1
|
Meanwell NA. The pyridazine heterocycle in molecular recognition and drug discovery. Med Chem Res 2023; 32:1-69. [PMID: 37362319 PMCID: PMC10015555 DOI: 10.1007/s00044-023-03035-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/06/2023] [Indexed: 03/17/2023]
Abstract
The pyridazine ring is endowed with unique physicochemical properties, characterized by weak basicity, a high dipole moment that subtends π-π stacking interactions and robust, dual hydrogen-bonding capacity that can be of importance in drug-target interactions. These properties contribute to unique applications in molecular recognition while the inherent polarity, low cytochrome P450 inhibitory effects and potential to reduce interaction of a molecule with the cardiac hERG potassium channel add additional value in drug discovery and development. The recent approvals of the gonadotropin-releasing hormone receptor antagonist relugolix (24) and the allosteric tyrosine kinase 2 inhibitor deucravacitinib (25) represent the first examples of FDA-approved drugs that incorporate a pyridazine ring. In this review, the properties of the pyridazine ring are summarized in comparison to the other azines and its potential in drug discovery is illustrated through vignettes that explore applications that take advantage of the inherent physicochemical properties as an approach to solving challenges associated with candidate optimization. Graphical Abstract
Collapse
|
2
|
Understanding and Targeting the Endocannabinoid System with Activity‐Based Protein Profiling. Isr J Chem 2023. [DOI: 10.1002/ijch.202200115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
3
|
Shang Y, Wang M, Hao Q, Meng T, Li L, Shi J, Yang G, Zhang Z, Yang K, Wang J. Development of indole-2-carbonyl piperazine urea derivatives as selective FAAH inhibitors for efficient treatment of depression and pain. Bioorg Chem 2022; 128:106031. [DOI: 10.1016/j.bioorg.2022.106031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/02/2022]
|
4
|
Kudashev A, Baudoin O. Site-Selective Pd-Catalyzed C(sp 3 )-H Arylation of Heteroaromatic Ketones. Chemistry 2021; 27:17688-17694. [PMID: 34761844 PMCID: PMC9299137 DOI: 10.1002/chem.202103467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Indexed: 11/27/2022]
Abstract
A ligand-controlled site-selective C(sp3 )-H arylation of heteroaromatic ketones has been developed using Pd catalysis. The reaction occurred selectively at the α- or β-position of the ketone side-chain. The switch from α- to β-arylation was realized by addition of a pyridone ligand. The α-arylation process showed broad scope and high site- and chemoselectivity, whereas the β-arylation was more limited. Mechanistic investigations suggested that α-arylation occurs through C-H activation/oxidative addition/reductive elimination whereas β-arylation involves desaturation and aryl insertion.
Collapse
Affiliation(s)
- Anton Kudashev
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 19CH-4056BaselSwitzerland
| | - Olivier Baudoin
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 19CH-4056BaselSwitzerland
| |
Collapse
|
5
|
Bajaj S, Jain S, Vyas P, Bawa S, Vohora D. The role of endocannabinoid pathway in the neuropathology of Alzheimer's disease: Can the inhibitors of MAGL and FAAH prove to be potential therapeutic targets against the cognitive impairment associated with Alzheimer's disease? Brain Res Bull 2021; 174:305-322. [PMID: 34217798 DOI: 10.1016/j.brainresbull.2021.06.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease is a neurodegenerative disease characterized by progressive decline of cognitive function in combination with neuronal death. Current approved treatment target single dysregulated pathway instead of multiple mechanism, resulting in lack of efficacy in slowing down disease progression. The proclivity of endocannabinoid system to exert neuroprotective action and mitigate symptoms of neurodegeneration condition has received substantial interest. Growing evidence suggest the endocannabinoids (eCB) system, viz. anadamide (AEA) and arachidonoyl glycerol (2-AG), as potential therapeutic targets with the ability to modify Alzheimer's pathology by targeting the inflammatory, neurodegenerative and cognitive aspects of the disease. In order to modulate endocannabinoid system, number of agents have been reported amongst which are inhibitors of the monoacylglycerol (MAGL) and fatty acid amide hydrolase (FAAH), the enzymes that hydrolyses 2-AG and AEA respectively. However, little is known regarding the exact mechanistic signalling and their effects on pathophysiology and cognitive decline associated with Alzheimer's disease. Both MAGL and FAAH inhibitors possess fascinating properties that may offer a multi-faceted approach for the treatment of Alzheimer's disease such as potential to protect neurons from deleterious effect of amyloid-β, reducing phosphorylation of tau, reducing amyloid-β induced oxidative stress, stimulating neurotrophin to support brain intrinsic repair mechanism etc. Based on empirical evidence, MAGL and FAAH inhibitors might have potential for therapeutic efficacy against cognitive impairment associated with Alzheimer's disease. The aim of this review is to summarize the experimental studies demonstrating the polyvalent properties of MAGL or FAAH inhibitor compounds for the treatment of Alzheimer's disease, and also effect of these on learning and types of memories, which together encourage to study these compounds over other therapeutics targets. Further research in this direction would enhance the molecular mechanisms and development of applicable interventions for the treatment of Alzheimer's disease, which nevertheless stay as the primary unmet need.
Collapse
Affiliation(s)
- Shivanshu Bajaj
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shreshta Jain
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Preeti Vyas
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sandhya Bawa
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
| |
Collapse
|
6
|
Nie Y, Wang Z, Feng Z, Dong B, Bai Y, Leng Y, Wu J. Na
2
Eosin Y Catalyzed Alkylation of Enol Acetates by Radical Decarboxylation of N‐Hydroxyphthalimide Esters. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yu Nie
- College of Chemistry and Institute of Green Catalysis Zhengzhou University 450001 Zhengzhou Henan P. R. China
| | - Zechao Wang
- Division of Molecular Catalysis & Synthesis, Henan Institute of Advanced Technology Zhengzhou University 450001 Zhengzhou Henan P. R. China
| | - Zengqiang Feng
- College of Chemistry and Institute of Green Catalysis Zhengzhou University 450001 Zhengzhou Henan P. R. China
| | - Bingbing Dong
- College of Chemistry and Institute of Green Catalysis Zhengzhou University 450001 Zhengzhou Henan P. R. China
| | - Yuyang Bai
- College of Chemistry and Institute of Green Catalysis Zhengzhou University 450001 Zhengzhou Henan P. R. China
| | - Yuting Leng
- College of Chemistry and Institute of Green Catalysis Zhengzhou University 450001 Zhengzhou Henan P. R. China
| | - Junliang Wu
- College of Chemistry and Institute of Green Catalysis Zhengzhou University 450001 Zhengzhou Henan P. R. China
| |
Collapse
|
7
|
Jacolot M, Popowycz F, da Rosa R, Grand L, Schenkel EP, Sibelle Campos Bernardes L. The Use of 5-Hydroxymethylfurfural towards Fine Chemicals: Synthesis and Direct Arylation of 5-HMF-Based Oxazoles. Synlett 2020. [DOI: 10.1055/a-1335-7330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Abstract5-Hydroxymethylfurfural (5-HMF) is a renewable platform chemical used as a source for obtaining diverse fine chemicals. In this letter, we report the synthesis of 5-HMF-based oxazole compounds. While 5-HMF could be easily converted into the oxazole derivative through the Van Leusen reaction, the direct arylation step needed to access the final compounds was problematic at first. After optimization, a palladium-catalyzed procedure has been developed and used for the synthesis of a series of 33 derivatives. This article reports an extension of the late-stage CH arylation reaction as an application to the oxazole platform derived from biosourced 5-HMF. The challenges in the preparation of the derivatives containing some electron-withdrawing substituents were overcome by the use of a palladium-free method.
Collapse
Affiliation(s)
- Maïwenn Jacolot
- Université de Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS
| | - Florence Popowycz
- Université de Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS
| | - Rafael da Rosa
- Université de Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS
- Laboratório de Química Farmacêutica Medicinal, Programa de Pós-Graduação em Farmácia, CCS, Universidade Federal de Santa Catarina
| | - Lucie Grand
- Université de Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS
| | - Eloir P. Schenkel
- Laboratório de Química Farmacêutica Medicinal, Programa de Pós-Graduação em Farmácia, CCS, Universidade Federal de Santa Catarina
| | - Lílian Sibelle Campos Bernardes
- Laboratório de Química Farmacêutica Medicinal, Programa de Pós-Graduação em Farmácia, CCS, Universidade Federal de Santa Catarina
| |
Collapse
|
8
|
Keith JM, Jones W, Pierce JM, Seierstad M, Palmer JA, Webb M, Karbarz M, Scott BP, Wilson SJ, Luo L, Wennerholm M, Chang L, Rizzolio M, Rynberg R, Chaplan S, Guy Breitenbucher J. Heteroarylureas with fused bicyclic diamine cores as inhibitors of fatty acid amide hydrolase. Bioorg Med Chem Lett 2020; 30:127463. [PMID: 32784090 DOI: 10.1016/j.bmcl.2020.127463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/27/2020] [Accepted: 08/02/2020] [Indexed: 12/18/2022]
Abstract
A series of mechanism-based heteroaryl urea fatty acid amide hydrolase (FAAH) inhibitors with fused bicyclic diamine cores is described. In contrast to compounds built around a piperazine core, most of the fused bicyclic diamine bearing analogs prepared exhibited greater potency against rFAAH than the human enzyme. Several compounds equipotent against both species were identified and profiled in vivo.
Collapse
Affiliation(s)
- John M Keith
- Janssen Pharmaceutical Companies of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA.
| | - William Jones
- Janssen Pharmaceutical Companies of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Joan M Pierce
- Janssen Pharmaceutical Companies of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Mark Seierstad
- Janssen Pharmaceutical Companies of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - James A Palmer
- Janssen Pharmaceutical Companies of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Michael Webb
- Janssen Pharmaceutical Companies of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Mark Karbarz
- Janssen Pharmaceutical Companies of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Brian P Scott
- Janssen Pharmaceutical Companies of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Sandy J Wilson
- Janssen Pharmaceutical Companies of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Lin Luo
- Janssen Pharmaceutical Companies of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Michelle Wennerholm
- Janssen Pharmaceutical Companies of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Leon Chang
- Janssen Pharmaceutical Companies of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Michele Rizzolio
- Janssen Pharmaceutical Companies of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Raymond Rynberg
- Janssen Pharmaceutical Companies of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Sandra Chaplan
- Janssen Pharmaceutical Companies of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - J Guy Breitenbucher
- Janssen Pharmaceutical Companies of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| |
Collapse
|
9
|
Ahmad H, Rauf K, Zada W, McCarthy M, Abbas G, Anwar F, Shah AJ. Kaempferol Facilitated Extinction Learning in Contextual Fear Conditioned Rats via Inhibition of Fatty-Acid Amide Hydrolase. Molecules 2020; 25:molecules25204683. [PMID: 33066366 PMCID: PMC7587337 DOI: 10.3390/molecules25204683] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Fear, stress, and anxiety-like behaviors originate from traumatic events in life. Stress response is managed by endocannabinoids in the body by limiting the uncontrolled retrieval of aversive memories. Pharmacotherapy-modulating endocannabinoids, especially anandamide, presents a promising tool for treating anxiety disorders. Here, we investigated the effect of kaempferol, a flavonoid, in the extinction of fear related memories and associated anxiety-like behavior. Methods: The ability of kaempferol to inhibit fatty-acid amide hydrolase (FAAH, the enzyme that catabolizes anandamide) was assessed in vitro using an enzyme-linked immunosorbent assay (ELISA) kit. For animal studies (in vivo), the extinction learning was evaluated using contextual fear conditioning (CFC, a behavioral paradigm based on ability to learn and remember aversive stimuli). Furthermore, an elevated plus-maze (EPM) model was used for measuring anxiety-like behavior, while serum corticosterone served as a biochemical indicator of anxiety. Lastly, the interaction of kaempferol with FAAH enzyme was also assessed in silico (computational study). Results: Our data showed that kaempferol inhibited the FAAH enzyme with an IC50 value of 1 µM. In CFC, it reduced freezing behavior in rats. EPM data demonstrated anxiolytic activity as exhibited by enhanced number of entries and time spent in the open arm. No change in blood corticosterone levels was noted. Our computational study showed that Kaempferol interacted with the catalytic amino acids (SER241, PHE192, PHE381, and THR377) of FAAH enzyme Conclusion: Our study demonstrate that kaempferol facilitated the extinction of aversive memories along with a reduction of anxiety. The effect is mediated through the augmentation of endocannabinoids via the inhibition of FAAH enzyme.
Collapse
Affiliation(s)
- Hammad Ahmad
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Khyber Pakhtunkhwa 22060, Pakistan; (H.A.); (K.R.); (W.Z.)
| | - Khalid Rauf
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Khyber Pakhtunkhwa 22060, Pakistan; (H.A.); (K.R.); (W.Z.)
| | - Wahid Zada
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Khyber Pakhtunkhwa 22060, Pakistan; (H.A.); (K.R.); (W.Z.)
| | - Margaret McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Ghulam Abbas
- Department of Pharmacology, Faculty of Pharmacy, Ziauddin University, Karachi 75000, Pakistan;
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore 54000, Pakistan;
| | - Abdul Jabbar Shah
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Khyber Pakhtunkhwa 22060, Pakistan; (H.A.); (K.R.); (W.Z.)
- Correspondence: ; Tel.: +(92)992-383591-6
| |
Collapse
|
10
|
Wilt S, Kodani S, Le TNH, Nguyen L, Vo N, Ly T, Rodriguez M, Hudson PK, Morisseau C, Hammock BD, Pecic S. Development of multitarget inhibitors for the treatment of pain: Design, synthesis, biological evaluation and molecular modeling studies. Bioorg Chem 2020; 103:104165. [PMID: 32891856 DOI: 10.1016/j.bioorg.2020.104165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/05/2020] [Accepted: 08/12/2020] [Indexed: 11/30/2022]
Abstract
Multitarget-directed ligands are a promising class of drugs for discovering innovative new therapies for difficult to treat diseases. In this study, we designed dual inhibitors targeting the human fatty acid amide hydrolase (FAAH) enzyme and human soluble epoxide hydrolase (sEH) enzyme. Targeting both of these enzymes concurrently with single target inhibitors synergistically reduces inflammatory and neuropathic pain; thus, dual FAAH/sEH inhibitors are likely to be powerful analgesics. Here, we identified the piperidinyl-sulfonamide moiety as a common pharmacophore and optimized several inhibitors to have excellent inhibition profiles on both targeted enzymes simultaneously. In addition, several inhibitors show good predicted pharmacokinetic properties. These results suggest that this series of inhibitors has the potential to be further developed as new lead candidates and therapeutics in pain management.
Collapse
Affiliation(s)
- Stephanie Wilt
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Sean Kodani
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States
| | - Thanh N H Le
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Lato Nguyen
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Nghi Vo
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Tanya Ly
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Mark Rodriguez
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Paula K Hudson
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Christophe Morisseau
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States.
| |
Collapse
|
11
|
Perupogu N, Kumar DR, Ramachandran D. Anticancer activity of newly synthesized 1,2,4-Oxadiazole linked 4-(Oxazolo[5,4-d]pyrimidine derivatives. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.cdc.2020.100363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Gonçalves ECD, Assis PM, Junqueira LA, Cola M, Santos ARS, Raposo NRB, Dutra RC. Citral Inhibits the Inflammatory Response and Hyperalgesia in Mice: The Role of TLR4, TLR2/Dectin-1, and CB2 Cannabinoid Receptor/ATP-Sensitive K + Channel Pathways. JOURNAL OF NATURAL PRODUCTS 2020; 83:1190-1200. [PMID: 32150408 DOI: 10.1021/acs.jnatprod.9b01134] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Citral ((2E)-3,7-dimethylocta-2,6-dienal), a bioactive component of lemongrass, inhibits oxidant activity, nuclear factor kappa B (NF-κB) activation, and cyclooxygenase-2 (COX-2) expression, even as it activates peroxisome proliferator-activated receptor (PPAR)-α and γ. Additionally, citral produces long-lasting inhibition of transient receptor potential (TRP) channels that are found in sensory neurons, such as TRPV1-3 and TRPM8, while it transiently blocks TRPV4 and TRPA1. Here, the effect of citral in experimental models of acute inflammation and hyperalgesia in mice, and the underlying citral mechanisms of action were investigated. ADMET properties and molecular targets were predicted using the online server. The immunomodulatory and antihyperalgesic effects of citral were evaluated, using mechanical and thermal stimuli, at different time-points on carrageenan, lipopolysaccharides (LPS), and zymosan-induced paw edema and hyperalgesia in mice. ADMET analysis ensures that the citral has not violated Lipinski's rule of five, indicating its safety consumption, and molecular target prediction software identified that citral is a potential fatty acid amide hydrolase (FAAH) inhibitor. Oral treatment with citral (50-300 mg/kg) significantly inhibited carrageenan-induced paw edema and thermal allodynia. Furthermore, citral modulated the inflammation induced by LPS and zymosan, toll-like receptor (TLR) 4, and TLR2/dectin-1 ligands, respectively. Moreover, pretreatment with cannabinoid receptor type 2 (CB2R) antagonists and ATP-sensitive K+ channel inhibitor, but not with a cannabinoid receptor type 1 (CB1R) antagonist, significantly reversed the anti-inflammatory effect of citral. Intriguingly, citral did not cause any relevant action in the central nervous system, and it was safe when assessed in a 14 day toxicity assay in male mice. Therefore, citral constitutes a promising, innovative, and safe molecule for the management of immunoinflammatory conditions and pain states.
Collapse
Affiliation(s)
- Elaine C D Gonçalves
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072, Araranguá, SC, Brazil
- Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Pollyana M Assis
- Center of Research and Innovation in Health Sciences (NUPICS), School of Pharmacy, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG, Brazil
| | - Laura A Junqueira
- Center of Research and Innovation in Health Sciences (NUPICS), School of Pharmacy, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG, Brazil
| | - Maíra Cola
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072, Araranguá, SC, Brazil
| | - Adair R S Santos
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Nadia R B Raposo
- Center of Research and Innovation in Health Sciences (NUPICS), School of Pharmacy, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG, Brazil
| | - Rafael C Dutra
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072, Araranguá, SC, Brazil
- Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| |
Collapse
|
13
|
Wilt SR, Rodriguez M, Le TNH, Baltodano EV, Salas A, Pecic S. Design, microwave-assisted synthesis, biological evaluation and molecular modeling studies of 4-phenylthiazoles as potent fatty acid amide hydrolase inhibitors. Chem Biol Drug Des 2020; 95:534-547. [PMID: 32061147 DOI: 10.1111/cbdd.13670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/03/2020] [Accepted: 02/06/2020] [Indexed: 12/14/2022]
Abstract
Endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), are endogenous lipids that activate cannabinoid receptors. Activation of these receptors produces anti-inflammatory and analgesic effects. Fatty acid amide hydrolase (FAAH) is a membrane enzyme that hydrolases endocannabinoids; thus, inhibition of FAAH represents an attractive approach to develop new therapeutics for treating inflammation and pain. Previously, potent rat FAAH inhibitors containing 2-naphthyl- and 4-phenylthiazole scaffolds were identified, but up to the present time, very little structure-activity relationship studies have been performed on these moieties. We designed and synthesized several analogs containing these structural motifs and evaluated their inhibition potencies against human FAAH enzyme. In addition, we built and validated a homology model of human FAAH enzyme and performed docking experiments. We identified several inhibitors in the low nanomolar range and calculated their ADME predicted values. These FAAH inhibitors represent promising drug candidates for future preclinical in vivo studies.
Collapse
Affiliation(s)
- Stephanie R Wilt
- Department of Chemistry and Biochemistry, California State University-Fullerton, Fullerton, CA, USA
| | - Mark Rodriguez
- Department of Chemistry and Biochemistry, California State University-Fullerton, Fullerton, CA, USA
| | - Thanh N H Le
- Department of Chemistry and Biochemistry, California State University-Fullerton, Fullerton, CA, USA
| | - Emily V Baltodano
- Department of Chemistry and Biochemistry, California State University-Fullerton, Fullerton, CA, USA
| | - Adrian Salas
- Department of Chemistry and Biochemistry, California State University-Fullerton, Fullerton, CA, USA
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University-Fullerton, Fullerton, CA, USA
| |
Collapse
|
14
|
Dainese E, Oddi S, Simonetti M, Sabatucci A, Angelucci CB, Ballone A, Dufrusine B, Fezza F, De Fabritiis G, Maccarrone M. The endocannabinoid hydrolase FAAH is an allosteric enzyme. Sci Rep 2020; 10:2292. [PMID: 32041998 PMCID: PMC7010751 DOI: 10.1038/s41598-020-59120-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/22/2020] [Indexed: 12/20/2022] Open
Abstract
Fatty acid amide hydrolase (FAAH) is a membrane-bound homodimeric enzyme that in vivo controls content and biological activity of N-arachidonoylethanolamine (AEA) and other relevant bioactive lipids termed endocannabinoids. Parallel orientation of FAAH monomers likely allows both subunits to simultaneously recruit and cleave substrates. Here, we show full inhibition of human and rat FAAH by means of enzyme inhibitors used at a homodimer:inhibitor stoichiometric ratio of 1:1, implying that occupation of only one of the two active sites of FAAH is enough to fully block catalysis. Single W445Y substitution in rat FAAH displayed the same activity as the wild-type, but failed to show full inhibition at the homodimer:inhibitor 1:1 ratio. Instead, F432A mutant exhibited reduced specific activity but was fully inhibited at the homodimer:inhibitor 1:1 ratio. Kinetic analysis of AEA hydrolysis by rat FAAH and its F432A mutant demonstrated a Hill coefficient of ~1.6, that instead was ~1.0 in the W445Y mutant. Of note, also human FAAH catalysed an allosteric hydrolysis of AEA, showing a Hill coefficient of ~1.9. Taken together, this study demonstrates an unprecedented allosterism of FAAH, and represents a case of communication between two enzyme subunits seemingly controlled by a single amino acid (W445) at the dimer interface. In the light of extensive attempts and subsequent failures over the last decade to develop effective drugs for human therapy, these findings pave the way to the rationale design of new molecules that, by acting as positive or negative heterotropic effectors of FAAH, may control more efficiently its activity.
Collapse
Affiliation(s)
- Enrico Dainese
- Faculty of Biosciences, and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy.
| | - Sergio Oddi
- European Center for Brain Research (CERC)/Santa Lucia Foundation, Rome, Italy
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Monica Simonetti
- Faculty of Biosciences, and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Annalaura Sabatucci
- Faculty of Biosciences, and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Alice Ballone
- Barcelona Biomedical Research Park (PRBB), University of Pompeu Fabra and Icrea, Barcelona, Spain
| | - Beatrice Dufrusine
- Faculty of Biosciences, and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Filomena Fezza
- Department of Experimental Medicine and Surgery, Tor Vergata University of Rome, Rome, Italy
| | - Gianni De Fabritiis
- Barcelona Biomedical Research Park (PRBB), University of Pompeu Fabra and Icrea, Barcelona, Spain
| | - Mauro Maccarrone
- European Center for Brain Research (CERC)/Santa Lucia Foundation, Rome, Italy.
- Department of Medicine - Campus Bio-Medico University of Rome, Rome, Italy.
| |
Collapse
|
15
|
Palamarchuk IV, Ogurtsova DN, Seilkhanov TM, Kulakov IV. Synthesis of N-Derivatives of Cytisine, Anabasine, and Salsoline Alkaloids with Pharmacophore 3-Aminopyridine-2(1H)-one and 5-Methyl-7-phenyloxazole[5,4-b]pyridine Cycles. RUSS J GEN CHEM+ 2019. [DOI: 10.1134/s1070363219120259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Grillo A, Chemi G, Brogi S, Brindisi M, Relitti N, Fezza F, Fazio D, Castelletti L, Perdona E, Wong A, Lamponi S, Pecorelli A, Benedusi M, Fantacci M, Valoti M, Valacchi G, Micheli F, Novellino E, Campiani G, Butini S, Maccarrone M, Gemma S. Development of novel multipotent compounds modulating endocannabinoid and dopaminergic systems. Eur J Med Chem 2019; 183:111674. [DOI: 10.1016/j.ejmech.2019.111674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/30/2019] [Accepted: 09/01/2019] [Indexed: 01/17/2023]
|
17
|
Lamani M, Malamas MS, Farah SI, Shukla VG, Almeida MF, Weerts CM, Anderson J, Wood JT, Farizatto KLG, Bahr BA, Makriyannis A. Piperidine and piperazine inhibitors of fatty acid amide hydrolase targeting excitotoxic pathology. Bioorg Med Chem 2019; 27:115096. [PMID: 31629610 DOI: 10.1016/j.bmc.2019.115096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/07/2019] [Accepted: 09/08/2019] [Indexed: 11/30/2022]
Abstract
FAAH inhibitors offer safety advantages by augmenting the anandamide levels "on demand" to promote neuroprotective mechanisms without the adverse psychotropic effects usually seen with direct and chronic activation of the CB1 receptor. FAAH is an enzyme implicated in the hydrolysis of the endocannabinoid N-arachidonoylethanolamine (AEA), which is a partial agonist of the CB1 receptor. Herein, we report the discovery of a new series of highly potent and selective carbamate FAAH inhibitors and their evaluation for neuroprotection. The new inhibitors showed potent nanomolar inhibitory activity against human recombinant and purified rat FAAH, were selective (>1000-fold) against serine hydrolases MGL and ABHD6 and lacked any affinity for the cannabinoid receptors CB1 and CB2. Evaluation of FAAH inhibitors 9 and 31 using the in vitro competitive activity-based protein profiling (ABPP) assay confirmed that both inhibitors were highly selective for FAAH in the brain, since none of the other FP-reactive serine hydrolases in this tissue were inhibited by these agents. Our design strategy followed a traditional SAR approach and was supported by molecular modeling studies based on known FAAH cocrystal structures. To rationally design new molecules that are irreversibly bound to FAAH, we have constructed "precovalent" FAAH-ligand complexes to identify good binding geometries of the ligands within the binding pocket of FAAH and then calculated covalent docking poses to select compounds for synthesis. FAAH inhibitors 9 and 31 were evaluated for neuroprotection in rat hippocampal slice cultures. In the brain tissue, both inhibitors displayed protection against synaptic deterioration produced by kainic acid-induced excitotoxicity. Thus, the resultant compounds produced through rational design are providing early leads for developing therapeutics against seizure-related damage associated with a variety of disorders.
Collapse
Affiliation(s)
- Manjunath Lamani
- Center for Drug Discovery and Department of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02155, USA
| | - Michael S Malamas
- Center for Drug Discovery and Department of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02155, USA.
| | - Shrouq I Farah
- Center for Drug Discovery and Department of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02155, USA
| | - Vidyanand G Shukla
- Center for Drug Discovery and Department of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02155, USA
| | - Michael F Almeida
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Catherine M Weerts
- Center for Drug Discovery and Department of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02155, USA
| | - Joseph Anderson
- Center for Drug Discovery and Department of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02155, USA
| | - JodiAnne T Wood
- Center for Drug Discovery and Department of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02155, USA
| | - Karen L G Farizatto
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Ben A Bahr
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery and Department of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02155, USA
| |
Collapse
|
18
|
Palamarchuk IV, Matsukevich MV, Kulakov IV, Seilkhanov TМ, Fisyuk AS. Synthesis of N-substituted 2-aminomethyl-5-methyl-7-phenyloxazolo[5,4-b]pyridines. Chem Heterocycl Compd (N Y) 2019. [DOI: 10.1007/s10593-019-02537-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Aljaar N, Gujjarappa R, Al‐Refai M, Shtaiwi M, Malakar CC. Overview on Recent Approaches towards Synthesis of 2‐Keto‐annulated Oxazole Derivatives. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3673] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Nayyef Aljaar
- Chemistry DepartmentThe Hashemite University P.O. Box 150459 Zarqa 13115 Jordan
| | - Raghuram Gujjarappa
- Department of ChemistryNational Institute of Technology Manipur Langol Imphal 795004 India
| | - Mahmoud Al‐Refai
- Department of Chemistry, Faculty of ScienceAl al‐Bayt University Al‐Mafraq 25113 Jordan
| | - Majed Shtaiwi
- Chemistry DepartmentThe Hashemite University P.O. Box 150459 Zarqa 13115 Jordan
| | - Chandi C. Malakar
- Department of ChemistryNational Institute of Technology Manipur Langol Imphal 795004 India
| |
Collapse
|
20
|
Penteado F, Lopes EF, Alves D, Perin G, Jacob RG, Lenardão EJ. α-Keto Acids: Acylating Agents in Organic Synthesis. Chem Rev 2019; 119:7113-7278. [DOI: 10.1021/acs.chemrev.8b00782] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Filipe Penteado
- Laboratório de Síntese Orgânica Limpa - LASOL - CCQFA - Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Eric F. Lopes
- Laboratório de Síntese Orgânica Limpa - LASOL - CCQFA - Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa - LASOL - CCQFA - Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Gelson Perin
- Laboratório de Síntese Orgânica Limpa - LASOL - CCQFA - Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Raquel G. Jacob
- Laboratório de Síntese Orgânica Limpa - LASOL - CCQFA - Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Eder J. Lenardão
- Laboratório de Síntese Orgânica Limpa - LASOL - CCQFA - Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| |
Collapse
|
21
|
Otrubova K, Chatterjee S, Ghimire S, Cravatt BF, Boger DL. N-Acyl pyrazoles: Effective and tunable inhibitors of serine hydrolases. Bioorg Med Chem 2019; 27:1693-1703. [PMID: 30879861 DOI: 10.1016/j.bmc.2019.03.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 11/24/2022]
Abstract
A series of N-acyl pyrazoles was examined as candidate serine hydrolase inhibitors in which the active site acylating reactivity and the leaving group ability of the pyrazole could be tuned not only through the nature of the acyl group (reactivity: amide > carbamate > urea), but also through pyrazole C4 substitution with electron-withdrawing or electron-donating substituents. Their impact on enzyme inhibitory activity displayed pronounced effects with the activity improving substantially as one alters both the nature of the reacting carbonyl group (urea > carbamate > amide) and the pyrazole C4 substituent (CN > H > Me). It was further demonstrated that the acyl chain of the N-acyl pyrazole ureas can be used to tailor the potency and selectivity of the inhibitor class to a targeted serine hydrolase. Thus, elaboration of the acyl chain of pyrazole-based ureas provided remarkably potent, irreversible inhibitors of fatty acid amide hydrolase (FAAH, apparent Ki = 100-200 pM), dual inhibitors of FAAH and monoacylglycerol hydrolase (MGLL), or selective inhibitors of MGLL (IC50 = 10-20 nM) while simultaneously minimizing off-target activity (e.g., ABHD6 and KIAA1363).
Collapse
Affiliation(s)
- Katerina Otrubova
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shreyosree Chatterjee
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Srijana Ghimire
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Benjamin F Cravatt
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Dale L Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
22
|
Kumar A, Janes T, Chakraborty S, Daw P, von Wolff N, Carmieli R, Diskin-Posner Y, Milstein D. C−C Bond Formation of Benzyl Alcohols and Alkynes Using a Catalytic Amount of KOt
Bu: Unusual Regioselectivity through a Radical Mechanism. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Amit Kumar
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Trevor Janes
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Subrata Chakraborty
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Prosenjit Daw
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Niklas von Wolff
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Raanan Carmieli
- Chemical Research Support; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Yael Diskin-Posner
- Chemical Research Support; Weizmann Institute of Science; Rehovot 76100 Israel
| | - David Milstein
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 76100 Israel
| |
Collapse
|
23
|
Kumar A, Janes T, Chakraborty S, Daw P, von Wolff N, Carmieli R, Diskin-Posner Y, Milstein D. C-C Bond Formation of Benzyl Alcohols and Alkynes Using a Catalytic Amount of KO t Bu: Unusual Regioselectivity through a Radical Mechanism. Angew Chem Int Ed Engl 2019; 58:3373-3377. [PMID: 30605258 DOI: 10.1002/anie.201812687] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Indexed: 01/24/2023]
Abstract
We report a C-C bond-forming reaction between benzyl alcohols and alkynes in the presence of a catalytic amount of KOt Bu to form α-alkylated ketones in which the C=O group is located on the side derived from the alcohol. The reaction proceeds under thermal conditions (125 °C) and produces no waste, making the reaction highly atom efficient, environmentally benign, and sustainable. Based on our mechanistic investigations, we propose that the reaction proceeds through radical pathways.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Trevor Janes
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Subrata Chakraborty
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Prosenjit Daw
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Niklas von Wolff
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Raanan Carmieli
- Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yael Diskin-Posner
- Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - David Milstein
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
24
|
Bhuniya D, Kharul RK, Hajare A, Shaikh N, Bhosale S, Balwe S, Begum F, De S, Athavankar S, Joshi D, Madgula V, Joshi K, Raje AA, Meru AV, Magdum A, Mookhtiar KA, Barbhaiya R. Discovery and evaluation of novel FAAH inhibitors in neuropathic pain model. Bioorg Med Chem Lett 2019; 29:238-243. [DOI: 10.1016/j.bmcl.2018.11.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 10/27/2022]
|
25
|
Kiss LE, Beliaev A, Ferreira HS, Rosa CP, Bonifácio MJ, Loureiro AI, Pires NM, Palma PN, Soares-da-Silva P. Discovery of a Potent, Long-Acting, and CNS-Active Inhibitor (BIA 10-2474) of Fatty Acid Amide Hydrolase. ChemMedChem 2018; 13:2177-2188. [PMID: 30113139 PMCID: PMC6582431 DOI: 10.1002/cmdc.201800393] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/27/2018] [Indexed: 11/06/2022]
Abstract
Fatty acid amide hydrolase (FAAH) can be targeted for the treatment of pain associated with various medical conditions. Herein we report the design and synthesis of a novel series of heterocyclic-N-carboxamide FAAH inhibitors that have a good alignment of potency, metabolic stability and selectivity for FAAH over monoacylglycerol lipase (MAGL) and carboxylesterases (CEs). Lead optimization efforts carried out with benzotriazolyl- and imidazolyl-N-carboxamide series led to the discovery of clinical candidate 8 l (3-(1-(cyclohexyl(methyl)carbamoyl)-1H-imidazol-4-yl)pyridine 1-oxide; BIA 10-2474) as a potent and long-acting inhibitor of FAAH. However, during a Phase I clinical trial with compound 8 l, unexpected and unpredictable serious neurological adverse events occurred, affecting five healthy volunteers, including the death of one subject.
Collapse
Affiliation(s)
- László E Kiss
- Laboratory of Chemistry, Department of Research and Development, BIAL-Portela & Cª., S.A., À Avenida da Siderurgia Nacional, 4745-457, Coronado (S. Romão and S. Mamede), Portugal
| | - Alexandre Beliaev
- Laboratory of Chemistry, Department of Research and Development, BIAL-Portela & Cª., S.A., À Avenida da Siderurgia Nacional, 4745-457, Coronado (S. Romão and S. Mamede), Portugal
| | - Humberto S Ferreira
- Laboratory of Chemistry, Department of Research and Development, BIAL-Portela & Cª., S.A., À Avenida da Siderurgia Nacional, 4745-457, Coronado (S. Romão and S. Mamede), Portugal
| | - Carla P Rosa
- Laboratory of Chemistry, Department of Research and Development, BIAL-Portela & Cª., S.A., À Avenida da Siderurgia Nacional, 4745-457, Coronado (S. Romão and S. Mamede), Portugal
| | - Maria João Bonifácio
- Laboratory of Pharmacology, Department of Research and Development, BIAL-Portela & Cª., S.A., À Avenida da Siderurgia Nacional, 4745-457, Coronado (S. Romão and S. Mamede), Portugal
| | - Ana I Loureiro
- Laboratory of Pharmacology, Department of Research and Development, BIAL-Portela & Cª., S.A., À Avenida da Siderurgia Nacional, 4745-457, Coronado (S. Romão and S. Mamede), Portugal
| | - Nuno M Pires
- Laboratory of Pharmacology, Department of Research and Development, BIAL-Portela & Cª., S.A., À Avenida da Siderurgia Nacional, 4745-457, Coronado (S. Romão and S. Mamede), Portugal
| | - P Nuno Palma
- Laboratory of Pharmacology, Department of Research and Development, BIAL-Portela & Cª., S.A., À Avenida da Siderurgia Nacional, 4745-457, Coronado (S. Romão and S. Mamede), Portugal
| | - Patrício Soares-da-Silva
- Laboratory of Pharmacology, Department of Research and Development, BIAL-Portela & Cª., S.A., À Avenida da Siderurgia Nacional, 4745-457, Coronado (S. Romão and S. Mamede), Portugal.,MedInUp-Center for Drug Discovery and Innovative Medicines, University of Porto, Praça Gomes Teixeira, 4099-002, Porto, Portugal
| |
Collapse
|
26
|
Brindisi M, Borrelli G, Brogi S, Grillo A, Maramai S, Paolino M, Benedusi M, Pecorelli A, Valacchi G, Di Cesare Mannelli L, Ghelardini C, Allarà M, Ligresti A, Minetti P, Campiani G, di Marzo V, Butini S, Gemma S. Development of Potent Inhibitors of Fatty Acid Amide Hydrolase Useful for the Treatment of Neuropathic Pain. ChemMedChem 2018; 13:2090-2103. [DOI: 10.1002/cmdc.201800397] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/05/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Margherita Brindisi
- European Research Centre for Drug Discovery and Development (NatSynDrugs); Department of Biotechnology, Chemistry, and Pharmacy (DoE 2018-2020); University of Siena; Via Aldo Moro 2 53100 Siena Italy
| | - Giuseppe Borrelli
- European Research Centre for Drug Discovery and Development (NatSynDrugs); Department of Biotechnology, Chemistry, and Pharmacy (DoE 2018-2020); University of Siena; Via Aldo Moro 2 53100 Siena Italy
| | - Simone Brogi
- European Research Centre for Drug Discovery and Development (NatSynDrugs); Department of Biotechnology, Chemistry, and Pharmacy (DoE 2018-2020); University of Siena; Via Aldo Moro 2 53100 Siena Italy
| | - Alessandro Grillo
- European Research Centre for Drug Discovery and Development (NatSynDrugs); Department of Biotechnology, Chemistry, and Pharmacy (DoE 2018-2020); University of Siena; Via Aldo Moro 2 53100 Siena Italy
| | - Samuele Maramai
- European Research Centre for Drug Discovery and Development (NatSynDrugs); Department of Biotechnology, Chemistry, and Pharmacy (DoE 2018-2020); University of Siena; Via Aldo Moro 2 53100 Siena Italy
| | - Marco Paolino
- European Research Centre for Drug Discovery and Development (NatSynDrugs); Department of Biotechnology, Chemistry, and Pharmacy (DoE 2018-2020); University of Siena; Via Aldo Moro 2 53100 Siena Italy
| | - Mascia Benedusi
- Department of Life Sciences and Biotechnology; University of Ferrara; Via Borsari 46 441212 Ferrara Italy
| | - Alessandra Pecorelli
- Department of Animal Science; North Carolina State University; NC Research Campus, PHHI Building, 600 Laureate Way Kannapolis NC 28081 USA
| | - Giuseppe Valacchi
- Department of Life Sciences and Biotechnology; University of Ferrara; Via Borsari 46 441212 Ferrara Italy
- Department of Animal Science; North Carolina State University; NC Research Campus, PHHI Building, 600 Laureate Way Kannapolis NC 28081 USA
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology; Drug Research and Child Health; Section of Pharmacology and Toxicology (NEUROFARBA); University of Florence; Viale G. Pieraccini, 6 50139 Firenze Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology; Drug Research and Child Health; Section of Pharmacology and Toxicology (NEUROFARBA); University of Florence; Viale G. Pieraccini, 6 50139 Firenze Italy
| | - Marco Allarà
- Endocannabinoid Research Group; Institute of Biomolecular Chemistry; CNR; Via Campi Flegrei 80078 Pozzuoli (Napoli) Italy
- EPITECH Group SpA; Via Egadi 7 20144 Milano Italy
| | - Alessia Ligresti
- Endocannabinoid Research Group; Institute of Biomolecular Chemistry; CNR; Via Campi Flegrei 80078 Pozzuoli (Napoli) Italy
| | | | - Giuseppe Campiani
- European Research Centre for Drug Discovery and Development (NatSynDrugs); Department of Biotechnology, Chemistry, and Pharmacy (DoE 2018-2020); University of Siena; Via Aldo Moro 2 53100 Siena Italy
| | - Vincenzo di Marzo
- Endocannabinoid Research Group; Institute of Biomolecular Chemistry; CNR; Via Campi Flegrei 80078 Pozzuoli (Napoli) Italy
- Département de Médecine; Université Laval; 1050, Avenue de la Médecine Québec City QC G1V 0A6 Canada
| | - Stefania Butini
- European Research Centre for Drug Discovery and Development (NatSynDrugs); Department of Biotechnology, Chemistry, and Pharmacy (DoE 2018-2020); University of Siena; Via Aldo Moro 2 53100 Siena Italy
| | - Sandra Gemma
- European Research Centre for Drug Discovery and Development (NatSynDrugs); Department of Biotechnology, Chemistry, and Pharmacy (DoE 2018-2020); University of Siena; Via Aldo Moro 2 53100 Siena Italy
| |
Collapse
|
27
|
The selective reversible FAAH inhibitor, SSR411298, restores the development of maladaptive behaviors to acute and chronic stress in rodents. Sci Rep 2018; 8:2416. [PMID: 29403000 PMCID: PMC5799259 DOI: 10.1038/s41598-018-20895-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/26/2018] [Indexed: 12/23/2022] Open
Abstract
Enhancing endogenous cannabinoid (eCB) signaling has been considered as a potential strategy for the treatment of stress-related conditions. Fatty acid amide hydrolase (FAAH) represents the primary degradation enzyme of the eCB anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). This study describes a potent reversible FAAH inhibitor, SSR411298. The drug acts as a selective inhibitor of FAAH, which potently increases hippocampal levels of AEA, OEA and PEA in mice. Despite elevating eCB levels, SSR411298 did not mimic the interoceptive state or produce the behavioral side-effects (memory deficit and motor impairment) evoked by direct-acting cannabinoids. When SSR411298 was tested in models of anxiety, it only exerted clear anxiolytic-like effects under highly aversive conditions following exposure to a traumatic event, such as in the mouse defense test battery and social defeat procedure. Results from experiments in models of depression showed that SSR411298 produced robust antidepressant-like activity in the rat forced-swimming test and in the mouse chronic mild stress model, restoring notably the development of inadequate coping responses to chronic stress. This preclinical profile positions SSR411298 as a promising drug candidate to treat diseases such as post-traumatic stress disorder, which involves the development of maladaptive behaviors.
Collapse
|
28
|
Boger DL. The Difference a Single Atom Can Make: Synthesis and Design at the Chemistry-Biology Interface. J Org Chem 2017; 82:11961-11980. [PMID: 28945374 PMCID: PMC5712263 DOI: 10.1021/acs.joc.7b02088] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Indexed: 01/24/2023]
Abstract
A Perspective of work in our laboratory on the examination of biologically active compounds, especially natural products, is presented. In the context of individual programs and along with a summary of our work, selected cases are presented that illustrate the impact single atom changes can have on the biological properties of the compounds. The examples were chosen to highlight single heavy atom changes that improve activity, rather than those that involve informative alterations that reduce or abolish activity. The examples were also chosen to illustrate that the impact of such single-atom changes can originate from steric, electronic, conformational, or H-bonding effects, from changes in functional reactivity, from fundamental intermolecular interactions with a biological target, from introduction of a new or altered functionalization site, or from features as simple as improvements in stability or physical properties. Nearly all the examples highlighted represent not only unusual instances of productive deep-seated natural product modifications and were introduced through total synthesis but are also remarkable in that they are derived from only a single heavy atom change in the structure.
Collapse
Affiliation(s)
- Dale L. Boger
- Department of Chemistry and
The Skaggs Research Institute, The Scripps
Research Institute, 10550
North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
29
|
Kornahrens AF, Cognetta AB, Brody DM, Matthews ML, Cravatt BF, Boger DL. Design of Benzoxathiazin-3-one 1,1-Dioxides as a New Class of Irreversible Serine Hydrolase Inhibitors: Discovery of a Uniquely Selective PNPLA4 Inhibitor. J Am Chem Soc 2017; 139:7052-7061. [PMID: 28498651 PMCID: PMC5501285 DOI: 10.1021/jacs.7b02985] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The design and examination of 4,1,2-benzoxathiazin-3-one 1,1-dioxides as candidate serine hydrolase inhibitors are disclosed, and represent the synthesis and study of a previously unexplored heterocycle. This new class of activated cyclic carbamates provided selective irreversible inhibition of a small subset of serine hydrolases without release of a leaving group, does not covalently modify active site catalytic cysteine and lysine residues of other enzyme classes, and was found to be amenable to predictable structural modifications that modulate intrinsic reactivity or active site recognition. Even more remarkable and within the small pilot series of candidate inhibitors examined in an initial study, an exquisitely selective inhibitor for a poorly characterized serine hydrolase (PNPLA4, patatin-like phospholipase domain-containing protein 4) involved in adipocyte triglyceride homeostasis was discovered.
Collapse
Affiliation(s)
- Anne F. Kornahrens
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037
| | - Armand B. Cognetta
- Department of Chemical Physiology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037
| | - Daniel M. Brody
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037
| | - Megan L. Matthews
- Department of Chemical Physiology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037
| | - Benjamin F. Cravatt
- Department of Chemical Physiology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037
| | - Dale L. Boger
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037
| |
Collapse
|
30
|
Synthesis of functionalized 3-arylpyridazines via Pd-catalyzed decarboxylative cross-coupling of pyridazine-3-carboxylic acids. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.01.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Brain uptake and metabolism of the endocannabinoid anandamide labeled in either the arachidonoyl or ethanolamine moiety. Nucl Med Biol 2017; 45:43-50. [DOI: 10.1016/j.nucmedbio.2016.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/27/2016] [Accepted: 11/01/2016] [Indexed: 12/20/2022]
|
32
|
Qiu Y, Ren J, Ke H, Zhang Y, Gao Q, Yang L, Lu C, Li Y. Design and synthesis of uracil urea derivatives as potent and selective fatty acid amide hydrolase inhibitors. RSC Adv 2017. [DOI: 10.1039/c7ra02237a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fatty acid amide hydrolase (FAAH) is one of the key enzymes involved in the biological degradation of endocannabinoids, especially anandamide.
Collapse
Affiliation(s)
- Yan Qiu
- Medical College
- Xiamen University
- Xiamen
- P. R. China
| | - Jie Ren
- Medical College
- Xiamen University
- Xiamen
- P. R. China
| | - Hongwei Ke
- Xiamen Institute of Rare-earth Materials
- Haixi Institutes
- Chinese Academy of Sciences
- P. R. China
- College of Ocean and Earth Science
| | - Yang Zhang
- Medical College
- Xiamen University
- Xiamen
- P. R. China
| | - Qi Gao
- Medical College
- Xiamen University
- Xiamen
- P. R. China
| | - Longhe Yang
- Engineering Research Centre of Marine Biological Resource Comprehensive Utilization
- Third Institute of Oceanography
- State Oceanic Administration
- Xiamen 361102
- P. R. China
| | - Canzhong Lu
- Xiamen Institute of Rare-earth Materials
- Haixi Institutes
- Chinese Academy of Sciences
- P. R. China
| | - Yuhang Li
- Medical College
- Xiamen University
- Xiamen
- P. R. China
- Xiamen Institute of Rare-earth Materials
| |
Collapse
|
33
|
A Synopsis of the Properties and Applications of Heteroaromatic Rings in Medicinal Chemistry. ADVANCES IN HETEROCYCLIC CHEMISTRY 2017. [DOI: 10.1016/bs.aihch.2016.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Tuo W, Leleu-Chavain N, Spencer J, Sansook S, Millet R, Chavatte P. Therapeutic Potential of Fatty Acid Amide Hydrolase, Monoacylglycerol Lipase, and N-Acylethanolamine Acid Amidase Inhibitors. J Med Chem 2016; 60:4-46. [DOI: 10.1021/acs.jmedchem.6b00538] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wei Tuo
- Université de Lille, Inserm, CHU Lille, U995,
LIRIC, Lille Inflammation Research International Center, F-59000 Lille, France
| | - Natascha Leleu-Chavain
- Université de Lille, Inserm, CHU Lille, U995,
LIRIC, Lille Inflammation Research International Center, F-59000 Lille, France
| | - John Spencer
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| | - Supojjanee Sansook
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| | - Régis Millet
- Université de Lille, Inserm, CHU Lille, U995,
LIRIC, Lille Inflammation Research International Center, F-59000 Lille, France
| | - Philippe Chavatte
- Université de Lille, Inserm, CHU Lille, U995,
LIRIC, Lille Inflammation Research International Center, F-59000 Lille, France
| |
Collapse
|
35
|
Burman MA, Szolusha K, Bind R, Kerney K, Boger DL, Bilsky EJ. FAAH inhibitor OL-135 disrupts contextual, but not auditory, fear conditioning in rats. Behav Brain Res 2016; 308:1-5. [PMID: 27083303 PMCID: PMC4877211 DOI: 10.1016/j.bbr.2016.04.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/03/2016] [Accepted: 04/10/2016] [Indexed: 11/25/2022]
Abstract
Anxiety disorders are among the most prevalent psychological disorders, have significant negative impacts on quality of life and the healthcare system, and yet effective treatments remain elusive. Manipulating the endocannabinoid system has demonstrated potential for treating anxiety, although the side effects of direct manipulations of cannabinoid receptors keeps them from widespread clinical use. Disrupting the degradation enzyme fatty acid amide hydrolase (FAAH) enhances endogenous signaling and may produce similar efficacy without the side effects. The current experiments examine the effects of low (5.6mg/kg) or moderate (10.0mg/kg) doses of OL-135, a FAAH inhibitor, on the acquisition and consolidation of classical fear conditioning, a common model of trauma-induced anxiety. The acquisition of contextual, but not auditory, fear conditioning was disrupted by both doses of OL-135. Shock reactivity was not affected. Due to the additional neural circuitry required for contextual, but not auditory, fear conditioning, these data suggest that endocannabinoid signaling outside the amygdala may be critical for a subset of fearful memories.
Collapse
Affiliation(s)
- Michael A Burman
- Department of Psychology, United States; Center for Excellence in the Neurosciences, University of New England, United States.
| | - Kerribeth Szolusha
- Department of Psychology, United States; Center for Excellence in the Neurosciences, University of New England, United States
| | - Rebecca Bind
- Center for Excellence in the Neurosciences, University of New England, United States
| | - Kristen Kerney
- Center for Excellence in the Neurosciences, University of New England, United States
| | - Dale L Boger
- Department of Chemistry, The Scripps Research Institute, United States
| | - Edward J Bilsky
- Department of Biomedical Sciences, United States; Center for Excellence in the Neurosciences, University of New England, United States
| |
Collapse
|
36
|
Pember SO, Mejia GL, Price TJ, Pasteris RJ. Piperidinyl thiazole isoxazolines: A new series of highly potent, slowly reversible FAAH inhibitors with analgesic properties. Bioorg Med Chem Lett 2016; 26:2965-2973. [PMID: 27130358 PMCID: PMC4936272 DOI: 10.1016/j.bmcl.2016.02.061] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 11/26/2022]
Abstract
Fatty acid amide hydrolase (FAAH) is a membrane anchored serine hydrolase that has a principle role in the metabolism of the endogenous cannabinoid anandamide. Docking studies using representative FAAH crystal structures revealed that compounds containing a novel piperidinyl thiazole isoxazoline core fit within the ligand binding domains. New potential FAAH inhibitors were designed and synthesized incorporating urea, carbamate, alkyldione and thiourea reactive centers as potential pharmacophores. A small library of candidate compounds (75) was then screened against human FAAH leading to the identification of new carbamate and urea based inhibitors (Ki=pM and nM, respectively). Representative carbamate and urea based chemotypes displayed slow, time dependent inhibition kinetics leading to enzyme inactivation which was slowly reversible. However, evidence indicated that features of the mechanism of inactivation differ between the two pharmacophore types. Selected compounds were also evaluated for analgesic activity in the mouse-tail flick test.
Collapse
Affiliation(s)
- Stephen O Pember
- E.I. Du Pont de Nemours and Company, Stine Haskell Research Center, 1090 Elkton Rd., Newark, DE 19711, USA.
| | - Galo L Mejia
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX 75080, USA; University of Arizona, Department of Pharmacology, 1501 N. Campbell Ave., Tucson, AZ 85724, USA.
| | - Theodore J Price
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX 75080, USA; University of Arizona, Department of Pharmacology, 1501 N. Campbell Ave., Tucson, AZ 85724, USA.
| | - Robert J Pasteris
- E.I. Du Pont de Nemours and Company, Stine Haskell Research Center, 1090 Elkton Rd., Newark, DE 19711, USA.
| |
Collapse
|
37
|
Systemic and spinal administration of FAAH, MAGL inhibitors and dual FAAH/MAGL inhibitors produce antipruritic effect in mice. Arch Dermatol Res 2016; 308:335-45. [PMID: 27126057 DOI: 10.1007/s00403-016-1649-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 03/25/2016] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
Abstract
The increase of endocannabinoid tonus by inhibiting fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL) represents a promising therapeutic approach in a variety of disease to overcome serious central side effects of exocannabinoids. Recent studies reported that systemic administration of FAAH and MAGL inhibitors produce antipruritic action. Dual FAAH/MAGL inhibitors have also been described to get enhanced endocannabinoid therapeutic effect. In this study, we examined and compared dose-related antipruritic effects of systemic (intraperitoneal; ip) or intrathecal (it) administration of selective FAAH inhibitor PF-3845 (5, 10, and 20 mg/kg, i.p.; 1, 5, and 10 µg, i.t.), MAGL inhibitor JZL184 (4, 20, and 40 mg/kg, i.p.; 1, 5, and 10 µg, i.t.) and dual FAAH/MAGL inhibitor JZL195 (2, 5, and 20 mg/kg, i.p.; 1, 5, and 10 µg, i.t.) on serotonin (5-HT)-induced scratching model. Serotonin (25 μg) was injected intradermally in a volume of 50 μl into the rostral part of skin on the back of male Balb-C mice. Both systemic or intrathecal administration of PF-3845, JZL184 or JZL195 produced similar dose-dependent antipruritic effects. Our results suggest that endocannabinoid-degrading enzymes FAAH and MAGL are involved in pruritic process at spinal level. FAAH, MAGL or dual FAAH/MAGL inhibitors have promising antipruritic effects, at least, in part through spinal site of action.
Collapse
|
38
|
Tuo W, Leleu-Chavain N, Barczyk A, Renault N, Lemaire L, Chavatte P, Millet R. Design, synthesis and biological evaluation of potent FAAH inhibitors. Bioorg Med Chem Lett 2016; 26:2701-5. [PMID: 27117424 DOI: 10.1016/j.bmcl.2016.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/01/2016] [Accepted: 04/03/2016] [Indexed: 11/15/2022]
Abstract
A new series of 3-carboxamido-5-aryl-isoxazoles was designed, synthesized and evaluated for their biological activity. Different pharmacomodulations have been explored and the lipophilicity of these compounds was assessed. Investigation of the in vitro biological activity led to the identification of 5 compounds as potent FAAH inhibitors, their good FAAH inhibition capacity is probably correlated with their suitable lipophilicity. Specifically, compound 25 showed similar inhibition potency against FAAH in comparison with URB597, one of the most potent FAAH inhibitor known to date.
Collapse
Affiliation(s)
- Wei Tuo
- ICPAL, Univ. Lille, Inserm, U995-LIRIC-Lille Inflammation Research International Center, 3 rue du Professeur Laguesse BP83, F-59006 Lille, France
| | - Natascha Leleu-Chavain
- ICPAL, Univ. Lille, Inserm, U995-LIRIC-Lille Inflammation Research International Center, 3 rue du Professeur Laguesse BP83, F-59006 Lille, France
| | - Amélie Barczyk
- ICPAL, Univ. Lille, Inserm, U995-LIRIC-Lille Inflammation Research International Center, 3 rue du Professeur Laguesse BP83, F-59006 Lille, France
| | - Nicolas Renault
- ICPAL, Univ. Lille, Inserm, U995-LIRIC-Lille Inflammation Research International Center, 3 rue du Professeur Laguesse BP83, F-59006 Lille, France
| | - Lucas Lemaire
- ICPAL, Univ. Lille, Inserm, U995-LIRIC-Lille Inflammation Research International Center, 3 rue du Professeur Laguesse BP83, F-59006 Lille, France
| | - Philippe Chavatte
- ICPAL, Univ. Lille, Inserm, U995-LIRIC-Lille Inflammation Research International Center, 3 rue du Professeur Laguesse BP83, F-59006 Lille, France
| | - Régis Millet
- ICPAL, Univ. Lille, Inserm, U995-LIRIC-Lille Inflammation Research International Center, 3 rue du Professeur Laguesse BP83, F-59006 Lille, France.
| |
Collapse
|
39
|
Wang L, Yui J, Wang Q, Zhang Y, Mori W, Shimoda Y, Fujinaga M, Kumata K, Yamasaki T, Hatori A, Rotstein BH, Collier TL, Ran C, Vasdev N, Zhang MR, Liang SH. Synthesis and Preliminary PET Imaging Studies of a FAAH Radiotracer ([¹¹C]MPPO) Based on α-Ketoheterocyclic Scaffold. ACS Chem Neurosci 2016; 7:109-18. [PMID: 26505525 DOI: 10.1021/acschemneuro.5b00248] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Fatty acid amide hydrolase (FAAH) is one of the principle enzymes for metabolizing endogenous cannabinoid neurotransmitters such as anandamide, and thus regulates endocannabinoid (eCB) signaling. Selective pharmacological blockade of FAAH has emerged as a potential therapy to discern the endogenous functions of anandamide-mediated eCB pathways in anxiety, pain, and addiction. Quantification of FAAH in the living brain by positron emission tomography (PET) would help our understanding of the endocannabinoid system in these conditions. While most FAAH radiotracers operate by an irreversible ("suicide") binding mechanism, a FAAH tracer with reversibility would facilitate quantitative analysis. We have identified and radiolabeled a reversible FAAH inhibitor, 7-(2-[(11)C]methoxyphenyl)-1-(5-(pyridin-2-yl)oxazol-2-yl)heptan-1-one ([(11)C]MPPO) in 13% radiochemical yield (nondecay corrected) with >99% radiochemical purity and 2 Ci/μmol (74 GBq/μmol) specific activity. The tracer showed moderate brain uptake (0.8 SUV) with heterogeneous brain distribution. However, blocking studies with a potent FAAH inhibitor URB597 demonstrated a low to modest specificity to the target. Measurement of lipophilicity, metabolite, and efflux pathway analysis were also performed to study the pharmacokinetic profile of [(11)C]MPPO. In all, we reported an efficient radiolabeling and preliminary evaluation of the first-in-class FAAH inhibitor [(11)C]MPPO with α-ketoheterocyclic scaffold.
Collapse
Affiliation(s)
- Lu Wang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Joji Yui
- Molecular
Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Qifan Wang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Yiding Zhang
- Molecular
Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Wakana Mori
- Molecular
Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Yoko Shimoda
- Molecular
Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Masayuki Fujinaga
- Molecular
Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Katsushi Kumata
- Molecular
Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Tomoteru Yamasaki
- Molecular
Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Akiko Hatori
- Molecular
Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Benjamin H. Rotstein
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Thomas Lee Collier
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
- Advion BioSystems, 10 Brown Road, Suite 101, Ithaca, New York 14850, United States
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Ming-Rong Zhang
- Molecular
Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
40
|
Janssen FJ, Baggelaar MP, Hummel JJA, Overkleeft HS, Cravatt BF, Boger DL, van der Stelt M. Comprehensive Analysis of Structure-Activity Relationships of α-Ketoheterocycles as sn-1-Diacylglycerol Lipase α Inhibitors. J Med Chem 2015; 58:9742-53. [PMID: 26584396 PMCID: PMC4690813 DOI: 10.1021/acs.jmedchem.5b01627] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Diacylglycerol lipase α (DAGLα) is responsible for the formation of the endocannabinoid 2-arachidonoylglycerol (2-AG) in the central nervous system. DAGLα inhibitors are required to study the physiological role of 2-AG. Previously, we identified the α-ketoheterocycles as potent and highly selective DAGLα inhibitors. Here, we present the first comprehensive structure-activity relationship study of α-ketoheterocycles as DAGLα inhibitors. Our findings indicate that the active site of DAGLα is remarkably sensitive to the type of heterocyclic scaffold with oxazolo-4N-pyridines as the most active framework. We uncovered a fundamental substituent effect in which electron-withdrawing meta-oxazole substituents increased inhibitor potency. (C6-C9)-acyl chains with a distal phenyl group proved to be the most potent inhibitors. The integrated SAR data was consistent with the proposed binding pose in a DAGLα homology model. Altogether, our results may guide the design of future DAGLα inhibitors as leads for molecular therapies to treat neuroinflammation, obesity, and related metabolic disorders.
Collapse
Affiliation(s)
- Freek J. Janssen
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, Netherlands
| | - Marc P. Baggelaar
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, Netherlands
| | - Jessica J. A. Hummel
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, Netherlands
| | - Herman S. Overkleeft
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, Netherlands
| | - Benjamin F. Cravatt
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Dale L. Boger
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, Netherlands
| |
Collapse
|
41
|
Keith JM, Jones WM, Tichenor M, Liu J, Seierstad M, Palmer JA, Webb M, Karbarz M, Scott BP, Wilson S, Luo L, Wennerholm ML, Chang L, Rizzolio M, Rynberg R, Chaplan SR, Breitenbucher JG. Preclinical Characterization of the FAAH Inhibitor JNJ-42165279. ACS Med Chem Lett 2015; 6:1204-8. [PMID: 26713105 PMCID: PMC4677372 DOI: 10.1021/acsmedchemlett.5b00353] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/02/2015] [Indexed: 01/20/2023] Open
Abstract
The pre-clinical characterization of the aryl piperazinyl urea inhibitor of fatty acid amide hydrolase (FAAH) JNJ-42165279 is described. JNJ-42165279 covalently inactivates the FAAH enzyme, but is highly selective with regard to other enzymes, ion channels, transporters, and receptors. JNJ-42165279 exhibited excellent ADME and pharmacodynamic properties as evidenced by its ability to block FAAH in the brain and periphery of rats and thereby cause an elevation of the concentrations of anandamide (AEA), oleoyl ethanolamide (OEA), and palmitoyl ethanolamide (PEA). The compound was also efficacious in the spinal nerve ligation (SNL) model of neuropathic pain. The combination of good physical, ADME, and PD properties of JNJ-42165279 supported it entering the clinical portfolio.
Collapse
Affiliation(s)
- John M. Keith
- Janssen Pharmaceutical Companies
of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - William M. Jones
- Janssen Pharmaceutical Companies
of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Mark Tichenor
- Janssen Pharmaceutical Companies
of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Jing Liu
- Janssen Pharmaceutical Companies
of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Mark Seierstad
- Janssen Pharmaceutical Companies
of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - James A. Palmer
- Janssen Pharmaceutical Companies
of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Michael Webb
- Janssen Pharmaceutical Companies
of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Mark Karbarz
- Janssen Pharmaceutical Companies
of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Brian P. Scott
- Janssen Pharmaceutical Companies
of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Sandy
J. Wilson
- Janssen Pharmaceutical Companies
of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Lin Luo
- Janssen Pharmaceutical Companies
of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Michelle L. Wennerholm
- Janssen Pharmaceutical Companies
of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Leon Chang
- Janssen Pharmaceutical Companies
of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Michele Rizzolio
- Janssen Pharmaceutical Companies
of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Raymond Rynberg
- Janssen Pharmaceutical Companies
of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Sandra R. Chaplan
- Janssen Pharmaceutical Companies
of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - J. Guy Breitenbucher
- Janssen Pharmaceutical Companies
of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| |
Collapse
|
42
|
Palermo G, Favia AD, Convertino M, De Vivo M. The Molecular Basis for Dual Fatty Acid Amide Hydrolase (FAAH)/Cyclooxygenase (COX) Inhibition. ChemMedChem 2015; 11:1252-8. [PMID: 26593700 PMCID: PMC5063142 DOI: 10.1002/cmdc.201500507] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Indexed: 12/20/2022]
Abstract
The design of multitarget‐directed ligands is a promising strategy for discovering innovative drugs. Here, we report a mechanistic study that clarifies key aspects of the dual inhibition of the fatty acid amide hydrolase (FAAH) and the cyclooxygenase (COX) enzymes by a new multitarget‐directed ligand named ARN2508 (2‐[3‐fluoro‐4‐[3‐(hexylcarbamoyloxy)phenyl]phenyl]propanoic acid). This potent dual inhibitor combines, in a single scaffold, the pharmacophoric elements often needed to block FAAH and COX, that is, a carbamate moiety and the 2‐arylpropionic acid functionality, respectively. Molecular modeling and molecular dynamics simulations suggest that ARN2508 uses a noncovalent mechanism of inhibition to block COXs, while inhibiting FAAH via the acetylation of the catalytic Ser241, in line with previous experimental evidence for covalent FAAH inhibition. This study proposes the molecular basis for the dual FAAH/COX inhibition by this novel hybrid scaffold, stimulating further experimental studies and offering new insights for the rational design of novel anti‐inflammatory agents that simultaneously act on FAAH and COX.
Collapse
Affiliation(s)
- Giulia Palermo
- Laboratory of Molecular Modeling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Angelo D Favia
- Laboratory of Molecular Modeling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Marino Convertino
- Laboratory of Molecular Modeling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Marco De Vivo
- Laboratory of Molecular Modeling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy. .,Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428, Jülich, Germany.
| |
Collapse
|
43
|
Wang R, Ma J, Li F. Synthesis of a-Alkylated Ketones via Tandem Acceptorless Dehydrogenation/a-Alkylation from Secondary and Primary Alcohols Catalyzed by Metal–Ligand Bifunctional Iridium Complex [Cp*Ir(2,2′-bpyO)(H2O)]. J Org Chem 2015; 80:10769-76. [DOI: 10.1021/acs.joc.5b01975] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rongzhou Wang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, People’s Republic of China
| | - Juan Ma
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, People’s Republic of China
| | - Feng Li
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, People’s Republic of China
- State
Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, People’s Republic of China
| |
Collapse
|
44
|
Lodola A, Castelli R, Mor M, Rivara S. Fatty acid amide hydrolase inhibitors: a patent review (2009-2014). Expert Opin Ther Pat 2015; 25:1247-66. [PMID: 26413912 DOI: 10.1517/13543776.2015.1067683] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Fatty acid amide hydrolase (FAAH) is a key enzyme responsible for the degradation of the endocannabinoid anandamide. FAAH inactivation is emerging as a strategy to treat several CNS and peripheral diseases, including inflammation and pain. The search for effective FAAH inhibitors has thus become a key focus in present drug discovery. AREAS COVERED Patents and patent applications published from 2009 to 2014 in which novel chemical classes are claimed to inhibit FAAH. EXPERT OPINION FAAH is a promising target for treating many disease conditions including pain, inflammation and mood disorders. In the last few years, remarkable efforts have been made to develop new FAAH inhibitors (either reversible and irreversible) characterized by excellent potency and selectivity, to complete the arsenal of tools for modulating FAAH activity. The failure of PF-04457845 in a Phase II study on osteoarthritis pain has not flattened the interest in FAAH inhibitors. New clinical trials on 'classical' FAAH inhibitors are now ongoing, and new strategies based on compounds with peculiar in vivo distribution (e.g., peripheral) or with multiple pharmacological activities (e.g., FAAH and COX) are under investigation and could boost the therapeutic potential of this class in the next future.
Collapse
Affiliation(s)
- Alessio Lodola
- a 1 Università degli Studi di Parma, Dipartimento di Farmacia , Parco Area delle Scienze 27/A, Parma, Italy
| | - Riccardo Castelli
- b 2 Università degli Studi di Parma, Dipartimento di Farmacia , Parco Area delle Scienze 27/A, Parma, Italy
| | - Marco Mor
- c 3 Università degli Studi di Parma, Dipartimento di Farmacia , Parco Area delle Scienze 27/A, Parma, Italy +39 0521 905059 ; +39 0521 905006 ;
| | - Silvia Rivara
- a 1 Università degli Studi di Parma, Dipartimento di Farmacia , Parco Area delle Scienze 27/A, Parma, Italy
| |
Collapse
|
45
|
Palermo G, Bauer I, Campomanes P, Cavalli A, Armirotti A, Girotto S, Rothlisberger U, De Vivo M. Keys to Lipid Selection in Fatty Acid Amide Hydrolase Catalysis: Structural Flexibility, Gating Residues and Multiple Binding Pockets. PLoS Comput Biol 2015; 11:e1004231. [PMID: 26111155 PMCID: PMC4481349 DOI: 10.1371/journal.pcbi.1004231] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/09/2015] [Indexed: 12/31/2022] Open
Abstract
The fatty acid amide hydrolase (FAAH) regulates the endocannabinoid system cleaving primarily the lipid messenger anandamide. FAAH has been well characterized over the years and, importantly, it represents a promising drug target to treat several diseases, including inflammatory-related diseases and cancer. But its enzymatic mechanism for lipid selection to specifically hydrolyze anandamide, rather than similar bioactive lipids, remains elusive. Here, we clarify this mechanism in FAAH, examining the role of the dynamic paddle, which is formed by the gating residues Phe432 and Trp531 at the boundary between two cavities that form the FAAH catalytic site (the “membrane-access” and the “acyl chain-binding” pockets). We integrate microsecond-long MD simulations of wild type and double mutant model systems (Phe432Ala and Trp531Ala) of FAAH, embedded in a realistic membrane/water environment, with mutagenesis and kinetic experiments. We comparatively analyze three fatty acid substrates with different hydrolysis rates (anandamide > oleamide > palmitoylethanolamide). Our findings identify FAAH’s mechanism to selectively accommodate anandamide into a multi-pocket binding site, and to properly orient the substrate in pre-reactive conformations for efficient hydrolysis that is interceded by the dynamic paddle. Our findings therefore endorse a structural framework for a lipid selection mechanism mediated by structural flexibility and gating residues between multiple binding cavities, as found in FAAH. Based on the available structural data, this exquisite catalytic strategy for substrate specificity seems to be shared by other lipid-degrading enzymes with similar enzymatic architecture. The mechanistic insights for lipid selection might assist de-novo enzyme design or drug discovery efforts. We describe a new structural enzymatic framework to regulate substrate specificity in lipid-degrading enzymes such as fatty acid amide hydrolase (FAAH), a key enzyme for the endocannabinoid lipid signaling that hydrolyzes a variety of lipids, however with different catalytic rates. The identified novel mechanism and key features for lipid selection in FAAH are then analysed in the context of other relevant lipid-degrading enzymes. Through the integration of microsecond-long molecular dynamics simulations with mutagenesis and kinetic experiments, our study suggests that structural flexibility, gating residues and multiple cavities in one catalytic site are keys to lipid selection in the endocannabinoid system. Our results suggest that the structural framework proposed here could likely be a general enzymatic strategy of other lipid-degrading enzymes to select the preferred lipid substrate within a broad spectrum of biologically active lipids. This new, and likely general, structural framework for lipid selection in FAAH could therefore now encourage additional experimental verifications of the role of ligand and structural flexibility, as regulated by key gating residues at the boundaries of multiple cavities forming a single catalytic site, as observed in several other lipid-degrading enzymes.
Collapse
Affiliation(s)
- Giulia Palermo
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Genova, Italy
| | - Inga Bauer
- CompuNet, Istituto Italiano di Tecnologia, Genova, Italy
| | - Pablo Campomanes
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Andrea Cavalli
- CompuNet, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Andrea Armirotti
- D3-PharmaChemistry, Istituto Italiano di Tecnologia, Genova, Italy
| | | | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Genova, Italy
- * E-mail:
| |
Collapse
|
46
|
Akbarzadeh M, Bakavoli M, Eshghi H, Shiri A. Synthesis of Oxazolo[5,4-d][1,2,4]triazolo[4,3-a]pyrimidines as a New Class of Heterocyclic Compounds. J Heterocycl Chem 2015. [DOI: 10.1002/jhet.2346] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Mehdi Bakavoli
- Department of Chemistry, School of Sciences; Ferdowsi University of Mashhad; 91775-1436 Mashhad Iran
| | | | - Ali Shiri
- Department of Chemistry, School of Sciences; Ferdowsi University of Mashhad; 91775-1436 Mashhad Iran
| |
Collapse
|
47
|
Design strategies to address kinetics of drug binding and residence time. Bioorg Med Chem Lett 2015; 25:2019-27. [DOI: 10.1016/j.bmcl.2015.02.027] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/06/2015] [Accepted: 02/11/2015] [Indexed: 02/06/2023]
|
48
|
|
49
|
Ogawa S, Kunugi H. Inhibitors of Fatty Acid Amide Hydrolase and Monoacylglycerol Lipase: New Targets for Future Antidepressants. Curr Neuropharmacol 2015; 13:760-75. [PMID: 26630956 PMCID: PMC4759315 DOI: 10.2174/1570159x13666150612225212] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 12/27/2022] Open
Abstract
Cannabis and analogs of Δ<sup>9</sup>-tetrahydrocannabinol have been used for therapeutic purposes, but their therapeutic use remains limited because of various adverse effects. Endogenous cannabinoids have been discovered, and dysregulation of endocannabinoid signaling is implicated in the pathophysiology of major depressive disorder (MDD). Recently, endocannabinoid hydrolytic enzymes such as fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) have become new therapeutic targets in the treatment of MDD. Several FAAH or MAGL inhibitors are reported to have no cannabimimetic side effects and, therefore, are new potential therapeutic options for patients with MDD who are resistant to first-line antidepressants (selective serotonin and serotonin-norepinephrine reuptake inhibitors). In this review, we focus on the possible relationships between MDD and the endocannabinoid system as well as the inhibitors' therapeutic potential. MAGL inhibitors may reduce inflammatory responses through activation of cannabinoid receptor type 2. In the hypothalamic-pituitary-adrenal axis, repeated FAAH inhibitor administration may be beneficial for reducing circulating glucocorticoid levels. Both FAAH and MAGL inhibitors may contribute to dopaminergic system regulation. Recently, several new inhibitors have been developed with strong potency and selectivity. FAAH inhibitor, MAGL inhibitor, or dual blocker use would be promising new treatments for MDD. Further pre-clinical studies and clinical trials using these inhibitors are warranted.
Collapse
Affiliation(s)
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.
| |
Collapse
|
50
|
Palermo G, Campomanes P, Cavalli A, Rothlisberger U, De Vivo M. Anandamide Hydrolysis in FAAH Reveals a Dual Strategy for Efficient Enzyme-Assisted Amide Bond Cleavage via Nitrogen Inversion. J Phys Chem B 2014; 119:789-801. [DOI: 10.1021/jp5052276] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Giulia Palermo
- Department
of Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Pablo Campomanes
- Laboratory
of Computational Chemistry and Biochemistry, Institute of Chemical
Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne
(EPFL), CH-1015 Lausanne, Switzerland
| | - Andrea Cavalli
- Department
of Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro
6, I-40126 Bologna, Italy
| | - Ursula Rothlisberger
- Laboratory
of Computational Chemistry and Biochemistry, Institute of Chemical
Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne
(EPFL), CH-1015 Lausanne, Switzerland
| | - Marco De Vivo
- Department
of Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|