors of integrase enzyme (INI) block the integration of viral double-stranded DNA into the host cell's chromosomal DNA. HIV-1 integration has many potential steps that can be inhibited and several new compounds that target specific integration steps have been identified by drug developers. Recently, two INIs, GS-9137 and MK-0518, demonstrated promising early clinical trial results and have been advanced into later stage trials. In this review, we describe how IN facilitates HIV-1 integration, the needed enzyme cofactors, and the resultant byproducts created during integration. Furthermore, we review the different INIs under development, their mechanism of actions, site of IN inhibition, potency, resistance patterns, and discuss the early clinical trial results.
Collapse
Affiliation(s)
- Max Lataillade
- Division of Infectious Diseases, Yale University School of Medicine, LLCI 100D, 300 Cedar Street, Suite 169, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|
38
|
Wijitkosoom A, Tonmunphean S, Truong TN, Hannongbua S. Structural and Dynamical Properties of a Full-length HIV-1 Integrase: Molecular Dynamics Simulations. J Biomol Struct Dyn 2006; 23:613-24. [PMID: 16615807 DOI: 10.1080/07391102.2006.10507086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The structural and dynamical properties of the complete full-length structure of HIV-1 integrase were investigated using Molecular Dynamics approach. Simulations were carried out for the three systems, core domain only (CORE), full-length structure without (FULL) and with a Mg2+ (FULL+ION) in its active site, aimed to investigate the difference in the molecular properties of the full-length models due to their different construction procedures as well as the effects of the two ends, C- and N-terminal, on those properties in the core domain. The full-length structure was prepared from the two experimental structures of two-domain fragment. The following properties were observed to differ significantly from the previous reports: (i) relative topology formed by an angle between the three domains; (ii) the cavity size defined by the catalytic triad, Asp64, Asp116, and Glu152; (iii) distances and solvation of the Mg2+; and (iv) conformation of the catalytic residues. In addition, the presence of the two terminal domains decreases the mobility of the central core domain significantly.
Collapse
Affiliation(s)
- Atchara Wijitkosoom
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330 Thailand
| | | | | | | |
Collapse
|
39
|
Lee DJ, Robinson WE. Preliminary mapping of a putative inhibitor-binding pocket for human immunodeficiency virus type 1 integrase inhibitors. Antimicrob Agents Chemother 2006; 50:134-42. [PMID: 16377678 PMCID: PMC1346808 DOI: 10.1128/aac.50.1.134-142.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Molecular modeling studies have identified a putative human immunodeficiency virus (HIV) integrase (IN) inhibitor-binding pocket for l-chicoric acid (l-CA) and other inhibitors of IN (C. A. Sotriffer, H. Ni, and A. McCammon, J. Med. Chem. 43:4109-4117, 2000). By using site-directed mutagenesis of several amino acid residues identified by modeling studies, a common inhibitor-binding pocket on IN was confirmed for l-CA and the diketo acid L-731,988. Specifically, the single mutations E92K, Q148A, K156A, K156R, G140S, and G149S, as well as the double mutations C65S-K156N and H67D-G140A were evaluated for their effects on enzymatic activity and inhibitor susceptibility. Each recombinant IN was attenuated for 3'-end processing and strand transfer activities. Most proteins were also attenuated for disintegration; the IN that contained K156R and C65S-K156N, however, displayed disintegration activity similar to that of IN from HIV(NL4-3). All mutant IN proteins demonstrated decreased susceptibility to l-CA, while all mutant proteins except E92K and K156R demonstrated resistance to L-731,988. These data validate the computer modeling data and demonstrate that l-CA and L-731,988 share an overlapping inhibitor-binding pocket that involves amino acids Q148, C65, and H67. The resistance studies confirm that L-731,988 fills one-half of the inhibitor-binding pocket and binds to Q148 but excludes E92, while l-CA fills the entire binding groove and thus interacts with E92. These results provide "wet laboratory" evidence that molecular models of the HIV IN inhibitor-binding pocket can be used for drug discovery.
Collapse
Affiliation(s)
- Deborah J Lee
- Department of Microbiology and Molecular Genetics, D440 Medical Sciences I, University of California, Irvine, California 92697-4800, USA.
| | | |
Collapse
|
40
|
Rao GS, Ramachandran MV, Bajaj JS. In SilicoStructure-Based Design of a Potent and Selective Small Peptide Inhibitor of Protein Tyrosine Phosphatase 1B, A Novel Therapeutic Target for Obesity and Type 2 Diabetes Mellitus: A Computer Modeling Approach. J Biomol Struct Dyn 2006; 23:377-84. [PMID: 16363874 DOI: 10.1080/07391102.2006.10531233] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Protein Tyrosine Phosphatase 1B (PTP1B) has been shown to be a negative regulator of insulin signaling by dephosphorylating key tyrosine residues within the regulatory domain of the beta-subunit of the insulin receptor. Recent gene knockout studies in mice have shown the mice to have increased insulin sensitivity and improved glucose tolerance. Furthermore, these mice also exhibited a resistance to diet induced obesity. Inhibitors of PTP1B would have the potential of enhancing insulin action by prolonging the phosphorylated state of the insulin receptor. In addition, recent clinical studies have shown that the haplotype ACTTCAG0 of the PTPN1 gene, which encodes PTP1B, is a major risk contributor to type 2 diabetes mellitus (T2DM). Thus, there is compelling evidence that small molecule inhibitors of PTP1B may be effective in treating insulin resistance at an early stage, thereby leading to a prevention strategy for T2DM and obesity. Based on the crystal structure of the complex of PTP1B with a known inhibitor, we have identified a tetrapeptide inhibitor with the sequence WKPD. Docking calculations indicate that this peptide is as potent as the existing inhibitors. Moreover, the peptide is also found to be selective for PTP1B with a greatly reduced potency against other biologically important protein tyrosine phosphatases such as PTP-LAR, Calcineurin, and the highly homologous T-Cell Protein Tyrosine Phosphatase (TCPTP). Thus the designed tetrapeptide is a suitable lead compound for the development of new drugs against type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Gita Subba Rao
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi - 110029, India.
| | | | | |
Collapse
|
41
|
Vajragupta O, Boonchoong P, Morris GM, Olson AJ. Active site binding modes of curcumin in HIV-1 protease and integrase. Bioorg Med Chem Lett 2005; 15:3364-8. [PMID: 15950462 DOI: 10.1016/j.bmcl.2005.05.032] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 05/07/2005] [Accepted: 05/10/2005] [Indexed: 11/17/2022]
Abstract
Structure models for the interaction of curcumin with HIV-1 integrase (IN) and protease (PR) were investigated using computational docking. Curcumin was found to bind preferentially in similar ways to the active sites of both IN and PR. For IN, the binding site is formed by residues Asp64, His67, Thr66, Glu92, Thr93, Asp116, Ser119, Asn120, and Lys159. Docked curcumin contacts the catalytic residues adjacent to Asp116 and Asp64, and near the divalent metal (Mg2+). In the PR docking, the curcumin structure fitted well to the active site, interacting with residues Asp25, Asp29, Asp30, Gly27', Asp29', and Asp30'. The results suggest that o-hydroxyl and/or keto-enol structures are important for both IN and PR inhibitory actions. The symmetrical structure of curcumin seems to play an important role for binding to the PR protein, whereas the keto-enol and only one side of the terminal o-hydroxyl showed tight binding to the IN active site.
Collapse
Affiliation(s)
- Opa Vajragupta
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayudhya Road, Bangkok 10400, Thailand.
| | | | | | | |
Collapse
|
42
|
Johnson AA, Santos W, Pais GCG, Marchand C, Amin R, Burke TR, Verdine G, Pommier Y. Integration requires a specific interaction of the donor DNA terminal 5'-cytosine with glutamine 148 of the HIV-1 integrase flexible loop. J Biol Chem 2005; 281:461-7. [PMID: 16257967 DOI: 10.1074/jbc.m511348200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integration is essential for retroviral replication and gene therapy using retroviral vectors. Human immunodeficiency virus, type 1 (HIV-1), integrase specifically recognizes the terminal sequences of each long terminal repeat (LTR) and cleaves the 3'-end terminal dinucleotide 5'-GT. The exposed 3'-hydroxyl is then positioned for nucleophilic attack and subsequent strand transfer into another DNA duplex (target or chromosomal DNA). We report that both the terminal cytosine at the protruding 5'-end of the long terminal repeats (5'-C) and the integrase residue Gln-148 are critical for strand transfer. Proximity of the 5'-C and Gln-148 was demonstrated by disulfide cross-linking. Cross-linking is inhibited by the inhibitor 5CITEP 1-(5-chloroindol-3-yl)-3-hydroxy-3-(2H-tetrazol-5-yl)-propenone. We propose that strand transfer requires a conformational change of the integrase-viral (donor) DNA complex with formation of an H-bond between the N-3 of the 5'-C and the amine group of Gln-148. These findings have implications for the molecular mechanisms coupling 3'-processing and strand transfer as well as for the molecular pharmacology of integrase inhibitors.
Collapse
Affiliation(s)
- Allison A Johnson
- Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Yuan H, Parrill A. Cluster analysis and three-dimensional QSAR studies of HIV-1 integrase inhibitors. J Mol Graph Model 2005; 23:317-28. [PMID: 15670952 DOI: 10.1016/j.jmgm.2004.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2003] [Revised: 10/14/2004] [Accepted: 10/14/2004] [Indexed: 11/15/2022]
Abstract
Three-dimensional quantitative structure-activity relationship (3D QSAR) and cluster analysis were applied to a variety of HIV-1 integrase inhibitors. One structure was chosen from each of 11 classes of inhibitors to represent the whole class in descriptor-based cluster analysis. The 11 classes of inhibitors were classified into two groups. The molecular field analysis (MFA) models for these two clusters had r2 values of 0.90 and 0.95 and q2 values of 0.85 and 0.91 that were noticeably enhanced from those of conventional QSAR models. The five test compounds, which were proposed to have a common binding site near the metal in HIV-1 integrase based on docking studies by Sotriffer et al., were utilized to compare the predictive capability of MFA and conventional QSAR models. Among these five compounds, only L-chicoric acid belongs to cluster 1 and the other four belong to cluster 2. MFA models give better overall predictions and more importantly the activity of these test compounds is better predicted by the MFA model derived from the cluster each test compound belongs to. The necessity of dividing the inhibitors into two groups to obtain predictive QSAR models supports the likelihood of two separate binding sites.
Collapse
Affiliation(s)
- Hongbin Yuan
- Chemistry Department, The University of Memphis, Memphis, TN 38152, USA
| | | |
Collapse
|
44
|
Karki RG, Tang Y, Burke TR, Nicklaus MC. Model of full-length HIV-1 integrase complexed with viral DNA as template for anti-HIV drug design. J Comput Aided Mol Des 2005; 18:739-60. [PMID: 16075307 DOI: 10.1007/s10822-005-0365-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Accepted: 10/07/2004] [Indexed: 10/25/2022]
Abstract
We report structural models of the full-length integrase enzyme (IN) of the human immunodeficiency virus type 1 (HIV-1) and its complex with viral and human DNA. These were developed by means of molecular modeling techniques using all available experimental evidence, including X-ray crystallographic and NMR structures of portions of the full-length protein. Special emphasis was placed on obtaining a model of the enzyme's active site with the viral DNA apposed to it, based on the hypothesis that such a model would allow structure-based design of inhibitors that retain activity in vivo. This was because bound DNA might be present in vivo after 3'-processing but before strand transfer. These structural models were used to study the potential binding modes of various diketo-acid HIV-1 IN inhibitors (many of them preferentially inhibiting strand transfer) for which no experimentally derived complexed structures are available. The results indicate that the diketo-acid IN inhibitors probably chelate the metal ion in the catalytic site and also prevent the exposure of the 3'-processed end of the viral DNA to human DNA.
Collapse
Affiliation(s)
- Rajeshri G Karki
- Laboratory of Medicinal Chemistry, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Frederick, MD 21702, USA.
| | | | | | | |
Collapse
|
45
|
Dayam R, Neamati N. Active site binding modes of the beta-diketoacids: a multi-active site approach in HIV-1 integrase inhibitor design. Bioorg Med Chem 2005; 12:6371-81. [PMID: 15556755 DOI: 10.1016/j.bmc.2004.09.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Revised: 09/20/2004] [Accepted: 09/21/2004] [Indexed: 11/20/2022]
Abstract
Predicting a bioactive conformation of a ligand is of paramount importance in rational drug design. The task becomes very difficult when the receptor site possesses a region with unusual conformational flexibility. Significant conformational differences are present in the active site regions in the available crystal structures of the core domains of HIV-1 integrase (IN). Among all reported IN inhibitors, the beta-diketoacid class of compounds has proved to be of most promise and indeed S-1360 was the first IN inhibitor to enter clinical studies. With an aim to predict the bioactive (active site bound) conformation of S-1360, we performed extensive docking studies using three different reported crystal structures where the active site or partial active site region was resolved. For comparison we extended our studies to include 5CITEP (the first compound cocrystallized with IN core domain) and a bis-diketoacid (BDKA). We found that the conformation of S-1360 when bound in one of the active sites matches that of the experimentally observed results of IN escape mutants resistant to S-1360. Therefore, we propose that this active site conformation is the biologically relevant conformation and can be used for the future structure-based drug design studies selectively targeting IN.
Collapse
Affiliation(s)
- Raveendra Dayam
- Department of Pharmaceutical Sciences, University of Southern California, School of Pharmacy, 1985 Zonal Avenue, PSC 304, Los Angeles, CA 90089, USA
| | | |
Collapse
|
46
|
Sechi M, Sannia L, Carta F, Palomba M, Dallocchio R, Dessì A, Derudas M, Zawahir Z, Neamati N. Design of novel bioisosteres of beta-diketo acid inhibitors of HIV-1 integrase. Antivir Chem Chemother 2005; 16:41-61. [PMID: 15739621 DOI: 10.1177/095632020501600105] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
HIV-1 integrase (IN) is an attractive and validated target for the development of novel therapeutics against AIDS. Significant efforts have been devoted to the identification of IN inhibitors using various methods. In this context, through virtual screening of the NCI database and structure-based drug design strategies, we identified several pharmacophoric fragments and incorporated them on various aromatic or heteroaromatic rings. In addition, we designed and synthesized a series of 5-aryl(heteroaryl)-isoxazole-3-carboxylic acids as biological isosteric analogues of beta-diketo acid containing inhibitors of HIV-1 IN and their derivatives. Further computational docking studies were performed to investigate the mode of interactions of the most active ligands with the IN active site. Results suggested that some of the tested compounds could be considered as lead compounds and suitable for further optimization.
Collapse
Affiliation(s)
- Mario Sechi
- Dipartimento Farmaco Chimico Tossicologico, Università di Sassari, Sassari, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Brigo A, Lee KW, Fogolari F, Mustata GI, Briggs JM. Comparative molecular dynamics simulations of HIV-1 integrase and the T66I/M154I mutant: Binding modes and drug resistance to a diketo acid inhibitor. Proteins 2005; 59:723-41. [PMID: 15815973 DOI: 10.1002/prot.20447] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
HIV-1 IN is an essential enzyme for viral replication and an interesting target for the design of new pharmaceuticals for use in multidrug therapy of AIDS. L-731,988 is one of the most active molecules of the class of beta-diketo acids. Individual and combined mutations of HIV-1 IN at residues T66, S153, and M154 confer important degrees of resistance to one or more inhibitors belonging to this class. In an effort to understand the molecular mechanism of the resistance of T66I/M154I IN to the inhibitor L-731,988 and its specific binding modes, we have carried out docking studies, explicit solvent MD simulations, and binding free energy calculations. The inhibitor was docked against different protein conformations chosen from prior MD trajectories, resulting in 2 major orientations within the active site. MD simulations have been carried out for the T66I/M154I DM IN, DM IN in complex with L-731,988 in 2 different orientations, and 1QS4 IN in complex with L-731,988. The results of these simulations show a similar dynamical behavior between T66I/M154I IN alone and in complex with L-731,988, while significant differences are observed in the mobility of the IN catalytic loop (residues 138-149). Water molecules bridging the inhibitor to residues from the active site have been identified, and residue Gln62 has been found to play an important role in the interactions between the inhibitor and the protein. This work provides information about the binding modes of L-731,988, as well as insight into the mechanism of inhibitor-resistance in HIV-1 integrase.
Collapse
Affiliation(s)
- Alessandro Brigo
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Padova, Padova, Italy
| | | | | | | | | |
Collapse
|
48
|
Sechi M, Angotzi G, Dallocchio R, Dessì A, Carta F, Sannia L, Mariani A, Fiori S, Sanchez T, Movsessian L, Plasencia C, Neamati N. Design and synthesis of novel dihydroxyindole-2-carboxylic acids as HIV-1 integrase inhibitors. Antivir Chem Chemother 2004; 15:67-81. [PMID: 15185725 DOI: 10.1177/095632020401500203] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In a search for new HIV-1 integrase (IN) inhibitors, we synthesized and evaluated the biological activity of 5,6-dihydroxyindole-2-carboxylic acid (DHICA) and a series of its derivatives. These compounds were designed as conformationally constrained analogues of the acrylate moiety of caffeic acid phenethyl ester (CAPE). DHICA, an intermediate in the biosynthesis of melanins, was prepared as a monomeric unit by a novel synthetic route. In order to perform coherent SAR studies, two series of DHICA amides were synthesized. First, to validate the utility of a previously identified three-point pharmacophore based on CAPE in inhibitor design, we prepared a series of benzyl- or phenylethylamine substituted derivatives lacking and containing hydroxyl groups. Second, dimers of DHICA containing various aminoalkylamine linkers were also prepared with a goal to increase potency. All compounds were tested against purified IN and the C65S mutant in enzyme-based assays. They were also tested for cytotoxicity in an ovarian carcinoma cell line and antiviral activity in HIV-1-infected CEM cells. Seven compounds inhibited catalytic activities of purified IN with IC50 values below 10 microM. Further computational docking studies were performed to determine the title compounds' mode of interaction with the IN active site. The residues K156, K159 and D64 were the most important for potency against purified IN.
Collapse
Affiliation(s)
- Mario Sechi
- Dipartimento Farmaco Chimico Tossicologico, Università di Sassari, Sassari, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Verschueren WG, Dierynck I, Amssoms KIE, Hu L, Boonants PMJG, Pille GME, Daeyaert FFD, Hertogs K, Surleraux DLNG, Wigerinck PBTP. Design and Optimization of Tricyclic Phtalimide Analogues as Novel Inhibitors of HIV-1 Integrase. J Med Chem 2004; 48:1930-40. [PMID: 15771437 DOI: 10.1021/jm049559q] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human immunodeficiency virus type-1 integrase is an essential enzyme for effective viral replication and hence a valid target for the design of inhibitors. We report here on the design and synthesis of a novel series of phthalimide analogues as integrase inhibitors. The short synthetic pathway enabled us to synthesize a series of analogues with a defined structure diversity. The presence of a single carbonyl-hydroxy-aromatic nitrogen motif was shown to be essential for the enzymatic activity and this was confirmed by molecular docking studies. The enzymatically most active compound from this series is 7-(3,4-dichlorobenzyl)-5,9-dihydroxypyrrolo[3,4-g]quinoxaline-6,8-dione (15l) with an IC(50) value of 112 nM on the HIV-1 integrase enzyme, while ((7-(4-chlorobenzyl)-5,9-dihydroxy-pyrrolo[3,4-g]quinoxaline-6,8-dione (15k)) showed an EC(50) of 270 nM against HIV-1 in a cell-based assay.
Collapse
Affiliation(s)
- Wim G Verschueren
- Tibotec BVBA, Generaal de Wittelaan L 11B 3, B-2800 Mechelen, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Costi R, Di Santo R, Artico M, Roux A, Ragno R, Massa S, Tramontano E, La Colla M, Loddo R, Marongiu ME, Pani A, La Colla P. 6-aryl-2,4-dioxo-5-hexenoic acids, novel integrase inhibitors active against HIV-1 multiplication in cell-based assays. Bioorg Med Chem Lett 2004; 14:1745-9. [PMID: 15026063 DOI: 10.1016/j.bmcl.2004.01.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Revised: 12/03/2003] [Accepted: 01/16/2004] [Indexed: 11/22/2022]
Abstract
A series of 6-aryl-2,4-dioxo-5-hexenoic acids, were synthesized and tested against HIV-1 in cell-based assays and against recombinant HIV-1 integrase (rIN) in enzyme assays. Compound 8a showed potent antiretroviral activity (EC(50)=1.5 microM) and significant inhibition against rIN (strand transfer: IC(50)=7.9 microM; 3'-processing: IC(50)=7.0 microM). A preliminary molecular modeling study was carried out to compare the spatial conformation of 8a with those of L-731988 (4) and 5CITEP (7) in the IN core.
Collapse
Affiliation(s)
- Roberta Costi
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Studi Farmaceutici, Università degli Studi di Roma 'La Sapienza', P. le A. Moro 5, I-00185 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|