1
|
Saral A, Sudha P, Muthu S, Sevvanthi S, Sangeetha P, Selvakumari S. Vibrational spectroscopy, quantum computational and molecular docking studies on 2-chloroquinoline-3-carboxaldehyde. Heliyon 2021; 7:e07529. [PMID: 34345729 PMCID: PMC8319014 DOI: 10.1016/j.heliyon.2021.e07529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/02/2021] [Accepted: 07/06/2021] [Indexed: 01/29/2023] Open
Abstract
The quantum mechanical density functional theory (DFT) approach was used to analyze vibrational spectroscopy for the title compound 2-chloroquinoline-3-carboxaldehyde, and the observations were compared to experimental results. B3LYP with the 6-311++ G (d, p) basis set produces the optimized molecular structure and vibrational assignments. The charge delocalization and hyper conjugative interactions were studied using NBO analysis. Fukui functions were used to determine the chemical reactivity of the examined molecule. The linear polarizability, first order polarizability, NLO and Thermodynamic properties are calculated. Additionally, Molecular electrostatic potential (MEP) and HOMO-LUMO are reported. Multi wavefunction analysis like ELF (Electron Localization Function) and LOL (Localized Orbital Locator) are analyzed. For the headline compound, drug-likeness properties were examined. Molecular docking analysis on the examined molecule are done to understand the biological functions of the headline molecule and the minimum binding energy, hydrogen bond interactions, are analyzed.
Collapse
Affiliation(s)
- A. Saral
- PG and Research Department of Chemistry, Thiru. vi. ka. Government Arts College, Affiliated to Bharathidasan University, Thiruvarur, Tiruchirappalli, 610003, Tamilnadu, India
| | - P. Sudha
- PG & Research Department of Chemistry, Thiru. vi. ka. Government Arts College, Thiruvarur, 610003, Tamilnadu, India
| | - S. Muthu
- Department of Physics, Arignar Anna Govt. Arts College, Cheyyar, 604407, Tamilnadu, India
- Puratchi Thalaivar Dr. MGR. Govt. Arts and Science College, Department of Physics, Uthiramerur, 603406, Tamilnadu, India
| | - S. Sevvanthi
- Department of Physics, Arignar Anna Govt. Arts College, Cheyyar, 604407, Tamilnadu, India
| | - P. Sangeetha
- Department of Physics, Panimalar Institute of Technology, Chennai, 600123, Tamilnadu, India
| | - S. Selvakumari
- Department of Physics, Panimalar Institute of Technology, Chennai, 600123, Tamilnadu, India
| |
Collapse
|
2
|
Yadav P, Awasthi A, Gokulnath S, Tiwari DK. DMSO as a Methine Source in TFA-Mediated One-Pot Tandem Regioselective Synthesis of 3-Substituted-1-Aryl-1H-Pyrazolo-[3,4-b]quinolines from Anilines and Pyrazolones. J Org Chem 2021; 86:2658-2666. [DOI: 10.1021/acs.joc.0c02696] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Pushpendra Yadav
- Molecular Synthesis and Drug Discovery Laboratory, Center of Biomedical Research (CBMR), Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
- Department of Chemistry, Institute of Science, Banaras Hindu University, 221005 Varanasi, Uttar Pradesh, India
| | - Annapurna Awasthi
- Molecular Synthesis and Drug Discovery Laboratory, Center of Biomedical Research (CBMR), Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
- Department of Chemistry, Institute of Science, Banaras Hindu University, 221005 Varanasi, Uttar Pradesh, India
| | - Sabapathi Gokulnath
- School of Chemistry, Indian Institute of Science Education and Research (IISER), Maruthamala P.O., Vithura, Thiruvananthapuram 695 551, Kerala, India
| | - Dharmendra Kumar Tiwari
- Molecular Synthesis and Drug Discovery Laboratory, Center of Biomedical Research (CBMR), Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| |
Collapse
|
3
|
Nazeri MT, Javanbakht S, Shaabani A, Khavasi HR. Chemo‐ and Diastereoselective Synthesis of Pyrazolo‐tetrahydropyridines
via
Multicomponent Sequential Aza‐Diels‐Alder Reactions in Water. ChemistrySelect 2019. [DOI: 10.1002/slct.201904172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Siamak Javanbakht
- Faculty of ChemistryShahid Beheshti University G.C. P.O. Box 19396–4716 Tehran Iran
| | - Ahmad Shaabani
- Faculty of ChemistryShahid Beheshti University G.C. P.O. Box 19396–4716 Tehran Iran
| | - Hamid Reza Khavasi
- Faculty of ChemistryShahid Beheshti University G.C. P.O. Box 19396–4716 Tehran Iran
| |
Collapse
|
4
|
Shylaja A, Roja SS, Priya RV, Kumar RR. Four-Component Domino Synthesis of Pyrazolo[3,4-h]quinoline-3-carbonitriles: “Turn-Off” Fluorescent Chemosensor for Fe3+ Ions. J Org Chem 2018; 83:14084-14090. [DOI: 10.1021/acs.joc.8b01991] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Adaikalam Shylaja
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Somi Santharam Roja
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | | | - Raju Ranjith Kumar
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| |
Collapse
|
5
|
Selective synthesis of benzo[4,5]imidazo[2,1-a]isoquinolines via copper-catalyzed tandem annulation of alkynylbenzonitriles with 2-Iodoanilines. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.06.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
6
|
Jacobson KA, Merighi S, Varani K, Borea PA, Baraldi S, Tabrizi MA, Romagnoli R, Baraldi PG, Ciancetta A, Tosh DK, Gao ZG, Gessi S. A 3 Adenosine Receptors as Modulators of Inflammation: From Medicinal Chemistry to Therapy. Med Res Rev 2018; 38:1031-1072. [PMID: 28682469 PMCID: PMC5756520 DOI: 10.1002/med.21456] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/02/2017] [Accepted: 06/13/2017] [Indexed: 01/09/2023]
Abstract
The A3 adenosine receptor (A3 AR) subtype is a novel, promising therapeutic target for inflammatory diseases, such as rheumatoid arthritis (RA) and psoriasis, as well as liver cancer. A3 AR is coupled to inhibition of adenylyl cyclase and regulation of mitogen-activated protein kinase (MAPK) pathways, leading to modulation of transcription. Furthermore, A3 AR affects functions of almost all immune cells and the proliferation of cancer cells. Numerous A3 AR agonists, partial agonists, antagonists, and allosteric modulators have been reported, and their structure-activity relationships (SARs) have been studied culminating in the development of potent and selective molecules with drug-like characteristics. The efficacy of nucleoside agonists may be suppressed to produce antagonists, by structural modification of the ribose moiety. Diverse classes of heterocycles have been discovered as selective A3 AR blockers, although with large species differences. Thus, as a result of intense basic research efforts, the outlook for development of A3 AR modulators for human therapeutics is encouraging. Two prototypical selective agonists, N6-(3-Iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA; CF101) and 2-chloro-N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (Cl-IB-MECA; CF102), have progressed to advanced clinical trials. They were found safe and well tolerated in all preclinical and human clinical studies and showed promising results, particularly in psoriasis and RA, where the A3 AR is both a promising therapeutic target and a biologically predictive marker, suggesting a personalized medicine approach. Targeting the A3 AR may pave the way for safe and efficacious treatments for patient populations affected by inflammatory diseases, cancer, and other conditions.
Collapse
Affiliation(s)
- Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Stefania Merighi
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Katia Varani
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Pier Andrea Borea
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Stefania Baraldi
- Department of Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Mojgan Aghazadeh Tabrizi
- Department of Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Romeo Romagnoli
- Department of Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Pier Giovanni Baraldi
- Department of Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Antonella Ciancetta
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Dilip K. Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Stefania Gessi
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| |
Collapse
|
7
|
Catarzi D, Varano F, Falsini M, Varani K, Vincenzi F, Pasquini S, Dal Ben D, Colotta V. Development of novel pyridazinone-based adenosine receptor ligands. Bioorg Med Chem Lett 2018; 28:1484-1489. [PMID: 29627261 DOI: 10.1016/j.bmcl.2018.03.086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 11/29/2022]
Abstract
With the aim of finding new adenosine receptor (AR) ligands, a preliminary investigation focusing on the thieno[2,3-d]pyridazin-5(4H)-one scaffold was undertaken. The synthesized compounds 1-11 were evaluated for their binding at hA1, hA2A and hA3 ARs and efficacy at hA2B subtype in order to determine the affinity at the human adenosine receptor subtypes. Small structural changes on this scaffold highly influenced affinity; compound 5 (5-ethyl-7-(thiazol-2-yl)thieno[2,3-d]pyridazin-4(5H)-one) emerged as the best of this series. The simplicity of the synthetic process, the capability of the scaffold to be easily decorated, together with the predicted ADME properties confirm the role of these compounds as promising hits. A molecular docking investigation at the hA1AR crystal structure was performed to rationalize the SARs of the herein reported thienopyridazinones.
Collapse
Affiliation(s)
- Daniela Catarzi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy.
| | - Flavia Varano
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy
| | - Matteo Falsini
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy
| | - Katia Varani
- Dipartimento di Scienze Mediche, Sezione di Farmacologia, Università degli Studi di Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy
| | - Fabrizio Vincenzi
- Dipartimento di Scienze Mediche, Sezione di Farmacologia, Università degli Studi di Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy
| | - Silvia Pasquini
- Dipartimento di Scienze Mediche, Sezione di Farmacologia, Università degli Studi di Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy
| | - Diego Dal Ben
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, Via S. Agostino 1, 62032 Camerino, MC, Italy
| | - Vittoria Colotta
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
8
|
Falsini M, Squarcialupi L, Catarzi D, Varano F, Betti M, Dal Ben D, Marucci G, Buccioni M, Volpini R, De Vita T, Cavalli A, Colotta V. The 1,2,4-Triazolo[4,3-a]pyrazin-3-one as a Versatile Scaffold for the Design of Potent Adenosine Human Receptor Antagonists. Structural Investigations to Target the A2A Receptor Subtype. J Med Chem 2017; 60:5772-5790. [DOI: 10.1021/acs.jmedchem.7b00457] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Matteo Falsini
- Dipartimento
di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino,
Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Lucia Squarcialupi
- Dipartimento
di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino,
Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Daniela Catarzi
- Dipartimento
di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino,
Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Flavia Varano
- Dipartimento
di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino,
Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Marco Betti
- Dipartimento
di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino,
Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Diego Dal Ben
- Scuola
di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, via S. Agostino 1, 62032 Camerino, Macerata, Italy
| | - Gabriella Marucci
- Scuola
di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, via S. Agostino 1, 62032 Camerino, Macerata, Italy
| | - Michela Buccioni
- Scuola
di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, via S. Agostino 1, 62032 Camerino, Macerata, Italy
| | - Rosaria Volpini
- Scuola
di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, via S. Agostino 1, 62032 Camerino, Macerata, Italy
| | - Teresa De Vita
- CompuNet, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| | - Andrea Cavalli
- CompuNet, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
- Dipartimento
di Farmacia e Biotecnologia, Università degli Studi di Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Vittoria Colotta
- Dipartimento
di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino,
Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
9
|
Fan W, Li YR, Jiang B, Li G. Cascade bicyclization of triethylammonium thiolates with hydrazines: efficient access to pyrazolo[3,4-c]quinolines. Org Biomol Chem 2016; 14:9080-9087. [PMID: 27722433 PMCID: PMC5113139 DOI: 10.1039/c6ob01728b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A new bicyclization strategy has been established, allowing a flexible and practical approach to 33 examples of pyrazolo[3,4-c]quinolines from low-cost and readily accessible triethylammonium thiolates with hydrazines. Notably, the features of this work include broad functional group compatibility, mild reaction conditions and good reaction yields.
Collapse
Affiliation(s)
- Wei Fan
- Institute of Chemistry & BioMedical Sciences, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing, 210093, P. R. China.
| | - Yan-Rong Li
- Institute of Chemistry & BioMedical Sciences, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing, 210093, P. R. China.
| | - Bo Jiang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA and School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| | - Guigen Li
- Institute of Chemistry & BioMedical Sciences, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing, 210093, P. R. China. and Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA
| |
Collapse
|
10
|
Deng GB, Li HB, Yang XH, Song RJ, Hu M, Li JH. Dehydrogenative [2 + 2 + 1] Heteroannulation Using a Methyl Group as a One-Carbon Unit: Access to Pyrazolo[3,4-c]quinolines. Org Lett 2016; 18:2012-5. [PMID: 27123866 DOI: 10.1021/acs.orglett.6b00618] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A practical and straightforward access to pyrazolo[3,4-c]quinolines by molecular sieve mediated dehydrogenative [2 + 2 + 1] heteroannulation of N-(o-alkenylaryl)imines with aryldiazonium salts is described using a sp(3)-hybrid carbon atom as a one-carbon unit. The reaction enables the formation of three new chemical bonds, a C-C bond and two C-N bonds, in a single reaction and features simple operation and excellent functional group tolerance.
Collapse
Affiliation(s)
- Guo-Bo Deng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University , Changsha 410082, China
| | - Hai-Bing Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University , Changsha 410082, China
| | - Xu-Heng Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University , Changsha 410082, China
| | - Ren-Jie Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University , Changsha 410082, China
| | - Ming Hu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University , Changsha 410082, China
| | - Jin-Heng Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University , Changsha 410082, China.,State Key Laboratory of Applied Organic Chemistry Lanzhou University , Lanzhou 730000, China
| |
Collapse
|
11
|
Squarcialupi L, Catarzi D, Varano F, Betti M, Falsini M, Vincenzi F, Ravani A, Ciancetta A, Varani K, Moro S, Colotta V. Structural refinement of pyrazolo[4,3-d]pyrimidine derivatives to obtain highly potent and selective antagonists for the human A3 adenosine receptor. Eur J Med Chem 2015; 108:117-133. [PMID: 26638043 DOI: 10.1016/j.ejmech.2015.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/06/2015] [Accepted: 11/07/2015] [Indexed: 02/09/2023]
Abstract
In previous research, we identified some 7-oxo- and 7-acylamino-substituted pyrazolo[4,3-d]pyrimidine derivatives as potent and selective human (h) A3 adenosine receptor (AR) antagonists. Herein we report on the structural refinement of this class of antagonists aimed at achieving improved receptor-ligand recognition. Hence, substituents with different steric bulk, flexibility and lipophilicity (Me, Ar, heteroaryl, CH2Ph) were introduced at the 5- and 2-positions of the bicyclic scaffold of both the 7-oxo and 7-amino derivatives, and acyl residues were appended on the 7-amino group of the latter. All the 2-phenylpyrazolo[4,3-d]pyrimidin-7-amines and 7-acylamines bearing a 4-methoxyphenyl- or a 2-thienyl group at the 5-position showed high hA3 affinity and selectivity. In particular, the 2-phenyl-5-(2-thienyl)-pyrazolo[4,3-d]pyrimidin-7-(4-methoxybenzoyl)amine 25 (Ki = 0.027 nM) is one of the most potent and selective hA3 antagonists reported so far. By using an in silico receptor-driven approach the obtained binding data were rationalized and the molecular bases of the observed hA3 AR affinities were critically described.
Collapse
Affiliation(s)
- Lucia Squarcialupi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e salute del Bambino, sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019, Sesto Fiorentino, Italy
| | - Daniela Catarzi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e salute del Bambino, sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019, Sesto Fiorentino, Italy
| | - Flavia Varano
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e salute del Bambino, sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019, Sesto Fiorentino, Italy
| | - Marco Betti
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e salute del Bambino, sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019, Sesto Fiorentino, Italy
| | - Matteo Falsini
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e salute del Bambino, sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019, Sesto Fiorentino, Italy
| | - Fabrizio Vincenzi
- Dipartimento di Scienze Mediche, Sezione di Farmacologia, Università degli Studi di Ferrara, Via Fossato di Mortara 17-19, 44121, Ferrara, Italy
| | - Annalisa Ravani
- Dipartimento di Scienze Mediche, Sezione di Farmacologia, Università degli Studi di Ferrara, Via Fossato di Mortara 17-19, 44121, Ferrara, Italy
| | - Antonella Ciancetta
- Molecular Modeling Section (MMS), Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, via Marzolo 5, 35131, Padova, Italy
| | - Katia Varani
- Dipartimento di Scienze Mediche, Sezione di Farmacologia, Università degli Studi di Ferrara, Via Fossato di Mortara 17-19, 44121, Ferrara, Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS), Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, via Marzolo 5, 35131, Padova, Italy.
| | - Vittoria Colotta
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e salute del Bambino, sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
12
|
Varano F, Catarzi D, Squarcialupi L, Betti M, Vincenzi F, Ravani A, Varani K, Dal Ben D, Thomas A, Volpini R, Colotta V. Exploring the 7-oxo-thiazolo[5,4-d]pyrimidine core for the design of new human adenosine A3 receptor antagonists. Synthesis, molecular modeling studies and pharmacological evaluation. Eur J Med Chem 2015; 96:105-21. [PMID: 25874336 DOI: 10.1016/j.ejmech.2015.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/31/2015] [Accepted: 04/03/2015] [Indexed: 11/28/2022]
Abstract
A new series of 5-methyl-thiazolo[5,4-d]pyrimidine-7-ones bearing different substituents at position 2 (aryl, heteroaryl and arylamino groups) was synthesized and evaluated in radioligand binding assays to determine their affinities at the human (h) A1, A2A, and A3 adenosine receptors (ARs). Efficacy at the hA(2B) and antagonism of selected ligands at the hA3 were also assessed through cAMP experiments. Some of the new derivatives exhibited good to high hA3AR affinity and selectivity versus all the other AR subtypes. Compound 2-(4-chlorophenyl)-5-methyl-thiazolo[5,4-d]pyrimidine-7-one 4 was found to be the most potent and selective ligand of the series (K(I) hA3 = 18 nM). Molecular docking studies of the reported derivatives were carried out to depict their hypothetical binding mode in our hA3 receptor model.
Collapse
Affiliation(s)
- Flavia Varano
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Universita' di Firenze, Polo Scientifico, Via Ugo Schiff 6, 50019 Sesto Fiorentino, FI, Italy.
| | - Daniela Catarzi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Universita' di Firenze, Polo Scientifico, Via Ugo Schiff 6, 50019 Sesto Fiorentino, FI, Italy
| | - Lucia Squarcialupi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Universita' di Firenze, Polo Scientifico, Via Ugo Schiff 6, 50019 Sesto Fiorentino, FI, Italy
| | - Marco Betti
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Universita' di Firenze, Polo Scientifico, Via Ugo Schiff 6, 50019 Sesto Fiorentino, FI, Italy
| | - Fabrizio Vincenzi
- Dipartimento di Medicina Clinica e Sperimentale, Sezione di Farmacologia, Universita' di Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy
| | - Annalisa Ravani
- Dipartimento di Medicina Clinica e Sperimentale, Sezione di Farmacologia, Universita' di Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy
| | - Katia Varani
- Dipartimento di Medicina Clinica e Sperimentale, Sezione di Farmacologia, Universita' di Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy
| | - Diego Dal Ben
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, MC, Italy
| | - Ajiroghene Thomas
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, MC, Italy
| | - Rosaria Volpini
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, MC, Italy
| | - Vittoria Colotta
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Universita' di Firenze, Polo Scientifico, Via Ugo Schiff 6, 50019 Sesto Fiorentino, FI, Italy
| |
Collapse
|
13
|
Squarcialupi L, Colotta V, Catarzi D, Varano F, Betti M, Varani K, Vincenzi F, Borea PA, Porta N, Ciancetta A, Moro S. 7-Amino-2-phenylpyrazolo[4,3-d]pyrimidine derivatives: Structural investigations at the 5-position to target human A1 and A2A adenosine receptors. Molecular modeling and pharmacological studies. Eur J Med Chem 2014; 84:614-27. [DOI: 10.1016/j.ejmech.2014.07.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/11/2014] [Accepted: 07/16/2014] [Indexed: 01/27/2023]
|
14
|
Ma YL, Wang KM, Lin XR, Yan SJ, Lin J. Three-component cascade reaction synthesis of polycyclic 1,4-dihydropyridine derivatives in water. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.07.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Palladium(II)-catalyzed cyclization of heterocyclic ketene aminals with (E)-ethyl 2,3-diiodoacrylates: selective synthesis of bicyclic pyrroles and bicyclic pyridones. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.05.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Kumar GR, Kumar YK, Kant R, Reddy MS. Tandem Cu-catalyzed ketenimine formation and intramolecular nucleophile capture: Synthesis of 1,2-dihydro-2-iminoquinolines from 1-(o-acetamidophenyl)propargyl alcohols. Beilstein J Org Chem 2014; 10:1255-1260. [PMID: 24991276 PMCID: PMC4077525 DOI: 10.3762/bjoc.10.125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/30/2014] [Indexed: 12/18/2022] Open
Abstract
The copper-catalyzed ketenimine formation reaction of 1-(o-acetamidophenyl)propargyl alcohols with various sulfonyl azides is found to undergo a concomitant intramolecular nucleophile attack to generate 1,2-dihydro-2-iminoquinolines after aromatization (via elimination of acetyl and hydroxy groups) and tautomerization. The reaction produces 4-substituted and 3,4-unsubstituted title compounds in moderate to good yields under mild reaction conditions.
Collapse
Affiliation(s)
- Gadi Ranjith Kumar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India.,Academy of Scientific and Innovative Research, New Delhi 110001, India
| | - Yalla Kiran Kumar
- Academy of Scientific and Innovative Research, New Delhi 110001, India
| | - Ruchir Kant
- Molecular & Structural Biology Division, CSIR-Central Drug Research Institute,BS-10/1, Sector 10, Jankipuram extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Maddi Sridhar Reddy
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India.,Academy of Scientific and Innovative Research, New Delhi 110001, India
| |
Collapse
|
17
|
Parekh N, Thomas J, John J, Kusurkar R, De Borggraeve WM, Dehaen W. Synthetic Protocol toward Fused Pyrazolone Derivatives via a Michael Addition and Reductive Ring Closing Strategy. J Org Chem 2014; 79:5338-44. [DOI: 10.1021/jo5005795] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nikita Parekh
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven , Celestijnenlaan 200F, 3001 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
18
|
Squarcialupi L, Colotta V, Catarzi D, Varano F, Filacchioni G, Varani K, Corciulo C, Vincenzi F, Borea PA, Ghelardini C, Di Cesare Mannelli L, Ciancetta A, Moro S. 2-Arylpyrazolo[4,3-d]pyrimidin-7-amino derivatives as new potent and selective human A3 adenosine receptor antagonists. Molecular modeling studies and pharmacological evaluation. J Med Chem 2013; 56:2256-69. [PMID: 23427825 DOI: 10.1021/jm400068e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
On the basis of our previously reported 2-arylpyrazolo[4,3-d]pyrimidin-7-ones, a set of 2-arylpyrazolo[4,3-d]pyrimidin-7-amines were designed as new human (h) A3 adenosine receptor (AR) antagonists. Lipophilic groups with different steric bulk were introduced at the 5-position of the bicyclic scaffold (R5 = Me, Ph, CH2Ph), and different acyl and carbamoyl moieties (R7) were appended on the 7-amino group, as well as a para-methoxy group inserted on the 2-phenyl ring. The presence of acyl groups turned out to be of paramount importance for an efficient and selective binding at the hA3 AR. In fact, most of the 7-acylamino derivatives showed low nanomolar affinity (Ki = 2.5-45 nM) and high selectivity toward this receptor. A few selected pyrazolo[4,3-d]pyrimidin-7-amides were effective in counteracting oxaliplatin-induced apoptosis in rat astrocyte cell cultures, an in vitro model of neurotoxicity. Through an in silico receptor-driven approach the obtained binding data were rationalized and the molecular bases of the observed hA3 AR affinity and hA3 versus hA2A AR selectivity were explained.
Collapse
Affiliation(s)
- Lucia Squarcialupi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Catarzi D, Colotta V, Varano F, Poli D, Squarcialupi L, Filacchioni G, Varani K, Vincenzi F, Borea PA, Dal Ben D, Lambertucci C, Cristalli G. Pyrazolo[1,5-c]quinazoline derivatives and their simplified analogues as adenosine receptor antagonists: Synthesis, structure–affinity relationships and molecular modeling studies. Bioorg Med Chem 2013; 21:283-94. [DOI: 10.1016/j.bmc.2012.10.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/03/2012] [Accepted: 10/14/2012] [Indexed: 11/26/2022]
|
20
|
|
21
|
Cheong SL, Federico S, Venkatesan G, Mandel AL, Shao YM, Moro S, Spalluto G, Pastorin G. The A3 adenosine receptor as multifaceted therapeutic target: pharmacology, medicinal chemistry, and in silico approaches. Med Res Rev 2011; 33:235-335. [PMID: 22095687 DOI: 10.1002/med.20254] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adenosine is an ubiquitous local modulator that regulates various physiological and pathological functions by stimulating four membrane receptors, namely A(1), A(2A), A(2B), and A(3). Among these G protein-coupled receptors, the A(3) subtype is found mainly in the lung, liver, heart, eyes, and brain in our body. It has been associated with cerebroprotection and cardioprotection, as well as modulation of cellular growth upon its selective activation. On the other hand, its inhibition by selective antagonists has been reported to be potentially useful in the treatment of pathological conditions including glaucoma, inflammatory diseases, and cancer. In this review, we focused on the pharmacology and the therapeutic implications of the human (h)A(3) adenosine receptor (AR), together with an overview on the progress of hA(3) AR agonists, antagonists, allosteric modulators, and radioligands, as well as on the recent advances pertaining to the computational approaches (e.g., quantitative structure-activity relationships, homology modeling, molecular docking, and molecular dynamics simulations) applied to the modeling of hA(3) AR and drug design.
Collapse
Affiliation(s)
- Siew Lee Cheong
- Department of Pharmacy, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Yu F, Yan S, Hu L, Wang Y, Lin J. Cascade Reaction of Isatins with Heterocyclic Ketene Aminals: Synthesis of Imidazopyrroloquinoline Derivatives. Org Lett 2011; 13:4782-5. [PMID: 21848302 DOI: 10.1021/ol201783d] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Fuchao Yu
- Key Laboratory of Medicinal Chemistry for Natural Resources (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Shengjiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resources (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Ling Hu
- Key Laboratory of Medicinal Chemistry for Natural Resources (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Yongchao Wang
- Key Laboratory of Medicinal Chemistry for Natural Resources (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry for Natural Resources (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| |
Collapse
|
23
|
Synthesis, structure–affinity relationships, and molecular modeling studies of novel pyrazolo[3,4-c]quinoline derivatives as adenosine receptor antagonists. Bioorg Med Chem 2011; 19:3757-68. [DOI: 10.1016/j.bmc.2011.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 04/28/2011] [Accepted: 05/01/2011] [Indexed: 11/18/2022]
|
24
|
Poli D, Catarzi D, Colotta V, Varano F, Filacchioni G, Daniele S, Trincavelli L, Martini C, Paoletta S, Moro S. The identification of the 2-phenylphthalazin-1(2H)-one scaffold as a new decorable core skeleton for the design of potent and selective human A3 adenosine receptor antagonists. J Med Chem 2011; 54:2102-13. [PMID: 21401121 DOI: 10.1021/jm101328n] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Following a molecular simplification approach, we have identified the 2-phenylphthalazin-1(2H)-one (PHTZ) ring system as a new decorable core skeleton for the design of novel hA(3) adenosine receptor (AR) antagonists. Interest for this new series was driven by the structural similarity between the PHTZ skeleton and both the 2-aryl-1,2,4-triazolo[4,3-a]quinoxalin-1-one (TQX) and the 4-carboxamido-quinazoline (QZ) scaffolds extensively investigated in our previously reported studies. Our attention was focused at position 4 of the phthalazine nucleus where different amido and ureido moieties were introduced (compounds 2-20). Some of the new PHTZ compounds showed high hA(3) AR affinity and selectivity, the 2,5-dimethoxyphenylphthalazin-1(2H)-one 18 being the most potent and selective hA(3) AR antagonist among this series (K(i) = 0.776 nM; hA(1)/hA(3) and hA(2A)/hA(3) > 12000). Molecular docking studies on the PHTZ derivatives revealed for these compounds a binding mode similar to that of the previously reported TQX and QZ series, as was expected from the simplification approach.
Collapse
Affiliation(s)
- Daniela Poli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Firenze, Polo Scientifico, Via U. Schiff, 6-50019 Sesto Fiorentino (Firenze), Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Pyrazolo derivatives as potent adenosine receptor antagonists: an overview on the structure-activity relationships. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2011; 2011:480652. [PMID: 25954519 PMCID: PMC4411897 DOI: 10.1155/2011/480652] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 02/10/2011] [Indexed: 11/17/2022]
Abstract
In the past few decades, medicinal chemistry research towards potent and selective antagonists of human adenosine receptors (namely, A1, A2A, A2B, and A3) has been evolving rapidly. These antagonists are deemed therapeutically beneficial in several pathological conditions including neurological and renal disorders, cancer, inflammation, and glaucoma. Up to this point, many classes of compounds have been successfully synthesized and identified as potent human adenosine receptor antagonists. In this paper, an overview of the structure-activity relationship (SAR) profiles of promising nonxanthine pyrazolo derivatives is reported and discussed. We have emphasized the SAR for some representative structures such as pyrazolo-[4,3-e]-1,2,4-triazolo-[1,5-c]pyrimidines; pyrazolo-[3,4-c] or -[4,3-c]quinolines; pyrazolo-[4,3-d]pyrimidinones; pyrazolo-[3,4-d]pyrimidines and pyrazolo-[1,5-a]pyridines. This overview not only clarifies the structural requirements deemed essential for affinity towards individual adenosine receptor subtypes, but it also sheds light on the rational design and optimization of existing structural templates to allow us to conceive new, more potent adenosine receptor antagonists.
Collapse
|
26
|
Al-Salahi R, Geffken D, Koellner M. A New Series of 2-Alkoxy(aralkoxy)-[1,2,4]triazolo[1,5-a]quinazolin-5-ones as Adenosine Receptor Antagonists. Chem Pharm Bull (Tokyo) 2011; 59:730-3. [DOI: 10.1248/cpb.59.730] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Rashad Al-Salahi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University
| | - Detlef Geffken
- Department of Chemistry, Institute of Pharmacy, Hamburg University
| | - Maria Koellner
- Department of Chemistry, Institute of Pharmacy, Hamburg University
| |
Collapse
|
27
|
Jachak MN, Bagul SM, Kazi MA, Toche RB. Novel synthetic protocol toward pyrazolo[3,4-h]-[1,6]naphthyridines via Friedlander condensation of new 4-aminopyrazolo[3,4-b]pyridine-5-carbaldehyde with reactive α-methylene ketones. J Heterocycl Chem 2010. [DOI: 10.1002/jhet.242] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Mager PP. Hybrid 3-D QSAR approach using a generalized-regression genetic-neural network. MOLECULAR SIMULATION 2010. [DOI: 10.1080/08927020290018741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Lenzi O, Colotta V, Catarzi D, Varano F, Poli D, Filacchioni G, Varani K, Vincenzi F, Borea PA, Paoletta S, Morizzo E, Moro S. 2-Phenylpyrazolo[4,3-d]pyrimidin-7-one as a new scaffold to obtain potent and selective human A3 adenosine receptor antagonists: new insights into the receptor-antagonist recognition. J Med Chem 2009; 52:7640-52. [PMID: 19743865 DOI: 10.1021/jm900718w] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A molecular simplification approach of previously reported 2-arylpyrazolo[3,4-c]quinolin-4-ones was applied to design 2-arylpyrazolo[4,3-d]pyrimidin-7-one derivatives as new human A(3) adenosine receptor antagonists. Substituents with different lipophilicity and steric hindrance were introduced at the 5-position of the bicyclic scaffold (R(5) = H, Me, Et, Ph, CH(2)Ph) and on the 2-phenyl ring (OMe, Me). Most of the synthesized derivatives were highly potent hA(3) adenosine receptor antagonists, the best being the 2-(4-methoxyphenyl)pyrazolo[4,3-d]pyrimidin-7-one (K(i) = 1.2 nM). The new compounds were also highly selective, being completely devoid of affinity toward hA(1), hA(2A), and hA(2B) adenosine receptors. On the basis of the recently published human A(2A) receptor crystallographic information, we propose a novel receptor-driven hypothesis to explain both A(3) AR affinity and A(3) versus A(2A) selectivity profiles of these new antagonists.
Collapse
Affiliation(s)
- Ombretta Lenzi
- Dipartimento di Scienze Farmaceutiche, Laboratorio di Progettazione, Sintesi e Studio di Eterocicli Biologicamente Attivi, Università di Firenze, Polo Scientifico, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Strakova I, Turks M, Bizdena E, Belyakov S, Tokmakov A, Strakovs A. Reactions of 1-aryl- and 2,3-diaryl- 5-diazo-6,6-dimethyl-4-oxo-4,5,6,7-tetra- hydroindazoles with N-ethyl- and N-phenyl-substituted maleimides. Chem Heterocycl Compd (N Y) 2009. [DOI: 10.1007/s10593-009-0298-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Jacobson KA, Klutz AM, Tosh DK, Ivanov AA, Preti D, Baraldi PG. Medicinal chemistry of the A3 adenosine receptor: agonists, antagonists, and receptor engineering. Handb Exp Pharmacol 2009:123-59. [PMID: 19639281 PMCID: PMC3413728 DOI: 10.1007/978-3-540-89615-9_5] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A(3) adenosine receptor (A(3)AR) ligands have been modified to optimize their interaction with the A(3)AR. Most of these modifications have been made to the N(6) and C2 positions of adenine as well as the ribose moiety, and using a combination of these substitutions leads to the most efficacious, selective, and potent ligands. A(3)AR agonists such as IB-MECA and Cl-IB-MECA are now advancing into Phase II clinical trials for treatments targeting diseases such as cancer, arthritis, and psoriasis. Also, a wide number of compounds exerting high potency and selectivity in antagonizing the human (h)A(3)AR have been discovered. These molecules are generally characterized by a notable structural diversity, taking into account that aromatic nitrogen-containing monocyclic (thiazoles and thiadiazoles), bicyclic (isoquinoline, quinozalines, (aza)adenines), tricyclic systems (pyrazoloquinolines, triazoloquinoxalines, pyrazolotriazolopyrimidines, triazolopurines, tricyclic xanthines) and nucleoside derivatives have been identified as potent and selective A(3)AR antagonists. Probably due to the "enigmatic" physiological role of A(3)AR, whose activation may produce opposite effects (for example, concerning tissue protection in inflammatory and cancer cells) and may produce effects that are species dependent, only a few molecules have reached preclinical investigation. Indeed, the most advanced A(3)AR antagonists remain in preclinical testing. Among the antagonists described above, compound OT-7999 is expected to enter clinical trials for the treatment of glaucoma, while several thiazole derivatives are in development as antiallergic, antiasthmatic and/or antiinflammatory drugs.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Colotta V, Capelli F, Lenzi O, Catarzi D, Varano F, Poli D, Vincenzi F, Varani K, Borea PA, Dal Ben D, Volpini R, Cristalli G, Filacchioni G. Novel potent and highly selective human A3 adenosine receptor antagonists belonging to the 4-amido-2-arylpyrazolo[3,4-c]quinoline series: Molecular docking analysis and pharmacological studies. Bioorg Med Chem 2009; 17:401-10. [DOI: 10.1016/j.bmc.2008.10.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 10/07/2008] [Accepted: 10/08/2008] [Indexed: 10/21/2022]
|
33
|
Tuccinardi T, Schenone S, Bondavalli F, Brullo C, Bruno O, Mosti L, Zizzari AT, Tintori C, Manetti F, Ciampi O, Trincavelli ML, Martini C, Martinelli A, Botta M. Substituted Pyrazolo[3,4-b]pyridines as Potent A1 Adenosine Antagonists: Synthesis, Biological Evaluation, and Development of an A1 Bovine Receptor Model. ChemMedChem 2008; 3:898-913. [DOI: 10.1002/cmdc.200700355] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Colotta V, Catarzi D, Varano F, Lenzi O, Filacchioni G, Martini C, Trincavelli L, Ciampi O, Traini C, Pugliese AM, Pedata F, Morizzo E, Moro S. Synthesis, ligand–receptor modeling studies and pharmacological evaluation of novel 4-modified-2-aryl-1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives as potent and selective human A3 adenosine receptor antagonists. Bioorg Med Chem 2008; 16:6086-102. [PMID: 18468446 DOI: 10.1016/j.bmc.2008.04.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 04/09/2008] [Accepted: 04/18/2008] [Indexed: 01/15/2023]
|
35
|
Mosti L, Fossa P, Menozzi G, Trincavelli L, Floreani M. Quinolinedione nucleus as a novel scaffold for A1 and A2A adenosine receptor antagonists. Med Chem Res 2008. [DOI: 10.1007/s00044-008-9100-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
González MP, Terán C, Teijeira M. Search for new antagonist ligands for adenosine receptors from QSAR point of view. How close are we? Med Res Rev 2008; 28:329-71. [PMID: 17668454 DOI: 10.1002/med.20108] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In view of the large libraries of nucleoside analogues that are now being handled in organic synthesis, the identification of drug biological activity is advisable prior to synthesis and this can be achieved by employing predictive biological property methods. In this sense, Quantitative Structure-Activity Relationships (QSAR) or docking approaches have emerged as promising tools. Although a large number of in silico approaches have been described in the literature for the prediction of different biological activities, the use of QSAR applications to develop adenosine receptor (AR) antagonists is not common as for the case of the antibiotics and anticancer compounds for instance. The intention of this review is to summarize the present knowledge concerning computational predictions of new molecules as adenosine receptor antagonists.
Collapse
|
37
|
Sharma BK, Sarbhai K, Singh P, Sharma S. Quantitative structure-activity relationship study on affinity profile of a series of 1,8-naphthyridine antagonists toward bovine adenosine receptors. J Enzyme Inhib Med Chem 2008; 23:437-43. [DOI: 10.1080/14756360701655073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- B. K. Sharma
- Department of Chemistry, S. K. Government College, Sikar, 332 001
| | - Kirti Sarbhai
- Department of Chemistry, S. K. Government College, Sikar, 332 001
| | - P. Singh
- Department of Chemistry, S. K. Government College, Sikar, 332 001
| | - Susheela Sharma
- Department of Engineering Chemistry, Sobhasaria Engineering College, Sikar, 332 021, INDIA
| |
Collapse
|
38
|
Smyth LA, Matthews TP, Horton PN, Hursthouse MB, Collins I. Divergent cyclisations of 2-(5-amino-4-carbamoyl-1H-pyrazol-3-yl)acetic acids with formyl and acetyl electrophiles. Tetrahedron 2007. [DOI: 10.1016/j.tet.2007.07.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Jachak MN, Avhale AB, Medhane VJ, Toche RB. A convenient route for the synthesis of pyrazolo[3,4-d]pyrimidine, pyrazolo[3,4-b][1,6]naphthyridine and pyrazolo[3,4-b]quinoline derivatives. J Heterocycl Chem 2006. [DOI: 10.1002/jhet.5570430506] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Invited Lectures : Overviews Purinergic signalling: past, present and future. Purinergic Signal 2006; 2:1-324. [PMID: 18404494 PMCID: PMC2096525 DOI: 10.1007/s11302-006-9006-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2006] [Indexed: 12/11/2022] Open
|
41
|
Duggineni S, Sawant D, Saha B, Kundu B. Application of modified Pictet–Spengler reaction for the synthesis of thiazolo- and pyrazolo-quinolines. Tetrahedron 2006. [DOI: 10.1016/j.tet.2006.01.063] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Moro S, Gao ZG, Jacobson KA, Spalluto G. Progress in the pursuit of therapeutic adenosine receptor antagonists. Med Res Rev 2006; 26:131-59. [PMID: 16380972 PMCID: PMC9194718 DOI: 10.1002/med.20048] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ever since the discovery of the hypotensive and bradycardiac effects of adenosine, adenosine receptors continue to represent promising drug targets. First, this is due to the fact that the receptors are expressed in a large variety of tissues. In particular, the actions of adenosine (or methylxanthine antagonists) in the central nervous system, in the circulation, on immune cells, and on other tissues can be beneficial in certain disorders. Second, there exists a large number of ligands, which have been generated by introducing several modifications in the structure of the lead compounds (adenosine and methylxanthine), some of them highly specific. Four adenosine receptor subtypes (A1, A2A, A2B, and A3) have been cloned and pharmacologically characterized, all of which are G protein-coupled receptors. Adenosine receptors can be distinguished according to their preferred mechanism of signal transduction: A1 and A3 receptors interact with pertussis toxin-sensitive G proteins of the Gi and Go family; the canonical signaling mechanism of the A2A and of the A2B receptors is stimulation of adenylyl cyclase via Gs proteins. In addition to the coupling to adenylyl cyclase, all four subtypes may positively couple to phospholipase C via different G protein subunits. The development of new ligands, in particular, potent and selective antagonists, for all subtypes of adenosine receptors has so far been directed by traditional medicinal chemistry. The availability of genetic information promises to facilitate understanding of the drug-receptor interaction leading to the rational design of a potentially therapeutically important class of drugs. Moreover, molecular modeling may further rationalize observed interactions between the receptors and their ligands. In this review, we will summarize the most relevant progress in developing new therapeutic adenosine receptor antagonists.
Collapse
Affiliation(s)
- Stefano Moro
- Molecular Modeling Section, Dipartimento di Scienze Farmaceutiche, Università di Padova, Via Marzolo 5, I-35131 Padova, Italy.
| | | | | | | |
Collapse
|
43
|
Catarzi D, Colotta V, Varano F, Calabri FR, Lenzi O, Filacchioni G, Trincavelli L, Martini C, Tralli A, Montopoli C, Moro S. 2-aryl-8-chloro-1,2,4-triazolo[1,5-a]quinoxalin-4-amines as highly potent A1 and A3 adenosine receptor antagonists. Bioorg Med Chem 2005; 13:705-15. [PMID: 15653338 DOI: 10.1016/j.bmc.2004.10.050] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Revised: 10/20/2004] [Accepted: 10/25/2004] [Indexed: 11/27/2022]
Abstract
Some 2-aryl-8-chloro-1,2,4-triazolo[1,5-a]quinoxaline derivatives 2-18, obtained by introducing different substituents on either the 4-amino moiety (acyl or carbamoyl groups) or the 2-phenyl ring (4-OCH3) of previously reported 8-chloro-2-phenyl-1,2,4-triazolo[1,5-a]quinoxalin-4-amine (1), have been synthesized and tested in radioligand binding assays at bovine A1 and A(2A) and at cloned human A1 and A3 adenosine receptors. The rationally designed 8-chloro-2-(4-methoxy-phenyl)-1,2,4-triazolo[1,5-a]quinoxalin-4-acetylamine (14) can be considered one of the most potent and hA3 versus hA1 selective AR antagonists reported till now. The structure-activity relationships of compounds 2-18 are in agreement with those of previously reported 2-aryl-1,2,4-triazolo[4,3-a]quinoxalines (series A) and 2-arylpyrazolo[3,4-c]quinolines (series B), thus suggesting a similar AR binding mode. In fact, the importance for the A3 receptor-ligand interaction of both a strong acidic NH proton donor and a C=O proton acceptor at position-4, able to engage hydrogen-bonding interactions with specific sites on the A3 AR, has been confirmed. Using our recently published hA3 receptor model, to better elucidate our experimental results, we decided to theoretically depict the putative TM binding motif of the herein reported 1,2,4-triazolo[1,5-a]quinoxaline derivatives on human A3 receptor. Structure-activity relationships have been explained analyzing the three-dimensional structure of the antagonist-receptor models obtained by molecular docking simulation.
Collapse
Affiliation(s)
- Daniela Catarzi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Firenze, Polo Scientifico, Via U. Schiff, 6, 50019 Sesto Fiorentino (Firenze), Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Fossa P, Pestarino M, Menozzi G, Mosti L, Schenone S, Ranise A, Bondavalli F, Trincavelli ML, Lucacchini A, Martini C. New pyrazolo[3,4-b]pyridones as selective A(1) adenosine receptor antagonists: synthesis, biological evaluation and molecular modelling studies. Org Biomol Chem 2005; 3:2262-70. [PMID: 16010360 DOI: 10.1039/b502831k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of ethyl 4-amino-1-(2-chloro-2-phenylethyl)-6-oxo-6,7-dihydro-1H-pyrazolo[3,4-b]pyridine-5-carboxylates () has been synthesized as potential A(1) adenosine receptor (A(1) AR) ligands. Binding affinities of the new compounds were determined for adenosine A(1), A(2A) and A(3) receptors. Compounds and showed good affinity (K(i)= 299 nM and 517 nM, respectively) and selectivity towards A(1) AR, whereas showed good affinity for A(2A) AR (K(i)= 290 nM), higher than towards A(1) AR (K(i)= 1000 nM). The only arylamino derivative of the series displayed high affinity (K(i)= 4.6 nM) and selectivity for A(3) AR. Molecular modelling and 3D-QSAR (CoMFA) studies carried out on the most active compounds gave further support to the pharmacological results.
Collapse
Affiliation(s)
- Paola Fossa
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Genova, Viale Benedetto XV 3, 16132 Genova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Chang LCW, Brussee J, Ijzerman AP. Non-Xanthine Antagonists for the Adenosine A1 Receptor. Chem Biodivers 2004; 1:1591-626. [PMID: 17191804 DOI: 10.1002/cbdv.200490122] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lisa C W Chang
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, P.O. Box 9502, NL-2300 RA Leiden
| | | | | |
Collapse
|
47
|
Liu CH, Wang B, Li WZ, Yun LH, Liu Y, Su RB, Li J, Liu H. Design, synthesis, and biological evaluation of novel 4-alkylamino-1-hydroxymethylimidazo[1,2-a]quinoxalines as adenosine A1 receptor antagonists. Bioorg Med Chem 2004; 12:4701-7. [PMID: 15358296 DOI: 10.1016/j.bmc.2004.06.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2004] [Revised: 06/20/2004] [Accepted: 06/21/2004] [Indexed: 11/20/2022]
Abstract
A series of 4-alkylamino-1-hydroxymethylimidazo[1,2-a]quinoxalines have been synthesized and evaluated for their adenosine A(1) receptor inhibitory activity in the radioligand binding assays. The compounds were tested for the inhibition percent (IP) and the affinity toward A(1)AR (K(i)) that IP were more than 90% in the nanomolar range. 4-Cyclopentylamino-7,8-dichloro-1-hydroxymethylimidazo[1,2-a]quinoxaline 18 is the most potent compound in this series, having K(i)=7nM, which is remarkably higher than that of IRFI-165 (K(i)=48). 1-Hydroxymethyl groups of the tricyclic heteroarmatic compounds displayed the potent affinities toward A(1)AR.
Collapse
Affiliation(s)
- Chun-He Liu
- No. 7 Department, Beijing Institute of Pharmacology and Toxicology Academy, 27 Taiping Road, Beijing 100850, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Okamura T, Kurogi Y, Hashimoto K, Nishikawa H, Nagao Y. Facile synthesis of fused 1,2,4-triazolo[1,5-c]pyrimidine derivatives as human adenosine A3 receptor ligands. Bioorg Med Chem Lett 2004; 14:2443-6. [PMID: 15109629 DOI: 10.1016/j.bmcl.2004.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Revised: 03/03/2004] [Accepted: 03/04/2004] [Indexed: 10/26/2022]
Abstract
A facile synthetic method for fused triazolopyrimidine derivatives having high affinity and selectivity for human adenosine A(3) receptors is reported. The fused triazolopyrimidine derivatives were easily prepared by one-pot reaction using acylhydrazines and imidates prepared from amine derivatives bearing cyano group and orthoesters in situ. This synthetic method was useful in finding new tricyclic adenosine A(3) receptor antagonists and also in diversifying the substituents at two positions on the fused triazolopyrimidine ring.
Collapse
Affiliation(s)
- Takashi Okamura
- Pharmaceutical Technology Institute, Otsuka Pharmaceutical Factory, Inc. Tateiwa, Muya-cho, Naruto, Tokushima 772-8601, Japan.
| | | | | | | | | |
Collapse
|
49
|
Catarzi D, Colotta V, Varano F, Filacchioni G, Martini C, Trincavelli L, Lucacchini A. 1,2,4-Triazolo[1,5-a]quinoxaline derivatives: synthesis and biological evaluation as adenosine receptor antagonists. ACTA ACUST UNITED AC 2004; 59:71-81. [PMID: 14871498 DOI: 10.1016/j.farmac.2003.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Accepted: 09/05/2003] [Indexed: 11/24/2022]
Abstract
Since most of the reported adenosine receptor antagonists are 2-(hetero)aryl-substituted tricyclic heteroaromatic derivatives, in the present study we report the synthesis and the biological evaluation of a new set of 4-amino-1,2,4-triazolo[1,5-a]quinoxalines containing at position-2 an ethyl carboxylate group or a hydrogen atom. The structure-activity relationships on these compounds were in accordance with those of a previously reported series of analogous size and shape, thus suggesting a similar A(1)-binding mode. In particular, the binding data indicate that alkylation of the 4-amino group of these derivatives lead to potent A(1)-receptor antagonists. Moreover, as new results, this study has pointed out that the ethyl 2-carboxylate group can advantageously replace the 2-(hetero)aryl ring of previously reported triazoloquinoxaline derivatives, affording an ameliorated interaction with the A(1)-receptor subtype.
Collapse
Affiliation(s)
- Daniela Catarzi
- Dipartimento di Scienze Farmaceutiche, Polo Scientifico, Università degli Studi di Firenze, Via U. Schiff, 6, Sesto Fiorentino (FZ), 50019, Italy.
| | | | | | | | | | | | | |
Collapse
|
50
|
Colotta V, Catarzi D, Varano F, Filacchioni G, Martini C, Trincavelli L, Lucacchini A. Synthesis of 4-amino-6-(hetero)arylalkylamino-1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives as potent A2A adenosine receptor antagonists. Bioorg Med Chem 2003; 11:5509-18. [PMID: 14642595 DOI: 10.1016/j.bmc.2003.09.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In previous papers (Colotta, V. et al. Arch. Pharm. Pharm. Med. Chem. 1999, 332, 39. Colotta, V. et al. J. Med. Chem. 2000, 43, 1158) we reported the synthesis and binding affinity at bovine (b) A(1) and A(2A) and human (h) A(3) adenosine receptors (ARs) of the 4-amino-6-benzylamino-2-phenyl-1,2,4-triazolo[4,3-a]quinoxalin-1-one (compound A) which resulted in a potent and selective A(2A) AR antagonist. Compound A provided the lead compound of a series of 6- or 8-(hetero)arylalkylamino-4-amino-2-phenyl-1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives (compounds 1-20) which are the object of this paper. Most of the newly synthesized compounds are inactive at hA(3) ARs while they possess both nanomolar bA(2A) affinities and different degrees of bA(2A) versus bA(1) selectivity. The binding data show that hydrophilic substituents on the benzyl moiety are the most profitable for bA(2A) receptor affinity. Furthermore, their steric hindrance seems to play an important role for the bA(2A) AR interaction, thus suggesting that the 6-aralkylamino moiety of these ligands interacts with a size-limited binding pocket of this AR subtype. Thus, the SAR studies provided us some new insights about the structural requirements of the bA(2A) AR recognition site.
Collapse
Affiliation(s)
- Vittoria Colotta
- Dipartimento di Scienze Farmaceutiche, Polo Scientifico, Universitá di Firenze, Via Ugo Schiff, 6, 50019 Sesto (FJ), Fiorentino, Italy.
| | | | | | | | | | | | | |
Collapse
|