1
|
Gohil D, Roy R. Beyond Nucleotide Excision Repair: The Importance of XPF in Base Excision Repair and Its Impact on Cancer, Inflammation, and Aging. Int J Mol Sci 2024; 25:13616. [PMID: 39769376 PMCID: PMC11728164 DOI: 10.3390/ijms252413616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
DNA repair involves various intricate pathways that work together to maintain genome integrity. XPF (ERCC4) is a structural endonuclease that forms a heterodimer with ERCC1 that is critical in both single-strand break repair (SSBR) and double-strand break repair (DSBR). Although the mechanistic function of ERCC1/XPF has been established in nucleotide excision repair (NER), its role in long-patch base excision repair (BER) has recently been discovered through the 5'-Gap pathway. This study briefly explores the roles of XPF in different pathways to emphasize the importance of XPF in DNA repair. XPF deficiency manifests in various diseases, including cancer, neurodegeneration, and aging-related disorders; it is also associated with conditions such as Xeroderma pigmentosum and fertility issues. By examining the molecular mechanisms and pathological consequences linked to XPF dysfunction, this study aims to elucidate the crucial role of XPF in genomic stability as a repair protein in BER and provide perspectives regarding its potential as a therapeutic target in related diseases.
Collapse
Affiliation(s)
| | - Rabindra Roy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA;
| |
Collapse
|
2
|
Lu J, Wu XJ, Hassouna A, Wang KS, Li Y, Feng T, Zhao Y, Jin M, Zhang B, Ying T, Li J, Cheng L, Liu J, Huang Y. Gemcitabine‑fucoxanthin combination in human pancreatic cancer cells. Biomed Rep 2023; 19:46. [PMID: 37324167 PMCID: PMC10265583 DOI: 10.3892/br.2023.1629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023] Open
Abstract
Gemcitabine is a chemotherapeutic agent for pancreatic cancer treatment. It has also been demonstrated to inhibit human pancreatic cancer cell lines, MIA PaCa-2 and PANC-1. The aim of the present study was to investigate the suppressive effect of fucoxanthin, a marine carotenoid, in combination with gemcitabine on pancreatic cancer cells. MTT assays and cell cycle analysis using flow cytometry were performed to study the mechanism of action. The results revealed that combining a low dose of fucoxanthin with gemcitabine enhanced the cell viability of human embryonic kidney cells, 293, while a high dose of fucoxanthin enhanced the inhibitory effect of gemcitabine on the cell viability of this cell line. In addition, the enhanced effect of fucoxanthin on the inhibitory effect of gemcitabine on PANC-1 cells was significant (P<0.01). Fucoxanthin combined with gemcitabine also exerted significant enhancement of the anti-proliferation effect in MIA PaCa-2 cells in a concentration dependent manner (P<0.05), compared with gemcitabine treatment alone. In conclusion, fucoxanthin improved the cytotoxicity of gemcitabine on human pancreatic cancer cells at concentrations that were not cytotoxic to non-cancer cells. Thus, fucoxanthin has the potential to be used as an adjunct in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Jun Lu
- College of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P.R. China
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518071, P.R. China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| | - Xiaowu Jenifer Wu
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Amira Hassouna
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo 11956, Egypt
| | - Kelvin Sheng Wang
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Yan Li
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Tao Feng
- College of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P.R. China
| | - Yu Zhao
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Minfeng Jin
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Baohong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, P.R. China
| | - Lufeng Cheng
- Department of Pharmacology, College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Johnson Liu
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yue Huang
- Shanghai Business School, Fengxian, Shanghai 201499, P.R. China
| |
Collapse
|
3
|
Gu L, Hickey RJ, Malkas LH. Therapeutic Targeting of DNA Replication Stress in Cancer. Genes (Basel) 2023; 14:1346. [PMID: 37510250 PMCID: PMC10378776 DOI: 10.3390/genes14071346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/30/2023] Open
Abstract
This article reviews the currently used therapeutic strategies to target DNA replication stress for cancer treatment in the clinic, highlighting their effectiveness and limitations due to toxicity and drug resistance. Cancer cells experience enhanced spontaneous DNA damage due to compromised DNA replication machinery, elevated levels of reactive oxygen species, loss of tumor suppressor genes, and/or constitutive activation of oncogenes. Consequently, these cells are addicted to DNA damage response signaling pathways and repair machinery to maintain genome stability and support survival and proliferation. Chemotherapeutic drugs exploit this genetic instability by inducing additional DNA damage to overwhelm the repair system in cancer cells. However, the clinical use of DNA-damaging agents is limited by their toxicity and drug resistance often arises. To address these issues, the article discusses a potential strategy to target the cancer-associated isoform of proliferating cell nuclear antigen (caPCNA), which plays a central role in the DNA replication and damage response network. Small molecule and peptide agents that specifically target caPCNA can selectively target cancer cells without significant toxicity to normal cells or experimental animals.
Collapse
Affiliation(s)
- Long Gu
- Department of Molecular Diagnostics & Experimental Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Robert J Hickey
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Linda H Malkas
- Department of Molecular Diagnostics & Experimental Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
4
|
Panagiotakis S, Mavroidi B, Athanasopoulos A, Gonçalves AR, Bugnicourt-Moreira L, Regagnon T, Boukos N, Charalambidis G, Coutsolelos AG, Grigalavicius M, Theodossiou TA, Berg K, Ladavière C, Pelecanou M, Yannakopoulou K. Small anticancer drug release by light: Photochemical internalization of porphyrin-β-cyclodextrin nanoparticles. Carbohydr Polym 2023; 306:120579. [PMID: 36746578 DOI: 10.1016/j.carbpol.2023.120579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/24/2022] [Accepted: 12/10/2022] [Indexed: 01/15/2023]
Abstract
Aiming to engineer simple, neutral, strongly amphiphilic photoactive nanoparticles (NPs) to specifically target cancer cell lysosomes for drug transport and light-controlled release, new conjugates of β-cyclodextrin with highly hydrophobic triphenylporphyrin bearing different alkyl chains, were synthesized. Although differently sized, all conjugates self-assemble into ~60 nm NPs in water and display similar photoactivity. The NPs target selectively the lysosomes of breast adenocarcinoma MCF-7 cells, embedding in vesicular membranes, as experiments with model liposomes indicate. Either empty or drug-loaded, the NPs lack dark toxicity for 48 h. They bind with differently structured anticancer drugs tamoxifen and gemcitabine as its N-adamantyl derivative. Red light irradiation of cells incubated with drug-loaded NPs results in major reduction of viability (>85 %) for 48 h displaying significant synergy of photo-chemotoxicity, as opposed to empty NPs, and to loaded non-irradiated NPs, in manifestation of photochemical internalization (PCI). Our approach expands the field of PCI into different small molecule chemotherapeutics.
Collapse
Affiliation(s)
- Stylianos Panagiotakis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| | - Barbara Mavroidi
- Institute of Biosciences & Applications, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| | - Alexandros Athanasopoulos
- Institute of Biosciences & Applications, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| | - Antonio Ricardo Gonçalves
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| | - Loïc Bugnicourt-Moreira
- University of Lyon, CNRS, UMR 5223, IMP, UCBL, 15 bd André Latarjet, F-69622 Villeurbanne, France.
| | - Theo Regagnon
- University of Lyon, CNRS, UMR 5223, IMP, UCBL, 15 bd André Latarjet, F-69622 Villeurbanne, France.
| | - Nikos Boukos
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| | - George Charalambidis
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes Campus, 70013 Heraklion, Crete, Greece.
| | - Athanasios G Coutsolelos
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes Campus, 70013 Heraklion, Crete, Greece.
| | - Mantas Grigalavicius
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital - Radium Hospital, 0379 Oslo, Norway.
| | - Theodossis A Theodossiou
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital - Radium Hospital, 0379 Oslo, Norway.
| | - Kristian Berg
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital - Radium Hospital, 0379 Oslo, Norway.
| | - Catherine Ladavière
- University of Lyon, CNRS, UMR 5223, IMP, UCBL, 15 bd André Latarjet, F-69622 Villeurbanne, France.
| | - Maria Pelecanou
- Institute of Biosciences & Applications, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| | - Konstantina Yannakopoulou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| |
Collapse
|
5
|
Islam MA, Barshetty MM, Srinivasan S, Dudekula DB, Rallabandi VPS, Mohammed S, Natarajan S, Park J. Identification of Novel Ribonucleotide Reductase Inhibitors for Therapeutic Application in Bile Tract Cancer: An Advanced Pharmacoinformatics Study. Biomolecules 2022; 12:biom12091279. [PMID: 36139117 PMCID: PMC9496582 DOI: 10.3390/biom12091279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022] Open
Abstract
Biliary tract cancer (BTC) is constituted by a heterogeneous group of malignant tumors that may develop in the biliary tract, and it is the second most common liver cancer. Human ribonucleotide reductase M1 (hRRM1) has already been proven to be a potential BTC target. In the current study, a de novo design approach was used to generate novel and effective chemical therapeutics for BTC. A set of comprehensive pharmacoinformatics approaches was implemented and, finally, seventeen potential molecules were found to be effective for the modulation of hRRM1 activity. Molecular docking, negative image-based ShaEP scoring, absolute binding free energy, in silico pharmacokinetics, and toxicity assessments corroborated the potentiality of the selected molecules. Almost all molecules showed higher affinity in comparison to gemcitabine and naphthyl salicylic acyl hydrazone (NSAH). On binding interaction analysis, a number of critical amino acids was found to hold the molecules at the active site cavity. The molecular dynamics (MD) simulation study also indicated the stability between protein and ligands. High negative MM-GBSA (molecular mechanics generalized Born and surface area) binding free energy indicated the potentiality of the molecules. Therefore, the proposed molecules might have the potential to be effective therapeutics for the management of BTC.
Collapse
Affiliation(s)
- Md Ataul Islam
- 3BIGS Omicscore Private Limited, 909 Lavelle Building, Richmond Circle, Bangalore 560025, India
| | | | - Sridhar Srinivasan
- 3BIGS Omicscore Private Limited, 909 Lavelle Building, Richmond Circle, Bangalore 560025, India
| | - Dawood Babu Dudekula
- 3BIGS Omicscore Private Limited, 909 Lavelle Building, Richmond Circle, Bangalore 560025, India
| | | | - Sameer Mohammed
- 3BIGS Omicscore Private Limited, 909 Lavelle Building, Richmond Circle, Bangalore 560025, India
| | | | - Junhyung Park
- 3BIGS Co., Ltd., B-831, Geumgang Penterium IX Tower, Hwaseong 18469, Korea
- Correspondence:
| |
Collapse
|
6
|
Chakraborty S, Mukherjee P, Sengupta R. Ribonucleotide reductase: Implications of thiol S-nitrosylation and tyrosine nitration for different subunits. Nitric Oxide 2022; 127:26-43. [PMID: 35850377 DOI: 10.1016/j.niox.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/20/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022]
Abstract
Ribonucleotide reductase (RNR) is a multi-subunit enzyme responsible for catalyzing the rate-limiting step in the production of deoxyribonucleotides essential for DNA synthesis and repair. The active RNR complex is composed of multimeric R1 and R2 subunits. The RNR catalysis involves the formation of tyrosyl radicals in R2 subunits and thiyl radicals in R1 subunits. Despite the quaternary structure and cofactor diversity, all the three classes of RNR have a conserved cysteine residue at the active site which is converted into a thiyl radical that initiates the substrate turnover, suggesting that the catalytic mechanism is somewhat similar for all three classes of the RNR enzyme. Increased RNR activity has been associated with malignant transformation, cancer cell growth, and tumorigenesis. Efforts concerning the understanding of RNR inhibition in designing potent RNR inhibitors/drugs as well as developing novel approaches for antibacterial, antiviral treatments, and cancer therapeutics with improved radiosensitization have been made in clinical research. This review highlights the precise and potent roles of NO in RNR inhibition by targeting both the subunits. Under nitrosative stress, the thiols of the R1 subunits have been found to be modified by S-nitrosylation and the tyrosyl radicals of the R2 subunits have been modified by nitration. In view of the recent advances and progresses in the field of nitrosative modifications and its fundamental role in signaling with implications in health and diseases, the present article focuses on the regulations of RNR activity by S-nitrosylation of thiols (R1 subunits) and nitration of tyrosyl residues (R2 subunits) which will further help in designing new drugs and therapies.
Collapse
Affiliation(s)
- Surupa Chakraborty
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, West Bengal, India
| | - Prerona Mukherjee
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, West Bengal, India
| | - Rajib Sengupta
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, West Bengal, India.
| |
Collapse
|
7
|
Huff SE, Winter JM, Dealwis CG. Inhibitors of the Cancer Target Ribonucleotide Reductase, Past and Present. Biomolecules 2022; 12:biom12060815. [PMID: 35740940 PMCID: PMC9221315 DOI: 10.3390/biom12060815] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 01/02/2023] Open
Abstract
Ribonucleotide reductase (RR) is an essential multi-subunit enzyme found in all living organisms; it catalyzes the rate-limiting step in dNTP synthesis, namely, the conversion of ribonucleoside diphosphates to deoxyribonucleoside diphosphates. As expression levels of human RR (hRR) are high during cell replication, hRR has long been considered an attractive drug target for a range of proliferative diseases, including cancer. While there are many excellent reviews regarding the structure, function, and clinical importance of hRR, recent years have seen an increase in novel approaches to inhibiting hRR that merit an updated discussion of the existing inhibitors and strategies to target this enzyme. In this review, we discuss the mechanisms and clinical applications of classic nucleoside analog inhibitors of hRRM1 (large catalytic subunit), including gemcitabine and clofarabine, as well as inhibitors of the hRRM2 (free radical housing small subunit), including triapine and hydroxyurea. Additionally, we discuss novel approaches to targeting RR and the discovery of new classes of hRR inhibitors.
Collapse
Affiliation(s)
- Sarah E. Huff
- Department of Pediatrics, University of California, San Diego, CA 92093, USA;
| | - Jordan M. Winter
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Akron, OH 44106, USA;
| | - Chris G. Dealwis
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence:
| |
Collapse
|
8
|
Meyer A, Kehl A, Cui C, Reichardt FAK, Hecker F, Funk LM, Pan KT, Urlaub H, Tittmann K, Stubbe J, Bennati M. 19F Electron-Nuclear Double Resonance Reveals Interaction between Redox-Active Tyrosines across the α/β Interface of E. coli Ribonucleotide Reductase. J Am Chem Soc 2022; 144:11270-11282. [PMID: 35652913 PMCID: PMC9248007 DOI: 10.1021/jacs.2c02906] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Ribonucleotide reductases
(RNRs) catalyze the reduction of ribonucleotides
to deoxyribonucleotides, thereby playing a key role in DNA replication
and repair. Escherichia coli class
Ia RNR is an α2β2 enzyme complex
that uses a reversible multistep radical transfer (RT) over 32 Å
across its two subunits, α and β, to initiate, using its
metallo-cofactor in β2, nucleotide reduction in α2. Each step is proposed to involve a distinct proton-coupled
electron-transfer (PCET) process. An unresolved step is the RT involving
Y356(β) and Y731(α) across the α/β
interface. Using 2,3,5-F3Y122-β2 with 3,5-F2Y731-α2, GDP (substrate) and TTP (allosteric effector), a Y356• intermediate was trapped and its identity was
verified by 263 GHz electron paramagnetic resonance (EPR) and 34 GHz
pulse electron–electron double resonance spectroscopies. 94
GHz 19F electron-nuclear double resonance spectroscopy
allowed measuring the interspin distances between Y356• and the 19F nuclei of 3,5-F2Y731 in this RNR mutant. Similar experiments with the
double mutant E52Q/F3Y122-β2 were carried out for comparison to the recently published
cryo-EM structure of a holo RNR complex. For both mutant combinations,
the distance measurements reveal two conformations of 3,5-F2Y731. Remarkably, one conformation is consistent with
3,5-F2Y731 within the H-bond distance to Y356•, whereas the second one is consistent
with the conformation observed in the cryo-EM structure. The observations
unexpectedly suggest the possibility of a colinear PCET, in which
electron and proton are transferred from the same donor to the same
acceptor between Y356 and Y731. The results
highlight the important role of state-of-the-art EPR spectroscopy
to decipher this mechanism.
Collapse
Affiliation(s)
- Andreas Meyer
- Research group ESR spectroscopy, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Annemarie Kehl
- Research group ESR spectroscopy, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Chang Cui
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Fehmke A K Reichardt
- Research group ESR spectroscopy, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Fabian Hecker
- Research group ESR spectroscopy, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Lisa-Marie Funk
- Department of structural dynamics, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany.,Department of Molecular Enzymology, Georg-August University, 37077 Göttingen, Germany
| | - Kuan-Ting Pan
- Research group bioanalytical mass spectrometry, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany.,Bioanalytics, University Medical Center, 37075 Göttingen, Germany
| | - Henning Urlaub
- Research group bioanalytical mass spectrometry, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany.,Bioanalytics, University Medical Center, 37075 Göttingen, Germany
| | - Kai Tittmann
- Department of structural dynamics, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany.,Department of Molecular Enzymology, Georg-August University, 37077 Göttingen, Germany
| | - JoAnne Stubbe
- Department of Chemistry and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 20139, United States
| | - Marina Bennati
- Research group ESR spectroscopy, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany.,Department of Chemistry, Georg-August University, 37077 Göttingen, Germany
| |
Collapse
|
9
|
Zou S, Luo X, Chen C, Xi C. Photoredox-catalyzed fluorodifluoroacetylation of alkenes with FSO 2CF 2CO 2Me and Et 3N·3HF. Org Biomol Chem 2022; 20:3726-3730. [PMID: 35466989 DOI: 10.1039/d2ob00488g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoredox-catalyzed three-component fluorodifluoroacetylation of aromatic alkenes is reported, which features a wide substrate scope and functional group tolerance. An advantage of the reaction is the use of a nucleophilic fluoride source and a general difluoroacetylation reagent for the fluorodifluoroacetylation of alkenes.
Collapse
Affiliation(s)
- Song Zou
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Xuewei Luo
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Chao Chen
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Chanjuan Xi
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China. .,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
10
|
Devin J, Cañeque T, Lin YL, Mondoulet L, Veyrune JL, Abouladze M, Garcia De Paco E, Karmous Gadacha O, Cartron G, Pasero P, Bret C, Rodriguez R, Moreaux J. Targeting Cellular Iron Homeostasis with Ironomycin in Diffuse Large B-cell Lymphoma. Cancer Res 2022; 82:998-1012. [PMID: 35078814 PMCID: PMC9359736 DOI: 10.1158/0008-5472.can-21-0218] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 08/14/2021] [Accepted: 01/21/2022] [Indexed: 01/19/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common hematological malignancy. Although more than half of patients with DLBCL achieve long-term remission, the majority of remaining patients succumb to the disease. As abnormal iron homeostasis is implicated in carcinogenesis and the progression of many tumors, we searched for alterations in iron metabolism in DLBCL that could be exploited to develop novel therapeutic strategies. Analysis of the iron metabolism gene expression profile of large cohorts of patients with DLBCL established the iron score (IS), a gene expression-based risk score enabling identification of patients with DLBCL with a poor outcome who might benefit from a suitable targeted therapy. In a panel of 16 DLBCL cell lines, ironomycin, a promising lysosomal iron-targeting small molecule, inhibited DLBCL cell proliferation at nanomolar concentrations compared with typical iron chelators. Ironomycin also induced significant cell growth inhibition, ferroptosis, and autophagy. Ironomycin treatment resulted in accumulation of DNA double-strand breaks, delayed progression of replication forks, and increased RPA2 phosphorylation, a marker of replication stress. Ironomycin significantly reduced the median number of viable primary DLBCL cells of patients without major toxicity for nontumor cells from the microenvironment and presented low toxicity in hematopoietic progenitors compared with conventional treatments. Significant synergistic effects were also observed by combining ironomycin with doxorubicin, BH3 mimetics, BTK inhibitors, or Syk inhibitors. Altogether, these data demonstrate that a subgroup of high-risk patients with DLBCL can be identified with the IS that can potentially benefit from targeting iron homeostasis. SIGNIFICANCE Iron homeostasis represents a potential therapeutic target for high-risk patients with DLBCL that can be targeted with ironomycin to induce cell death and to sensitize tumor cells to conventional treatments.
Collapse
Affiliation(s)
- Julie Devin
- Department of Biological Hematology, CHU Montpellier, Montpellier, France.,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Tatiana Cañeque
- Chemical Biology of Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France; PSL Université, Paris, France; CNRS UMR 3666, Paris, France; INSERM U1143, Paris, France
| | - Yea-Lih Lin
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | | | - Jean-Luc Veyrune
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Matthieu Abouladze
- Department of Biological Hematology, CHU Montpellier, Montpellier, France.,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Elvira Garcia De Paco
- Department of Biological Hematology, CHU Montpellier, Montpellier, France.,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Ouissem Karmous Gadacha
- Department of Biological Hematology, CHU Montpellier, Montpellier, France.,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | | | - Philippe Pasero
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Caroline Bret
- Department of Biological Hematology, CHU Montpellier, Montpellier, France.,University of Montpellier, UFR Medicine, Montpellier, France.,Corresponding Authors: Jerome Moreaux, Department of Biological Hematology, Hôpital Saint-Eloi - CHRU de Montpellier, 80, av. Augustin Fliche, 34295 Montpellier Cedex 5, IGH - Institute of Human Genetics, CNRS UMR-UM 9002, Montpellier, France. Phone: 33-0-467337903; Fax: 33(0)467337036; E-mail: ; Raphaël Rodriguez, Chemical Biology of Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75248 Paris, France. Phone: 33-0-448482191; E-mail: ; and Caroline Bret, Department of Biological Hematology, Hôpital Saint-Eloi - CHRU de Montpellier, 80, av. Augustin Fliche, 34295 Montpellier Cedex 5, IGH - Institute of Human Genetics, CNRS UMR-UM 9002, Montpellier, France. Phone: 33-0-467337031; Fax: 33-0-467337036; E-mail:
| | - Raphaël Rodriguez
- Chemical Biology of Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France; PSL Université, Paris, France; CNRS UMR 3666, Paris, France; INSERM U1143, Paris, France.,Corresponding Authors: Jerome Moreaux, Department of Biological Hematology, Hôpital Saint-Eloi - CHRU de Montpellier, 80, av. Augustin Fliche, 34295 Montpellier Cedex 5, IGH - Institute of Human Genetics, CNRS UMR-UM 9002, Montpellier, France. Phone: 33-0-467337903; Fax: 33(0)467337036; E-mail: ; Raphaël Rodriguez, Chemical Biology of Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75248 Paris, France. Phone: 33-0-448482191; E-mail: ; and Caroline Bret, Department of Biological Hematology, Hôpital Saint-Eloi - CHRU de Montpellier, 80, av. Augustin Fliche, 34295 Montpellier Cedex 5, IGH - Institute of Human Genetics, CNRS UMR-UM 9002, Montpellier, France. Phone: 33-0-467337031; Fax: 33-0-467337036; E-mail:
| | - Jerome Moreaux
- Department of Biological Hematology, CHU Montpellier, Montpellier, France.,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France.,University of Montpellier, UFR Medicine, Montpellier, France.,Institut Universitaire de France (IUF), Paris, France.,Corresponding Authors: Jerome Moreaux, Department of Biological Hematology, Hôpital Saint-Eloi - CHRU de Montpellier, 80, av. Augustin Fliche, 34295 Montpellier Cedex 5, IGH - Institute of Human Genetics, CNRS UMR-UM 9002, Montpellier, France. Phone: 33-0-467337903; Fax: 33(0)467337036; E-mail: ; Raphaël Rodriguez, Chemical Biology of Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75248 Paris, France. Phone: 33-0-448482191; E-mail: ; and Caroline Bret, Department of Biological Hematology, Hôpital Saint-Eloi - CHRU de Montpellier, 80, av. Augustin Fliche, 34295 Montpellier Cedex 5, IGH - Institute of Human Genetics, CNRS UMR-UM 9002, Montpellier, France. Phone: 33-0-467337031; Fax: 33-0-467337036; E-mail:
| |
Collapse
|
11
|
Walter M, Herr P. Re-Discovery of Pyrimidine Salvage as Target in Cancer Therapy. Cells 2022; 11:cells11040739. [PMID: 35203388 PMCID: PMC8870348 DOI: 10.3390/cells11040739] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Nucleotides are synthesized through two distinct pathways: de novo synthesis and nucleoside salvage. Whereas the de novo pathway synthesizes nucleotides from amino acids and glucose, the salvage pathway recovers nucleosides or bases formed during DNA or RNA degradation. In contrast to high proliferating non-malignant cells, which are highly dependent on the de novo synthesis, cancer cells can switch to the nucleoside salvage pathways to maintain efficient DNA replication. Pyrimidine de novo synthesis remains the target of interest in cancer therapy and several inhibitors showed promising results in cancer cells and in vivo models. In the 1980s and 1990s, poor responses were however observed in clinical trials with several of the currently existing pyrimidine synthesis inhibitors. To overcome the observed limitations in clinical trials, targeting pyrimidine salvage alone or in combination with pyrimidine de novo inhibitors was suggested. Even though this approach showed initially promising results, it received fresh attention only recently. Here we discuss the re-discovery of targeting pyrimidine salvage pathways for DNA replication alone or in combination with inhibitors of pyrimidine de novo synthesis to overcome limitations of commonly used antimetabolites in various preclinical cancer models and clinical trials. We also highlight newly emerged targets in pyrimidine synthesis as well as pyrimidine salvage as a promising target in immunotherapy.
Collapse
|
12
|
Kontandreopoulou CN, Diamantopoulos PT, Giannopoulos A, Symeonidis A, Kotsianidis I, Pappa V, Galanopoulos A, Panayiotidis P, Dimou M, Solomou E, Loupis T, Zoi K, Giannakopoulou N, Dryllis G, Hatzidavid S, Viniou NA. Bone marrow ribonucleotide reductase mRNA levels and methylation status as prognostic factors in patients with myelodysplastic syndrome treated with 5-Azacytidine. Leuk Lymphoma 2021; 63:729-737. [PMID: 34738857 DOI: 10.1080/10428194.2021.1998484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Ribonucleotide Reductase (RNR) is a two-subunit (RRM1, RRM2) enzyme, responsible for the conversion of ribonucleotides to deoxyribonucleotides required for DNA replication. To evaluate RNR as a biomarker of response to 5-azacytidine, we measured RNR mRNA levels by a quantitative real-time PCR in bone marrow samples of 98 patients with myelodysplastic syndrome (MDS) treated with 5-azacytidine with parallel quantification of the gene promoter's methylation. Patients with low RRM1 levels had a high RRM1 methylation status (p = 0.005) and a better response to treatment with 5-azacytidine (p = 0.019). A next-generation sequencing for genes of interest in MDS was also carried out in a subset of 61 samples. Splicing factor mutations were correlated with lower RRM1 mRNA levels (p = 0.044). Our results suggest that the expression of RNR is correlated with clinical outcomes, thus its expression could be used as a prognostic factor for response to 5-azacytidine and a possible therapeutic target in MDS.
Collapse
Affiliation(s)
- Christina-Nefeli Kontandreopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis T Diamantopoulos
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Giannopoulos
- Haematology Research Lab, Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation, Athens, Greece
| | - Argiris Symeonidis
- Department of Internal Medicine, University Hospital of Patras, Rio, Greece
| | - Ioannis Kotsianidis
- Department of Hematology, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Vasiliki Pappa
- Haematology Division, Second Department of Internal Medicine, Attikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Galanopoulos
- Department of Clinical Hematology, 'G. Gennimatas' District General Hospital, Athens, Greece
| | - Panayiotis Panayiotidis
- First Department of Propedeutic Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Dimou
- First Department of Propedeutic Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elena Solomou
- Department of Internal Medicine, University Hospital of Patras, Rio, Greece
| | - Theodoros Loupis
- Haematology Research Lab, Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation, Athens, Greece
| | - Katerina Zoi
- Haematology Research Lab, Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation, Athens, Greece
| | - Nefeli Giannakopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Dryllis
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Sevastianos Hatzidavid
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nora-Athina Viniou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
13
|
You KS, Yi YW, Cho J, Park JS, Seong YS. Potentiating Therapeutic Effects of Epidermal Growth Factor Receptor Inhibition in Triple-Negative Breast Cancer. Pharmaceuticals (Basel) 2021; 14:589. [PMID: 34207383 PMCID: PMC8233743 DOI: 10.3390/ph14060589] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a subset of breast cancer with aggressive characteristics and few therapeutic options. The lack of an appropriate therapeutic target is a challenging issue in treating TNBC. Although a high level expression of epidermal growth factor receptor (EGFR) has been associated with a poor prognosis among patients with TNBC, targeted anti-EGFR therapies have demonstrated limited efficacy for TNBC treatment in both clinical and preclinical settings. However, with the advantage of a number of clinically approved EGFR inhibitors (EGFRis), combination strategies have been explored as a promising approach to overcome the intrinsic resistance of TNBC to EGFRis. In this review, we analyzed the literature on the combination of EGFRis with other molecularly targeted therapeutics or conventional chemotherapeutics to understand the current knowledge and to provide potential therapeutic options for TNBC treatment.
Collapse
Affiliation(s)
- Kyu Sic You
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 3116, Chungcheongnam-do, Korea
| | - Yong Weon Yi
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| | - Jeonghee Cho
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| | - Jeong-Soo Park
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
| | - Yeon-Sun Seong
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 3116, Chungcheongnam-do, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| |
Collapse
|
14
|
Li J, Chen B, Xi WQ, Yang C, Zhang WX. Gene-Gene Interactions of Gemcitabine Metabolizing-Enzyme Genes hCNT3 and WEE1 for Preventing Severe Gemcitabine-Induced Hematological Toxicity. J Clin Pharmacol 2021; 61:1376-1385. [PMID: 33974709 DOI: 10.1002/jcph.1909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/10/2021] [Indexed: 11/12/2022]
Abstract
Most patients experience severe hematological toxicity during treatment with gemcitabine; thus, preventing such toxicity would improve the treatment effects and patient quality of life. We analyzed 13 polymorphisms in the transporters, metabolizing enzymes, targets, and genes involved in DNA damage and the folate pathway among 132 patients treated with gemcitabine and studied their association with the severity of the hematological toxicities. Single-locus analysis showed that the single-nucleotide polymorphisms (SNPs) RRM1 rs12806698 and rs11031918 and DCTD rs7663494 were significantly associated with severe neutropenia, hENT1 rs760370 and hCNT3 rs7867504 and rs4877831 were associated with severe leukopenia, CDA rs2072671, DCTD rs7663494, and WEE1 rs3910384 were associated with severe anemia, and MTHFR rs1801133 was associated with severe thrombocytopenia after stringent Bonferroni correction (P < .0038). The gene-gene interaction analysis identified the overall best models, including a 2-way interaction model (hCNT3 rs7867504 and dCK rs12648166) for severe leukopenia (P = .0022) and a 3-locus model (CDA rs207671, DCTD rs7663494, and WEE1 rs3910384) for severe anemia with a strong synergistic effect (P = .0001). The association with hematological toxicity was further strengthened by the results of a haplotype analysis, in which the homozygous genotype combination of rs3910384 CC, rs2072671 AA, rs12648166 GG, rs7867504 CC, and rs7663494 TT conferred high genetic susceptibility to severe thrombocytopenia. Our results suggest that the gene-gene interaction of gemcitabine metabolic pathway genes and WEE1 contributes to susceptibility to gemcitabine-induced hematological toxicity. Moreover, we propose a promising data-mining analysis approach (generalized multifactor dimensionality reduction) to detect and characterize gene-gene interactions.
Collapse
Affiliation(s)
- Juan Li
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Bing Chen
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wen-Qi Xi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chen Yang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wei-Xia Zhang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
15
|
Jang Y, Shin JS, Lee MK, Jung E, An T, Kim UI, Kim K, Kim M. Comparison of Antiviral Activity of Gemcitabine with 2'-Fluoro-2'-Deoxycytidine and Combination Therapy with Remdesivir against SARS-CoV-2. Int J Mol Sci 2021; 22:ijms22041581. [PMID: 33557278 PMCID: PMC7915419 DOI: 10.3390/ijms22041581] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19) pandemic. The virus still spreads globally through human-to-human transmission. Nevertheless, there are no specific treatments clinically approved. This study aimed to compare antiviral activity of gemcitabine and its analogue 2′-fluoro-2′-deoxycytidine (2FdC) against SARS-CoV-2 as well as cytotoxicity in vitro. Fluorescent image-based antiviral assays revealed that gemcitabine was highly potent, with a 50% effective concentration (EC50) of 1.2 μM, more active than the well-known nucleoside monophosphate remdesivir (EC50 = 35.4 μM). In contrast, 2FdC was marginally active (EC50 = 175.2 μM). For all three compounds, the 50% cytotoxic concentration (CC50) values were over 300 μM toward Vero CCL-81 cells. Western blot and quantitative reverse-transcription polymerase chain reaction analyses verified that gemcitabine blocked viral protein expression in virus-infected cells, not only Vero CCL-81 cells but also Calu-3 human lung epithelial cells in a dose-dependent manner. It was found that gemcitabine has a synergistic effect when combined with remdesivir. This report suggests that the difluoro group of gemcitabine is critical for the antiviral activity and that its combination with other evaluated antiviral drugs, such as remdesivir, could be a desirable option to treat SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yejin Jang
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (Y.J.); (J.S.S.); (M.K.L.); (E.J.); (T.A.)
| | - Jin Soo Shin
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (Y.J.); (J.S.S.); (M.K.L.); (E.J.); (T.A.)
| | - Myoung Kyu Lee
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (Y.J.); (J.S.S.); (M.K.L.); (E.J.); (T.A.)
| | - Eunhye Jung
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (Y.J.); (J.S.S.); (M.K.L.); (E.J.); (T.A.)
| | - Timothy An
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (Y.J.); (J.S.S.); (M.K.L.); (E.J.); (T.A.)
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Korea
| | - Uk-Il Kim
- Research and Development Center, ST Pharm Co., Ltd., Seoul 01694, Korea;
| | - Kyungjin Kim
- Research and Development Center, ST Pharm Co., Ltd., Seoul 01694, Korea;
- Correspondence: (K.K.); (M.K.)
| | - Meehyein Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (Y.J.); (J.S.S.); (M.K.L.); (E.J.); (T.A.)
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Korea
- Correspondence: (K.K.); (M.K.)
| |
Collapse
|
16
|
Miao H, Chen X, Luan Y. Small Molecular Gemcitabine Prodrugs for Cancer Therapy. Curr Med Chem 2020; 27:5562-5582. [PMID: 31419928 DOI: 10.2174/0929867326666190816230650] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/22/2019] [Accepted: 07/09/2019] [Indexed: 02/04/2023]
Abstract
Gemcitabine as a pyrimidine nucleoside analog anticancer drug has high efficacy for a broad spectrum of solid tumors. Gemcitabine is activated within tumor cells by sequential phosphorylation carried out by deoxycytidine kinase to mono-, di-, and triphosphate nucleotides with the last one as the active form. But the instability, drug resistance and toxicity severely limited its utilization in clinics. In the field of medicinal chemistry, prodrugs have proven to be a very effective means for elevating drug stability and decrease undesirable side effects including the nucleoside anticancer drug such as gemcitabine. Many works have been accomplished in design and synthesis of gemcitabine prodrugs, majority of which were summarized in this review.
Collapse
Affiliation(s)
- He Miao
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Shandong Province, Qingdao, China
| | - Xuehong Chen
- Department of Pharmacology, College of Basic Medicine, Qingdao University, Shandong Province, Qingdao, China
| | - Yepeng Luan
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Shandong Province, Qingdao, China
| |
Collapse
|
17
|
Yang S, Luo D, Li N, Li C, Tang S, Huang Z. New Mechanism of Gemcitabine and Its Phosphates: DNA Polymerization Disruption via 3'-5' Exonuclease Inhibition. Biochemistry 2020; 59:4344-4352. [PMID: 33147009 DOI: 10.1021/acs.biochem.0c00543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Gemcitabine (dFdC), a modified deoxycytidine (dC) widely used in tumor treatment, is a prodrug that is phosphorylated to generate mono-, di-, and triphosphates. The triphosphate (dFdCTP) is incorporated into DNA to terminate DNA synthesis in cancer. Some incorporated dFdC nucleotides can be partially removed by the 3'-5' exonuclease activity, namely its editing function, and the others escape the editing. However, whether there is an active mechanism for dFdC to escape the editing remains unclear. We have first discovered that unlike dFdC, its mono-, di-, and triphosphates can inhibit the 3'-5' exonuclease of DNA polymerase I, suppress editing, and allow the active escaping mechanism, whereas its polymerase activity is not remarkably affected. As such, these phosphates can prevent the removal of the incorporated dFdC residue, thereby actively blocking DNA extension and synthesis. The inhibition efficiency of these phosphates follows the increased order of the mono-, di-, and triphosphates of gemcitabine (dFdC < dFdCMP < dFdCDP < dFdCTP). In addition, after the deletion of the 3'-5' exonuclease of cellular DNA polymerase I, the Escherichia coli mutant is more sensitive to dFdCTP than is wild-type E. coli. Our new discovery of the ability of these dFdC phosphates to inhibit exonuclease activity suggests a novel anticancer mechanism of gemcitabine and its phosphate derivatives.
Collapse
Affiliation(s)
- Shuzhang Yang
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Danyan Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China.,Szostak-CDHT Institute for Large Nucleic Acids, Chengdu, Sichuan 610041, P. R. China
| | - Na Li
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Chuncheng Li
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Shuo Tang
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Zhen Huang
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, P. R. China.,Szostak-CDHT Institute for Large Nucleic Acids, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
18
|
Dai L, Xu YY, Xia ZH, Ye S. γ-Difluoroalkylation: Synthesis of γ-Difluoroalkyl-α,β-Unsaturated Esters via Photoredox NHC-Catalyzed Radical Reaction. Org Lett 2020; 22:8173-8177. [PMID: 33021799 DOI: 10.1021/acs.orglett.0c03208] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
By the cooperative photoredox and N-heterocyclic carbene catalysis, the γ-difluoroalkylation of γ-preoxidized enals was developed for the synthesis of γ-difluoroalkyl-α,β-unsaturated esters with all-carbon quaternary centers. This method provides efficient catalytic C(sp3)-CF2R bond formation at the γ-position of carbonyl compounds for the first time.
Collapse
Affiliation(s)
- Lei Dai
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan-Yuan Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Hao Xia
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Greene BL, Kang G, Cui C, Bennati M, Nocera DG, Drennan CL, Stubbe J. Ribonucleotide Reductases: Structure, Chemistry, and Metabolism Suggest New Therapeutic Targets. Annu Rev Biochem 2020; 89:45-75. [PMID: 32569524 PMCID: PMC7316142 DOI: 10.1146/annurev-biochem-013118-111843] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ribonucleotide reductases (RNRs) catalyze the de novo conversion of nucleotides to deoxynucleotides in all organisms, controlling their relative ratios and abundance. In doing so, they play an important role in fidelity of DNA replication and repair. RNRs' central role in nucleic acid metabolism has resulted in five therapeutics that inhibit human RNRs. In this review, we discuss the structural, dynamic, and mechanistic aspects of RNR activity and regulation, primarily for the human and Escherichia coli class Ia enzymes. The unusual radical-based organic chemistry of nucleotide reduction, the inorganic chemistry of the essential metallo-cofactor biosynthesis/maintenance, the transport of a radical over a long distance, and the dynamics of subunit interactions all present distinct entry points toward RNR inhibition that are relevant for drug discovery. We describe the current mechanistic understanding of small molecules that target different elements of RNR function, including downstream pathways that lead to cell cytotoxicity. We conclude by summarizing novel and emergent RNR targeting motifs for cancer and antibiotic therapeutics.
Collapse
Affiliation(s)
- Brandon L Greene
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Gyunghoon Kang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Chang Cui
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Marina Bennati
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
- Department of Chemistry, University of Göttingen, 37073 Göttingen, Germany
| | - Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Catherine L Drennan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
20
|
Model Substrate/Inactivation Reactions for MoaA and Ribonucleotide Reductases: Loss of Bromo, Chloro, or Tosylate Groups from C2 of 1,5-Dideoxyhomoribofuranoses upon Generation of an α-Oxy Radical at C3. Molecules 2020; 25:molecules25112539. [PMID: 32486052 PMCID: PMC7321198 DOI: 10.3390/molecules25112539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 01/05/2023] Open
Abstract
We report studies on radical-initiated fragmentations of model 1,5-dideoxyhomoribofuranose derivatives with bromo, chloro, and tosyloxy substituents on C2. The effects of stereochemical inversion at C2 were probed with the corresponding arabino epimers. In all cases, the elimination of bromide, chloride, and tosylate anions occurred when the 3-hydroxyl group was unprotected. The isolation of deuterium-labeled furanone products established heterolytic cleavage followed by the transfer of deuterium from labeled tributylstannane. In contrast, 3-O-methyl derivatives underwent the elimination of bromine or chlorine radicals to give the 2,3-alkene with no incorporation of label in the methyl vinyl ether. More drastic fragmentation occurred with both of the 3-O-methyl-2-tosyloxy epimers to give an aromatized furan derivative with no deuterium label. Contrasting results observed with the present anhydroalditol models relative to our prior studies with analogously substituted nucleoside models have demonstrated that insights from biomimetic chemical reactions can provide illumination of mechanistic pathways employed by ribonucleotide reductases (RNRs) and the MoaA enzyme involved in the biosynthesis of molybdopterin.
Collapse
|
21
|
Ertas M, Sahin Z, Bulbul EF, Bender C, Biltekin SN, Berk B, Yurttas L, Nalbur AM, Celik H, Demirayak Ş. Potent ribonucleotide reductase inhibitors: Thiazole-containing thiosemicarbazone derivatives. Arch Pharm (Weinheim) 2019; 352:e1900033. [PMID: 31475759 DOI: 10.1002/ardp.201900033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022]
Abstract
The antioxidant, antimalarial, antibacterial, and antitumor activities of thiosemicarbazones have made this class of compounds important for medicinal chemists. In addition, thiosemicarbazones are among the most potent and well-known ribonucleotide reductase inhibitors. In this study, 24 new thiosemicarbazone derivatives were synthesized, and the structures and purity of the compounds were determined by IR, 1 H NMR, 13 C NMR, mass spectroscopy, and elemental analysis. The IC50 values of these 24 compounds were determined with an assay for ribonucleotide reductase inhibition. Compounds 19, 20, and 24 inhibited ribonucleotide reductase enzyme activity at a higher level than metisazone as standard. The cytotoxic effects of these compounds were measured on the MCF7 (human breast adenocarcinoma) and HEK293 (human embryonic kidney) cell lines. Similarly, compounds 19, 20, and 24 had a selective effect on the MCF7 and HEK293 cell lines, killing more cancer cells than cisplatin as standard. The compounds (especially 19, 20, and 24 as the most active ones) were then subjected to docking experiments to identify the probable interactions between the ligands and the enzyme active site. The complex formation was shown qualitatively. The ADME (absorption, distribution, metabolism, and excretion) properties of the compounds were analyzed using in-silico techniques.
Collapse
Affiliation(s)
- Merve Ertas
- Department of Pharmaceutical Chemistry, School of Pharmacy, Istanbul Medipol University, Istanbul, Turkey
| | - Zafer Sahin
- Department of Pharmaceutical Chemistry, School of Pharmacy, Istanbul Medipol University, Istanbul, Turkey
| | - Emre F Bulbul
- Department of Pharmaceutical Chemistry, School of Pharmacy, Istanbul Medipol University, Istanbul, Turkey
| | - Ceysu Bender
- Department of Pharmaceutical Chemistry, School of Pharmacy, Istanbul Medipol University, Istanbul, Turkey
| | - Sevde N Biltekin
- Department of Pharmaceutical Microbiology, School of Pharmacy, Istanbul Medipol University, Istanbul, Turkey
| | - Barkin Berk
- Department of Pharmaceutical Chemistry, School of Pharmacy, Istanbul Medipol University, Istanbul, Turkey
| | - Leyla Yurttas
- Department of Pharmaceutical Chemistry, School of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Aysu M Nalbur
- Department of Analytical Chemistry, School of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Hayati Celik
- Department of Analytical Chemistry, School of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Şeref Demirayak
- Department of Pharmaceutical Chemistry, School of Pharmacy, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
22
|
Misko TA, Liu YT, Harris ME, Oleinick NL, Pink J, Lee HY, Dealwis CG. Structure-guided design of anti-cancer ribonucleotide reductase inhibitors. J Enzyme Inhib Med Chem 2019; 34:438-450. [PMID: 30734609 PMCID: PMC6328008 DOI: 10.1080/14756366.2018.1545226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ribonucleotide reductase (RR) catalyses the rate-limiting step of dNTP synthesis, establishing it as an important cancer target. While RR is traditionally inhibited by nucleoside-based antimetabolites, we recently discovered a naphthyl salicyl acyl hydrazone-based inhibitor (NSAH) that binds reversibly to the catalytic site (C-site). Here we report the synthesis and in vitro evaluation of 13 distinct compounds (TP1-13) with improved binding to hRR over NSAH (TP8), with lower KD’s and more predicted residue interactions. Moreover, TP6 displayed the greatest growth inhibiting effect in the Panc1 pancreatic cancer cell line with an IC50 of 0.393 µM. This represents more than a 2-fold improvement over NSAH, making TP6 the most potent compound against pancreatic cancer emerging from the hydrazone inhibitors. NSAH was optimised by the addition of cyclic and polar groups replacing the naphthyl moiety, which occupies the phosphate-binding pocket in the C-site, establishing a new direction in inhibitor design.
Collapse
Affiliation(s)
- Tessianna A Misko
- a Department of Pharmacology, School of Medicine , Case Western Reserve University , Cleveland , OH , USA
| | - Yi-Ting Liu
- b School of Pharmacy, College of Pharmacy , Taipei Medical University , Taipei , Taiwan
| | - Michael E Harris
- c Department of Chemistry , University of Florida , Gainesville , FL , United States
| | - Nancy L Oleinick
- d Department of Radiation Oncology, School of Medicine , Case Western Reserve University , Cleveland , OH , USA
| | - John Pink
- e Case Comprehensive Cancer Center, School of Medicine , Case Western Reserve University , Cleveland , OH , USA
| | - Hsueh-Yun Lee
- b School of Pharmacy, College of Pharmacy , Taipei Medical University , Taipei , Taiwan.,f Ph.D Program in Biotechnology Research and Development, College of Pharmacy , Taipei Medical University , Taipei , Taiwan
| | - Chris G Dealwis
- a Department of Pharmacology, School of Medicine , Case Western Reserve University , Cleveland , OH , USA.,g Department of Chemistry, Center for Proteomics , Case Western Reserve University , Cleveland , OH , USA
| |
Collapse
|
23
|
Curtis LT, van Berkel VH, Frieboes HB. Pharmacokinetic/pharmacodynamic modeling of combination-chemotherapy for lung cancer. J Theor Biol 2018; 448:38-52. [PMID: 29614265 DOI: 10.1016/j.jtbi.2018.03.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 02/06/2023]
Abstract
Chemotherapy for non-small cell lung cancer (NSCLC) typically involves a doublet regimen for a number of cycles. For any particular patient, a course of treatment is usually chosen from a large number of combinational protocols with drugs in concomitant or sequential administration. In spite of newer drugs and protocols, half of patients with early disease will live less than five years and 95% of those with advanced disease survive for less than one year. Here, we apply mathematical modeling to simulate tumor response to multiple drug regimens, with the capability to assess maximum tolerated dose (MTD) as well as metronomic drug administration. We couple pharmacokinetic-pharmacodynamic intracellular multi-compartment models with a model of vascularized tumor growth, setting input parameters from in vitro data, and using the models to project potential response in vivo. This represents an initial step towards the development of a comprehensive virtual system to evaluate tumor response to combinatorial drug regimens, with the goal to more efficiently identify optimal course of treatment with patient tumor-specific data. We evaluate cisplatin and gemcitabine with clinically-relevant dosages, and simulate four treatment NSCLC scenarios combining MTD and metronomic therapy. This work thus establishes a framework for systematic evaluation of tumor response to combination chemotherapy. The results with the chosen parameter set indicate that although a metronomic regimen may provide advantage over MTD, the combination of these regimens may not necessarily offer improved response. Future model evaluation of chemotherapy possibilities may help to assess their potential value to obtain sustained NSCLC regression for particular patients, with the ultimate goal of optimizing multiple-drug chemotherapy regimens in clinical practice.
Collapse
Affiliation(s)
- Louis T Curtis
- Department of Bioengineering, University of Louisville, Lutz Hall 419, Louisville, KY 40208, USA
| | - Victor H van Berkel
- Department of Cardiovascular and Thoracic Surgery, University of Louisville, KY, USA; James Graham Brown Cancer Center, University of Louisville, KY, USA
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, Lutz Hall 419, Louisville, KY 40208, USA; James Graham Brown Cancer Center, University of Louisville, KY, USA; Department of Pharmacology & Toxicology, University of Louisville, KY, USA.
| |
Collapse
|
24
|
Huff SE, Mohammed FA, Yang M, Agrawal P, Pink J, Harris ME, Dealwis CG, Viswanathan R. Structure-Guided Synthesis and Mechanistic Studies Reveal Sweetspots on Naphthyl Salicyl Hydrazone Scaffold as Non-Nucleosidic Competitive, Reversible Inhibitors of Human Ribonucleotide Reductase. J Med Chem 2018; 61:666-680. [PMID: 29253340 PMCID: PMC5808567 DOI: 10.1021/acs.jmedchem.7b00530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ribonucleotide reductase (RR), an established cancer target, is usually inhibited by antimetabolites, which display multiple cross-reactive effects. Recently, we discovered a naphthyl salicyl acyl hydrazone-based inhibitor (NSAH or E-3a) of human RR (hRR) binding at the catalytic site (C-site) and inhibiting hRR reversibly. We herein report the synthesis and biochemical characterization of 25 distinct analogs. We designed each analog through docking to the C-site of hRR based on our 2.7 Å X-ray crystal structure (PDB ID: 5TUS). Broad tolerance to minor structural variations preserving inhibitory potency is observed. E-3f (82% yield) displayed an in vitro IC50 of 5.3 ± 1.8 μM against hRR, making it the most potent in this series. Kinetic assays reveal that E-3a, E-3c, E-3t, and E-3w bind and inhibit hRR through a reversible and competitive mode. Target selectivity toward the R1 subunit of hRR is established, providing a novel way of inhibition of this crucial enzyme.
Collapse
Affiliation(s)
- Sarah E. Huff
- Department of Chemistry, Case Western Reserve University, College of Arts and Sciences, Millis Science Center: Rm 216, 2074, Adelbert Road, Cleveland, OH 44106-7078
| | - Faiz Ahmad Mohammed
- Department of Pharmacology, Case Western Reserve University, School of Medicine, 10900 Euclid Ave, Cleveland, OH 44106
| | - Mu Yang
- Department of Chemistry, Case Western Reserve University, College of Arts and Sciences, Millis Science Center: Rm 216, 2074, Adelbert Road, Cleveland, OH 44106-7078
| | - Prashansa Agrawal
- Department of Chemistry, Case Western Reserve University, College of Arts and Sciences, Millis Science Center: Rm 216, 2074, Adelbert Road, Cleveland, OH 44106-7078
| | - John Pink
- Case Comprehensive Cancer Center, Case Western Reserve University, School of Medicine, 10900 Euclid Ave, Cleveland, OH 44106
| | - Michael E. Harris
- Department of Chemistry, University of Florida, PO Box 117200, Gainseville, FL 32611
| | - Chris G. Dealwis
- Department of Pharmacology, Case Western Reserve University, School of Medicine, 10900 Euclid Ave, Cleveland, OH 44106
- Center for Proteomics and the Department of Chemistry, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106
| | - Rajesh Viswanathan
- Frank Hovorka Assistant Professor of Chemistry and Scientific Oversight Board Member – Small Molecule Drug Discovery Core, CWRU, 10900 Euclid Ave, Cleveland, OH 44106
- Department of Chemistry, Case Western Reserve University, College of Arts and Sciences, Millis Science Center: Rm 216, 2074, Adelbert Road, Cleveland, OH 44106-7078
| |
Collapse
|
25
|
Rodriguez-Ruiz V, Maksimenko A, Salzano G, Lampropoulou M, Lazarou YG, Agostoni V, Couvreur P, Gref R, Yannakopoulou K. Positively charged cyclodextrins as effective molecular transporters of active phosphorylated forms of gemcitabine into cancer cells. Sci Rep 2017; 7:8353. [PMID: 28827534 PMCID: PMC5566897 DOI: 10.1038/s41598-017-08727-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 07/14/2017] [Indexed: 11/09/2022] Open
Abstract
Positively charged cyclodextrins (PCCDs) are molecular carriers of particular interest for their ability to readily enter into cancer cells. Of main interest, guanidino- and aminoalkyl- PCCDs can be conveniently synthesized and form stable and strong inclusion complexes with various active molecules bearing phosphate groups. We have addressed here the challenge to deliver into cancer cells phosphorylated gemcitabine drugs well known for their instability and inability to permeate cell membranes. NMR data corroborated by semiempirical theoretical calculations have shown that aminoalkyl-CDs form sufficiently stable complexes with both mono- and tri-phosphate forms of gemcitabine by simple mixing of the compounds in aqueous solution at physiological pH. Confocal microscopy and radioactivity counting experiments revealed that the developed systems enabled phosphorylated gemcitabine to penetrate efficiently into aggressive human breast cancer cells (MCF7), eventually leading to a substantial reduction of IC50 values. Moreover, compared to free drugs, phosphorylated metabolites of gemcitabine encapsulated in PCCDs displayed improved in vitro activities also on the aggressive human cancer cells CCRF-CEM Ara-C/8 C, a nucleoside transport-deficient T leukemia cell line. The current study offers the proof-of-principle that phosphorylated nucleoside drugs could be efficiently transported by PCCDs into cancer cells.
Collapse
Affiliation(s)
- Violeta Rodriguez-Ruiz
- Institut Galien (UMR CNRS 8612), Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France.,Université de Cergy Pontoise, ERRMECe, Biomaterials for Health group, I MAT, F-95302, Cergy, Pontoise, France
| | - Andrey Maksimenko
- Institut Galien (UMR CNRS 8612), Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France.,UMR CNRS 8200, Gustave Roussy, DNA repair group, F-94051, Villejuif, France
| | - Giuseppina Salzano
- Institut des Sciences Moléculaires d'Orsay (UMR CNRS 8214), Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Maria Lampropoulou
- National Center for Scientific Research "Demokritos", Institute of Nanoscience & Nanotechnology, Ag. Paraskevi, 15310, Athens, Greece
| | - Yannis G Lazarou
- National Center for Scientific Research "Demokritos", Institute of Nanoscience & Nanotechnology, Ag. Paraskevi, 15310, Athens, Greece
| | - Valentina Agostoni
- Institut Galien (UMR CNRS 8612), Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Patrick Couvreur
- Institut Galien (UMR CNRS 8612), Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Ruxandra Gref
- Institut Galien (UMR CNRS 8612), Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France. .,Institut des Sciences Moléculaires d'Orsay (UMR CNRS 8214), Université Paris-Sud, Université Paris-Saclay, Orsay, France.
| | - Konstantina Yannakopoulou
- National Center for Scientific Research "Demokritos", Institute of Nanoscience & Nanotechnology, Ag. Paraskevi, 15310, Athens, Greece.
| |
Collapse
|
26
|
Mannargudi MB, Deb S. Clinical pharmacology and clinical trials of ribonucleotide reductase inhibitors: is it a viable cancer therapy? J Cancer Res Clin Oncol 2017; 143:1499-1529. [PMID: 28624910 DOI: 10.1007/s00432-017-2457-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 06/09/2017] [Indexed: 12/19/2022]
Abstract
PURPOSE Ribonucleotide reductase (RR) enzymes (RR1 and RR2) play an important role in the reduction of ribonucleotides to deoxyribonucleotides which is involved in DNA replication and repair. Augmented RR activity has been ascribed to uncontrolled cell growth and tumorigenic transformation. METHODS This review mainly focuses on several biological and chemical RR inhibitors (e.g., siRNA, GTI-2040, GTI-2501, triapine, gemcitabine, and clofarabine) that have been evaluated in clinical trials with promising anticancer activity from 1960's till 2016. A summary on whether their monotherapy or combination is still effective for further use is discussed. RESULTS Among the RR2 inhibitors evaluated, GTI-2040, siRNA, gallium nitrate and didox were more efficacious as a monotherapy, whereas triapine was found to be more efficacious as combination agent. Hydroxyurea is currently used more in combination therapy, even though it is efficacious as a monotherapy. Gallium nitrate showed mixed results in combination therapy, while the combination activity of didox is yet to be evaluated. RR1 inhibitors that have long been used in chemotherapy such as gemcitabine, cladribine, fludarabine and clofarabine are currently used mostly as a combination therapy, but are equally efficacious as a monotherapy, except tezacitabine which did not progress beyond phase I trials. CONCLUSIONS Based on the results of clinical trials, we conclude that RR inhibitors are viable treatment options, either as a monotherapy or as a combination in cancer chemotherapy. With the recent advances made in cancer biology, further development of RR inhibitors with improved efficacy and reduced toxicity is possible for treatment of variety of cancers.
Collapse
Affiliation(s)
- Mukundan Baskar Mannargudi
- Clinical Pharmacology Program, Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Subrata Deb
- Department of Biopharmaceutical Sciences, Roosevelt University College of Pharmacy, 1400 N. Roosevelt Blvd., Schaumburg, IL, 60173, USA.
| |
Collapse
|
27
|
Potent competitive inhibition of human ribonucleotide reductase by a nonnucleoside small molecule. Proc Natl Acad Sci U S A 2017; 114:8241-8246. [PMID: 28716944 DOI: 10.1073/pnas.1620220114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human ribonucleotide reductase (hRR) is crucial for DNA replication and maintenance of a balanced dNTP pool, and is an established cancer target. Nucleoside analogs such as gemcitabine diphosphate and clofarabine nucleotides target the large subunit (hRRM1) of hRR. These drugs have a poor therapeutic index due to toxicity caused by additional effects, including DNA chain termination. The discovery of nonnucleoside, reversible, small-molecule inhibitors with greater specificity against hRRM1 is a key step in the development of more effective treatments for cancer. Here, we report the identification and characterization of a unique nonnucleoside small-molecule hRR inhibitor, naphthyl salicylic acyl hydrazone (NSAH), using virtual screening, binding affinity, inhibition, and cell toxicity assays. NSAH binds to hRRM1 with an apparent dissociation constant of 37 µM, and steady-state kinetics reveal a competitive mode of inhibition. A 2.66-Å resolution crystal structure of NSAH in complex with hRRM1 demonstrates that NSAH functions by binding at the catalytic site (C-site) where it makes both common and unique contacts with the enzyme compared with NDP substrates. Importantly, the IC50 for NSAH is within twofold of gemcitabine for growth inhibition of multiple cancer cell lines, while demonstrating little cytotoxicity against normal mobilized peripheral blood progenitor cells. NSAH depresses dGTP and dATP levels in the dNTP pool causing S-phase arrest, providing evidence for RR inhibition in cells. This report of a nonnucleoside reversible inhibitor binding at the catalytic site of hRRM1 provides a starting point for the design of a unique class of hRR inhibitors.
Collapse
|
28
|
Sarkisjan D, van den Berg J, Smit E, Lee YB, Kim DJ, Peters GJ. The radiosensitizing effect of fluorocyclopentenyl-cytosine (RX-3117) in ovarian and lung cancer cell lines. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2017; 35:619-630. [PMID: 27906620 DOI: 10.1080/15257770.2016.1216565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RX-3117 (fluorocyclopentenyl-cytosine) is a novel cytidine analog currently being evaluated in a Phase Ib clinical trial in cancer patients with solid tumors. The radiosensitizing effect of RX-3117 was studied in A2780 ovarian cancer cells and non-small cell lung cancer cell lines and related to cell survival and the effect on cell cycle and cell cycle proteins. RX-3117 has a schedule-dependent radiosensitizing effect, but only at pre-incubation (dose modifying factors: 1.4-1.8), observed at pulse and fractionated irradiation. Radiosensitizion was also seen in a three-dimensional spheroid model. At the low radiosensitizing concentration, RX-3117 in combination with radiation led to an accumulation of cells in S-phase, which was accompanied with an increase of cell cycle proteins such as p-Chk2 and p-cdc25C. In addition, RX-3117 caused DNA damage and increased apoptosis. In conclusion, our in vitro experiments showed a radiosensitizing effect of RX-3117.
Collapse
Affiliation(s)
- Dzjemma Sarkisjan
- a Department of Medical Oncology , VU University Medical Center , Amsterdam , The Netherlands
| | - Jaap van den Berg
- b Department of Radio Therapy , VU University Medical Center , Amsterdam , The Netherlands
| | - Evelyn Smit
- a Department of Medical Oncology , VU University Medical Center , Amsterdam , The Netherlands
| | - Young B Lee
- c Rexahn Pharmaceuticals, Inc. , Rockville , Maryland , USA
| | - Deog J Kim
- c Rexahn Pharmaceuticals, Inc. , Rockville , Maryland , USA
| | - Godefridus J Peters
- a Department of Medical Oncology , VU University Medical Center , Amsterdam , The Netherlands
| |
Collapse
|
29
|
McCluskey GD, Mohamady S, Taylor SD, Bearne SL. Exploring the Potent Inhibition of CTP Synthase by Gemcitabine-5'-Triphosphate. Chembiochem 2016; 17:2240-2249. [PMID: 27643605 DOI: 10.1002/cbic.201600405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Indexed: 11/10/2022]
Abstract
CTP synthase (CTPS) catalyzes the conversion of UTP to CTP and is a target for the development of antiviral, anticancer, antiprotozoal, and immunosuppressive agents. Exposure of cell lines to the antineoplastic cytidine analogue gemcitabine causes depletion of intracellular CTP levels, but the direct inhibition of CTPS by its metabolite gemcitabine-5'-triphosphate (dF-dCTP) has not been demonstrated. We show that dF-dCTP is a potent competitive inhibitor of Escherichia coli CTPS with respect to UTP [Ki =(3.0±0.1) μm], and that its binding affinity exceeds that of CTP ≈75-fold. Site-directed mutagenesis studies indicated that Glu149 is an important binding determinant for both CTP and dF-dCTP. Comparison of the binding affinities of the 5'-triphosphates of 2'-fluoro-2'-deoxycytidine and 2'-fluoro-2'-deoxyarabinocytidine revealed that the 2'-F-arabino group contributes markedly to the strong binding of dF-dCTP. Geminal 2'-F substitution on UTP (dF-dUTP) did not result in an increase in binding affinity with CTPS. Remarkably, CTPS catalyzed the conversion of dF-dUTP into dF-dCTP, thus suggesting that dF-dCTP might be regenerated in vivo from its catabolite dF-dUTP.
Collapse
Affiliation(s)
- Gregory D McCluskey
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Samy Mohamady
- Faculty of Pharmacy, The British University in Egypt, 11837, Cairo, Egypt
| | - Scott D Taylor
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Stephen L Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.,Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
30
|
Im MM, Flanagan SA, Ackroyd JJ, Knapp B, Kramer A, Shewach DS. Late DNA Damage Mediated by Homologous Recombination Repair Results in Radiosensitization with Gemcitabine. Radiat Res 2016; 186:466-477. [PMID: 27740890 DOI: 10.1667/rr14443.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Gemcitabine (dFdCyd) shows broad antitumor activity in solid tumors in chemotherapeutic regimens or when combined with ionizing radiation (radiosensitization). While it is known that mismatches in DNA are necessary for dFdCyd radiosensitization, the critical event resulting in radiosensitization has not been identified. Here we hypothesized that late DNA damage (≥24 h after drug washout/irradiation) is a causal event in radiosensitization by dFdCyd, and that homologous recombination repair (HRR) is required for this late DNA damage. Using γ-H2AX as a measurement of DNA damage in MCF-7 breast cancer cells, we demonstrate that 10 or 80 nM dFdCyd alone produced significantly more late DNA damage compared to that observed within 4 h after treatment. The combination of dFdCyd treatment followed by irradiation did not produce a consistent increase in DNA damage in the first 4 h after treatment, however, there was a synergistic increase 24-48 h later relative to treatment with dFdCyd or radiation alone. RNAi suppression of the essential HRR protein, XRCC3, significantly decreased both radiosensitization and late DNA damage. Furthermore, inhibition of HRR with the Rad51 inhibitor B02 prevented radiosensitization when added after, but not during, treatment with dFdCyd and radiation. To our knowledge, this is the first published study to show that radiosensitization with dFdCyd results from a synergistic increase in DNA damage at 24-48 h after drug and radiation treatment, and that this damage and radiosensitization require HRR. These results suggest that tumors that overexpress HRR will be more vulnerable to chemoradiotherapy, and treatments that increase HRR and/or mismatches in DNA will enhance dFdCyd radiosensitization.
Collapse
Affiliation(s)
- Michael M Im
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan 48109
| | - Sheryl A Flanagan
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan 48109
| | - Jeffrey J Ackroyd
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan 48109
| | - Brendan Knapp
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan 48109
| | - Aaron Kramer
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan 48109
| | - Donna S Shewach
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan 48109
| |
Collapse
|
31
|
The Histone Deacetylase Inhibitor Valproic Acid Sensitizes Gemcitabine-Induced Cytotoxicity in Gemcitabine-Resistant Pancreatic Cancer Cells Possibly Through Inhibition of the DNA Repair Protein Gamma-H2AX. Target Oncol 2016; 10:575-81. [PMID: 25940934 DOI: 10.1007/s11523-015-0370-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Gemcitabine (GEM) remains a major chemotherapeutic drug for pancreatic cancer, but resistance to GEM has been a big problem, as its response rate has been decreasing year by year. METHODS The effect of the histone deacetylase inhibitor (HDAI) valproic acid (VPA) was compared with tranilast and RI-1 as a combinatorial treatment with GEM in four pancreatic cancer cell lines, BxPC-3, PK45p, MiaPaCa-2 and PK59. Cell viability assays were carried out to check the cytotoxic effects, western blotting was carried out for DNA repair mechanisms, and localization was determined by immunofluorescence. RESULTS The sensitization factors (i.e., the fold ratio of cell viability for GEM/GEM plus drug) reveal that VPA increases the cytotoxic sensitization to GEM at approximately 2.7-fold, 1.2-fold, 1.5-fold and 2.2-fold in BxPC-3, MiaPaCa-2, PK-45p and PK-59 cell lines, respectively. Moreover, GEM induces activation of the DNA repair protein H2AX proportional to the dosage. Interestingly, however, this effect can be abrogated by VPA. CONCLUSIONS These results indicate that VPA enhances GEM-induced cytotoxicity in GEM-resistant pancreatic cancer cells, possibly through inhibition of DNA damage signaling and repair. Our study suggests VPA as a potential therapeutic agent for combinatorial treatment with GEM in pancreatic cancer.
Collapse
|
32
|
Song Y, Baba T, Mukaida N. Gemcitabine induces cell senescence in human pancreatic cancer cell lines. Biochem Biophys Res Commun 2016; 477:515-9. [PMID: 27311854 DOI: 10.1016/j.bbrc.2016.06.063] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 06/12/2016] [Indexed: 01/08/2023]
|
33
|
Rodriguez-Ruiz V, Maksimenko A, Anand R, Monti S, Agostoni V, Couvreur P, Lampropoulou M, Yannakopoulou K, Gref R. Efficient "green" encapsulation of a highly hydrophilic anticancer drug in metal-organic framework nanoparticles. J Drug Target 2016; 23:759-67. [PMID: 26453171 DOI: 10.3109/1061186x.2015.1073294] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Metal-organic frameworks (MOFs) are coordination polymers of interest for biomedical applications. Of particular importance, nanoparticles made of iron(III) trimesate (MIL-100, MIL standing for Material Institut Lavoisier) (nanoMOFs) can be conveniently synthesised under mild and green conditions. They were shown to be biodegradable, biocompatible and efficient to encapsulate a variety of active molecules. We have addressed here the challenges to encapsulate a highly hydrophilic anticancer prodrug, phosphated gemcitabin (Gem-MP) known for its instability and inability to bypass cell membranes. MIL-100 nanoMOFs acted as efficient "nanosponges", soaking Gem-MP from its aqueous solution with almost perfect efficiency (>98%). Maximal loadings reached ∼30 wt% reflecting the strong interaction between the drug and the iron trimesate matrices. Neither degradation nor loss of crystalline structure was observed after the loading process. Storage of the loaded nanoMOFs in water did not result in drug release over three days. However, Gem-MP was released in media containing phosphates, as a consequence to particle degradation. Drug-loaded nanoMOFs were effective against pancreatic PANC-1 cells, in contrast to free drug and empty nanoMOFs. However, an efflux phenomenon could contribute to reduce the efficacy of the nanocarriers. Size optimization and surface modification of the nanoMOFs are expected to further improve these findings.
Collapse
Affiliation(s)
| | - Andrei Maksimenko
- a Institut Galien (UMR CNRS 8612), Université Paris-Sud , Châtenay-Malabry , France
| | - Resmi Anand
- b National Centre for Scientific Research "Demokritos", Institute of Nanoscience & Nanotechnology , Ag. Paraskevi , Athens , Greece , and
| | - Sandra Monti
- c Istituto per la Sintesi Organica e la Fotoreattività-CNR , Bologna , Italy
| | - Valentina Agostoni
- a Institut Galien (UMR CNRS 8612), Université Paris-Sud , Châtenay-Malabry , France
| | - Patrick Couvreur
- a Institut Galien (UMR CNRS 8612), Université Paris-Sud , Châtenay-Malabry , France
| | - Maria Lampropoulou
- b National Centre for Scientific Research "Demokritos", Institute of Nanoscience & Nanotechnology , Ag. Paraskevi , Athens , Greece , and
| | - Konstantina Yannakopoulou
- b National Centre for Scientific Research "Demokritos", Institute of Nanoscience & Nanotechnology , Ag. Paraskevi , Athens , Greece , and
| | - Ruxandra Gref
- a Institut Galien (UMR CNRS 8612), Université Paris-Sud , Châtenay-Malabry , France
| |
Collapse
|
34
|
Machida H, Sakata S, Ashida N, Takenuki K, Matsuda A. In vitro Anti-Herpesvirus Activities of 5-Substituted 2′-Deoxy-2′-Methylidene Pyrimidine Nucleosides. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029300400102] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
New pyrimidine deoxyribonucleoside analogues, 2′-deoxy-2′-methylideneuridine (DMDU), 2′-deoxy-2′-methylidenecytidine (DMDC), and their 5-substituted derivatives were tested for the anti-herpesvirus activities and anti-proliferative activity. E-5-(2-Bromovinyl)uracil derivative (BV-DMDU) and its cytosine congener were synthesized from 1-β-D-arabinofuranosyl- E-5-(2-bromovinyl)uracil (BV-araU). 5-Bromo, 5-iodo, 5-methyl, and 5-ethyl derivatives of DMDU and BV-DMDU showed activities against herpes simplex virus type 1 (HSV-1) and varicella-zoster virus (VZV). The corresponding DMDC derivatives had no or only weak antiviral activity. Among the 2′-deoxy-2′-methylidene pyrimidine nucleosides, BV-DMDU showed the most potent and selective anti-VZV activity. BV-DMDU was more potent than acyclovir, but less active than BV-araU. BV-DMDU was inactive against human diploid and tumour cells. DMDC and F-DMDC (5-fluoro derivative) were potent inhibitors of HSV-1, herpes simplex virus type 2, VZV, and human cytomegalovirus (HCMV) and also had significant anti-proliferative activity. Their potency against HCMV was better than that of ganciclovir and araC. Some DMDU derivatives also showed anti-HCMV activity, but they had anti-proliferative activity. The anti-HCMV activity of these DMDC and DMDU compounds was generally more potent than those against HSV-1 and VZV thereof, suggesting the participation of cellular kinase in their antiviral action.
Collapse
Affiliation(s)
- H. Machida
- Biology Laboratory, Yamasa Shoyu Co., Ltd, 10–1 Araoicho 2-chome, Choshi-shi 288, Japan
| | - S. Sakata
- Chemistry Laboratory No. 2, R & D Division, Yamasa Shoyu Co., Ltd, 10–1 Araoicho 2-chome, Choshi-shi 288, Japan
| | - N. Ashida
- Biology Laboratory, Yamasa Shoyu Co., Ltd, 10–1 Araoicho 2-chome, Choshi-shi 288, Japan
| | - K. Takenuki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan
| | - A. Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan
| |
Collapse
|
35
|
Panayides JL, Mathieu V, Banuls LMY, Apostolellis H, Dahan-Farkas N, Davids H, Harmse L, Rey MEC, Green IR, Pelly SC, Kiss R, Kornienko A, van Otterlo WAL. Synthesis and in vitro growth inhibitory activity of novel silyl- and trityl-modified nucleosides. Bioorg Med Chem 2016; 24:2716-24. [PMID: 27157005 DOI: 10.1016/j.bmc.2016.04.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/14/2016] [Accepted: 04/19/2016] [Indexed: 12/17/2022]
Abstract
Seventeen silyl- and trityl-modified (5'-O- and 3',5'-di-O-) nucleosides were synthesized with the aim of investigating the in vitro antiproliferative activities of these nucleoside derivatives. A subset of the compounds was evaluated at a fixed concentration of 100μM against a small panel of tumor cell lines (HL-60, K-562, Jurkat, Caco-2 and HT-29). The entire set was also tested at varying concentrations against two human glioma lines (U373 and Hs683) to obtain GI50 values, with the best results being values of ∼25μM.
Collapse
Affiliation(s)
- Jenny-Lee Panayides
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits, Johannesburg 2050, South Africa; Pioneering Health Sciences, CSIR Biosciences, PO Box 395, Pretoria 0001, South Africa
| | - Véronique Mathieu
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - Laetitia Moreno Y Banuls
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - Helen Apostolellis
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, PO Wits, Johannesburg 2050, South Africa
| | - Nurit Dahan-Farkas
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, PO Wits, Johannesburg 2050, South Africa
| | - Hajierah Davids
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, PO Wits, Johannesburg 2050, South Africa; Department of Biochemistry and Microbiology, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031, South Africa
| | - Leonie Harmse
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, PO Wits, Johannesburg 2050, South Africa
| | - M E Christine Rey
- School of Molecular and Cellular Biology, University of the Witwatersrand, PO Wits, Johannesburg 2050, South Africa
| | - Ivan R Green
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, Matieland 7602, South Africa
| | - Stephen C Pelly
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, Matieland 7602, South Africa
| | - Robert Kiss
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Willem A L van Otterlo
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits, Johannesburg 2050, South Africa; Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, Matieland 7602, South Africa.
| |
Collapse
|
36
|
Alexander P, Kucera G, Pardee TS. Improving nucleoside analogs via lipid conjugation: Is fatter any better? Crit Rev Oncol Hematol 2016; 100:46-56. [PMID: 26829896 DOI: 10.1016/j.critrevonc.2016.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 12/22/2015] [Accepted: 01/16/2016] [Indexed: 10/22/2022] Open
Abstract
In the past few decades, nucleoside analog drugs have been used to treat a large variety of cancers. These anti-metabolite drugs mimic nucleosides and interfere with chain lengthening upon incorporation into the DNA or RNA of actively replicating cells. However, efficient delivery of these drugs is limited due to their pharmacokinetic properties, and tumors often develop drug resistance. In addition, nucleoside analogs are generally hydrophilic, resulting in poor bioavailability and impaired blood-brain barrier penetration. Conjugating these drugs to lipids modifies their pharmacokinetic properties and may improve in vivo efficacy. This review will cover recent advances in the field of conjugation of phospholipids to nucleoside analogs. This includes conjugation of myristic acid, 12-thioethyldodecanoic acid, 5-elaidic acid esters, phosphoramidate, and self-emulsifying formulations. Relevant in vitro and in vivo data will be discussed for each drug, as well as any available data from clinical trials.
Collapse
Affiliation(s)
- Peter Alexander
- Cancer Biology, Comprehensive Cancer Center of Wake Forest University, Winston-Salem, NC, United States
| | - Gregory Kucera
- Internal Medicine, Wake Forest Baptist Health, Winston-Salem, NC, United States; Cancer Biology, Comprehensive Cancer Center of Wake Forest University, Winston-Salem, NC, United States
| | - Timothy S Pardee
- Internal Medicine, Wake Forest Baptist Health, Winston-Salem, NC, United States; Cancer Biology, Comprehensive Cancer Center of Wake Forest University, Winston-Salem, NC, United States.
| |
Collapse
|
37
|
Song Y, Baba T, Li YY, Furukawa K, Tanabe Y, Matsugo S, Sasaki S, Mukaida N. Gemcitabine-induced CXCL8 expression counteracts its actions by inducing tumor neovascularization. Biochem Biophys Res Commun 2015; 458:341-6. [PMID: 25646691 DOI: 10.1016/j.bbrc.2015.01.112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 01/23/2015] [Indexed: 11/16/2022]
|
38
|
Im MM, Flanagan SA, Ackroyd JJ, Shewach DS. Drug metabolism and homologous recombination repair in radiosensitization with gemcitabine. Radiat Res 2015; 183:114-23. [PMID: 25564718 DOI: 10.1667/rr13807.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Gemcitabine (difluorodeoxycytidine; dFdCyd) is a potent radiosensitizer, noted for its ability to enhance cytotoxicity with radiation at noncytotoxic concentrations in vitro and subchemotherapeutic doses in patients. Radiosensitization in human tumor cells requires dFdCyd-mediated accumulation of cells in S phase with inhibition of ribonucleotide reductase, resulting in ≥80% deoxyadenosine triphosphate (dATP) depletion and errors of replication in DNA. Less is known of the role of specific DNA replication and repair pathways in the radiosensitization mechanism. Here the role of homologous recombination (HR) in relationship to the metabolic and cell cycle effects of dFdCyd was investigated using a matched pair of CHO cell lines that are either proficient (AA8 cells) or deficient (irs1SF cells) in HR based on expression of the HR protein XRCC3. The results demonstrated that the characteristics of radiosensitization in the rodent AA8 cells differed significantly from those in human tumor cells. In the AA8 cells, radiosensitization was achieved only under short (≤4 h) cytotoxic incubations, and S-phase accumulation did not appear to be required for radiosensitization. In contrast, human tumor cell lines were radiosensitized using noncytotoxic concentrations of dFdCyd and required early S-phase accumulation. Studies of the metabolic effects of dFdCyd demonstrated low dFdCyd concentrations did not deplete dATP by ≥80% in AA8 and irs1SF cells. However, at higher concentrations of dFdCyd, failure to radiosensitize the HR-deficient irs1SF cells could not be explained by a lack of dATP depletion or lack of S-phase accumulation. Thus, these parameters did not correspond to dFdCyd radiosensitization in the CHO cells. To evaluate directly the role of HR in radiosensitization, XRCC3 expression was suppressed in the AA8 cells with a lentiviral-delivered shRNA. Partial XRCC3 suppression significantly decreased radiosensitization [radiation enhancement ratio (RER) = 1.6 ± 0.15], compared to nontransduced (RER = 2.7 ± 0.27; P = 0.012), and a substantial decrease compared to nonspecific shRNA-transduced (RER = 2.5 ± 0.42; P = 0.056) AA8 cells. Although the results support a role for HR in radiosensitization with dFdCyd in CHO cells, the differences in the underlying metabolic and cell cycle characteristics suggest that dFdCyd radiosensitization in the nontumor-derived CHO cells is mechanistically distinct from that in human tumor cells.
Collapse
Affiliation(s)
- Michael M Im
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan 48109
| | | | | | | |
Collapse
|
39
|
Gemcitabine-based therapy for pancreatic cancer using the squalenoyl nucleoside monophosphate nanoassemblies. Int J Pharm 2014; 482:38-46. [PMID: 25448549 DOI: 10.1016/j.ijpharm.2014.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/30/2014] [Accepted: 11/04/2014] [Indexed: 12/23/2022]
Abstract
Gemcitabine is currently the most effective agent against advanced pancreatic cancer. However, the major therapeutic hurdles using gemcitabine include rapid inactivation by blood deaminases and fast development of cell chemoresistance, induced by down-regulation of deoxycytidine kinase or nucleoside transporters. To overcome the above drawbacks we designed recently a novel nanomedicine strategy based on squalenoyl prodrug of 5'-monophosphate gemcitabine (SQdFdC-MP). This amphiphilic conjugate self-organized in water into unilamellar vesicles with a mean diameter of 100 nm. In this study the antitumor efficacy of SQdFdC-MP nanoassemblies (NAs) on chemoresistant and chemosensitive pancreatic adenocarcinoma models have been investigated. Cell viability assays showed that SQdFdC-MP NAs displayed higher antiproliferative and cytotoxic effects, particularly in chemoresistant pancreatic tumor cells. In in vivo studies, SQdFdC-MP NAs decreased significantly the growth (∼70%) of human MiaPaCa2 xenografts, also preventing tumor cell invasion, whereas native dFdC did not display any anticancer activity when tumor growth inhibition was only 35% with SQdFdC NAs. These results correlated with a reduction of Ki-67 antigen and the induction of apoptosis mediated by caspase-3 activation in tumor cells. These findings demonstrated the feasibility of utilizing SQdFdC-MP NAs to make tumor cells more sensitive to gemcitabine and thus providing an efficient new therapeutic alternative for pancreatic adenocarcinoma.
Collapse
|
40
|
Wang Y, Kuramitsu Y, Tokuda K, Baron B, Kitagawa T, Akada J, Maehara SI, Maehara Y, Nakamura K. Gemcitabine induces poly (ADP-ribose) polymerase-1 (PARP-1) degradation through autophagy in pancreatic cancer. PLoS One 2014; 9:e109076. [PMID: 25271986 PMCID: PMC4182782 DOI: 10.1371/journal.pone.0109076] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 09/08/2014] [Indexed: 01/02/2023] Open
Abstract
Poly (ADP-ribose) polymerase-1 (PARP-1) and autophagy play increasingly important roles in DNA damage repair and cell death. Gemcitabine (GEM) remains the first-line chemotherapeutic drug for pancreatic cancer (PC). However, little is known about the relationship between PARP-1 expression and autophagy in response to GEM. Here we demonstrate that GEM induces DNA-damage response and degradation of mono-ADP ribosylated PARP-1 through the autophagy pathway in PC cells, which is rescued by inhibiting autophagy. Hypoxia and serum starvation inhibit autophagic activity due to abrogated GEM-induced mono-ADP-ribosylated PARP-1 degradation. Activation of extracellular regulated protein kinases (ERK) induced by serum starvation shows differences in intracellular localization as well as modulation of autophagy and PARP-1 degradation in GEM-sensitive KLM1 and -resistant KLM1-R cells. Our study has revealed a novel role of autophagy in PARP-1 degradation in response to GEM, and the different impacts of MEK/ERK signaling pathway on autophagy between GEM-sensitive and -resistant PC cells.
Collapse
Affiliation(s)
- Yufeng Wang
- Department of Biochemistry and Functional Proteomics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Yasuhiro Kuramitsu
- Department of Biochemistry and Functional Proteomics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
- * E-mail:
| | - Kazuhiro Tokuda
- Department of Biochemistry and Functional Proteomics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Byron Baron
- Department of Biochemistry and Functional Proteomics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Takao Kitagawa
- Department of Biochemistry and Functional Proteomics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Junko Akada
- Department of Biochemistry and Functional Proteomics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Shin-ichiro Maehara
- Department of Surgery and Science, Graduate School of Medical Science, Kyusyu University, Fukuokashi, Fukuoka, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Science, Kyusyu University, Fukuokashi, Fukuoka, Japan
| | - Kazuyuki Nakamura
- Department of Biochemistry and Functional Proteomics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
- Centre of Clinical Laboratories in Tokuyama Medical Association Hospital, Shunan, Japan
| |
Collapse
|
41
|
Wang C, Ma X, Zhang J, Tang Q, Jiao W, Shao H. Methanesulfonic-Acid-Catalysed Ring Opening and Glycosylation of 1,2-(Acetylcyclopropane)-AnnulatedD-Lyxofuranose. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Pulido J, Sobczak AJ, Balzarini J, Wnuk SF. Synthesis and cytostatic evaluation of 4-N-alkanoyl and 4-N-alkyl gemcitabine analogues. J Med Chem 2013; 57:191-203. [PMID: 24341356 DOI: 10.1021/jm401586a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The coupling of gemcitabine with functionalized carboxylic acids (C9-C13) or reactions of 4-N-tosylgemcitabine with the corresponding alkyl amines afforded 4-N-alkanoyl and 4-N-alkyl gemcitabine derivatives. The analogues with a terminal hydroxyl group on the alkyl chain were efficiently fluorinated under conditions that are compatible with protocols for (18)F labeling. The 4-N-alkanoylgemcitabines showed potent cytostatic activities in the low nanomolar range against a panel of tumor cell lines, whereas cytotoxicity of the 4-N-alkylgemcitabines were in the low micromolar range. The cytotoxicity for the 4-N-alkanoylgemcitabine analogues was reduced approximately by 2 orders of magnitude in the 2'-deoxycytidine kinase (dCK)-deficient CEM/dCK(-) cell line, whereas cytotoxicity of the 4-N-alkylgemcitabines was only 2-5 times lower. None of the compounds acted as efficient substrates for cytosolic dCK; therefore, the 4-N-alkanoyl analogues need to be converted first to gemcitabine to display a significant cytostatic potential, whereas 4-N-alkyl derivatives attain modest activity without measurable conversion to gemcitabine.
Collapse
Affiliation(s)
- Jesse Pulido
- Department of Chemistry and Biochemistry, ‡Department of Environmental and Occupational Health, Florida International University , Miami, Florida 33199, United States
| | | | | | | |
Collapse
|
43
|
Rawson JM, Heineman RH, Beach LB, Martin JL, Schnettler EK, Dapp MJ, Patterson SE, Mansky LM. 5,6-Dihydro-5-aza-2'-deoxycytidine potentiates the anti-HIV-1 activity of ribonucleotide reductase inhibitors. Bioorg Med Chem 2013; 21:7222-8. [PMID: 24120088 PMCID: PMC3930610 DOI: 10.1016/j.bmc.2013.08.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/01/2013] [Accepted: 08/10/2013] [Indexed: 10/26/2022]
Abstract
The nucleoside analog 5,6-dihydro-5-aza-2'-deoxycytidine (KP-1212) has been investigated as a first-in-class lethal mutagen of human immunodeficiency virus type-1 (HIV-1). Since a prodrug monotherapy did not reduce viral loads in Phase II clinical trials, we tested if ribonucleotide reductase inhibitors (RNRIs) combined with KP-1212 would improve antiviral activity. KP-1212 potentiated the activity of gemcitabine and resveratrol and simultaneously increased the viral mutant frequency. G-to-C mutations predominated with the KP-1212-resveratrol combination. These observations represent the first demonstration of a mild anti-HIV-1 mutagen potentiating the antiretroviral activity of RNRIs and encourage the clinical translation of enhanced viral mutagenesis in treating HIV-1 infection.
Collapse
Affiliation(s)
- Jonathan M. Rawson
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Richard H. Heineman
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- MinnCResT Program, Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lauren B. Beach
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jessica L. Martin
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Pharmacology Graduate Program, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Erica K. Schnettler
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Pharmacology Graduate Program, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael J. Dapp
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Pharmacology Graduate Program, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Steven E. Patterson
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN 55455, USA
- Pharmacology Graduate Program, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Louis M. Mansky
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- MinnCResT Program, Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN 55455, USA
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
- Pharmacology Graduate Program, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
44
|
Wonganan P, Lansakara-P DSP, Zhu S, Holzer M, Sandoval MA, Warthaka M, Cui Z. Just getting into cells is not enough: mechanisms underlying 4-(N)-stearoyl gemcitabine solid lipid nanoparticle's ability to overcome gemcitabine resistance caused by RRM1 overexpression. J Control Release 2013; 169:17-27. [PMID: 23570983 DOI: 10.1016/j.jconrel.2013.03.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 03/28/2013] [Accepted: 03/31/2013] [Indexed: 10/27/2022]
Abstract
Gemcitabine is a deoxycytidine analog that is widely used in the chemotherapy of many solid tumors. However, acquired tumor cell resistance often limits its use. Previously, we discovered that 4-(N)-stearoyl gemcitabine solid lipid nanoparticles (4-(N)-GemC18-SLNs) can overcome multiple acquired gemcitabine resistance mechanisms, including RRM1 overexpression. The present study was designed to elucidate the mechanisms underlying the 4-(N)-GemC18-SLNs' ability to overcome gemcitabine resistance. The 4-(N)-GemC18 in the 4-(N)-GemC18-SLNs entered tumor cells due to clathrin-mediated endocytosis of the 4-(N)-GemC18-SLNs into the lysosomes of the cells, whereas the 4-(N)-GemC18 alone in solution entered cells by diffusion. We substantiated that it is the way the 4-(N)-GemC18-SLNs deliver the 4-(N)-GemC18 into tumor cells that allows the gemcitabine hydrolyzed from the 4-(N)-GemC18 to be more efficiently converted into its active metabolite, gemcitabine triphosphate (dFdCTP), and thus more potent against gemcitabine-resistant tumor cells than 4-(N)-GemC18 or gemcitabine alone. Moreover, we also showed that the RRM1-overexpressing tumor cells were also cross-resistant to cytarabine, another nucleoside analog commonly used in cancer therapy, and 4-(N)-stearoyl cytarabine carried by solid lipid nanoparticles can also overcome the resistance. Therefore, formulating the long-chain fatty acid amide derivatives of nucleoside analogs into solid lipid nanoparticles may represent a platform technology to increase the antitumor activity of the nucleoside analogs and to overcome tumor cell resistance to them.
Collapse
Affiliation(s)
- Piyanuch Wonganan
- Pharmaceutics Division, The University of Texas at Austin, College of Pharmacy, Austin, TX 78712, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Gemcitabine causes telomere attrition by stabilizing TRF2. Eur J Cancer 2012; 48:3465-74. [DOI: 10.1016/j.ejca.2012.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 04/02/2012] [Accepted: 04/24/2012] [Indexed: 11/17/2022]
|
46
|
Wonganan P, Chung WG, Zhu S, Kiguchi K, Digiovanni J, Cui Z. Silencing of ribonucleotide reductase subunit M1 potentiates the antitumor activity of gemcitabine in resistant cancer cells. Cancer Biol Ther 2012; 13:908-14. [PMID: 22785206 DOI: 10.4161/cbt.20843] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Gemcitabine is a deoxycytidine analog used for the treatment of a wide range of solid tumors. Its efficacy is however often reduced due to the development of resistance. Ribonucleotide reductase M1 subunit (RRM1) is a key determinant of gemcitabine resistance, and tumor cells that overexpress RRM1 are resistant to the cytotoxicity of gemcitabine. In the present study, we showed that RRM1-specific small interfering RNA (siRNA), when complexed with polyethylenimine, effectively downregulated the expression of RRM1 protein in mouse tumor cells that overexpress RRM1, both in vitro and in vivo. More importantly, systemic administration of the RRM1-specific siRNA significantly inhibited the growth of RRM1-overexpressing tumors in mice and sensitized the tumors to gemcitabine treatment. These findings suggest that silencing RRM1 expression using siRNA could potentially be an effective strategy to overcome gemcitabine resistance.
Collapse
Affiliation(s)
- Piyanuch Wonganan
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | | | | | | | | | | |
Collapse
|
47
|
Ramón-López A, Escudero-Ortiz V, Duart-Duart MJ, Pérez-Ruixo JJ, Valenzuela B. [Population pharmacokinetics of gemcitabine applied to personalize the dosage used in cancer patients]. FARMACIA HOSPITALARIA 2012; 36:194-206. [PMID: 22078546 DOI: 10.1016/j.farma.2011.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/01/2011] [Accepted: 04/04/2011] [Indexed: 10/15/2022] Open
Abstract
OBJECTIVE To develop and internally validate a population pharmacokinetic model for gemcitabine and its metabolite 2',2'-difluorodeoxyuridine (dFdU); and to evaluate its predictive perfomance for personalizing the dosage used in cancer patients. METHODS Gemcitabine and dFdU plasma concentrations were determined in 18 cancer patients. A 2-compartment pharmacokinetic model was implemented in the NONMEN VI program to determine the appropriate pharmacokinetic parameters. The power to identify the parameters was assessed by parametric bootstrap, and the internal model validation was performed using nonparametric bootstrap and visual and numerical predictive check methods. The final predictive performance of the model was assessed for accuracy and precision during the first (a priori) and second (a posteriori) chemotherapy cycles. RESULTS The mean and interpatient variability of gemcitabine and dFdU clearance was 2.70 L/min (31.0%) and 0.0515 L/min (35.8%), respectively. The estimated distribution volume at steady state was 30 L for gemcitabine and 238 L for dFdU. Internal validation confirmed that the population pharmacokinetic model was appropriate for describing the plasma concentrations of gemcitabine and dFdU over time, as well as its variability in the study population. The accuracy and precision of a posteriori gemcitabine plasma concentrations improved by 67% and 46%, respectively, compared to the a priori prediction. CONCLUSION The population pharmacokinetic model adequately characterised the gemcitabine and dFdU plasma concentrations in the study population over time, and can be used to accurately and precisely optimise gemcitabine dosing regimens in cancer patients.
Collapse
Affiliation(s)
- A Ramón-López
- Área de Farmacia y Tecnología Farmacéutica, Departamento de Ingeniería, Universidad Miguel Hernández, Elche, Alicante, España
| | | | | | | | | |
Collapse
|
48
|
Fluorination of tertiary alcohols derived from di-O-isopropylidenehexofuranose and O-isopropylidenepentofuranose. J Fluor Chem 2011. [DOI: 10.1016/j.jfluchem.2011.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Crespan E, Garbelli A, Amoroso A, Maga G. Exploiting the nucleotide substrate specificity of repair DNA polymerases to develop novel anticancer agents. Molecules 2011; 16:7994-8019. [PMID: 21926946 PMCID: PMC6264456 DOI: 10.3390/molecules16097994] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/26/2011] [Accepted: 09/13/2011] [Indexed: 11/16/2022] Open
Abstract
The genome is constantly exposed to mutations that can originate during replication or as a result of the action of both endogenous and/or exogenous damaging agents [such as reactive oxygen species (ROS), UV light, genotoxic environmental compounds, etc.]. Cells have developed a set of specialized mechanisms to counteract this mutational burden. Many cancer cells have defects in one or more DNA repair pathways, hence they rely on a narrower set of specialized DNA repair mechanisms than normal cells. Inhibiting one of these pathways in the context of an already DNA repair-deficient genetic background, will be more toxic to cancer cells than to normal cells, a concept recently exploited in cancer chemotherapy by the synthetic lethality approach. Essential to all DNA repair pathways are the DNA pols. Thus, these enzymes are being regarded as attractive targets for the development of specific inhibitors of DNA repair in cancer cells. In this review we examine the current state-of-the-art in the development of nucleotide analogs as inhibitors of repair DNA polymerases.
Collapse
Affiliation(s)
- Emmanuele Crespan
- DNA Enzymology & Molecular Virology, Insititute of Molecular Genetics IGM-CNR, via Abbiategrasso 207, I-27100 Pavia, Italy.
| | | | | | | |
Collapse
|
50
|
HDM-2 inhibition suppresses expression of ribonucleotide reductase subunit M2, and synergistically enhances gemcitabine-induced cytotoxicity in mantle cell lymphoma. Blood 2011; 118:4140-9. [PMID: 21844567 DOI: 10.1182/blood-2011-03-340323] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mantle cell lymphoma (MCL) usually responds well to initial therapy but is prone to relapses with chemoresistant disease, indicating the need for novel therapeutic approaches. Inhibition of the p53 E3 ligase human homolog of the murine double minute protein-2 (HDM-2) with MI-63 has been validated as one such strategy in wild-type (wt) p53 models, and our genomic and proteomic analyses demonstrated that MI-63 suppressed the expression of the ribonucleotide reductase (RNR) subunit M2 (RRM2). This effect occurred in association with induction of p21 and cell-cycle arrest at G(1)/S and prompted us to examine combinations with the RNR inhibitor 2',2'-difluoro-2'-deoxycytidine (gemcitabine). The regimen of MI-63-gemcitabine induced enhanced, synergistic antiproliferative, and proapoptotic effects in wtp53 MCL cell lines. Addition of exogenous dNTPs reversed this effect, whereas shRNA-mediated inhibition of RRM2 was sufficient to induce synergy with gemcitabine. Combination therapy of MCL murine xenografts with gemcitabine and MI-219, the in vivo analog of MI-63, resulted in enhanced antitumor activity. Finally, synergy was seen with MI-63-gemcitabine in primary patient samples that were found to express high levels of RRM2 compared with MCL cell lines. These findings provide a framework for translation of the rational combination of an HDM-2 and RNR inhibitor to the clinic for patients with relapsed wtp53 MCL.
Collapse
|