1
|
Karami Y, Murail S, Giribaldi J, Lefranc B, Defontaine F, Lesouhaitier O, Leprince J, de Vries S, Tufféry P. Exploring a Structural Data Mining Approach to Design Linkers for Head-to-Tail Peptide Cyclization. J Chem Inf Model 2023; 63:6436-6450. [PMID: 37827517 PMCID: PMC10599322 DOI: 10.1021/acs.jcim.3c00865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Indexed: 10/14/2023]
Abstract
Peptides have recently regained interest as therapeutic candidates, but their development remains confronted with several limitations including low bioavailability. Backbone head-to-tail cyclization, i.e., setting a covalent peptide bond linking the last amino acid with the first one, is one effective strategy of peptide-based drug design to stabilize the conformation of bioactive peptides while preserving peptide properties in terms of low toxicity, binding affinity, target selectivity, and preventing enzymatic degradation. Starting from an active peptide, it usually requires the design of a linker of a few amino acids to make it possible to cyclize the peptide, possibly preserving the conformation of the initial peptide and not affecting its activity. However, very little is known about the sequence-structure relationship requirements of designing linkers for peptide cyclization in a rational manner. Recently, we have shown that large-scale data-mining of available protein structures can lead to the precise identification of protein loop conformations, even from remote structural classes. Here, we transpose this approach to linkers, allowing head-to-tail peptide cyclization. First we show that given a linker sequence and the conformation of the linear peptide, it is possible to accurately predict the cyclized peptide conformation. Second, and more importantly, we show that it seems possible to elaborate on the information inferred from protein structures to propose effective candidate linker sequences constrained by length and amino acid composition, providing the first framework for the rational design of head-to-tail cyclization linkers. Finally, we illustrate this for two peptides using a limited set of amino-acids likely not to interfere with peptide function. For a linear peptide derived from Nrf2, the peptide cyclized starting from the experimental structure showed a 26-fold increase in the binding affinity. For urotensin II, a peptide already cyclized by a disulfide bond that exerts a broad array of biological activities, we were able, starting from models of the structure, to design a head-to-tail cyclized peptide, the first synthesized bicyclic 14-residue long urotensin II analogue, showing a retention of in vitro activity. Although preliminary, our results strongly suggest that such an approach has strong potential for cyclic peptide-based drug design.
Collapse
Affiliation(s)
- Yasaman Karami
- Université
Paris Cité, CNRS UMR 8251,
INSERM ERL U1133, 75013 Paris, France
| | - Samuel Murail
- Université
Paris Cité, CNRS UMR 8251,
INSERM ERL U1133, 75013 Paris, France
| | - Julien Giribaldi
- Institut
des Biomolécules Max Mousseron, UMR 5247, Université de Montpellier-CNRS, 34293 Montpellier, France
| | - Benjamin Lefranc
- Université
de Rouen Normandie, INSERM U1239 NorDiC, Neuroendocrine, Endocrine and Germinal Differentiation and Communication,
INSERM US51 HeRacLeS, F-76000 Rouen, France
| | - Florian Defontaine
- Université
de Rouen Normandie, UR CBSA, Research Unit
Bacterial Communication and Anti-infectious Strategies, 27000 Evreux, France
| | - Olivier Lesouhaitier
- Université
de Rouen Normandie, UR CBSA, Research Unit
Bacterial Communication and Anti-infectious Strategies, 27000 Evreux, France
| | - Jérôme Leprince
- Université
de Rouen Normandie, INSERM U1239 NorDiC, Neuroendocrine, Endocrine and Germinal Differentiation and Communication,
INSERM US51 HeRacLeS, F-76000 Rouen, France
| | - Sjoerd de Vries
- Université
Paris Cité, CNRS UMR 8251,
INSERM ERL U1133, 75013 Paris, France
| | - Pierre Tufféry
- Université
Paris Cité, CNRS UMR 8251,
INSERM ERL U1133, 75013 Paris, France
| |
Collapse
|
2
|
Combination of Docking-Based and Pharmacophore-Based Virtual Screening Identifies Novel Agonists That Target the Urotensin Receptor. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248692. [PMID: 36557826 PMCID: PMC9788431 DOI: 10.3390/molecules27248692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
The urotensin receptor (UT receptor), a G-protein-coupled receptor mediating urotensin-II and urotensin-II-related peptide signaling in the urotensinergic system, has multiple pharmacological activities. However, there is no drug targeting the UT receptor currently in clinical use, and the discovery of new leads is still important. The complete crystal structure of the UT receptor has not yet been resolved and a screening strategy combining multiple methods can improve the accuracy and efficiency of drug screening. This study aimed to identify novel UT receptor agonists using a combination of docking-based, pharmacophore-based, and cell-based drug screening. First, the three-dimensional structures of the UT receptor were constructed through single-template, multi-template homologous modeling and threading strategies. After structure evaluation and ligand enrichment analysis, a model from the threading modeling was selected for docking-based virtual screening based on stepwise filtering, and 1368 positive compounds were obtained from our compound library. Second, the pharmacophore models were constructed using known ligands targeting the UT receptor for pharmacophore-based virtual screening. A model was selected after model validation, and 300 positive compounds were retrieved. Then, after intersecting the results of two different virtual screening methods with 570 compound entities from our primary screening, 14 compounds were obtained. Finally, three hits were obtained after in vitro confirmation. Furthermore, preliminary evaluation of the hits showed that they influenced glucose consumption. In summary, by integrating docking-based, pharmacophore-based, and in vitro drug screening, three new agonists targeting the UT receptor were identified which may serve as promising therapeutic agents for urotensinergic system disorders.
Collapse
|
3
|
Cha HJ, Lee H, Yeo EJ, Yeo HJ, Choi YJ, Sohn EJ, Kim DW, Park SJ, Lee SH, Lee S, Choi SY. Utilization of an Intracellular Calcium Mobilization Assay for the Screening of Transduced FK506-Binding Proteins. Assay Drug Dev Technol 2021; 19:442-452. [PMID: 34415786 DOI: 10.1089/adt.2021.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
FK506-binding proteins (FKBPs) belong to the immunophilin family and are linked to various disease states, including the inflammatory response. The inhibition of cytokine and chemokine expression in addition to positive effects of FKBPs on corneal inflammation in animal models suggests that they may be used for ophthalmic delivery in the treatment of dry eye disease. To pass the effective barriers protecting eye tissues, testing the transduction domains of FKBPs is essential. However, monitoring their transduction efficiencies is not a simple task. The quantitative measurement of FKBP interactions was performed using a cell model with a specific G protein-coupled receptor, as FKBPs had been known to act at the inositol 1,4,5-trisphosphate receptor (IP3R) leading to the inhibition of intracellular calcium mobilization. Because of its luminescence amplitude and stability, human urotensin II receptor was expressed in aequorin parental cells to measure the action of selected FKBPs. This luminescence-based functional assay platform exhibited a high signal-to-background ratio of more than 100 and a Z' factor at 0.6204. As expected, changes in the sequence of the transduction domain affected the function of the FKBPs. The intracellular calcium mobilization assay with selected FKBPs represented a robust and reliable platform to screen initial candidates. Although the precise nature of the control that FKBPs exert on the IP3R is uncertain, this approach can be used to develop innovative anti-inflammatory treatments for dry eye disease by optimizing protein transduction domain sequences.
Collapse
Affiliation(s)
- Hyun Ju Cha
- R&D Center, Lumieye Genetics Co., Ltd., Seoul, Korea
| | - Hyunjin Lee
- Department of Green Chemical Engineering, Sangmyung University, Cheonan, Korea
| | - Eun Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Korea
| | - Hyeon Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Korea
| | - Yeon Joo Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Korea
| | - Eun Jeong Sohn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, Korea
| | - Soo Jung Park
- R&D Center, Lumieye Genetics Co., Ltd., Seoul, Korea
| | - Sung Ho Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Korea
| | - Sunghou Lee
- Department of Green Chemical Engineering, Sangmyung University, Cheonan, Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Korea
| |
Collapse
|
4
|
Sharma S, Bhatia V. Appraisal of the Role of In silico Methods in Pyrazole Based Drug Design. Mini Rev Med Chem 2021; 21:204-216. [PMID: 32875985 DOI: 10.2174/1389557520666200901184146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/19/2020] [Accepted: 07/06/2020] [Indexed: 11/22/2022]
Abstract
Pyrazole and its derivatives are a pharmacologically and significantly active scaffolds that have innumerable physiological and pharmacological activities. They can be very good targets for the discovery of novel anti-bacterial, anti-cancer, anti-inflammatory, anti-fungal, anti-tubercular, antiviral, antioxidant, antidepressant, anti-convulsant and neuroprotective drugs. This review focuses on the importance of in silico manipulations of pyrazole and its derivatives for medicinal chemistry. The authors have discussed currently available information on the use of computational techniques like molecular docking, structure-based virtual screening (SBVS), molecular dynamics (MD) simulations, quantitative structure activity relationship (QSAR), comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) to drug design using pyrazole moieties. Pyrazole based drug design is mainly dependent on the integration of experimental and computational approaches. The authors feel that more studies need to be done to fully explore the pharmacological potential of the pyrazole moiety and in silico method can be of great help.
Collapse
Affiliation(s)
- Smriti Sharma
- Department of Chemistry, Miranda House, University of Delhi, India
| | - Vinayak Bhatia
- ICARE Eye Hospital and Postgraduate Institute, U.P., Noida, India
| |
Collapse
|
5
|
Raschka S. Automated discovery of GPCR bioactive ligands. Curr Opin Struct Biol 2019; 55:17-24. [PMID: 30909105 DOI: 10.1016/j.sbi.2019.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 02/19/2019] [Indexed: 12/22/2022]
Abstract
While G-protein-coupled receptors (GPCRs) constitute the largest class of membrane proteins, structures and endogenous ligands of a large portion of GPCRs remain unknown. Because of the involvement of GPCRs in various signaling pathways and physiological roles, the identification of endogenous ligands as well as designing novel drugs is of high interest to the research and medical communities. Along with highlighting the recent advances in structure-based ligand discovery, including docking and molecular dynamics, this article focuses on the latest advances for automating the discovery of bioactive ligands using machine learning. Machine learning is centered around the development and applications of algorithms that can learn from data automatically. Such an approach offers immense opportunities for bioactivity prediction as well as quantitative structure-activity relationship studies. This review describes the most recent and successful applications of machine learning for bioactive ligand discovery, concluding with an outlook on deep learning methods that are capable of automatically extracting salient information from structural data as a promising future direction for rapid and efficient bioactive ligand discovery.
Collapse
Affiliation(s)
- Sebastian Raschka
- Department of Statistics, University of Wisconsin-Madison, 1300 Medical Sciences Center, Madison, WI 53706, USA.
| |
Collapse
|
6
|
Natural and synthetic peptides in the cardiovascular diseases: An update on diagnostic and therapeutic potentials. Arch Biochem Biophys 2018; 662:15-32. [PMID: 30481494 DOI: 10.1016/j.abb.2018.11.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/31/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023]
Abstract
Several peptides play an important role in physiological and pathological conditions into the cardiovascular system. In addition to well-known vasoactive agents such as angiotensin II, endothelin, serotonin or natriuretic peptides, the vasoconstrictor Urotensin-II (Uro-II) and the vasodilators Urocortins (UCNs) and Adrenomedullin (AM) have been implicated in the control of vascular tone and blood pressure as well as in cardiovascular disease states including congestive heart failure, atherosclerosis, coronary artery disease, and pulmonary and systemic hypertension. Therefore these peptides, together with their receptors, become important therapeutic targets in cardiovascular diseases (CVDs). Circulating levels of these agents in the blood are markedly modified in patients with specific CVDs compared with those in healthy patients, becoming also potential biomarkers for these pathologies. This review will provide an overview of current knowledge about the physiological roles of Uro-II, UCN and AM in the cardiovascular system and their implications in cardiovascular diseases. It will further focus on the structural modifications carried out on original peptide sequences in the search of analogues with improved physiochemical properties as well as in the delivery methods. Finally, we have overviewed the possible application of these peptides and/or their precursors as biomarkers of CVDs.
Collapse
|
7
|
Billard E, Hébert TE, Chatenet D. Discovery of New Allosteric Modulators of the Urotensinergic System through Substitution of the Urotensin II-Related Peptide (URP) Phenylalanine Residue. J Med Chem 2018; 61:8707-8716. [PMID: 30183282 DOI: 10.1021/acs.jmedchem.8b00789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Urotensin II (UII) and urotensin II-related peptide (URP) are functionally selective, suggesting that these two hormones might play distinct physiological role through different interactions with their cognate receptor UT. Hypothesizing that the Phe3 residue of URP, which is also present in UII, is a key-element of its specific UT activation, we evaluated the impact of its replacement by non-natural amino acids in URP. Each compound was evaluated for its ability to bind UT, induce rat aortic ring contraction, and activate Gq, G12, and β-arrestin 1 signaling pathways. Such modifications impaired contractile efficacy, reflected by a reduced aptitude to activate G12 in URP but not in the truncated but equipotent UII4-11. Moreover, we have identified two structurally different UT modulators: [d-Phe(pI)3]URP and [Bip3]URP, which exert a probe-dependent action against UII and URP. These compounds should help us understand the specific roles of these hormones as well as guide further therapeutic development.
Collapse
Affiliation(s)
- Etienne Billard
- INRS-Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP) , Université du Québec , Ville de Laval , Québec H7V 1B7 , Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics , McGill University , Montréal , Québec H3A 1A3 , Canada
| | - David Chatenet
- INRS-Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP) , Université du Québec , Ville de Laval , Québec H7V 1B7 , Canada
| |
Collapse
|
8
|
Billard É, Iddir M, Nassour H, Lee-Gosselin L, Poujol de Molliens M, Chatenet D. New directions for urotensin II receptor ligands. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Étienne Billard
- INRS-Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec; Ville de Laval Québec H7V 1B7 Canada
| | - Mustapha Iddir
- INRS-Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec; Ville de Laval Québec H7V 1B7 Canada
| | - Hassan Nassour
- INRS-Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec; Ville de Laval Québec H7V 1B7 Canada
| | - Laura Lee-Gosselin
- INRS-Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec; Ville de Laval Québec H7V 1B7 Canada
| | - Mathilde Poujol de Molliens
- INRS-Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec; Ville de Laval Québec H7V 1B7 Canada
| | - David Chatenet
- INRS-Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec; Ville de Laval Québec H7V 1B7 Canada
| |
Collapse
|
9
|
Billard E, Létourneau M, Hébert TE, Chatenet D. Insight into the role of urotensin II-related peptide tyrosine residue in UT activation. Biochem Pharmacol 2017; 144:100-107. [DOI: 10.1016/j.bcp.2017.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/03/2017] [Indexed: 12/16/2022]
|
10
|
Strack M, Billard É, Chatenet D, Lubell WD. Urotensin core mimics that modulate the biological activity of urotensin-II related peptide but not urotensin-II. Bioorg Med Chem Lett 2017. [DOI: 10.1016/j.bmcl.2017.05.088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Abstract
Drug discovery is a multidisciplinary and multivariate optimization endeavor. As such, in silico screening tools have gained considerable importance to archive, analyze and exploit the vast and ever-increasing amount of experimental data generated throughout the process. The current review will focus on the computer-aided prediction of the numerous properties that need to be controlled during the discovery of a preliminary hit and its promotion to a viable clinical candidate. It does not pretend to the almost impossible task of an exhaustive report but will highlight a few key points that need to be collectively addressed both by chemists and biologists to fuel the drug discovery pipeline with innovative and safe drug candidates.
Collapse
Affiliation(s)
- Didier Rognan
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS-Université de Strasbourg, 74 route du Rhin, 67400 Illkirch, France.
| |
Collapse
|
12
|
Haensele E, Mele N, Miljak M, Read CM, Whitley DC, Banting L, Delépée C, Sopkova-de Oliveira Santos J, Lepailleur A, Bureau R, Essex JW, Clark T. Conformation and Dynamics of Human Urotensin II and Urotensin Related Peptide in Aqueous Solution. J Chem Inf Model 2017; 57:298-310. [DOI: 10.1021/acs.jcim.6b00706] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Nawel Mele
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Marija Miljak
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | | | | | | | - Carla Delépée
- Normandie
Université, CS 14032 Caen Cedex 5, France, Centre d’Etudes
et de Recherche sur le Médicament de Normandie (CERMN, EA 4258,
FR CNRS 3038 INC3M SF 4206 ICORE), UFR des Sciences Pharmaceutiques, Université de Caen Basse−Normandie (UNICAEN), F-14032 Caen, France
| | - Jana Sopkova-de Oliveira Santos
- Normandie
Université, CS 14032 Caen Cedex 5, France, Centre d’Etudes
et de Recherche sur le Médicament de Normandie (CERMN, EA 4258,
FR CNRS 3038 INC3M SF 4206 ICORE), UFR des Sciences Pharmaceutiques, Université de Caen Basse−Normandie (UNICAEN), F-14032 Caen, France
| | - Alban Lepailleur
- Normandie
Université, CS 14032 Caen Cedex 5, France, Centre d’Etudes
et de Recherche sur le Médicament de Normandie (CERMN, EA 4258,
FR CNRS 3038 INC3M SF 4206 ICORE), UFR des Sciences Pharmaceutiques, Université de Caen Basse−Normandie (UNICAEN), F-14032 Caen, France
| | - Ronan Bureau
- Normandie
Université, CS 14032 Caen Cedex 5, France, Centre d’Etudes
et de Recherche sur le Médicament de Normandie (CERMN, EA 4258,
FR CNRS 3038 INC3M SF 4206 ICORE), UFR des Sciences Pharmaceutiques, Université de Caen Basse−Normandie (UNICAEN), F-14032 Caen, France
| | - Jonathan W. Essex
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Timothy Clark
- Computer-Chemie-Centrum
and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052 Erlangen, Germany
| |
Collapse
|
13
|
Pacifico S, Kerckhoffs A, Fallow AJ, Foreman RE, Guerrini R, McDonald J, Lambert DG, Jamieson AG. Urotensin-II peptidomimetic incorporating a non-reducible 1,5-triazole disulfide bond reveals a pseudo-irreversible covalent binding mechanism to the urotensin G-protein coupled receptor. Org Biomol Chem 2017; 15:4704-4710. [DOI: 10.1039/c7ob00959c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
New high affinity peptidomimetic ligands have been developed that provided new insight into the mechanism of binding of U-II peptide with the urotensin-II receptor.
Collapse
Affiliation(s)
- Salvatore Pacifico
- Department of Chemical and Pharmaceutical Sciences and LTTA
- University of Ferrara
- Ferrara
- Italy
| | - Aidan Kerckhoffs
- School of Chemistry
- Joseph Black Building. University Avenue
- Glasgow
- UK
| | | | | | - Remo Guerrini
- Department of Chemical and Pharmaceutical Sciences and LTTA
- University of Ferrara
- Ferrara
- Italy
| | - John McDonald
- Department of Cardiovascular Sciences
- Division of Anaesthesia Critical Care & Pain Management
- Leicester
- UK
| | - David G. Lambert
- Department of Cardiovascular Sciences
- Division of Anaesthesia Critical Care & Pain Management
- Leicester
- UK
| | | |
Collapse
|
14
|
Bandholtz S, Erdmann S, von Hacht JL, Exner S, Krause G, Kleinau G, Grötzinger C. Urolinin: The First Linear Peptidic Urotensin-II Receptor Agonist. J Med Chem 2016; 59:10100-10112. [PMID: 27791374 DOI: 10.1021/acs.jmedchem.6b00164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study investigated the role of individual U-II amino acid positions and side chain characteristics important for U-IIR activation. A complete permutation library of 209 U-II variants was studied in an activity screen that contained single substitution variants of each position with one of the other 19 proteinogenic amino acids. Receptor activation was measured using a cell-based high-throughput fluorescence calcium mobilization assay. We generated the first complete U-II substitution map for U-II receptor activation, resulting in a detailed view into the structural features required for receptor activation, accompanied by complementary information from receptor modeling and ligand docking studies. On the basis of the systematic SAR study of U-II, we created 33 further short and linear U-II variants from eight to three amino acids in length, including d- and other non-natural amino acids. We identified the first high-potency linear U-II analogues. Urolinin, a linear U-II agonist (nWWK-Tyr(3-NO2)-Abu), shows low nanomolar potency as well as improved metabolic stability.
Collapse
Affiliation(s)
- Sebastian Bandholtz
- Campus Virchow-Klinikum, Department of Hepatology and Gastroenterology and Molecular Cancer Research Center (MKFZ), Charité-Universitätsmedizin Berlin , Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Sarah Erdmann
- Campus Virchow-Klinikum, Department of Hepatology and Gastroenterology and Molecular Cancer Research Center (MKFZ), Charité-Universitätsmedizin Berlin , Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Jan Lennart von Hacht
- Campus Virchow-Klinikum, Department of Hepatology and Gastroenterology and Molecular Cancer Research Center (MKFZ), Charité-Universitätsmedizin Berlin , Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Samantha Exner
- Campus Virchow-Klinikum, Department of Hepatology and Gastroenterology and Molecular Cancer Research Center (MKFZ), Charité-Universitätsmedizin Berlin , Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Gerd Krause
- Leibniz-Institut für Molekulare Pharmakologie , 13125 Berlin, Germany
| | - Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin , D-13353 Berlin, Germany
| | - Carsten Grötzinger
- Campus Virchow-Klinikum, Department of Hepatology and Gastroenterology and Molecular Cancer Research Center (MKFZ), Charité-Universitätsmedizin Berlin , Augustenburger Platz 1, D-13353 Berlin, Germany
| |
Collapse
|
15
|
Merlino F, Yousif AM, Billard É, Dufour-Gallant J, Turcotte S, Grieco P, Chatenet D, Lubell WD. Urotensin II((4-11)) Azasulfuryl Peptides: Synthesis and Biological Activity. J Med Chem 2016; 59:4740-52. [PMID: 27140209 DOI: 10.1021/acs.jmedchem.6b00108] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cyclic azasulfuryl (As) peptide analogs of the urotensin II (UII, 1, H-Glu-Thr-Pro-Asp-c[Cys-Phe-Trp-Lys-Tyr-Cys]-Val-OH) fragment 4-11 were synthesized to explore the influences of backbone structure on biological activity. N-Aminosulfamides were inserted as surrogates of the Trp(7) and Lys(8) residues in the biologically relevant Trp-Lys-Tyr triad. A combination of solution- and solid-phase methods were used to prepare novel UII((4-11)) analogs 6-11 by routes featuring alkylation of azasulfuryl-glycine tripeptide precursors to install various side chains. The pharmacological profiles of derivatives 6-11 were tested in vitro using a competitive binding assay and ex vivo using a rat aortic ring bioassay. Although the analogs exhibited weak affinity for the urotensin II receptor (UT) without agonistic activity, azasulfuryl-UII((4-11)) derivatives 7-9 reduced up to 50% of the effects of UII and urotensin II-related peptide (URP) without affecting their potency.
Collapse
Affiliation(s)
- Francesco Merlino
- Département de Chimie, Université de Montréal , C.P. 6128, Station Centre-ville, Montréal, Québec H3C 3J7, Canada.,Department of Pharmacy, University of Naples "Federico II" , via D. Montesano 49, 80131 Naples, Italy
| | - Ali M Yousif
- Département de Chimie, Université de Montréal , C.P. 6128, Station Centre-ville, Montréal, Québec H3C 3J7, Canada.,Department of Pharmacy, University of Naples "Federico II" , via D. Montesano 49, 80131 Naples, Italy
| | - Étienne Billard
- INRS - Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Quebéc , Ville de Laval, Quebec H7V 1B7, Canada
| | - Julien Dufour-Gallant
- Département de Chimie, Université de Montréal , C.P. 6128, Station Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Stéphane Turcotte
- Département de Chimie, Université de Montréal , C.P. 6128, Station Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Paolo Grieco
- Department of Pharmacy, University of Naples "Federico II" , via D. Montesano 49, 80131 Naples, Italy
| | - David Chatenet
- INRS - Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Quebéc , Ville de Laval, Quebec H7V 1B7, Canada
| | - William D Lubell
- Département de Chimie, Université de Montréal , C.P. 6128, Station Centre-ville, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
16
|
Merlino F, Brancaccio D, Yousif AM, Piras L, Campiglia P, Gomez-Monterrey I, Santicioli P, Meini S, Maggi CA, Novellino E, Carotenuto A, Grieco P. Structure-Activity Study of the Peptides P5U and Urantide by the Development of Analogues Containing Uncoded Amino Acids at Position 9. ChemMedChem 2016; 11:1856-64. [DOI: 10.1002/cmdc.201500607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/11/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Francesco Merlino
- Department of Pharmacy; University of Naples “Federico II”; via D. Montesano 49 80131 Naples Italy
| | - Diego Brancaccio
- Department of Pharmacy; University of Naples “Federico II”; via D. Montesano 49 80131 Naples Italy
| | - Ali M. Yousif
- Department of Pharmacy; University of Naples “Federico II”; via D. Montesano 49 80131 Naples Italy
| | - Linda Piras
- Department of Pharmacy; University of Naples “Federico II”; via D. Montesano 49 80131 Naples Italy
| | - Pietro Campiglia
- Department of Pharmacy; University of Salerno; 84084 Fisciano Italy
| | - Isabel Gomez-Monterrey
- Department of Pharmacy; University of Naples “Federico II”; via D. Montesano 49 80131 Naples Italy
| | - Paolo Santicioli
- Department of Pharmacology; Menarini Ricerche; via Rismondo 12A 50131 Florence Italy
| | - Stefania Meini
- Department of Pharmacology; Menarini Ricerche; via Rismondo 12A 50131 Florence Italy
| | - Carlo A. Maggi
- Department of Pharmacology; Menarini Ricerche; via Rismondo 12A 50131 Florence Italy
| | - Ettore Novellino
- Department of Pharmacy; University of Naples “Federico II”; via D. Montesano 49 80131 Naples Italy
| | - Alfonso Carotenuto
- Department of Pharmacy; University of Naples “Federico II”; via D. Montesano 49 80131 Naples Italy
| | - Paolo Grieco
- Department of Pharmacy; University of Naples “Federico II”; via D. Montesano 49 80131 Naples Italy
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi (CIRPEB); University of Naples “Federico II” and DFM-Scarl; Institute of Biostructures and Bioimaging-CNR; Via Mezzocannone 16 80134 Naples Italy
| |
Collapse
|
17
|
Pharmacophore Models and Pharmacophore-Based Virtual Screening: Concepts and Applications Exemplified on Hydroxysteroid Dehydrogenases. Molecules 2015; 20:22799-832. [PMID: 26703541 PMCID: PMC6332202 DOI: 10.3390/molecules201219880] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/03/2015] [Accepted: 12/09/2015] [Indexed: 01/06/2023] Open
Abstract
Computational methods are well-established tools in the drug discovery process and can be employed for a variety of tasks. Common applications include lead identification and scaffold hopping, as well as lead optimization by structure-activity relationship analysis and selectivity profiling. In addition, compound-target interactions associated with potentially harmful effects can be identified and investigated. This review focuses on pharmacophore-based virtual screening campaigns specifically addressing the target class of hydroxysteroid dehydrogenases. Many members of this enzyme family are associated with specific pathological conditions, and pharmacological modulation of their activity may represent promising therapeutic strategies. On the other hand, unintended interference with their biological functions, e.g., upon inhibition by xenobiotics, can disrupt steroid hormone-mediated effects, thereby contributing to the development and progression of major diseases. Besides a general introduction to pharmacophore modeling and pharmacophore-based virtual screening, exemplary case studies from the field of short-chain dehydrogenase/reductase (SDR) research are presented. These success stories highlight the suitability of pharmacophore modeling for the various application fields and suggest its application also in futures studies.
Collapse
|
18
|
Kianmehr A, Mohammadi HS, Shokrgozar MA, Omidinia E. In silico design and analysis of a new hyperglycosylated analog of erythropoietin to improve drug efficacy. Adv Biomed Res 2015; 4:142. [PMID: 26322290 PMCID: PMC4549927 DOI: 10.4103/2277-9175.161548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 09/24/2013] [Indexed: 01/08/2023] Open
Abstract
Background: The enhancement of glycosylation by applying glycoengineering approaches has become widely used to boost properties for protein therapeutics. The objective of this work was to engineer a new hyperglycosylated analog of erythropoietin (EPO) with appropriately targeted N-linked carbohydrates through bioinformatics tools. Materials and Methods: The EPO protein sequence was retrieved from NCBI protein sequence database. Prediction of N-glycosylation sites for the target protein was done using the prediction server, NetNGlyc. The three-dimensional model of glycoengineered EPO (named as kypoetin) was constructed using the homology modeling program. Ramchandran plot obtained from PROCHECK server was used to check stereochemical property. Meanwhile, 3D model of kypoetin with attached N-carbohydrates was built up using the GlyProt server. Results: In the new modified analog, three additional N-glycosylation sites at amino-acid positions 30, 34 and 86 were inserted. Ramchandran plot analysis showed 81.6% of the residues in the most favored region, 15.6% in the additional allowed, 1.4% in the generously allowed regions and 1.4% in the disallowed region. 3D structural modeling showed that attached carbohydrates were on the proper spatial position. The whole solvent accessible surface areas of kypoetin (15132.69) were higher than EPO (9938.62). Conclusions: Totally, various model evaluation methods indicated that the glycoengineered version of EPO had considerably good geometry and acceptable profiles for clinical studies and could be considered as the effective drug.
Collapse
Affiliation(s)
- Anvarsadat Kianmehr
- Biochemistry Department, Genetic and Metabolism Research Group, Pasteur Institute of Iran, Tehran ; Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Shahbaz Mohammadi
- Biochemistry Department, Genetic and Metabolism Research Group, Pasteur Institute of Iran, Tehran
| | - Mohammad Ali Shokrgozar
- National Cell Bank of Iran, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Eskandar Omidinia
- Biochemistry Department, Genetic and Metabolism Research Group, Pasteur Institute of Iran, Tehran
| |
Collapse
|
19
|
Vaudry H, Leprince J, Chatenet D, Fournier A, Lambert DG, Le Mével JC, Ohlstein EH, Schwertani A, Tostivint H, Vaudry D. International Union of Basic and Clinical Pharmacology. XCII. Urotensin II, urotensin II-related peptide, and their receptor: from structure to function. Pharmacol Rev 2015; 67:214-58. [PMID: 25535277 DOI: 10.1124/pr.114.009480] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Urotensin II (UII) is a cyclic neuropeptide that was first isolated from the urophysis of teleost fish on the basis of its ability to contract the hindgut. Subsequently, UII was characterized in tetrapods including humans. Phylogenetic studies and synteny analysis indicate that UII and its paralogous peptide urotensin II-related peptide (URP) belong to the somatostatin/cortistatin superfamily. In mammals, the UII and URP genes are primarily expressed in cholinergic neurons of the brainstem and spinal cord. UII and URP mRNAs are also present in various organs notably in the cardiovascular, renal, and endocrine systems. UII and URP activate a common G protein-coupled receptor, called UT, that exhibits relatively high sequence identity with somatostatin, opioid, and galanin receptors. The UT gene is widely expressed in the central nervous system (CNS) and in peripheral tissues including the retina, heart, vascular bed, lung, kidney, adrenal medulla, and skeletal muscle. Structure-activity relationship studies and NMR conformational analysis have led to the rational design of a number of peptidic and nonpeptidic UT agonists and antagonists. Consistent with the wide distribution of UT, UII has now been shown to exert a large array of biologic activities, in particular in the CNS, the cardiovascular system, and the kidney. Here, we review the current knowledge concerning the pleiotropic actions of UII and discusses the possible use of antagonists for future therapeutic applications.
Collapse
Affiliation(s)
- Hubert Vaudry
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Jérôme Leprince
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - David Chatenet
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Alain Fournier
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - David G Lambert
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Jean-Claude Le Mével
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Eliot H Ohlstein
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Adel Schwertani
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Hervé Tostivint
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - David Vaudry
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| |
Collapse
|
20
|
Duffy FJ, Devocelle M, Shields DC. Computational approaches to developing short cyclic peptide modulators of protein-protein interactions. Methods Mol Biol 2015; 1268:241-71. [PMID: 25555728 DOI: 10.1007/978-1-4939-2285-7_11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cyclic peptides are a promising class of bioactive molecules potentially capable of modulating "difficult" targets, such as protein-protein interactions. Cyclic peptides have long been used as therapeutics derived from natural product derivatives, but remain an underexplored class of compounds from the perspective of rational drug design, possibly due to the known weaknesses of peptide drugs in general. While cyclic peptides are non"druglike" by the accepted empirical rules, their unique structure may lend itself to both membrane permeability and proteolytic resistance-the main barriers to oral delivery. The constrained shape of cyclic peptides also lends itself better to virtual screening approaches, and new tools and successes in this area have been recently noted. An increasing number of strategies are available, both to generate and screen cyclic peptide libraries, and best practises and current successes are described within. This chapter will describe various computational strategies for virtual screening cyclic peptides, along with known implementations and applications. We will explore the generation and screening of diverse combinatorial virtual libraries, incorporating a range of cyclization strategies and structural modifications. More advanced approaches covered include evolutionary algorithms designed to aid in screening large structural libraries, machine learning approaches, and harnessing bioinformatics resources to bias cyclic peptide virtual libraries towards known bioactive structures.
Collapse
Affiliation(s)
- Fergal J Duffy
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | |
Collapse
|
21
|
Carotenuto A, Auriemma L, Merlino F, Yousif AM, Marasco D, Limatola A, Campiglia P, Gomez-Monterrey I, Santicioli P, Meini S, Maggi CA, Novellino E, Grieco P. Lead Optimization of P5U and Urantide: Discovery of Novel Potent Ligands at the Urotensin-II Receptor. J Med Chem 2014; 57:5965-74. [DOI: 10.1021/jm500218x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Alfonso Carotenuto
- Department
of Pharmacy, University of Naples “Federico II”, I-80131 Naples, Italy
| | - Luigia Auriemma
- Department
of Pharmacy, University of Naples “Federico II”, I-80131 Naples, Italy
| | - Francesco Merlino
- Department
of Pharmacy, University of Naples “Federico II”, I-80131 Naples, Italy
| | - Ali Munaim Yousif
- Department
of Pharmacy, University of Naples “Federico II”, I-80131 Naples, Italy
| | - Daniela Marasco
- Department
of Pharmacy, University of Naples “Federico II”, I-80131 Naples, Italy
- CIRPEB:
Centro Interuniversitario di Ricerca sui Peptidi Bioattivi , University of Naples “Federico II”, DFM-Scarl, Institute of Biostructures and Bioimaging-CNR, 80134, Naples, Italy
| | - Antonio Limatola
- Department
of Pharmacy, University of Naples “Federico II”, I-80131 Naples, Italy
| | - Pietro Campiglia
- Department
of Pharmacy, University of Salerno, I-84084 Fisciano, Salerno Italy
| | | | - Paolo Santicioli
- Department
of Pharmacology, Menarini Ricerche, Via Rismondo 12/A, I-50131, Florence, Italy
| | - Stefania Meini
- Department
of Pharmacology, Menarini Ricerche, Via Rismondo 12/A, I-50131, Florence, Italy
| | - Carlo A. Maggi
- Department
of Pharmacology, Menarini Ricerche, Via Rismondo 12/A, I-50131, Florence, Italy
| | - Ettore Novellino
- Department
of Pharmacy, University of Naples “Federico II”, I-80131 Naples, Italy
| | - Paolo Grieco
- Department
of Pharmacy, University of Naples “Federico II”, I-80131 Naples, Italy
- CIRPEB:
Centro Interuniversitario di Ricerca sui Peptidi Bioattivi , University of Naples “Federico II”, DFM-Scarl, Institute of Biostructures and Bioimaging-CNR, 80134, Naples, Italy
| |
Collapse
|
22
|
Kim SK, Goddard WA, Yi KY, Lee BH, Lim CJ, Trzaskowski B. Predicted ligands for the human urotensin-II G protein-coupled receptor with some experimental validation. ChemMedChem 2014; 9:1732-43. [PMID: 24989481 DOI: 10.1002/cmdc.201402087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Indexed: 11/12/2022]
Abstract
Human Urotensin-II (U-II) is the most potent mammalian vasoconstrictor known.1 Thus, a U-II antagonist would be of therapeutic value in a number of cardiovascular disorders.2 Here, we describe our work on the prediction of the structure of the human U-II receptor (hUT2 R) using GEnSeMBLE (GPCR Ensemble of Structures in Membrane BiLayer Environment) complete sampling Monte Carlo method. With the validation of our predicted structures, we designed a series of new potential antagonists predicted to bind more strongly than known ligands. Next, we carried out R-group screening to suggest a new ligand predicted to bind with 7 kcal mol(-1) better energy than 1-{2-[4-(2-bromobenzyl)-4-hydroxypiperidin-1-yl]ethyl}-3-(thieno[3,2-b]pyridin-7-yl)urea, the designed antagonist predicted to have the highest affinity for the receptor. Some of these predictions were tested experimentally, validating the computational results. Using the pharmacophore generated from the predicted structure for hUT2 R bound to ACT-058362, we carried out virtual screening based on this binding site. The most potent hit compounds identified contained 2-(phenoxymethyl)-1,3,4-thiadiazole core, with the best derivative exhibiting an IC50 value of 0.581 μM against hUT2 R when tested in vitro. Our efforts identified a new scaffold as a potential new lead structure for the development of novel hUT2 R antagonists, and the computational methods used could find more general applicability to other GPCRs.
Collapse
Affiliation(s)
- Soo-Kyung Kim
- Materials & Process Simulation Center, California Institute of Technology, Beckman Institute (BI);Code (139-74), 1200 E. California Blvd., Pasadena, CA 91125 (USA)
| | | | | | | | | | | |
Collapse
|
23
|
Federico A, Zappavigna S, Romano M, Grieco P, Luce A, Marra M, Gravina AG, Stiuso P, D'Armiento FP, Vitale G, Tuccillo C, Novellino E, Loguercio C, Caraglia M. Urotensin-II receptor is over-expressed in colon cancer cell lines and in colon carcinoma in humans. Eur J Clin Invest 2014; 44:285-94. [PMID: 24372535 DOI: 10.1111/eci.12231] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 12/17/2013] [Indexed: 01/08/2023]
Abstract
BACKGROUND Urotensin (U)-II receptor (UTR) has been previously reported to be over-expressed in a number of tumours. Whether UTR-related pathway plays a role in colon carcinogenesis is unknown. METHODS We evaluated UTR protein and mRNA expression in human epithelial colon cancer cell lines and in normal colon tissue, adenomatous polyps and colon cancer. U-II protein expression was assessed in cancer cell lines. Moreover, we evaluated the effects of U-II(4-11) (an UTR agonist), antagonists and knockdown of UTR protein expression through a specific shRNA, on proliferation, invasion and motility of human colon cancer cells. RESULTS Cancer cell lines expressed U-II protein and UTR protein and mRNA. By immunohistochemistry, UTR was expressed in 5-30% of epithelial cells in 45 normal controls, in 30-48% in 21 adenomatous polyps and in 65-90% in 48 colon adenocarcinomas. UTR mRNA expression was increased by threefold in adenomatous polyps and eightfold in colon cancer, compared with normal colon. U-II(4-11) induced a 20-40% increase in cell growth while the blockade of the receptor with specific antagonists caused growth inhibition of 20-40%. Moreover, the knock down of UTR with a shRNA or the inhibition of UTR with the antagonist urantide induced an approximately 50% inhibition of both motility and invasion. CONCLUSIONS UTR appears to be involved in the regulation of colon cancer cell invasion and motility. These data suggest that UTR-related pathway may play a role in colon carcinogenesis and that UTR may function as a target for therapeutic intervention in colon cancer.
Collapse
Affiliation(s)
- Alessandro Federico
- Gastroenterology Unit, Department of Clinical and Experimental Medicine and Surgery, Second University of Naples, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Brancaccio D, Limatola A, Campiglia P, Gomez-Monterrey I, Novellino E, Grieco P, Carotenuto A. Urantide Conformation and Interaction with the Urotensin-II Receptor. Arch Pharm (Weinheim) 2013; 347:185-92. [DOI: 10.1002/ardp.201300269] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/17/2013] [Accepted: 09/23/2013] [Indexed: 01/18/2023]
Affiliation(s)
- Diego Brancaccio
- Department of Pharmacy; University of Naples “Federico II”; Naples Italy
| | - Antonio Limatola
- Department of Pharmacy; University of Naples “Federico II”; Naples Italy
| | - Pietro Campiglia
- Department of Pharmacy; University of Salerno; Fisciano Salerno Italy
| | | | - Ettore Novellino
- Department of Pharmacy; University of Naples “Federico II”; Naples Italy
| | - Paolo Grieco
- Department of Pharmacy; University of Naples “Federico II”; Naples Italy
| | - Alfonso Carotenuto
- Department of Pharmacy; University of Naples “Federico II”; Naples Italy
| |
Collapse
|
25
|
Honarparvar B, Govender T, Maguire GEM, Soliman MES, Kruger HG. Integrated Approach to Structure-Based Enzymatic Drug Design: Molecular Modeling, Spectroscopy, and Experimental Bioactivity. Chem Rev 2013; 114:493-537. [DOI: 10.1021/cr300314q] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Bahareh Honarparvar
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Thavendran Govender
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Glenn E. M. Maguire
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Mahmoud E. S. Soliman
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Hendrik G. Kruger
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| |
Collapse
|
26
|
New insight into the binding mode of peptides at urotensin-II receptor by Trp-constrained analogues of P5U and urantide. J Pept Sci 2013; 19:293-300. [DOI: 10.1002/psc.2498] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/25/2013] [Accepted: 01/27/2013] [Indexed: 11/07/2022]
|
27
|
Urotensin-II Ligands: An Overview from Peptide to Nonpeptide Structures. JOURNAL OF AMINO ACIDS 2013; 2013:979016. [PMID: 23533711 PMCID: PMC3596952 DOI: 10.1155/2013/979016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 01/14/2013] [Indexed: 02/07/2023]
Abstract
Urotensin-II was originally isolated from the goby urophysis in the 1960s as a vasoactive peptide with a prominent role in cardiovascular homeostasis. The identification of human isoform of urotensin-II and its specific UT receptor by Ames et al. in 1999 led to investigating the putative role of the interaction U-II/UT receptor in multiple pathophysiological effects in humans. Since urotensin-II is widely expressed in several peripheral tissues including cardiovascular system, the design and development of novel urotensin-II analogues can improve knowledge about structure-activity relationships (SAR). In particular, since the modulation of the U-II system offers a great potential for therapeutic strategies related to the treatment of several diseases, like cardiovascular diseases, the research of selective and potent ligands at UT receptor is more fascinating. In this paper, we review the developments of peptide and nonpeptide U-II structures so far developed in order to contribute also to a more rational and detectable design and synthesis of new molecules with high affinity at the UT receptor.
Collapse
|
28
|
Nedjai B, Li H, Stroke IL, Wise EL, Webb ML, Merritt JR, Henderson I, Klon AE, Cole AG, Horuk R, Vaidehi N, Pease JE. Small molecule chemokine mimetics suggest a molecular basis for the observation that CXCL10 and CXCL11 are allosteric ligands of CXCR3. Br J Pharmacol 2012; 166:912-23. [PMID: 21895630 PMCID: PMC3417418 DOI: 10.1111/j.1476-5381.2011.01660.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE The chemokine receptor CXCR3 directs migration of T-cells in response to the ligands CXCL9/Mig, CXCL10/IP-10 and CXCL11/I-TAC. Both ligands and receptors are implicated in the pathogenesis of inflammatory disorders, including atherosclerosis and rheumatoid arthritis. Here, we describe the molecular mechanism by which two synthetic small molecule agonists activate CXCR3. EXPERIMENTAL APPROACH As both small molecules are basic, we hypothesized that they formed electrostatic interactions with acidic residues within CXCR3. Nine point mutants of CXCR3 were generated in which an acidic residue was mutated to its amide counterpart. Following transient expression, the ability of the constructs to bind and signal in response to natural and synthetic ligands was examined. KEY RESULTS The CXCR3 mutants D112N, D195N and E196Q were efficiently expressed and responsive in chemotaxis assays to CXCL11 but not to CXCL10 or to either of the synthetic agonists, confirmed with radioligand binding assays. Molecular modelling of both CXCL10 and CXCR3 suggests that the small molecule agonists mimic a region of the ‘30s loop’ (residues 30–40 of CXCL10) which interacts with the intrahelical CXCR3 residue D112, leading to receptor activation. D195 and E196 are located in the second extracellular loop and form putative intramolecular salt bridges required for a CXCR3 conformation that recognizes CXCL10. In contrast, CXCL11 recognition by CXCR3 is largely independent of these residues. CONCLUSION AND IMPLICATIONS We provide here a molecular basis for the observation that CXCL10 and CXCL11 are allosteric ligands of CXCR3. Such findings may have implications for the design of CXCR3 antagonists. LINKED ARTICLE This article is commented on by O'Boyle, pp. 895–897 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2011.01759.x
Collapse
Affiliation(s)
- Belinda Nedjai
- Leukocyte Biology Section, NHLI Division, Faculty of Medicine, Imperial College London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Chatenet D, Nguyen QT, Létourneau M, Dupuis J, Fournier A. Urocontrin, a novel UT receptor ligand with a unique pharmacological profile. Biochem Pharmacol 2012; 83:608-15. [DOI: 10.1016/j.bcp.2011.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/05/2011] [Accepted: 12/08/2011] [Indexed: 01/23/2023]
|
30
|
Findeisen M, Rathmann D, Beck-Sickinger AG. RFamide Peptides: Structure, Function, Mechanisms and Pharmaceutical Potential. Pharmaceuticals (Basel) 2011. [PMCID: PMC4058657 DOI: 10.3390/ph4091248] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Different neuropeptides, all containing a common carboxy-terminal RFamide sequence, have been characterized as ligands of the RFamide peptide receptor family. Currently, five subgroups have been characterized with respect to their N-terminal sequence and hence cover a wide pattern of biological functions, like important neuroendocrine, behavioral, sensory and automatic functions. The RFamide peptide receptor family represents a multiligand/multireceptor system, as many ligands are recognized by several GPCR subtypes within one family. Multireceptor systems are often susceptible to cross-reactions, as their numerous ligands are frequently closely related. In this review we focus on recent results in the field of structure-activity studies as well as mutational exploration of crucial positions within this GPCR system. The review summarizes the reported peptide analogs and recently developed small molecule ligands (agonists and antagonists) to highlight the current understanding of the pharmacophoric elements, required for affinity and activity at the receptor family. Furthermore, we address the biological functions of the ligands and give an overview on their involvement in physiological processes. We provide insights in the knowledge for the design of highly selective ligands for single receptor subtypes to minimize cross-talk and to eliminate effects from interactions within the GPCR system. This will support the drug development of members of the RFamide family.
Collapse
|
31
|
Chen JZ, Myint KZ, Xie XQ. New QSAR prediction models derived from GPCR CB2-antagonistic triaryl bis-sulfone analogues by a combined molecular morphological and pharmacophoric approach. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2011; 22:525-544. [PMID: 21714749 DOI: 10.1080/1062936x.2011.569948] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In order to build quantitative structure-activity relationship (QSAR) models for virtual screening of novel cannabinoid CB2 ligands and hit ranking selections, a new QSAR algorithm has been developed for the cannabinoid ligands, triaryl bis-sulfones, using a combined molecular morphological and pharmacophoric search approach. Both pharmacophore features and shape complementarity were considered using a number of molecular descriptors, including Surflex-Sim similarity and Unity Query fit, in addition to other molecular properties such as molecular weight, ClogP, molecular volume, molecular area, molecular polar volume, molecular polar surface area and dipole moment. Subsequently, partial least squares regression analyses were carried out to derive QSAR models linking bioactivity and the descriptors mentioned, using a training set of 25 triaryl bis-sulfones. Good prediction capability was confirmed for the best QSAR model by evaluation against a test set of a further 20 triaryl bis-sulfones. The pharmacophore and molecular shape-based QSAR scoring function now established can be used to predict the biological properties of virtual hits or untested compounds obtained from ligand-based virtual screenings.
Collapse
Affiliation(s)
- J-Z Chen
- Department of Pharmaceutical Sciences, University of Pittsburgh, PA, USA
| | | | | |
Collapse
|
32
|
Matter H, Sotriffer C. Applications and Success Stories in Virtual Screening. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2011. [DOI: 10.1002/9783527633326.ch12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
33
|
A novel structural framework for α(1A/D)-adrenoceptor selective antagonists identified using subtype selective pharmacophores. PLoS One 2011; 6:e19695. [PMID: 21572949 PMCID: PMC3091868 DOI: 10.1371/journal.pone.0019695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 04/14/2011] [Indexed: 11/19/2022] Open
Abstract
In this study four and five-feature pharmacophores for selective antagonists at each of the three α(1)-adrenoceptor (AR) subtypes were used to identify novel α(1)-AR subtype selective compounds in the National Cancer Institute and Tripos LeadQuest databases. 12 compounds were selected, based on diversity of structure, predicted high affinity and selectivity at the α(1D)- subtype compared to α(1A)- and α(1B)-ARs. 9 out of 12 of the tested compounds displayed affinity at the α(1A) and α(1D) -AR subtypes and 6 displayed affinity at all three α(1)-AR subtypes, no α(1B)-AR selective compounds were identified. 8 of the 9 compounds with α(1)-AR affinity were antagonists and one compound displayed partial agonist characteristics. This virtual screening has successfully identified an α(1A/D)-AR selective antagonist, with low µM affinity with a novel structural scaffold of a an isoquinoline fused three-ring system and good lead-like qualities ideal for further drug development.
Collapse
|
34
|
Kim SK, Li Y, Park C, Abrol R, Goddard WA. Prediction of the three-dimensional structure for the rat urotensin II receptor, and comparison of the antagonist binding sites and binding selectivity between human and rat receptors from atomistic simulations. ChemMedChem 2010; 5:1594-608. [PMID: 20683923 PMCID: PMC3517062 DOI: 10.1002/cmdc.201000175] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Indexed: 11/11/2022]
Abstract
Urotensin-II (U-II) has been shown to be the most potent mammalian vasoconstrictor known. Thus, a U-II antagonist might be of therapeutic value in a number of cardiovascular disorders. However, interspecies variability of several nonpeptidic ligands complicates the interpretation of in vivo studies of such antagonists in preclinical animal disease models. ACT058362 is a selective antagonist for the human U-II receptor (hUT2R) with a reported K(d) value of approximately 4 nM in a molecular binding assay, but it is reported to bind weakly to rat UT2R (rUT2R), with a K(d) value of approximately 1 500 nM. In contrast, the arylsulphonamide SB706375 is a selective antagonist against both hUT2R (K(d)= approximately 9 nM) and rUT2R (K(d)= approximately 21 nM). To understand the species selectivity of the UT2R, we investigated the binding site of ACT058362 and SB706375 in both hUT2R and rUT2R to explain the dramatically lower (approximately 400-fold) affinity of ACT058362 for rUT2R and the similar affinity (approximately 10 nM) of SB706375 for both UT2Rs. These studies used MembStruk and MSCDock to predict the UT2R structure and the binding site of ACT058362 and SB706375. Based on binding energies, we found two binding modes each with D130(3.32) as the crucial anchoring point (Ballesteros-Weinstein numbering given in superscript). We predict that ACT058362 (an aryl-amine-aryl or ANA ligand) binds in the transmembrane (TM) 3456 region, while SB706375 (an aryl-aryl-amine or AAN ligand) binds in the TM 1237 region. These predicted sites explain the known differences in binding of the ANA ligand to rat and human receptors, while explaining the similar binding of the AAN compound to rat and human receptors. Moreover the predictions explain currently available structure-activity relationship (SAR) data. To further validate the predicted binding sites of these ligands in hUT2R and rUT2R, we propose several mutations that would help define the structural origins of differential responses between UT2R of different species, potentially indicating novel UT2R antagonists with cross-species high affinity.
Collapse
Affiliation(s)
- Soo-Kyung Kim
- Materials and Process Simulation Center (MC 139-74), California Institute of Technology, Pasadena, CA 91125, USA, Fax: (+1)626-585-0918
| | - Youyong Li
- Materials and Process Simulation Center (MC 139-74), California Institute of Technology, Pasadena, CA 91125, USA, Fax: (+1)626-585-0918
| | | | - Ravinder Abrol
- Materials and Process Simulation Center (MC 139-74), California Institute of Technology, Pasadena, CA 91125, USA, Fax: (+1)626-585-0918
| | - William A. Goddard
- Materials and Process Simulation Center (MC 139-74), California Institute of Technology, Pasadena, CA 91125, USA, Fax: (+1)626-585-0918
| |
Collapse
|
35
|
Vaudry H, Do Rego JC, Le Mevel JC, Chatenet D, Tostivint H, Fournier A, Tonon MC, Pelletier G, Conlon JM, Leprince J. Urotensin II, from fish to human. Ann N Y Acad Sci 2010; 1200:53-66. [PMID: 20633133 DOI: 10.1111/j.1749-6632.2010.05514.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cyclic peptide urotensin II (UII) was originally isolated from the urophysis of teleost fish on the basis of its ability to contract intestinal smooth muscle. The UII peptide has subsequently been isolated from frog brain and, later on, the pre-proUII cDNA has been characterized in mammals, including humans. A UII paralog called urotensin II-related peptide (URP) has been identified in the rat brain. The UII and URP genes originate from the same ancestral gene as the somatostatin and cortistatin genes. In the central nervous system (CNS) of tetrapods, UII is expressed primarily in motoneurons of the brainstem and spinal cord. The biological actions of UII and URP are mediated through a G protein-coupled receptor, termed UT, that exhibits high sequence similarity with the somatostatin receptors. The UT gene is widely expressed in the CNS and in peripheral organs. Consistent with the broad distribution of UT, UII and URP exert a large array of behavioral effects and regulate endocrine, cardiovascular, renal, and immune functions.
Collapse
Affiliation(s)
- Hubert Vaudry
- Laboratory of Cellular Neuroendocrinology, INSERM U413, European Institute for Peptide Research (IFRMP 23), University of Rouen, Mont-Saint-Aignan, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lehmann F, Currier EA, Olsson R, Ma JN, Burstein ES, Hacksell U, Luthman K. Optimization of isochromanone based urotensin II receptor agonists. Bioorg Med Chem 2010; 18:4844-54. [DOI: 10.1016/j.bmc.2010.04.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 04/08/2010] [Accepted: 04/16/2010] [Indexed: 11/24/2022]
|
37
|
Ross B, McKendy K, Giaid A. Role of urotensin II in health and disease. Am J Physiol Regul Integr Comp Physiol 2010; 298:R1156-72. [DOI: 10.1152/ajpregu.00706.2009] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Urotensin II (UII) is an 11 amino acid cyclic peptide originally isolated from the goby fish. The amino acid sequence of UII is exceptionally conserved across most vertebrate taxa, sharing structural similarity to somatostatin. UII binds to a class of G protein-coupled receptor known as GPR14 or the urotensin receptor (UT). UII and its receptor, UT, are widely expressed throughout the cardiovascular, pulmonary, central nervous, renal, and metabolic systems. UII is generally agreed to be the most potent endogenous vasoconstrictor discovered to date. Its physiological mechanisms are similar in some ways to other potent mediators, such as endothelin-1. For example, both compounds elicit a strong vascular smooth muscle-dependent vasoconstriction via Ca2+ release. UII also exerts a wide range of actions in other systems, such as proliferation of vascular smooth muscle cells, fibroblasts, and cancer cells. It also 1) enhances foam cell formation, chemotaxis of inflammatory cells, and inotropic and hypertrophic effects on heart muscle; 2) inhibits insulin release, modulates glomerular filtration, and release of catecholamines; and 3) may help regulate food intake and the sleep cycle. Elevated plasma levels of UII and increased levels of UII and UT expression have been demonstrated in numerous diseased conditions, including hypertension, atherosclerosis, heart failure, pulmonary hypertension, diabetes, renal failure, and the metabolic syndrome. Indeed, some of these reports suggest that UII is a marker of disease activity. As such, the UT receptor is emerging as a promising target for therapeutic intervention. Here, a concise review is given on the vast physiologic and pathologic roles of UII.
Collapse
Affiliation(s)
- Bryan Ross
- McGill University Health Center, Montreal, Quebec, Canada
| | | | - Adel Giaid
- McGill University Health Center, Montreal, Quebec, Canada
| |
Collapse
|
38
|
Hunt BD, Ng LL, Lambert DG. A rat brain atlas of urotensin-II receptor expression and a review of central urotensin-II effects. Naunyn Schmiedebergs Arch Pharmacol 2010; 382:1-31. [PMID: 20422157 DOI: 10.1007/s00210-010-0503-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 02/22/2010] [Indexed: 02/07/2023]
Abstract
Urotensin-II (U-II) is an 11-amino acid cyclic peptide which exerts its actions through a G(q) protein-coupled receptor, UT. Much of the research focus of U-II is as a peptide of the periphery, particularly cardiovascular. Despite this, U-II was originally identified as a neuropeptide, and its expression is broad throughout the central nervous system. This brief review article catalogs the known sites of expression of UT within the CNS in the form of a diagrammatic rat brain atlas. Furthermore, the functional consequences of UT activation within specific brain regions are discussed along with the likely actions of synthetic UT ligands. Areas of high, medium, and low expression include the arcuate, paraventricular, and pedunculopontine tegmental nuclei, respectively. In the arcuate and paraventricular nuclei, where expression is high and moderate, U-II produces a pressor/tachycardic response in the former and a weaker response in the latter. Based on the known pharmacology of UT ligands (and assuming density is the primary determinant of efficacy in this case), we predict a weak response in the arcuate nucleus and possible antagonism of endogenous U-II response in the paraventricular nucleus by a low-efficacy partial agonist. These predicted responses lend themselves to relatively simple experimental verification.
Collapse
Affiliation(s)
- Benjamin D Hunt
- University Department of Cardiovascular Sciences (Pharmacology and Therapeutics Group), Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Leicester Royal Infirmary, Leicester LE1 5WW, UK
| | | | | |
Collapse
|
39
|
Weill N, Rognan D. Alignment-free ultra-high-throughput comparison of druggable protein-ligand binding sites. J Chem Inf Model 2010; 50:123-35. [PMID: 20058856 DOI: 10.1021/ci900349y] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inferring the biological function of a protein from its three-dimensional structure as well as explaining why a drug may bind to various targets is of crucial importance to modern drug discovery. Here we present a generic 4833-integer vector describing druggable protein-ligand binding sites that can be applied to any protein and any binding cavity. The fingerprint registers counts of pharmacophoric triplets from the Calpha atomic coordinates of binding-site-lining residues. Starting from a customized data set of diverse protein-ligand binding site pairs, the most appropriate metric and a similarity threshold could be defined for similar binding sites. The method (FuzCav) has been used in various scenarios: (i) screening a collection of 6000 binding sites for similarity to different queries; (ii) classifying protein families (serine endopeptidases, protein kinases) by binding site diversity; (iii) discriminating adenine-binding cavities from decoys. The fingerprint generation and comparison supports ultra-high throughput (ca. 1000 measures/s), does not require prior alignment of protein binding sites, and is able to detect local similarity among subpockets. It is thus particularly well suited to the functional annotation of novel genomic structures with low sequence identity to known X-ray templates.
Collapse
Affiliation(s)
- Nathanaël Weill
- Structural Chemogenomics, Laboratory of Therapeutic Innovation, UMR 7200 CNRS-UdS (Universite de Strasbourg), F-67400 Illkirch, France
| | | |
Collapse
|
40
|
Hull JJ, Copley KS, Schegg KM, Quilici DR, Schooley DA, Welch WH. De novo molecular modeling and biophysical characterization of Manduca sexta eclosion hormone. Biochemistry 2009; 48:9047-60. [PMID: 19670911 PMCID: PMC2792118 DOI: 10.1021/bi901078y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Eclosion hormone (EH) is an integral component in the cascade regulating the behaviors culminating in emergence of an insect from its old exoskeleton. Little is known regarding the EH solution structure; consequently, we utilized a computational approach to generate a hypothetical structure for Manduca sexta EH. The de novo algorithm exploited the restricted conformational space of disulfide bonds (Cys14-Cys38, Cys18-Cys34, and Cys21-Cys49) and predicted secondary structure elements to generate a thermodynamically stable structure characterized by 55% helical content, an unstructured N-terminus, a helical C-terminus, and a solvent-exposed loop containing Trp28 and Phe29. Both the strain and pseudo energies of the predicted peptide compare favorably with those of known structures. The 62-amino acid peptide was synthesized, folded, assayed for activity, and structurally characterized to confirm the validity of the model. The helical content is supported by circular dichroism and hydrogen-deuterium exchange mass spectrometry. Fluorescence emission spectra and acrylamide quenching are consistent with the solvent exposure predicted for Trp28, which is shielded by Phe29. Furthermore, thermodynamically stable conformations that deviated only slightly from the predicted Manduca EH structure were generated in silico for the Bombyx mori and Drosophila melanogaster EHs, indicating that the conformation is not species-dependent. In addition, the biological activities of known mutants and deletion peptides were rationalized with the predicted Manduca EH structure, and we found that, on the basis of sequence conservation, functionally important residues map to two conserved hydrophobic clusters incorporating the C-terminus and the first loop.
Collapse
Affiliation(s)
| | | | | | | | - David A. Schooley
- Correspondence to: David A. Schooley, Dept. of Biochemistry, University of Nevada, Reno, Nevada 89557; ; Phone: (775)-784-4136; Fax: (775)-784-1419
| | | |
Collapse
|
41
|
Lawson EC, Luci DK, Ghosh S, Kinney WA, Reynolds CH, Qi J, Smith CE, Wang Y, Minor LK, Haertlein BJ, Parry TJ, Damiano BP, Maryanoff BE. Nonpeptide Urotensin-II Receptor Antagonists: A New Ligand Class Based on Piperazino-Phthalimide and Piperazino-Isoindolinone Subunits. J Med Chem 2009; 52:7432-45. [PMID: 19731961 DOI: 10.1021/jm900683d] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Edward C. Lawson
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477-0776
| | - Diane K. Luci
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477-0776
| | - Shyamali Ghosh
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477-0776
| | - William A. Kinney
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477-0776
| | - Charles H. Reynolds
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477-0776
| | - Jenson Qi
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477-0776
| | - Charles E. Smith
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477-0776
| | - Yuanping Wang
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477-0776
| | - Lisa K. Minor
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477-0776
| | - Barbara J. Haertlein
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477-0776
| | - Tom J. Parry
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477-0776
| | - Bruce P. Damiano
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477-0776
| | - Bruce E. Maryanoff
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477-0776
| |
Collapse
|
42
|
Odagami T, Tsuda Y, Kogami Y, Kouji H, Okada Y. Identification of new agonists of urotensin-II from a cyclic peptide library. Bioorg Med Chem 2009; 17:6742-7. [DOI: 10.1016/j.bmc.2009.07.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Revised: 07/17/2009] [Accepted: 07/21/2009] [Indexed: 10/20/2022]
|
43
|
Batuwangala M, Camarda V, McDonald J, Marzola E, Lambert DG, Ng LL, Calo' G, Regoli D, Trapella C, Guerrini R, Salvadori S. Structure-activity relationship study on Tyr9 of urotensin-II(4-11): identification of a partial agonist of the UT receptor. Peptides 2009; 30:1130-6. [PMID: 19463746 DOI: 10.1016/j.peptides.2009.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 02/04/2009] [Accepted: 02/05/2009] [Indexed: 11/29/2022]
Abstract
Urotensin-II (U-II) activates the U-II receptor (UT) to modulate a range of biological responses at both central and peripheral sites. Previous studies have demonstrated that the sequence Trp(7)-Lys(8)-Tyr(9) of the cyclic portion of the peptide is crucial for biological activity. Here, we describe a focused structure-activity study of Tyr(9) which has been replaced with a series of non-coded amino acids in the U-II(4-11) template. Thirteen analogs were synthesized and pharmacologically tested for intracellular calcium mobilization in HEK293 cells stably expressing the rat UT receptor. The results of this study demonstrated the following Tyr(9) structure-activity features: (i) the position of the OH group of the side chain is not important for biological activity, (ii) the distance of the phenol moiety from the peptide backbone and its conformational freedom are crucial for UT receptor recognition, (iii) this position is important not only for receptor occupation but also for its activation since the 3,5-diiodoTyr(9) chemical modification generated a potent partial agonist. This pharmacological activity of [3,5-diiodoTyr(9)]U-II(4-11) was confirmed in bioassay experiments performed using the rat thoracic aorta as a U-II sensitive preparation.
Collapse
Affiliation(s)
- Madura Batuwangala
- Dept of Experimental and Clinical Medicine, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Grieco P, Carotenuto A, Campiglia P, Gomez-Monterrey I, Auriemma L, Sala M, Marcozzi C, d’Emmanuele di Villa Bianca R, Brancaccio D, Rovero P, Santicioli P, Meini S, Maggi CA, Novellino E. New Insight into the Binding Mode of Peptide Ligands at Urotensin-II Receptor: Structure−Activity Relationships Study on P5U and Urantide. J Med Chem 2009; 52:3927-40. [DOI: 10.1021/jm900148c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Paolo Grieco
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, Via D. Montesano, I-80131 Naples, Italy, Laboratorio Interdipartimentale di Chimica e Biologia dei Peptidi e Proteine, Department di Scienze Farmaceutiche, Università di Firenze, I-50019 Sesto Fiorentino, Florence, Italy, Department of Experimental Pharmacology, University of Naples “Federico II”, I-80131 Naples, Italy, Department of Pharmacology, Menarini Ricerche, Via Rismpondo 12/A, I-50131 Florence, Italy,
| | - Alfonso Carotenuto
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, Via D. Montesano, I-80131 Naples, Italy, Laboratorio Interdipartimentale di Chimica e Biologia dei Peptidi e Proteine, Department di Scienze Farmaceutiche, Università di Firenze, I-50019 Sesto Fiorentino, Florence, Italy, Department of Experimental Pharmacology, University of Naples “Federico II”, I-80131 Naples, Italy, Department of Pharmacology, Menarini Ricerche, Via Rismpondo 12/A, I-50131 Florence, Italy,
| | - Pietro Campiglia
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, Via D. Montesano, I-80131 Naples, Italy, Laboratorio Interdipartimentale di Chimica e Biologia dei Peptidi e Proteine, Department di Scienze Farmaceutiche, Università di Firenze, I-50019 Sesto Fiorentino, Florence, Italy, Department of Experimental Pharmacology, University of Naples “Federico II”, I-80131 Naples, Italy, Department of Pharmacology, Menarini Ricerche, Via Rismpondo 12/A, I-50131 Florence, Italy,
| | - Isabel Gomez-Monterrey
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, Via D. Montesano, I-80131 Naples, Italy, Laboratorio Interdipartimentale di Chimica e Biologia dei Peptidi e Proteine, Department di Scienze Farmaceutiche, Università di Firenze, I-50019 Sesto Fiorentino, Florence, Italy, Department of Experimental Pharmacology, University of Naples “Federico II”, I-80131 Naples, Italy, Department of Pharmacology, Menarini Ricerche, Via Rismpondo 12/A, I-50131 Florence, Italy,
| | - Luigia Auriemma
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, Via D. Montesano, I-80131 Naples, Italy, Laboratorio Interdipartimentale di Chimica e Biologia dei Peptidi e Proteine, Department di Scienze Farmaceutiche, Università di Firenze, I-50019 Sesto Fiorentino, Florence, Italy, Department of Experimental Pharmacology, University of Naples “Federico II”, I-80131 Naples, Italy, Department of Pharmacology, Menarini Ricerche, Via Rismpondo 12/A, I-50131 Florence, Italy,
| | - Marina Sala
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, Via D. Montesano, I-80131 Naples, Italy, Laboratorio Interdipartimentale di Chimica e Biologia dei Peptidi e Proteine, Department di Scienze Farmaceutiche, Università di Firenze, I-50019 Sesto Fiorentino, Florence, Italy, Department of Experimental Pharmacology, University of Naples “Federico II”, I-80131 Naples, Italy, Department of Pharmacology, Menarini Ricerche, Via Rismpondo 12/A, I-50131 Florence, Italy,
| | - Cristina Marcozzi
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, Via D. Montesano, I-80131 Naples, Italy, Laboratorio Interdipartimentale di Chimica e Biologia dei Peptidi e Proteine, Department di Scienze Farmaceutiche, Università di Firenze, I-50019 Sesto Fiorentino, Florence, Italy, Department of Experimental Pharmacology, University of Naples “Federico II”, I-80131 Naples, Italy, Department of Pharmacology, Menarini Ricerche, Via Rismpondo 12/A, I-50131 Florence, Italy,
| | - Roberta d’Emmanuele di Villa Bianca
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, Via D. Montesano, I-80131 Naples, Italy, Laboratorio Interdipartimentale di Chimica e Biologia dei Peptidi e Proteine, Department di Scienze Farmaceutiche, Università di Firenze, I-50019 Sesto Fiorentino, Florence, Italy, Department of Experimental Pharmacology, University of Naples “Federico II”, I-80131 Naples, Italy, Department of Pharmacology, Menarini Ricerche, Via Rismpondo 12/A, I-50131 Florence, Italy,
| | - Diego Brancaccio
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, Via D. Montesano, I-80131 Naples, Italy, Laboratorio Interdipartimentale di Chimica e Biologia dei Peptidi e Proteine, Department di Scienze Farmaceutiche, Università di Firenze, I-50019 Sesto Fiorentino, Florence, Italy, Department of Experimental Pharmacology, University of Naples “Federico II”, I-80131 Naples, Italy, Department of Pharmacology, Menarini Ricerche, Via Rismpondo 12/A, I-50131 Florence, Italy,
| | - Paolo Rovero
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, Via D. Montesano, I-80131 Naples, Italy, Laboratorio Interdipartimentale di Chimica e Biologia dei Peptidi e Proteine, Department di Scienze Farmaceutiche, Università di Firenze, I-50019 Sesto Fiorentino, Florence, Italy, Department of Experimental Pharmacology, University of Naples “Federico II”, I-80131 Naples, Italy, Department of Pharmacology, Menarini Ricerche, Via Rismpondo 12/A, I-50131 Florence, Italy,
| | - Paolo Santicioli
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, Via D. Montesano, I-80131 Naples, Italy, Laboratorio Interdipartimentale di Chimica e Biologia dei Peptidi e Proteine, Department di Scienze Farmaceutiche, Università di Firenze, I-50019 Sesto Fiorentino, Florence, Italy, Department of Experimental Pharmacology, University of Naples “Federico II”, I-80131 Naples, Italy, Department of Pharmacology, Menarini Ricerche, Via Rismpondo 12/A, I-50131 Florence, Italy,
| | - Stefania Meini
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, Via D. Montesano, I-80131 Naples, Italy, Laboratorio Interdipartimentale di Chimica e Biologia dei Peptidi e Proteine, Department di Scienze Farmaceutiche, Università di Firenze, I-50019 Sesto Fiorentino, Florence, Italy, Department of Experimental Pharmacology, University of Naples “Federico II”, I-80131 Naples, Italy, Department of Pharmacology, Menarini Ricerche, Via Rismpondo 12/A, I-50131 Florence, Italy,
| | - Carlo A. Maggi
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, Via D. Montesano, I-80131 Naples, Italy, Laboratorio Interdipartimentale di Chimica e Biologia dei Peptidi e Proteine, Department di Scienze Farmaceutiche, Università di Firenze, I-50019 Sesto Fiorentino, Florence, Italy, Department of Experimental Pharmacology, University of Naples “Federico II”, I-80131 Naples, Italy, Department of Pharmacology, Menarini Ricerche, Via Rismpondo 12/A, I-50131 Florence, Italy,
| | - Ettore Novellino
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, Via D. Montesano, I-80131 Naples, Italy, Laboratorio Interdipartimentale di Chimica e Biologia dei Peptidi e Proteine, Department di Scienze Farmaceutiche, Università di Firenze, I-50019 Sesto Fiorentino, Florence, Italy, Department of Experimental Pharmacology, University of Naples “Federico II”, I-80131 Naples, Italy, Department of Pharmacology, Menarini Ricerche, Via Rismpondo 12/A, I-50131 Florence, Italy,
| |
Collapse
|
45
|
Leifert WR. An overview on GPCRs and drug discovery: structure-based drug design and structural biology on GPCRs. Methods Mol Biol 2009; 552:51-66. [PMID: 19513641 PMCID: PMC7122359 DOI: 10.1007/978-1-60327-317-6_4] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
G protein-coupled receptors (GPCRs) represent 50-60% of the current drug targets. There is no doubt that this family of membrane proteins plays a crucial role in drug discovery today. Classically, a number of drugs based on GPCRs have been developed for such different indications as cardiovascular, metabolic, neurodegenerative, psychiatric, and oncologic diseases. Owing to the restricted structural information on GPCRs, only limited exploration of structure-based drug design has been possible. Much effort has been dedicated to structural biology on GPCRs and very recently an X-ray structure of the beta2-adrenergic receptor was obtained. This breakthrough will certainly increase the efforts in structural biology on GPCRs and furthermore speed up and facilitate the drug discovery process.
Collapse
|
46
|
N-Alkyl-5H-pyrido[4,3-b]indol-1-amines and derivatives as novel urotensin-II receptor antagonists. Bioorg Med Chem Lett 2008; 18:4936-9. [DOI: 10.1016/j.bmcl.2008.08.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 08/13/2008] [Accepted: 08/15/2008] [Indexed: 01/12/2023]
|
47
|
Dubessy C, Cartier D, Lectez B, Bucharles C, Chartrel N, Montero-Hadjadje M, Bizet P, Chatenet D, Tostivint H, Scalbert E, Leprince J, Vaudry H, Jégou S, Lihrmann I. Characterization of urotensin II, distribution of urotensin II, urotensin II-related peptide and UT receptor mRNAs in mouse: evidence of urotensin II at the neuromuscular junction. J Neurochem 2008; 107:361-74. [PMID: 18710417 DOI: 10.1111/j.1471-4159.2008.05624.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Urotensin II (UII) and UII-related peptide (URP) are paralog neuropeptides whose existence and distribution in mouse have not yet been investigated. In this study, we showed by HPLC/RIA analysis that the UII-immunoreactive molecule in the mouse brain corresponds to a new UII(17) isoform. Moreover, calcium mobilization assays indicated that UII(17) and URP were equally potent in stimulating UII receptor (UT receptor). Quantitative RT-PCR and in situ hybridization analysis revealed that in the CNS UII and URP mRNAs were predominantly expressed in brainstem and spinal motoneurons. Besides, they were differentially expressed in the medial vestibular nucleus, locus coeruleus and the ventral medulla. In periphery, both mRNAs were expressed in skeletal muscle, testis, vagina, stomach, and gall bladder, whereas only URP mRNA could be detected in the seminal vesicle, heart, colon, and thymus. By contrast, the UT receptor mRNA was widely expressed, and notably, very high amounts of transcript occurred in skeletal muscle and prostate. In the biceps femoris muscle, UII-like immunoreactivity was shown to coexist with synaptophysin in muscle motor end plate regions. Altogether these results suggest that (i) UII and URP may have many redundant biological effects, especially at the neuromuscular junction; (ii) URP may more specifically participate to autonomic, cardiovascular and reproductive functions.
Collapse
Affiliation(s)
- Christophe Dubessy
- Neuronal and Neuroendocrine Communication and Differentiation, EA4310, INSERM U413, European Institute for Peptide Research (IFRMP 23), University of Rouen, Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Automated synthesis of the generic peptide labelling agent N-succinimidyl 4-[18F]fluorobenzoate and application to 18F-label the vasoactive transmitter urotensin-II as a ligand for positron emission tomography. Nucl Med Biol 2008; 35:725-31. [DOI: 10.1016/j.nucmedbio.2008.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 04/14/2008] [Indexed: 11/30/2022]
|
49
|
Aminomethylpiperazines as selective urotensin antagonists. Bioorg Med Chem Lett 2008; 18:4470-3. [DOI: 10.1016/j.bmcl.2008.07.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 07/15/2008] [Accepted: 07/16/2008] [Indexed: 02/07/2023]
|
50
|
Pakala R. Role of urotensin II in atherosclerotic cardiovascular diseases. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2008; 9:166-78. [DOI: 10.1016/j.carrev.2008.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 01/24/2008] [Accepted: 02/05/2008] [Indexed: 02/07/2023]
|