1
|
Bijian K, Wernic D, Nivedha AK, Su J, Lim FPL, Miron CE, Amzil H, Moitessier N, Alaoui-Jamali MA. Novel Aurora A and Protein Kinase C (α, β1, β2, and θ) Multitarget Inhibitors: Impact of Selenium Atoms on the Potency and Selectivity. J Med Chem 2022; 65:3134-3150. [PMID: 35167283 DOI: 10.1021/acs.jmedchem.1c01031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aurora kinases and protein kinase C (PKC) have been shown to be involved in different aspects of cancer progression. To date, no dual Aurora/PKC inhibitor with clinical efficacy and low toxicity is available. Here, we report the identification of compound 2e as a potent small molecule capable of selectively inhibiting Aurora A kinase and PKC isoforms α, β1, β2 and θ. Compound 2e demonstrated significant inhibition of the colony forming ability of metastatic breast cancer cells in vitro and metastasis development in vivo. In vitro kinase screening and molecular modeling studies revealed the critical role of the selenium-containing side chains within 2e, where selenium atoms were shown to significantly improve its selectivity and potency by forming additional interactions and modulating the protein dynamics. In comparison to other H-bonding heteroatoms such as sulfur, our studies suggested that these selenium atoms also confer more favorable PK properties.
Collapse
Affiliation(s)
- Krikor Bijian
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Departments of Medicine and Oncology, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Dominik Wernic
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Departments of Medicine and Oncology, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Anita K Nivedha
- Department of Chemistry, McGill University, Montréal, Québec H3A 0B8, Canada.,Molecular Forecaster, 7171 rue Frederick Banting, Saint Laurent, Quebec H4S 1Z9, Canada
| | - Jie Su
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Departments of Medicine and Oncology, McGill University, Montreal, Quebec H3A 0B8, Canada
| | | | - Caitlin E Miron
- Department of Chemistry, McGill University, Montréal, Québec H3A 0B8, Canada
| | - Hind Amzil
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Departments of Medicine and Oncology, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Nicolas Moitessier
- Department of Chemistry, McGill University, Montréal, Québec H3A 0B8, Canada
| | - Moulay A Alaoui-Jamali
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Departments of Medicine and Oncology, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
2
|
Aza-Reversine Promotes Reprogramming of Lung (MRC-5) and Differentiation of Mesenchymal Cells into Osteoblasts. MATERIALS 2021; 14:ma14185385. [PMID: 34576609 PMCID: PMC8467999 DOI: 10.3390/ma14185385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 11/21/2022]
Abstract
Reversine or 2-(4-morpholinoanilino)-N6-cyclohexyladenine was originally identified as a small organic molecule that induces dedifferentiation of lineage-committed mouse myoblasts, C2C12, and redirects them into lipocytes or osteoblasts under lineage-specific conditions (LISCs). Further, it was proven that this small molecule can induce cell cycle arrest and apoptosis and thus selectively lead cancer cells to cell death. Further studies demonstrated that reversine, and more specifically the C2 position of the purine ring, can tolerate a wide range of substitutions without activity loss. In this study, a piperazine analog of reversine, also known as aza-reversine, and a biotinylated derivative of aza-reversine were synthesized, and their potential medical applications were investigated by transforming the endoderm originates fetal lung cells (MRC-5) into the mesoderm originated osteoblasts and by differentiating mesenchymal cells into osteoblasts. Moreover, the reprogramming capacity of aza-reversine and biotinylated aza-reversine was investigated against MRC-5 cells and mesenchymal cells after the immobilization on PMMA/HEMA polymeric surfaces. The results showed that both aza-reversine and the biofunctionalized, biotinylated analog induced the reprogramming of MRC-5 cells to a more primitive, pluripotent state and can further transform them into osteoblasts under osteogenic culture conditions. These molecules also induced the differentiation of dental and adipose mesenchymal cells to osteoblasts. Thus, the possibility to load a small molecule with useful “information” for delivering that into specific cell targets opens new therapeutic personalized applications.
Collapse
|
3
|
Liu M, Huang Y, Xu X, Li X, Alam M, Arunagiri A, Haataja L, Ding L, Wang S, Itkin-Ansari P, Kaufman RJ, Tsai B, Qi L, Arvan P. Normal and defective pathways in biogenesis and maintenance of the insulin storage pool. J Clin Invest 2021; 131:142240. [PMID: 33463547 PMCID: PMC7810482 DOI: 10.1172/jci142240] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Both basal and glucose-stimulated insulin release occur primarily by insulin secretory granule exocytosis from pancreatic β cells, and both are needed to maintain normoglycemia. Loss of insulin-secreting β cells, accompanied by abnormal glucose tolerance, may involve simple exhaustion of insulin reserves (which, by immunostaining, appears as a loss of β cell identity), or β cell dedifferentiation, or β cell death. While various sensing and signaling defects can result in diminished insulin secretion, somewhat less attention has been paid to diabetes risk caused by insufficiency in the biosynthetic generation and maintenance of the total insulin granule storage pool. This Review offers an overview of insulin biosynthesis, beginning with the preproinsulin mRNA (translation and translocation into the ER), proinsulin folding and export from the ER, and delivery via the Golgi complex to secretory granules for conversion to insulin and ultimate hormone storage. All of these steps are needed for generation and maintenance of the total insulin granule pool, and defects in any of these steps may, weakly or strongly, perturb glycemic control. The foregoing considerations have obvious potential relevance to the pathogenesis of type 2 diabetes and some forms of monogenic diabetes; conceivably, several of these concepts might also have implications for β cell failure in type 1 diabetes.
Collapse
Affiliation(s)
- Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Yumeng Huang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Xiaoxi Xu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Xin Li
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Maroof Alam
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Anoop Arunagiri
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Leena Haataja
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Li Ding
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Shusen Wang
- Organ Transplant Center, Tianjin First Central Hospital, Tianjin, China
| | | | - Randal J. Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Billy Tsai
- Department of Cell and Developmental Biology, and
| | - Ling Qi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
García-Raso A, Terrón A, Balle B, López-Zafra A, Frontera A, Barceló-Oliver M, Fiol JJ. Crystal structures of N6-modified-amino acid nucleobase analogs( iii): adenine–valeric acid, adenine–hexanoic acid and adenine–gabapentine. NEW J CHEM 2020. [DOI: 10.1039/d0nj02538k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
H-bonding networks, anion–π and π–π interactions in the crystal structures of N6-modified-amino acid adenine analogs are investigated by means of DFT calculations and X-ray crystallography analysis.
Collapse
Affiliation(s)
- Angel García-Raso
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma
- Spain
| | - Angel Terrón
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma
- Spain
| | - Bartomeu Balle
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma
- Spain
| | - Adela López-Zafra
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma
- Spain
| | - Antonio Frontera
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma
- Spain
| | | | - Juan J. Fiol
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma
- Spain
| |
Collapse
|
5
|
Chang CH, Bijian K, Wernic D, Su J, da Silva SD, Yu H, Qiu D, Asslan M, Alaoui-Jamali MA. A novel orally available seleno-purine molecule suppresses triple-negative breast cancer cell proliferation and progression to metastasis by inducing cytostatic autophagy. Autophagy 2019; 15:1376-1390. [PMID: 30773992 DOI: 10.1080/15548627.2019.1582951] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Patients with triple-negative breast cancer (TNBC) often have a poor prognosis largely due to lack of effective targeted therapy. Using a library of seleno-purines coupled to a high-throughput biochemical enzymatic assays we identified a potent pharmacological enhancer of autophagy (referred herein as SLLN-15) that selectively activated cytostatic macroautophagy/autophagy in TNBC preclinical models. SLLN-15 induced a dose-dependent anti-proliferative activity in the TNBC cell lines MDA-MB-231 and BT-20 via induction of autophagy and autophagic flux. This induction was associated with a selective inhibition of AKT-MTOR signaling. Conversely, rapamycin, a known autophagy inducer and MTOR inhibitor, was unable to duplicate SLLN-15's effect on TNBC cells. Inhibition of autophagy by siRNA-mediated targeting of the autophagy regulators, BECN1, ATG5 and ATG7 or using 3-methyladenine (3-MA), significantly protected against SLLN-15-induced inhibition of cell viability, further supporting that SLLN-15-induced inhibition of cancer cell proliferation was autophagy-dependent. SLLN-15-induced autophagy in TNBC cells was also associated with decreased AURKA expression, decreased AKT phosphorylation and subsequent blockage of the AKT-MTOR pathway. In vivo, oral SLLN-15 revealed a potent anticancer and anti-metastatic activity in mice bearing TNBC. Altogether, this study describes a novel regulator of mammalian autophagy, with potential utility as an experimental therapeutic for TNBCs. Abbreviations: 3-MA: 3-methyladenine; ATG5: autophagy related 5; ATG7: autophagy related 7; AURKA: aurora kinase A; AURKB: aurora kinase B; BECN1: beclin 1; CQ: chloroquine; DMSO: dimethyl sulfoxide; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; ERBB2: erb-b2 receptor tyrosine kinase 2; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; PARP1: poly(ADP-ribose) polymerase 1; PI: propidium iodide; SQSTM1/p62: sequestosome 1; TNBC: triple-negative breast cancer.
Collapse
Affiliation(s)
- Chia-Hao Chang
- a Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Departments of Medicine and Oncology , McGill University , Montreal , QC , Canada
| | - Krikor Bijian
- a Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Departments of Medicine and Oncology , McGill University , Montreal , QC , Canada
| | - Dominik Wernic
- a Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Departments of Medicine and Oncology , McGill University , Montreal , QC , Canada
| | - Jie Su
- a Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Departments of Medicine and Oncology , McGill University , Montreal , QC , Canada
| | - Sabrina Daniela da Silva
- a Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Departments of Medicine and Oncology , McGill University , Montreal , QC , Canada
| | - Henry Yu
- a Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Departments of Medicine and Oncology , McGill University , Montreal , QC , Canada
| | - Dinghong Qiu
- a Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Departments of Medicine and Oncology , McGill University , Montreal , QC , Canada
| | - Mariana Asslan
- a Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Departments of Medicine and Oncology , McGill University , Montreal , QC , Canada
| | - Moulay A Alaoui-Jamali
- a Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Departments of Medicine and Oncology , McGill University , Montreal , QC , Canada
| |
Collapse
|
6
|
García-Raso A, Terrón A, López-Zafra A, García-Viada A, Barta A, Frontera A, Lorenzo J, Rodríguez-Calado S, Vázquez-López EM, Fiol JJ. Crystal structures of N6-modified-amino acid related nucleobase analogs (II): hybrid adenine-β-alanine and adenine-GABA molecules. NEW J CHEM 2019. [DOI: 10.1039/c9nj02279a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
H-Bonding networks and anion–π interactions in the crystal structures of N6-modified-amino acid adenine analogs are investigated using X-ray crystallography and DFT calculations.
Collapse
Affiliation(s)
- Angel García-Raso
- Departament de Química
- Universitat de les Illes Balears
- Crta. de Valldemossa km 7.5
- 07122 Palma (Baleares)
- Spain
| | - Angel Terrón
- Departament de Química
- Universitat de les Illes Balears
- Crta. de Valldemossa km 7.5
- 07122 Palma (Baleares)
- Spain
| | - Adela López-Zafra
- Departament de Química
- Universitat de les Illes Balears
- Crta. de Valldemossa km 7.5
- 07122 Palma (Baleares)
- Spain
| | | | - Agostina Barta
- Departament de Química
- Universitat de les Illes Balears
- Crta. de Valldemossa km 7.5
- 07122 Palma (Baleares)
- Spain
| | - Antonio Frontera
- Departament de Química
- Universitat de les Illes Balears
- Crta. de Valldemossa km 7.5
- 07122 Palma (Baleares)
- Spain
| | - Julia Lorenzo
- Instituto de Biotecnología y Biomedicina
- Departamento de Bioquímica y Biologia Molecular
- Universidad Autónoma de Barcelona
- Barcelona
- Spain
| | - Sergi Rodríguez-Calado
- Instituto de Biotecnología y Biomedicina
- Departamento de Bioquímica y Biologia Molecular
- Universidad Autónoma de Barcelona
- Barcelona
- Spain
| | - Ezequiel M. Vázquez-López
- Instituto de Investigación Sanitaria Galicia Sur/Universidade de Vigo
- Departamento de Química Inorgánica
- Facultade de Química
- Edificio Ciencias Experimentais
- E-36310 Vigo
| | - Juan J. Fiol
- Departament de Química
- Universitat de les Illes Balears
- Crta. de Valldemossa km 7.5
- 07122 Palma (Baleares)
- Spain
| |
Collapse
|
7
|
Yu J, Mannes P, Jung YH, Ciancetta A, Bitant A, Lieberman DI, Khaznadar S, Auchampach JA, Gao ZG, Jacobson KA. Structure activity relationship of 2-arylalkynyl-adenine derivatives as human A 3 adenosine receptor antagonists. MEDCHEMCOMM 2018; 9:1920-1932. [PMID: 30568760 DOI: 10.1039/c8md00317c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/23/2018] [Indexed: 11/21/2022]
Abstract
Recognition of nucleosides at adenosine receptors (ARs) is supported by multiple X-ray structures, but the structure of an adenine complex is unknown. We examined the selectivity of predicted A1AR and A3AR adenine antagonists that incorporated known agonist affinity-enhancing N 6 and C2 substituents. Adenines with A1AR-favoring N 6-alkyl, cycloalkyl and arylalkyl substitutions combined with an A3AR-favoring 2-((5-chlorothiophen-2-yl)ethynyl) group were human (h) A3AR-selective, e.g. MRS7497 17 (∼1000-fold over A1AR). In addition, binding selectivity over hA2AAR and hA2BAR and functional A3AR antagonism were demonstrated. 17 was subjected to computational docking and molecular dynamics simulation in a hA3AR homology model to predict interactions. The SAR of nucleoside AR agonists was not recapitulated in adenine AR antagonists, and modeling suggested an alternative, inverted binding mode with the key N2506.55 H-bonding to the adenine N 3 and N 9, instead of N 6 and N 7 as in adenosine agonists.
Collapse
Affiliation(s)
- Jinha Yu
- Molecular Recognition Section , Laboratory of Bioorganic Chemistry , National Institute of Diabetes and Digestive and Kidney Diseases , National Institutes of Health , Bldg. 8A, Rm. B1A-19, NIH, NIDDK, LBC , Bethesda , Maryland 20892-0810 , USA . ; ; Tel: +301 496 9024
| | - Philip Mannes
- Molecular Recognition Section , Laboratory of Bioorganic Chemistry , National Institute of Diabetes and Digestive and Kidney Diseases , National Institutes of Health , Bldg. 8A, Rm. B1A-19, NIH, NIDDK, LBC , Bethesda , Maryland 20892-0810 , USA . ; ; Tel: +301 496 9024
| | - Young-Hwan Jung
- Molecular Recognition Section , Laboratory of Bioorganic Chemistry , National Institute of Diabetes and Digestive and Kidney Diseases , National Institutes of Health , Bldg. 8A, Rm. B1A-19, NIH, NIDDK, LBC , Bethesda , Maryland 20892-0810 , USA . ; ; Tel: +301 496 9024
| | - Antonella Ciancetta
- School of Pharmacy , Queen's University Belfast , 96 Lisburn Rd , Belfast , BT9 7BL , UK
| | - Amelia Bitant
- Department of Pharmacology , Medical College of Wisconsin , 8701 Watertown Plank Road , Milwaukee , Wisconsin 53226 , USA
| | - David I Lieberman
- Molecular Recognition Section , Laboratory of Bioorganic Chemistry , National Institute of Diabetes and Digestive and Kidney Diseases , National Institutes of Health , Bldg. 8A, Rm. B1A-19, NIH, NIDDK, LBC , Bethesda , Maryland 20892-0810 , USA . ; ; Tel: +301 496 9024
| | - Sami Khaznadar
- Molecular Recognition Section , Laboratory of Bioorganic Chemistry , National Institute of Diabetes and Digestive and Kidney Diseases , National Institutes of Health , Bldg. 8A, Rm. B1A-19, NIH, NIDDK, LBC , Bethesda , Maryland 20892-0810 , USA . ; ; Tel: +301 496 9024
| | - John A Auchampach
- Department of Pharmacology , Medical College of Wisconsin , 8701 Watertown Plank Road , Milwaukee , Wisconsin 53226 , USA
| | - Zhan-Guo Gao
- Molecular Recognition Section , Laboratory of Bioorganic Chemistry , National Institute of Diabetes and Digestive and Kidney Diseases , National Institutes of Health , Bldg. 8A, Rm. B1A-19, NIH, NIDDK, LBC , Bethesda , Maryland 20892-0810 , USA . ; ; Tel: +301 496 9024
| | - Kenneth A Jacobson
- Molecular Recognition Section , Laboratory of Bioorganic Chemistry , National Institute of Diabetes and Digestive and Kidney Diseases , National Institutes of Health , Bldg. 8A, Rm. B1A-19, NIH, NIDDK, LBC , Bethesda , Maryland 20892-0810 , USA . ; ; Tel: +301 496 9024
| |
Collapse
|
8
|
Synthesis of 2,6-Diamino-Substituted Purine Derivatives and Evaluation of Cell Cycle Arrest in Breast and Colorectal Cancer Cells. Molecules 2018; 23:molecules23081996. [PMID: 30103421 PMCID: PMC6222518 DOI: 10.3390/molecules23081996] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022] Open
Abstract
Reversine is a potent antitumor 2,6-diamino-substituted purine acting as an Aurora kinases inhibitor and interfering with cancer cell cycle progression. In this study we describe three reversine-related molecules, designed by docking calculation, that present structural modifications in the diamino units at positions 2 and 6. We investigated the conformations of the most stable prototropic tautomers of one of these molecules, the N6-cyclohexyl-N6-methyl-N2-phenyl-7H-purine-2,6-diamine (3), by Density Functional Theory (DFT) calculation in the gas phase, water and chloroform, the last solvent considered to give insights into the detection of broad signals in NMR analysis. In all cases the HN(9) tautomer resulted more stable than the HN(7) form, but the most stable conformations changed in different solvents. Molecules 1–3 were evaluated on MCF-7 breast and HCT116 colorectal cancer cell lines showing that, while being less cytotoxic than reversine, they still caused cell cycle arrest in G2/M phase and polyploidy. Unlike reversine, which produced a pronounced cell cycle arrest in G2/M phase in all the cell lines used, similar concentrations of 1–3 were effective only in cells where p53 was deleted or down-regulated. Therefore, our findings support a potential selective role of these structurally simplified, reversine-related molecules in p53-defective cancer cells.
Collapse
|
9
|
Figueiredo P, Costa M, Pontes O, Baltazar F, Proença F. Adenine Derivatives: Promising Candidates for Breast Cancer Treatment. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Pedro Figueiredo
- Chemistry Department; University of Minho; Campus de Gualtar Braga Portugal
| | - Marta Costa
- Life and Health Sciences Research Institute (ICVS); University of Minho; Campus de Gualtar Braga Portugal
- ICVS/3B's - PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Olívia Pontes
- Life and Health Sciences Research Institute (ICVS); University of Minho; Campus de Gualtar Braga Portugal
- ICVS/3B's - PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS); University of Minho; Campus de Gualtar Braga Portugal
- ICVS/3B's - PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Fernanda Proença
- Chemistry Department; University of Minho; Campus de Gualtar Braga Portugal
| |
Collapse
|
10
|
Jacobson KA, Merighi S, Varani K, Borea PA, Baraldi S, Tabrizi MA, Romagnoli R, Baraldi PG, Ciancetta A, Tosh DK, Gao ZG, Gessi S. A 3 Adenosine Receptors as Modulators of Inflammation: From Medicinal Chemistry to Therapy. Med Res Rev 2018; 38:1031-1072. [PMID: 28682469 PMCID: PMC5756520 DOI: 10.1002/med.21456] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/02/2017] [Accepted: 06/13/2017] [Indexed: 01/09/2023]
Abstract
The A3 adenosine receptor (A3 AR) subtype is a novel, promising therapeutic target for inflammatory diseases, such as rheumatoid arthritis (RA) and psoriasis, as well as liver cancer. A3 AR is coupled to inhibition of adenylyl cyclase and regulation of mitogen-activated protein kinase (MAPK) pathways, leading to modulation of transcription. Furthermore, A3 AR affects functions of almost all immune cells and the proliferation of cancer cells. Numerous A3 AR agonists, partial agonists, antagonists, and allosteric modulators have been reported, and their structure-activity relationships (SARs) have been studied culminating in the development of potent and selective molecules with drug-like characteristics. The efficacy of nucleoside agonists may be suppressed to produce antagonists, by structural modification of the ribose moiety. Diverse classes of heterocycles have been discovered as selective A3 AR blockers, although with large species differences. Thus, as a result of intense basic research efforts, the outlook for development of A3 AR modulators for human therapeutics is encouraging. Two prototypical selective agonists, N6-(3-Iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA; CF101) and 2-chloro-N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (Cl-IB-MECA; CF102), have progressed to advanced clinical trials. They were found safe and well tolerated in all preclinical and human clinical studies and showed promising results, particularly in psoriasis and RA, where the A3 AR is both a promising therapeutic target and a biologically predictive marker, suggesting a personalized medicine approach. Targeting the A3 AR may pave the way for safe and efficacious treatments for patient populations affected by inflammatory diseases, cancer, and other conditions.
Collapse
Affiliation(s)
- Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Stefania Merighi
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Katia Varani
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Pier Andrea Borea
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Stefania Baraldi
- Department of Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Mojgan Aghazadeh Tabrizi
- Department of Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Romeo Romagnoli
- Department of Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Pier Giovanni Baraldi
- Department of Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Antonella Ciancetta
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Dilip K. Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Stefania Gessi
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| |
Collapse
|
11
|
Wagner E, Becan L. Synthesis of New Isoxazolo[4,5-d]pyrimidines as Antitumor Agents. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Edwin Wagner
- Department of Drugs Technology; Wroclaw Medical University; Wroclaw Poland
| | - Lilianna Becan
- Department of Drugs Technology; Wroclaw Medical University; Wroclaw Poland
| |
Collapse
|
12
|
Insights into Resistance Mechanisms of Inhibitors to Mps1 C604Y Mutation via a Comprehensive Molecular Modeling Study. Molecules 2018; 23:molecules23061488. [PMID: 29925769 PMCID: PMC6100145 DOI: 10.3390/molecules23061488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/07/2018] [Accepted: 06/13/2018] [Indexed: 11/17/2022] Open
Abstract
Mono-polar spindle 1 (Mps1/TTK) represents a protein kinase reported to be vital for cell division processes and is generally regarded as an attractive target for the treatment of hepatocellular carcinoma, breast carcinoma, and colon cancer. However, the C604Y mutation has been linked to acquired resistance. Recently, three potential small-molecule inhibitors of Mps1 (i.e., reversine, NMS-P715, and its derivative Cpd-5) were reported for the C604Y mutation that exhibit significant resistance to NMS-P715 and Cpd-5, but retain affinity for reversine. In this study, classical molecular dynamic (MD) simulations, accelerated MD (aMD) simulations, and umbrella sampling (US) simulations were performed to illustrate the resistance mechanisms of inhibitors to Mps1. The classical MD simulations combined with free energy calculations revealed that reversine features similar binding affinity characteristics to both Mps1WT and Mps1C604Y, but both NMS-P715 and Cpd-5 feature much higher binding affinities to Mps1WT than to Mps1C604Y. The major variations were shown to be controlled by electrostatic energy and the conformational change of A-loop-induced entropy increased. The large conformational changes of Mps1C604Y bound to NMS-P715 and Cpd-5 were also observed in aMD simulations. The US simulation results further suggest that reversine and Cpd-5 both exhibit similar dissociation processes from both Mps1WT and Mps1C604Y, but Cpd-5 and NMS-P715 were found to dissociate more easily from Mps1C604Y than from Mps1WT, thus a reduced residence time was responsible for the inhibitors resistance to the C604Y mutation. The physical principles provided by the present study may provide important clues for the discovery and rational design of novel inhibitors to combat the C604Y mutation of Mps1.
Collapse
|
13
|
Kooistra AJ, Vass M, McGuire R, Leurs R, de Esch IJP, Vriend G, Verhoeven S, de Graaf C. 3D-e-Chem: Structural Cheminformatics Workflows for Computer-Aided Drug Discovery. ChemMedChem 2018; 13:614-626. [PMID: 29337438 PMCID: PMC5900740 DOI: 10.1002/cmdc.201700754] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/11/2018] [Indexed: 01/06/2023]
Abstract
eScience technologies are needed to process the information available in many heterogeneous types of protein-ligand interaction data and to capture these data into models that enable the design of efficacious and safe medicines. Here we present scientific KNIME tools and workflows that enable the integration of chemical, pharmacological, and structural information for: i) structure-based bioactivity data mapping, ii) structure-based identification of scaffold replacement strategies for ligand design, iii) ligand-based target prediction, iv) protein sequence-based binding site identification and ligand repurposing, and v) structure-based pharmacophore comparison for ligand repurposing across protein families. The modular setup of the workflows and the use of well-established standards allows the re-use of these protocols and facilitates the design of customized computer-aided drug discovery workflows.
Collapse
Affiliation(s)
- Albert J. Kooistra
- Centre for Molecular and Biomolecular Informatics (CMBI)Radboud University Medical Center (RadboudUMC)NijmegenThe Netherlands
- Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS)Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Márton Vass
- Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS)Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Ross McGuire
- Centre for Molecular and Biomolecular Informatics (CMBI)Radboud University Medical Center (RadboudUMC)NijmegenThe Netherlands
- BioAxis Research, Pivot ParkOssThe Netherlands
| | - Rob Leurs
- Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS)Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Iwan J. P. de Esch
- Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS)Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Gert Vriend
- Centre for Molecular and Biomolecular Informatics (CMBI)Radboud University Medical Center (RadboudUMC)NijmegenThe Netherlands
| | | | - Chris de Graaf
- Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS)Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
14
|
Cheng L, Wang H, Guo K, Wang Z, Zhang Z, Shen C, Chen L, Lin J. Reversine, a substituted purine, exerts an inhibitive effect on human renal carcinoma cells via induction of cell apoptosis and polyploidy. Onco Targets Ther 2018. [PMID: 29520153 PMCID: PMC5833753 DOI: 10.2147/ott.s158198] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background Human renal cell carcinoma (RCC) is the most common type of kidney cancer that arises from the renal epithelium. Up to 33.3% of RCC patients treated with local tumor resections will subsequently develop recurrence or metastases. Thus, optimized therapeutic regimes are urgently needed to improve the prognosis of RCC. Reversine was recently reported to exert critical roles in cancer therapy. Materials and methods This study evaluated the anti-tumor effects of reversine on cell viability, colony formation, apoptosis, and cell cycle in 786-O and ACHN cell lines. Results It was demonstrated that reversine significantly inhibited the proliferation of both cell lines in time- and dose-dependent manners. Polyploidy formation was observed under high-concentration reversine treatment. In addition, reversine induced cell death via caspase-dependent apoptotic pathways, which could be partially inhibited by Z-VAD-FMK, a pan-caspase inhibitor. Conclusion Reversine could effectively suppress the proliferation of human RCC cells, and may serve as a novel therapeutic regimen for RCC in clinical practice.
Collapse
Affiliation(s)
- Li Cheng
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China
| | - Hao Wang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Kecun Guo
- Department of Urology, The Second People's Hospital of Liaocheng, Shandong, China
| | - Zicheng Wang
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China
| | - Zhongyuan Zhang
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| | - Cheng Shen
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| | - Liang Chen
- Medical Center of Reproductive and Genetics, Peking University First Hospital, Beijing, China
| | - Jian Lin
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| |
Collapse
|
15
|
Baranek M, Belter A, Naskręt-Barciszewska MZ, Stobiecki M, Markiewicz WT, Barciszewski J. Effect of small molecules on cell reprogramming. MOLECULAR BIOSYSTEMS 2017; 13:277-313. [PMID: 27918060 DOI: 10.1039/c6mb00595k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The essential idea of regenerative medicine is to fix or replace tissues or organs with alive and patient-specific implants. Pluripotent stem cells are able to indefinitely self-renew and differentiate into all cell types of the body which makes them a potent substantial player in regenerative medicine. The easily accessible source of induced pluripotent stem cells may allow obtaining and cultivating tissues in vitro. Reprogramming refers to regression of mature cells to its initial pluripotent state. One of the approaches affecting pluripotency is the usage of low molecular mass compounds that can modulate enzymes and receptors leading to the formation of pluripotent stem cells (iPSCs). It would be great to assess the general character of such compounds and reveal their new derivatives or modifications to increase the cell reprogramming efficiency. Many improvements in the methods of pluripotency induction have been made by various groups in order to limit the immunogenicity and tumorigenesis, increase the efficiency and accelerate the kinetics. Understanding the epigenetic changes during the cellular reprogramming process will extend the comprehension of stem cell biology and lead to potential therapeutic approaches. There are compounds which have been already proven to be or for now only putative inducers of the pluripotent state that may substitute for the classic reprogramming factors (Oct3/4, Sox2, Klf4, c-Myc) in order to improve the time and efficiency of pluripotency induction. The effect of small molecules on gene expression is dosage-dependent and their application concentration needs to be strictly determined. In this review we analysed the role of small molecules in modulations leading to pluripotency induction, thereby contributing to our understanding of stem cell biology and uncovering the major mechanisms involved in that process.
Collapse
Affiliation(s)
- M Baranek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| | - A Belter
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| | - M Z Naskręt-Barciszewska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| | - M Stobiecki
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| | - W T Markiewicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| | - J Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| |
Collapse
|
16
|
Reversine Induced Multinucleated Cells, Cell Apoptosis and Autophagy in Human Non-Small Cell Lung Cancer Cells. PLoS One 2016; 11:e0158587. [PMID: 27385117 PMCID: PMC4934785 DOI: 10.1371/journal.pone.0158587] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 06/17/2016] [Indexed: 12/21/2022] Open
Abstract
Reversine, an A3 adenosine receptor antagonist, has been shown to induce differentiated myogenic-lineage committed cells to become multipotent mesenchymal progenitor cells. We and others have reported that reversine has an effect on human tumor suppression. This study revealed anti-tumor effects of reversine on proliferation, apoptosis and autophagy induction in human non-small cell lung cancer cells. Treatment of these cells with reversine suppressed cell growth in a time- and dosage-dependent manner. Moreover, polyploidy occurred after reversine treatment. In addition, caspase-dependent apoptosis and activation of autophagy by reversine in a dosage-dependent manner were also observed. We demonstrated in this study that reversine contributes to growth inhibition, apoptosis and autophagy induction in human lung cancer cells. Therefore, reversine used as a potential therapeutic agent for human lung cancer is worthy of further investigation.
Collapse
|
17
|
Liu H, Li L, Qurat-ul-ain S, Jiang T. Synthesis and Inhibitory Activity Evaluation of 2,6-Disubstituted Purine Derivatives. J Heterocycl Chem 2014. [DOI: 10.1002/jhet.1959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hongxia Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Shandong Provincial, School of Medicine and Pharmacy; Ocean University of China; Qingdao Shandong 266003 People's Republic of China
- College of Chemistry and Chemical Engineering; Qiqihar University; Qiqihar Heilongjiang 161006 China
| | - Libo Li
- Department of Pharmacology; Qiqihar Medical University; Qiqihar Heilongjiang 161006 People's Republic of China
| | - Shaikh Qurat-ul-ain
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Shandong Provincial, School of Medicine and Pharmacy; Ocean University of China; Qingdao Shandong 266003 People's Republic of China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Shandong Provincial, School of Medicine and Pharmacy; Ocean University of China; Qingdao Shandong 266003 People's Republic of China
| |
Collapse
|
18
|
Conner GE, Ivonnet P, Gelin M, Whitney P, Salathe M. H2O2 stimulates cystic fibrosis transmembrane conductance regulator through an autocrine prostaglandin pathway, using multidrug-resistant protein-4. Am J Respir Cell Mol Biol 2014; 49:672-9. [PMID: 23742099 DOI: 10.1165/rcmb.2013-0156oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) activity is essential for the maintenance of airway surface liquid depth, and therefore mucociliary clearance. Reactive oxygen species, increased during inflammatory airway diseases, alter CFTR activity. Here, H2O2 levels in the surface liquid of normal human bronchial epithelial cultures differentiated at the air-liquid interface were estimated, and H2O2-mediated changes in CFTR activity were examined. In Ussing chambers, H2O2-induced anion currents were sensitive to the CFTR inhibitors CFTRinh172 and GlyH-101. These currents were absent in cells from patients with cystic fibrosis. Responses to greater than 500 μM H2O2 were transient. Cyclooxygenase inhibitors blocked the H2O2 response, as did EP1 and EP4 receptor antagonists. A multidrug-resistant protein (MRP) inhibitor and short hairpin RNA directed against MRP4 blocked H2O2 responses. EP1 and EP4 agonists mimicked H2O2 in both control and MRP4 knockdown cells. Thus, H2O2 activates the synthesis, export, and binding of prostanoids via EP4 and, interestingly, EP1 receptors in normal, differentiated human airway epithelial cells to activate cyclic adenosine monophosphate pathways that in turn activate CFTR channels in the apical membrane.
Collapse
Affiliation(s)
- Gregory E Conner
- 1 Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, and
| | | | | | | | | |
Collapse
|
19
|
Nayak A, Chandra G, Hwang I, Kim K, Hou X, Kim HO, Sahu PK, Roy KK, Yoo J, Lee Y, Cui M, Choi S, Moss SM, Phan K, Gao ZG, Ha H, Jacobson KA, Jeong LS. Synthesis and anti-renal fibrosis activity of conformationally locked truncated 2-hexynyl-N(6)-substituted-(N)-methanocarba-nucleosides as A3 adenosine receptor antagonists and partial agonists. J Med Chem 2014; 57:1344-54. [PMID: 24456490 PMCID: PMC3954500 DOI: 10.1021/jm4015313] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
![]()
Truncated N6-substituted-(N)-methanocarba-adenosine derivatives
with 2-hexynyl substitution
were synthesized to examine parallels with corresponding 4′-thioadenosines.
Hydrophobic N6 and/or C2 substituents were tolerated in
A3AR binding, but only an unsubstituted 6-amino group with
a C2-hexynyl group promoted high hA2AAR affinity. A small
hydrophobic alkyl (4b and 4c) or N6-cycloalkyl group (4d) showed
excellent binding affinity at the hA3AR and was better
than an unsubstituted free amino group (4a). A3AR affinities of 3-halobenzylamine derivatives 4f–4i did not differ significantly, with Ki values of 7.8–16.0 nM. N6-Methyl derivative 4b (Ki = 4.9 nM) was a highly selective, low efficacy partial A3AR agonist. All compounds were screened for renoprotective effects
in human TGF-β1-stimulated mProx tubular cells, a kidney fibrosis
model. Most compounds strongly inhibited TGF-β1-induced collagen
I upregulation, and their A3AR binding affinities were
proportional to antifibrotic effects; 4b was most potent
(IC50 = 0.83 μM), indicating its potential as a good
therapeutic candidate for treating renal fibrosis.
Collapse
Affiliation(s)
- Akshata Nayak
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bijian K, Lougheed C, Su J, Xu B, Yu H, Wu JH, Riccio K, Alaoui-Jamali MA. Targeting focal adhesion turnover in invasive breast cancer cells by the purine derivative reversine. Br J Cancer 2013; 109:2810-8. [PMID: 24169345 PMCID: PMC3844920 DOI: 10.1038/bjc.2013.675] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/01/2013] [Accepted: 10/04/2013] [Indexed: 12/29/2022] Open
Abstract
Background: The dynamics of focal adhesion (FA) turnover is a key determinant for the regulation of cancer cell migration. Here we investigated FA turnover in a panel of breast cancer models with distinct invasive properties and evaluated the impact of reversine on this turnover in relation to cancer cell invasion in in vitro and in vivo conditions. Methods: Live imaging and immunofluorescence assays were used to investigate FA turnover in breast cancer cells. Biochemical studies were used to investigate the impact of reversine on FA signalling and turnover. In vivo activity was investigated using orthotopic breast cancer mouse models. Results: Accelerated FA disassembly from plasma membrane protrusions was observed in invasive compared with non-invasive breast cancer cells or non-immortalised mammary epithelial cells. Reversine significantly inhibited FA disassembly leading to stable FAs, which was associated with reduced cell motility and invasion. The inhibitory effect of reversine on FA turnover accounted for a large part on its capacity to interfere with FAK function on regulating its downstream targets. In orthotopic breast cancer mouse models, reversine revealed a potent inhibitory activity on tumour progression to metastasis. Conclusion: These results support the utility of targeting FA turnover as a therapeutic approach for invasive breast cancer.
Collapse
Affiliation(s)
- K Bijian
- Departments of Medicine and Oncology, Segal Cancer Centre and Lady Davis Institute of the Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Dal Ben D, Buccioni M, Lambertucci C, Thomas A, Klotz KN, Federico S, Cacciari B, Spalluto G, Volpini R. 8-(2-Furyl)adenine derivatives as A₂A adenosine receptor ligands. Eur J Med Chem 2013; 70:525-35. [PMID: 24189496 DOI: 10.1016/j.ejmech.2013.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/03/2013] [Indexed: 11/19/2022]
Abstract
Selective adenosine receptor modulators are potential tools for numerous therapeutic applications, including cardiovascular, inflammatory, and neurodegenerative diseases. In this work, the synthesis and biological evaluation at the four human adenosine receptor subtypes of a series of 9-substituted 8-(2-furyl)adenine derivatives are reported. Results show that 8-(2-furyl)-9-methyladenine is endowed with high affinity at the A₂A subtype. Further modification of this compound with introduction of arylacetyl or arylcarbamoyl groups in N(6)-position takes to different effects on the A₂A affinity and in particular on the selectivity versus the other three adenosine receptor subtypes. A molecular modelling analysis at three different A₂A receptor crystal structures provides an interpretation of the obtained biological results.
Collapse
Affiliation(s)
- Diego Dal Ben
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, I-62032 Camerino, MC, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Qu G, von Schroeder HP. Preliminary Evidence for the Dedifferentiation of RAW 264.7 Cells into Mesenchymal Progenitor-Like Cells by a Purine Analog. Tissue Eng Part A 2012; 18:1890-901. [DOI: 10.1089/ten.tea.2010.0692] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Guowei Qu
- Bone Lab, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Herbert P. von Schroeder
- Bone Lab, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- University Hand Program, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Reversine induces cell cycle arrest, polyploidy, and apoptosis in human breast cancer cells. Breast Cancer 2012; 21:358-69. [PMID: 22926505 DOI: 10.1007/s12282-012-0400-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 08/08/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Reversine, a small synthetic purine analogue, has been reported to be effective in tumor suppression. In the present study, we demonstrated an antitumor activity of reversine that could suppress cellular proliferation and induce cell cycle arrest and apoptosis in human breast cancer cell lines. METHODS To evaluate whether reversine could suppress cell growth of MCF-7 and MDA-MB-231 cells and induce cell death, the cell viability, cell cycle, and apoptosis were determined in this study. RESULTS Reversine treatment in human breast cancer cells reduced cell viability in a dose-dependent manner. Cell cycle accumulation at the G2/M phase in reversine-treated cells was also determined. Moreover, polyploidy was also found in reversine-treated cells. Apoptosis in reversine-treated cells was exhibited with PARP cleavage and caspase-3 and caspase-8 activation, but not caspase-9 activation, indicating that caspase-dependent apoptosis mediated by an extrinsic pathway took place in reversine-treated cells. Furthermore, reversine attenuated cell death in cells pretreated with a pan-caspase inhibitor before reversine treatment. CONCLUSIONS In the present study, we demonstrated that reversine contributes to growth inhibition in human breast cancer cells through cell cycle arrest, polyploidy, and/or apoptosis induction. The apoptosis mediated by reversine was induced by the mitochondria-independent pathway. Therefore, the potential role of reversine as a novel therapeutic agent for the treatment of breast cancer is worthy of further investigation.
Collapse
|
24
|
Error-prone mammalian female meiosis from silencing the spindle assembly checkpoint without normal interkinetochore tension. Proc Natl Acad Sci U S A 2012; 109:E1858-67. [PMID: 22552228 DOI: 10.1073/pnas.1204686109] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is well established that chromosome segregation in female meiosis I (MI) is error-prone. The acentrosomal meiotic spindle poles do not have centrioles and are not anchored to the cortex via astral microtubules. By Cre recombinase-mediated removal in oocytes of the microtubule binding site of nuclear mitotic apparatus protein (NuMA), which is implicated in anchoring microtubules at poles, we determine that without functional NuMA, microtubules lose connection to MI spindle poles, resulting in highly disorganized early spindle assembly. Subsequently, very long spindles form with hyperfocused poles. The kinetochores of homologs make attachments to microtubules in these spindles but with reduced tension between them and accompanied by alignment defects. Despite this, the spindle assembly checkpoint is normally silenced and the advance to anaphase I and first polar body extrusion takes place without delay. Females without functional NuMA in oocytes are sterile, producing aneuploid eggs with altered chromosome number. These findings establish that in mammalian MI, the spindle assembly checkpoint is unable to sustain meiotic arrest in the presence of one or few misaligned and/or misattached kinetochores with reduced interkinetochore tension, thereby offering an explanation for why MI in mammals is so error-prone.
Collapse
|
25
|
Reversine suppresses oral squamous cell carcinoma via cell cycle arrest and concomitantly apoptosis and autophagy. J Biomed Sci 2012; 19:9. [PMID: 22283874 PMCID: PMC3299600 DOI: 10.1186/1423-0127-19-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 01/27/2012] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The effective therapies for oral cancer patients of stage III and IV are generally surgical excision and radiation combined with adjuvant chemotherapy using 5-Fu and Cisplatin. However, the five-year survival rate is still less than 30% in Taiwan. Therefore, evaluation of effective drugs for oral cancer treatment is an important issue. Many studies indicated that aurora kinases (A, B and C) were potential targets for cancer therapies. Reversine was proved to be a novel aurora kinases inhibitor with lower toxicity recently. In this study, the potentiality for reversine as an anticancer agent in oral squamous cell carcinoma (OSCC) was evaluated. METHODS Effects of reversine on cell growth, cell cycle progress, apoptosis, and autophagy were evaluated mainly by cell counting, flow cytometry, immunoblot, and immunofluorescence. RESULTS The results demonstrated that reversine significantly suppressed the proliferation of two OSCC cell lines (OC2 and OCSL) and markedly rendered cell cycle arrest at G2/M stage. Reversine also induced cell death via both caspase-dependent and -independent apoptosis. In addition, reversine could inhibit Akt/mTORC1 signaling pathway, accounting for its ability to induce autophagy. CONCLUSIONS Taken together, reversine suppresses growth of OSCC via multiple mechanisms, which may be a unique advantage for developing novel therapeutic regimens for treatment of oral cancer in the future.
Collapse
|
26
|
Hou X, Majik MS, Kim K, Pyee Y, Lee Y, Alexander V, Chung HJ, Lee HW, Chandra G, Lee JH, Park SG, Choi WJ, Kim HO, Phan K, Gao ZG, Jacobson KA, Choi S, Lee SK, Jeong LS. Structure-activity relationships of truncated C2- or C8-substituted adenosine derivatives as dual acting A₂A and A₃ adenosine receptor ligands. J Med Chem 2012; 55:342-56. [PMID: 22142423 PMCID: PMC3266722 DOI: 10.1021/jm201229j] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Truncated N(6)-substituted-4'-oxo- and 4'-thioadenosine derivatives with C2 or C8 substitution were studied as dual acting A(2A) and A(3) adenosine receptor (AR) ligands. The lithiation-mediated stannyl transfer and palladium-catalyzed cross-coupling reactions were utilized for functionalization of the C2 position of 6-chloropurine nucleosides. An unsubstituted 6-amino group and a hydrophobic C2 substituent were required for high affinity at the hA(2A)AR, but hydrophobic C8 substitution abolished binding at the hA(2A)AR. However, most of synthesized compounds displayed medium to high binding affinity at the hA(3)AR, regardless of C2 or C8 substitution, and low efficacy in a functional cAMP assay. Several compounds tended to be full hA(2A)AR agonists. C2 substitution probed geometrically through hA(2A)AR docking was important for binding in order of hexynyl > hexenyl > hexanyl. Compound 4g was the most potent ligand acting dually as hA(2A)AR agonist and hA(3)AR antagonist, which might be useful for treatment of asthma or other inflammatory diseases.
Collapse
Affiliation(s)
- Xiyan Hou
- Laboratory of Medicinal Chemistry, College of Pharmacy and Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Mahesh S. Majik
- Laboratory of Medicinal Chemistry, College of Pharmacy and Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Kyunglim Kim
- Laboratory of Medicinal Chemistry, College of Pharmacy and Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Yuna Pyee
- College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Yoonji Lee
- Laboratory of Medicinal Chemistry, College of Pharmacy and Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Varughese Alexander
- Laboratory of Medicinal Chemistry, College of Pharmacy and Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Hwa-Jin Chung
- College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Hyuk Woo Lee
- Laboratory of Medicinal Chemistry, College of Pharmacy and Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Girish Chandra
- Laboratory of Medicinal Chemistry, College of Pharmacy and Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Jin Hee Lee
- Laboratory of Medicinal Chemistry, College of Pharmacy and Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Seul-gi Park
- Laboratory of Medicinal Chemistry, College of Pharmacy and Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Won Jun Choi
- Laboratory of Medicinal Chemistry, College of Pharmacy and Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
- College of Pharmacy, Dongguk University, Kyungki-do 410-774, Korea
| | - Hea Ok Kim
- Laboratory of Medicinal Chemistry, College of Pharmacy and Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Khai Phan
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sun Choi
- Laboratory of Medicinal Chemistry, College of Pharmacy and Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Sang Kook Lee
- College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Lak Shin Jeong
- Laboratory of Medicinal Chemistry, College of Pharmacy and Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
27
|
Cheong SL, Federico S, Venkatesan G, Mandel AL, Shao YM, Moro S, Spalluto G, Pastorin G. The A3 adenosine receptor as multifaceted therapeutic target: pharmacology, medicinal chemistry, and in silico approaches. Med Res Rev 2011; 33:235-335. [PMID: 22095687 DOI: 10.1002/med.20254] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adenosine is an ubiquitous local modulator that regulates various physiological and pathological functions by stimulating four membrane receptors, namely A(1), A(2A), A(2B), and A(3). Among these G protein-coupled receptors, the A(3) subtype is found mainly in the lung, liver, heart, eyes, and brain in our body. It has been associated with cerebroprotection and cardioprotection, as well as modulation of cellular growth upon its selective activation. On the other hand, its inhibition by selective antagonists has been reported to be potentially useful in the treatment of pathological conditions including glaucoma, inflammatory diseases, and cancer. In this review, we focused on the pharmacology and the therapeutic implications of the human (h)A(3) adenosine receptor (AR), together with an overview on the progress of hA(3) AR agonists, antagonists, allosteric modulators, and radioligands, as well as on the recent advances pertaining to the computational approaches (e.g., quantitative structure-activity relationships, homology modeling, molecular docking, and molecular dynamics simulations) applied to the modeling of hA(3) AR and drug design.
Collapse
Affiliation(s)
- Siew Lee Cheong
- Department of Pharmacy, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Baraldi PG, Preti D, Zaid AN, Saponaro G, Tabrizi MA, Baraldi S, Romagnoli R, Moorman AR, Varani K, Cosconati S, Di Maro S, Marinelli L, Novellino E, Borea PA. New 2-heterocyclyl-imidazo[2,1-i]purin-5-one derivatives as potent and selective human A3 adenosine receptor antagonists. J Med Chem 2011; 54:5205-20. [PMID: 21675777 DOI: 10.1021/jm2004738] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of 4-allyl/benzyl-7,8-dihydro-8-methyl/ethyl-2-[(substituted)isoxazol/pyrazol-3/5-yl]-1H-imidazo[2,1-i]purin-5(4H)-ones has been synthesized and evaluated in radioligand binding assays to determine their affinities at the human A(1), A(2A), and A(3) adenosine receptors. Efficacy at the hA(2B) AR and antagonism of selected ligands at the hA(3) AR were also assessed through cAMP experiments. All of the synthesized molecules exhibited high affinity at the hA(3) AR (K(i) values ranging from 1.46 to 44.8 nM), as well as remarkable selectivity versus A(1), A(2A), and A(2B) AR subtypes. Compound (R)-4-allyl-8-ethyl-7,8-dihydro-2-(3-methoxy-1-methyl-1H-pyrazol-5-yl)-1H-imidazo[2,1-i]purin-5(4H)-one (R-33) was found to be the most potent and selective ligand of the series (K(i) hA(3) = 1.46 nM, K(i) hA(2A)/K(i) hA(3) > 3425; IC(50) hA(2B)/K(i) hA(3) > 3425; K(i) hA(1)/K(i) hA(3) = 1729). Molecular modeling studies were helpful in rationalizing the available structure-activity relationships along with the selectivity profiles of the new series of ligands.
Collapse
Affiliation(s)
- Pier Giovanni Baraldi
- Dipartimento di Scienze Farmaceutiche, Università di Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lu HF, Zhang LZ, Wu DM, Zhou JT. Microwave assisted synthesis of 2,6-substituted aromatic-aminopurine derivatives. J Heterocycl Chem 2011. [DOI: 10.1002/jhet.629] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
30
|
Kumar TS, Mishra S, Deflorian F, Yoo LS, Phan K, Kecskés M, Szabo A, Shinkre B, Gao ZG, Trenkle W, Jacobson KA. Molecular probes for the A2A adenosine receptor based on a pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine scaffold. Bioorg Med Chem Lett 2010; 21:2740-5. [PMID: 21185184 DOI: 10.1016/j.bmcl.2010.11.082] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 11/16/2010] [Indexed: 12/24/2022]
Abstract
Pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine derivatives such as SCH 442416 display high affinity and selectivity as antagonists for the human A(2A) adenosine receptor (AR). We extended ether-linked chain substituents at the p-position of the phenyl group using optimized O-alkylation. The conjugates included an ester, carboxylic acid and amines (for amide condensation), an alkyne (for click chemistry), a fluoropropyl group (for (18)F incorporation), and fluorophore reporter groups (e.g., BODIPY conjugate 14, K(i) 15 nM). The potent and A(2A)AR-selective N-aminoethylacetamide 7 and N-[2-(2-aminoethyl)-aminoethyl]acetamide 8 congeners were coupled to polyamidoamine (PAMAM) G3.5 dendrimers, and the multivalent conjugates displayed high A(2A)AR affinity. Theoretical docking of an AlexaFluor conjugate to the receptor X-ray structure highlighted the key interactions between the heterocyclic core and the binding pocket of the A(2A)AR as well as the distal anchoring of the fluorophore. In conclusion, we have synthesized a family of high affinity functionalized congeners as pharmacological probes for studying the A(2A)AR.
Collapse
Affiliation(s)
- T Santhosh Kumar
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8A, Rm. B1A-19, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hou X, Kim HO, Alexander V, Kim K, Choi S, Park SG, Lee JH, Yoo LS, Gao ZG, Jacobson KA, Jeong LS. Discovery of New Human A(2A) Adenosine Receptor Agonists: Design, Synthesis, and Binding Mode of Truncated 2-Hexynyl-4'-thioadenosine. ACS Med Chem Lett 2010; 2010:516-520. [PMID: 21286238 DOI: 10.1021/ml1001823] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The truncated C2- and C8-substituted-4'-thioadenosine derivatives 4a-d were synthesized from D-mannose, using palladium-catalyzed cross coupling reactions as key steps. In this study, an A(3) adenosine receptor (AR) antagonist, truncated 4'-thioadenosine derivative 3 was successfully converted into a potent A(2A)AR agonist 4a (K(i) = 7.19 ± 0.6 nM) by appending a 2-hexynyl group at the C2-position of a derivative of 3 that was N(6)-substituted. However, C8-substitution greatly reduced binding affinity at the human A(2A)AR. All synthesized compounds 4a-d maintained their affinity at the human A(3)AR, but 4a was found to be a competitive A(3)AR antagonist/A(2A)AR agonist in cyclic AMP assays. This study indicates that the truncated C2-substituted-4'-thioadenosine derivatives 4a and 4b can serve as a novel template for the development of new A(2A)AR ligands.
Collapse
Affiliation(s)
- Xiyan Hou
- Laboratory of Medicinal Chemistry, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Hea Ok Kim
- Laboratory of Medicinal Chemistry, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Varughese Alexander
- Laboratory of Medicinal Chemistry, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Kyunglim Kim
- Laboratory of Medicinal Chemistry, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Sun Choi
- Laboratory of Medicinal Chemistry, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Seul-gi Park
- Laboratory of Medicinal Chemistry, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Jin Hee Lee
- Laboratory of Medicinal Chemistry, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Lena S. Yoo
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Lak Shin Jeong
- Laboratory of Medicinal Chemistry, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
- Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
32
|
Keene AM, Balasubramanian R, Lloyd J, Shainberg A, Jacobson KA. Multivalent dendrimeric and monomeric adenosine agonists attenuate cell death in HL-1 mouse cardiomyocytes expressing the A(3) receptor. Biochem Pharmacol 2010; 80:188-96. [PMID: 20346920 PMCID: PMC2880883 DOI: 10.1016/j.bcp.2010.03.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/15/2010] [Accepted: 03/16/2010] [Indexed: 11/15/2022]
Abstract
Multivalent dendrimeric conjugates of GPCR ligands may have increased potency or selectivity in comparison to monomeric ligands, a phenomenon that was tested in a model of cytoprotection in mouse HL-1 cardiomyocytes. Quantitative RT-PCR indicated high expression levels of endogenous A(1) and A(2A) adenosine receptors (ARs), but not of A(2B) and A(3)ARs. Activation of the heterologously expressed human A(3)AR in HL-1 cells by AR agonists significantly attenuated cell damage following 4h exposure to H(2)O(2) (750 microM) but not in untransfected cells. The A(3) agonist IB-MECA (EC(50) 3.8 microM) and the non-selective agonist NECA (EC(50) 3.9 microM) protected A(3) AR-transfected cells against H(2)O(2) in a concentration-dependent manner, as determined by lactate dehydrogenase release. A generation 5.5 PAMAM (polyamidoamine) dendrimeric conjugate of a N(6)-chain-functionalized adenosine agonist was synthesized and its mass indicated an average of 60 amide-linked nucleoside moieties out of 256 theoretical attachment sites. It non-selectively activated the A(3)AR to inhibit forskolin-stimulated cAMP formation (IC(50) 66nM) and, similarly, protected A(3)-transfected HL-1 cells from apoptosis-inducing H(2)O(2) with greater potency (IC(50) 35nM) than monomeric nucleosides. Thus, a PAMAM conjugate retained AR binding affinity and displayed greatly enhanced cardioprotective potency.
Collapse
Affiliation(s)
- Athena M. Keene
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| | - Ramachandran Balasubramanian
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| | - John Lloyd
- Mass Spectrometry Facility, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| | - Asher Shainberg
- Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| |
Collapse
|
33
|
Das A, Sanjayan GJ, Kecskés M, Yoo L, Gao ZG, Jacobson KA. Nucleoside conjugates of quantum dots for characterization of G protein-coupled receptors: strategies for immobilizing A2A adenosine receptor agonists. J Nanobiotechnology 2010; 8:11. [PMID: 20478037 PMCID: PMC2883535 DOI: 10.1186/1477-3155-8-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 05/17/2010] [Indexed: 01/19/2023] Open
Abstract
Background Quantum dots (QDs) are crystalline nanoparticles that are compatible with biological systems to provide a chemically and photochemically stable fluorescent label. New ligand probes with fluorescent reporter groups are needed for detection and characterization of G protein-coupled receptors (GPCRs). Results Synthetic strategies for coupling the A2A adenosine receptor (AR) agonist CGS21680 (2-[4-(2-carboxyethyl)phenylethylamino]-5'-N-ethylcarboxamidoadenosine) to functionalized QDs were explored. Conjugates tethered through amide-linked chains and poly(ethyleneglycol) (PEG) displayed low solubility and lacked receptor affinity. The anchor to the dendron was either through two thiol groups of (R)-thioctic acid or through amide formation to a commercial carboxy-derivatized QD. The most effective approach was to use polyamidoamine (PAMAM) D5 dendrons as multivalent spacer groups, grafted on the QD surface through a thioctic acid moiety. In radioligand binding assays, dendron nucleoside conjugate 11 displayed a moderate affinity at the human A2AAR (Kiapp 1.02 ± 0.15 μM). The QD conjugate of increased water solubility 13, resulting from the anchoring of this dendron derivative, interacted with the receptor with Kiapp of 118 ± 54 nM. The fluorescence emission of 13 occurred at 565 nm, and the presence of the pendant nucleoside did not appreciably quench the fluorescence. Conclusions This is a feasibility study to demonstrate a means of conjugating to a QD a small molecular pharmacophore of a GPCR that is relatively hydrophobic. Further enhancement of affinity by altering the pharmacophore or the linking structures will be needed to make useful affinity probes.
Collapse
Affiliation(s)
- Arijit Das
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Katritch V, Jaakola VP, Lane JR, Lin J, Ijzerman AP, Yeager M, Kufareva I, Stevens RC, Abagyan R. Structure-based discovery of novel chemotypes for adenosine A(2A) receptor antagonists. J Med Chem 2010; 53:1799-809. [PMID: 20095623 DOI: 10.1021/jm901647p] [Citation(s) in RCA: 202] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The recent progress in crystallography of G-protein coupled receptors opens an unprecedented venue for structure-based GPCR drug discovery. To test efficiency of the structure-based approach, we performed molecular docking and virtual ligand screening (VLS) of more than 4 million commercially available "drug-like" and ''lead-like'' compounds against the A(2A)AR 2.6 A resolution crystal structure. Out of 56 high ranking compounds tested in A(2A)AR binding assays, 23 showed affinities under 10 microM, 11 of those had sub-microM affinities and two compounds had affinities under 60 nM. The identified hits represent at least 9 different chemical scaffolds and are characterized by very high ligand efficiency (0.3-0.5 kcal/mol per heavy atom). Significant A(2A)AR antagonist activities were confirmed for 10 out of 13 ligands tested in functional assays. High success rate, novelty, and diversity of the chemical scaffolds and strong ligand efficiency of the A(2A)AR antagonists identified in this study suggest practical applicability of receptor-based VLS in GPCR drug discovery.
Collapse
Affiliation(s)
- Vsevolod Katritch
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kim Y, Hechler B, Gao ZG, Gachet C, Jacobson KA. PEGylated dendritic unimolecular micelles as versatile carriers for ligands of G protein-coupled receptors. Bioconjug Chem 2009; 20:1888-98. [PMID: 19785401 DOI: 10.1021/bc9001689] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Despite its widespread application in nanomedicine, poly(ethylene glycol) (PEG) is seldom used for covalent modification of ligands for G protein-coupled receptors (GPCRs) due to potential steric complications. In order to study the influence of PEG chains on the biological activity of GPCR ligands bound to a common macromolecular carrier, we prepared a series of G3 polyamidoamine (PAMAM) dendrimers derivatized with Alexa Fluor 488, varying numbers of PEG(550)/PEG(750)/PEG(2000), and nucleoside moieties derived from the A(2A) adenosine receptor (AR) agonist CGS21680 (2-[4-(2-carboxylethyl)phenylethylamino]-5'-N-ethylcarboxamidoadenosine). These dendrimer conjugates were purified by size exclusion chromatography and characterized by (1)H NMR and MALDI MS. In radioligand binding assays, some PAMAM-PEG conjugates showed enhanced subtype-selectivity at the human A(2A) AR compared to monomeric ligands of comparable affinity. The functional potency was measured in the A(2A) AR-mediated activation of adenylate cyclase and inhibition of ADP-induced platelet aggregation. Interestingly, the dendrimer conjugate 10c bearing 11 PEG(750) chains (out of theoretical 32 amino end groups) and 14 nucleoside moieties was 5-fold more potent in A(2A) AR-mediated stimulation of cyclic AMP formation than 10d with 4 PEG(2000) chains and 21 nucleosides, although the binding affinities of these 2 compounds were similar. Thus, a relatively small (≤10 nm) multivalent ligand 10c modified for water solubility maintained high potency and displayed increased A(2A) AR binding selectivity over the monomeric nucleosides. The current study demonstrates the feasibility of using short PEG chains in the design of carriers that target ligand-receptor interactions.
Collapse
Affiliation(s)
- Yoonkyung Kim
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
36
|
Borrmann T, Abdelrahman A, Volpini R, Lambertucci C, Alksnis E, Gorzalka S, Knospe M, Schiedel AC, Cristalli G, Müller CE. Structure−Activity Relationships of Adenine and Deazaadenine Derivatives as Ligands for Adenine Receptors, a New Purinergic Receptor Family. J Med Chem 2009; 52:5974-89. [DOI: 10.1021/jm9006356] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas Borrmann
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Aliaa Abdelrahman
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Rosaria Volpini
- Dipartimento di Scienze Chimiche, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Catia Lambertucci
- Dipartimento di Scienze Chimiche, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Edgars Alksnis
- Latvian Institute of Organic Synthesis, Aizkraukles iela 21, Riga LV-1006, Latvia
| | - Simone Gorzalka
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Melanie Knospe
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Anke C. Schiedel
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Gloria Cristalli
- Dipartimento di Scienze Chimiche, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Christa E. Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
37
|
Volpini R, Dal Ben D, Lambertucci C, Marucci G, Mishra RC, Ramadori AT, Klotz KN, Trincavelli ML, Martini C, Cristalli G. Adenosine A2A receptor antagonists: new 8-substituted 9-ethyladenines as tools for in vivo rat models of Parkinson's disease. ChemMedChem 2009; 4:1010-9. [PMID: 19343763 DOI: 10.1002/cmdc.200800434] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A new series of 8-substituted 9-ethyladenine derivatives has been synthesized and tested at rat and human adenosine receptors. Binding data demonstrates that some compounds could represent new tools suitable for in vivo studies in rat models of Parkinson's disease and for the design of new molecules with improved affinity and selectivity at human AA(2A)R.Clinical evidence has demonstrated that AA(2A)R antagonists could be an alternative approach to the treatment of Parkinson's disease. Recently, three 9-ethyladenine derivatives bearing a bromine atom, an ethoxy group, and a furyl ring, respectively, in the 8-position have been reported to ameliorate motor deficits in rat Parkinson's disease models, suggesting a potential therapeutic role for these compounds. Starting from these observations, a new series of 9-ethyladenine derivatives, bearing different substituents such as halogens, alkoxy groups, aromatic and heteroaromatic rings in the 8-position, were synthesized. Radioligand binding assays demonstrated that some of the new compounds bind rat AA(2A)R with higher affinity than the previously reported congeners and that there is a good correlation between binding to rat and human receptors. Hence, the new molecules could represent new tools suitable for the in vivo studies in rat models of Parkinson's disease. Finally, a molecular docking analysis of the compounds was performed using a homology model of rat AA(2A)R, built using the human crystal structure as the template, and results are in agreement with the binding data.
Collapse
Affiliation(s)
- Rosaria Volpini
- Dipartimento di Scienze Chimiche, Università di Camerino via S. Agostino 1, 62032 Camerino, MC, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Fania C, Anastasia L, Vasso M, Papini N, Capitanio D, Venerando B, Gelfi C. Proteomic signature of reversine-treated murine fibroblasts by 2-D difference gel electrophoresis and MS: Possible associations with cell signalling networks. Electrophoresis 2009; 30:2193-206. [DOI: 10.1002/elps.200800800] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
8-Bromo-9-alkyl adenine derivatives as tools for developing new adenosine A2A and A2B receptors ligands. Bioorg Med Chem 2009; 17:2812-22. [DOI: 10.1016/j.bmc.2009.02.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Revised: 02/13/2009] [Accepted: 02/17/2009] [Indexed: 11/23/2022]
|
40
|
Jacobson KA, Klutz AM, Tosh DK, Ivanov AA, Preti D, Baraldi PG. Medicinal chemistry of the A3 adenosine receptor: agonists, antagonists, and receptor engineering. Handb Exp Pharmacol 2009:123-59. [PMID: 19639281 PMCID: PMC3413728 DOI: 10.1007/978-3-540-89615-9_5] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A(3) adenosine receptor (A(3)AR) ligands have been modified to optimize their interaction with the A(3)AR. Most of these modifications have been made to the N(6) and C2 positions of adenine as well as the ribose moiety, and using a combination of these substitutions leads to the most efficacious, selective, and potent ligands. A(3)AR agonists such as IB-MECA and Cl-IB-MECA are now advancing into Phase II clinical trials for treatments targeting diseases such as cancer, arthritis, and psoriasis. Also, a wide number of compounds exerting high potency and selectivity in antagonizing the human (h)A(3)AR have been discovered. These molecules are generally characterized by a notable structural diversity, taking into account that aromatic nitrogen-containing monocyclic (thiazoles and thiadiazoles), bicyclic (isoquinoline, quinozalines, (aza)adenines), tricyclic systems (pyrazoloquinolines, triazoloquinoxalines, pyrazolotriazolopyrimidines, triazolopurines, tricyclic xanthines) and nucleoside derivatives have been identified as potent and selective A(3)AR antagonists. Probably due to the "enigmatic" physiological role of A(3)AR, whose activation may produce opposite effects (for example, concerning tissue protection in inflammatory and cancer cells) and may produce effects that are species dependent, only a few molecules have reached preclinical investigation. Indeed, the most advanced A(3)AR antagonists remain in preclinical testing. Among the antagonists described above, compound OT-7999 is expected to enter clinical trials for the treatment of glaucoma, while several thiazole derivatives are in development as antiallergic, antiasthmatic and/or antiinflammatory drugs.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Klutz AM, Gao ZG, Lloyd J, Shainberg A, Jacobson KA. Enhanced A3 adenosine receptor selectivity of multivalent nucleoside-dendrimer conjugates. J Nanobiotechnology 2008; 6:12. [PMID: 18947419 PMCID: PMC2582240 DOI: 10.1186/1477-3155-6-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 10/23/2008] [Indexed: 11/18/2022] Open
Abstract
Background An approach to use multivalent dendrimer carriers for delivery of nucleoside signaling molecules to their cell surface G protein-coupled receptors (GPCRs) was recently introduced. Results A known adenosine receptor (AR) agonist was conjugated to polyamidoamine (PAMAM) dendrimer carriers for delivery of the intact covalent conjugate to on the cell surface. Depending on the linking moiety, multivalent conjugates of the N6-chain elongated functionalized congener ADAC (N6-[4-[[[4-[[[(2-aminoethyl)amino]carbonyl]methyl]anilino]carbonyl]methyl]phenyl]-adenosine) achieved unanticipated high selectivity in binding to the cytoprotective human A3 AR, a class A GPCR. The key to this selectivity of > 100-fold in both radioreceptor binding (Ki app = 2.4 nM) and functional assays (EC50 = 1.6 nM in inhibition of adenylate cyclase) was maintaining a free amino group (secondary) in an amide-linked chain. Attachment of neutral amide-linked chains or thiourea-containing chains preserved the moderate affinity and efficacy at the A1 AR subtype, but there was no selectivity for the A3 AR. Since residual amino groups on dendrimers are associated with cytotoxicity, the unreacted terminal positions of this A3 AR-selective G2.5 dendrimer were present as carboxylate groups, which had the further benefit of increasing water-solubility. The A3 AR selective G2.5 dendrimer was also visualized binding the membrane of cells expressing the A3 receptor but did not bind cells that did not express the receptor. Conclusion This is the first example showing that it is feasible to modulate and even enhance the pharmacological profile of a ligand of a GPCR based on conjugation to a nanocarrier and the precise structure of the linking group, which was designed to interact with distal extracellular regions of the 7 transmembrane-spanning receptor. This ligand tool can now be used in pharmacological models of tissue rescue from ischemia and to probe the existence of A3 AR dimers.
Collapse
Affiliation(s)
- Athena M Klutz
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
42
|
Melman A, Wang B, Joshi BV, Gao ZG, de Castro S, Heller CL, Kim SK, Jeong LS, Jacobson KA. Selective A(3) adenosine receptor antagonists derived from nucleosides containing a bicyclo[3.1.0]hexane ring system. Bioorg Med Chem 2008; 16:8546-56. [PMID: 18752961 PMCID: PMC2593936 DOI: 10.1016/j.bmc.2008.08.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 08/01/2008] [Accepted: 08/04/2008] [Indexed: 10/21/2022]
Abstract
We have prepared 50-modified derivatives of adenosine and a corresponding (N)-methanocarba nucleoside series containing a bicyclo[3.1.0]hexane ring system in place of the ribose moiety. The compounds were examined in binding assays at three subtypes of adenosine receptors (ARs) and in functional assays at the A3 AR. The H-bonding ability of a group of 9-riboside derivatives containing a 50-uronamide moiety was reduced by modification of the NH; however these derivatives did not display the desired activity as selective A3 AR antagonists, as occurs with 50-N,N-dimethyluronamides. However, truncated (N)-methanocarba analogues lacking a 40-hydroxymethyl group were highly potent and selective antagonists of the human A3 AR. The compounds were synthesized from D-ribose using a reductive free radical decarboxylation of a 50-carboxy intermediate. A less efficient synthetic approach began with L-ribose, which was similar to the published synthesis of (N)-methanocarba A3AR agonists. Compounds 33b-39b (N6-3-halobenzyl and related arylalkyl derivatives) were potent A3AR antagonists with binding Ki values of 0.7-1.4 nM. In a functional assay of [35S]GTPcS binding, 33b (3-iodobenzyl) completely inhibited stimulation by NECA with a KB of 8.9 nM. Thus, a highly potent and selective series of A3AR antagonists has been described.
Collapse
Affiliation(s)
- Artem Melman
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ben Wang
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Bhalchandra V. Joshi
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sonia de Castro
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Cara L. Heller
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Soo-Kyung Kim
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
- Beckman Institute, Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125
| | - Lak Shin Jeong
- Laboratory of Medicinal Chemistry, College of Pharmacy, Ewha Womans University, Seoul 120−750, Korea
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
43
|
Kim Y, Klutz AM, Hechler B, Gao ZG, Gachet C, Jacobson KA. Application of the functionalized congener approach to dendrimer-based signaling agents acting through A(2A) adenosine receptors. Purinergic Signal 2008; 5:39-50. [PMID: 18600474 PMCID: PMC2721767 DOI: 10.1007/s11302-008-9113-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 04/30/2008] [Indexed: 11/01/2022] Open
Abstract
As a continued effort to develop multivalent ligands to enhance the pharmacological effects of monomeric drugs, DITC-APEC, a chemically reactive nucleoside A(2A) adenosine receptor (AR) agonist, was employed to derivatize the surface of third-generation (G3) polyamidoamine (PAMAM) dendrimers. The resulting conjugates carried multiple copies of the agonist attached through a thiourea linkage and differed in the number of attachments and in the presence of a fluorophore or additional surface modification. Computer modeling studies suggested that these DITC-APEC-loaded dendrimers extended the overall diameter of the previously reported PAMAM-CGS21680 dendrimer derivatives (Kim et al., Bioconjugate Chem 2008 19:406-411) by ca. 20 A, potentially increasing the conformational flexibility of the appended ligands to achieve optimal geometry for efficient binding at A(2A) ARs. Increased affinity and selectivity in binding in comparison to the CGS21680 conjugate were envisioned, due to the presence of an extended linker, i.e., a dithioureylenephenyl functionality. In vitro radioligand competition experiments showed effective binding of these PAMAM-DITC-APEC dendrimer conjugates at the human A(2A) and A(3) ARs with submicromolar K (i) values and selectivity in comparison to the human A(1) AR. Furthermore, these nucleoside-loaded dendrimers exhibited an A(2A) AR-mediated inhibitory effect on ADP-induced aggregation of human platelets. The present study demonstrates the potential of applying the functionalized congener concept to engineer dendrimer-based multivalent ligands for G protein-coupled receptors.
Collapse
Affiliation(s)
- Yoonkyung Kim
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | | | | | | | |
Collapse
|
44
|
Brand F, Klutz AM, Jacobson KA, Fredholm BB, Schulte G. Adenosine A(2A) receptor dynamics studied with the novel fluorescent agonist Alexa488-APEC. Eur J Pharmacol 2008; 590:36-42. [PMID: 18603240 DOI: 10.1016/j.ejphar.2008.05.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 05/07/2008] [Accepted: 05/22/2008] [Indexed: 11/18/2022]
Abstract
G protein-coupled receptors, such as the adenosine A(2A) receptor, are dynamic proteins, which undergo agonist-dependent redistribution from the cell surface to intracellular membranous compartments, such as endosomes. In order to study the kinetics of adenosine A(2A) receptor redistribution in living cells, we synthesized a novel fluorescent agonist, Alexa488-APEC. Alexa488-APEC binds to adenosine A(2A) (K(i)=149+/-27 nM) as well as A(3) receptors (K(i)=240+/-160 nM) but not to adenosine A(1) receptors. Further, we characterized the dose-dependent increase in Alexa488-APEC-induced cAMP production as well as cAMP response element binding (CREB) protein phosphorylation, verifying the ligand's functionality at adenosine A(2A) but not A(2B) receptors. In live-cell imaging studies, Alexa488-APEC-induced adenosine A(2A) receptor internalization, which was blocked by the competitive reversible antagonist ZM 241385 and hyperosmolaric sucrose. Further, internalized adenosine A(2A) receptors co-localized with clathrin and Rab5, indicating that agonist stimulation promotes adenosine A(2A) receptor uptake through a clathrin-dependent mechanism to Rab5-positive endosomes. The basic characterization of Alexa488-APEC described here showed that it provides a useful tool for tracing adenosine A(2A) receptors in vitro.
Collapse
Affiliation(s)
- Frank Brand
- Karolinska Institutet, Department of Physiology & Pharmacology, Sect. Receptor Biology & Signaling, S-171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
45
|
Ivanov AA, Wang B, Klutz AM, Chen VL, Gao ZG, Jacobson KA. Probing distal regions of the A2B adenosine receptor by quantitative structure-activity relationship modeling of known and novel agonists. J Med Chem 2008; 51:2088-99. [PMID: 18321038 PMCID: PMC6540094 DOI: 10.1021/jm701442d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The binding modes at the A 2B adenosine receptor (AR) of 72 derivatives of adenosine and its 5'- N-methyluronamide with diverse substitutions at the 2 and N (6) positions were studied using a molecular modeling approach. The compounds in their receptor-docked conformations were used to build CoMFA and CoMSIA quantitative structure-activity relationship models. Various parameters, including different types of atomic charges, were examined. The best statistical parameters were obtained with a joint CoMFA and CoMSIA model: R (2) = 0.960, Q (2) = 0.676, SEE = 0.175, F = 158, and R (2) test = 0.782 for an independent test set containing 18 compounds. On the basis of the modeling results, four novel adenosine analogues, having elongated or bulky substitutions at N (6) position and/or 2 position, were synthesized and evaluated biologically. All of the proposed compounds were potent, full agonists at the A 2B AR in adenylate cyclase studies. Thus, in support of the modeling, bulky substitutions at both positions did not prevent A 2B AR activation, which predicts separate regions for docking of these moieties.
Collapse
Affiliation(s)
- Andrei A. Ivanov
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and DigestiVe and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Ben Wang
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and DigestiVe and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Athena M. Klutz
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and DigestiVe and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Vincent L. Chen
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and DigestiVe and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and DigestiVe and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and DigestiVe and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
46
|
Hsieh TC, Traganos F, Darzynkiewicz Z, Wu JM. The 2,6-disubstituted purine reversine induces growth arrest and polyploidy in human cancer cells. Int J Oncol 2007; 31:1293-1300. [PMID: 17982654 PMCID: PMC2582159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Reversine (RV) is the synthetic purine identified from a protein kinase-based screen of purine mimetics and it has been shown to induce muscle myoblast differentiation into progenitor cells that can be further converted into other cell lineages. Since protein kinases play a pivotal role in cell cycle control, we hypothesize that RV might affect the proliferation of cancer cells. Herein we report that RV inhibited growth of cultured human tumor cells, respectively, PC-3, HeLa, CWR22Rv1, and DU-145 cells, and induced accumulation of polyploidal cells with > or =4N DNA content. However, RV was without effect on growth of normal prostate epithelial cells. RV-treated PC-3 cells showed enlarged nuclei and an estimated 100-fold increase in cell size. Moreover, PC-3 cells treated with RV for 2-4 days were accompanied by a marked increase in the expression of p21(WAF1), a modest elevation in the levels of cyclin D3 and CDK6 and concomitantly, also a substantial reduction in cyclin B and CDK1. These results suggest that RV may induce polyploidy and increase in cell size by up-regulating p21(WAF1) and cyclin D3/CDK6, while simultaneously suppressing the expression of cyclin B and CDK1.
Collapse
Affiliation(s)
- Tze-Chen Hsieh
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|
47
|
Cosyn L, Palaniappan KK, Kim SK, Duong HT, Gao ZG, Jacobson KA, Van Calenbergh S. 2-triazole-substituted adenosines: a new class of selective A3 adenosine receptor agonists, partial agonists, and antagonists. J Med Chem 2006; 49:7373-83. [PMID: 17149867 PMCID: PMC4968940 DOI: 10.1021/jm0608208] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
"Click chemistry" was explored to synthesize two series of 2-(1,2,3-triazolyl)adenosine derivatives (1-14). Binding affinity at the human A(1), A(2A), and A(3)ARs (adenosine receptors) and relative efficacy at the A(3)AR were determined. Some triazol-1-yl analogues showed A(3)AR affinity in the low nanomolar range, a high ratio of A(3)/A(2A) selectivity, and a moderate-to-high A(3)/A(1) ratio. The 1,2,3-triazol-4-yl regiomers typically showed decreased A(3)AR affinity. Sterically demanding groups at the adenine C2 position tended to reduce relative A(3)AR efficacy. Thus, several 5'-OH derivatives appeared to be selective A(3)AR antagonists, i.e., 10, with 260-fold binding selectivity in comparison to the A(1)AR and displaying a characteristic docking mode in an A(3)AR model. The corresponding 5'-ethyluronamide analogues generally showed increased A(3)AR affinity and behaved as full agonists, i.e., 17, with 910-fold A(3)/A(1) selectivity. Thus, N(6)-substituted 2-(1,2,3-triazolyl)adenosine analogues constitute a novel class of highly potent and selective nucleoside-based A(3)AR antagonists, partial agonists, and agonists.
Collapse
Affiliation(s)
| | | | | | | | | | - Kenneth A. Jacobson
- To whom correspondence should be addressed. For K.A.J.: phone, 301-496-9024; fax, 301-480-8422; . For S.V.C.: phone, +32(0)9 264 81 24; fax, +32(0)9 264 81 46;
| | - Serge Van Calenbergh
- To whom correspondence should be addressed. For K.A.J.: phone, 301-496-9024; fax, 301-480-8422; . For S.V.C.: phone, +32(0)9 264 81 24; fax, +32(0)9 264 81 46;
| |
Collapse
|
48
|
Anastasia L, Sampaolesi M, Papini N, Oleari D, Lamorte G, Tringali C, Monti E, Galli D, Tettamanti G, Cossu G, Venerando B. Reversine-treated fibroblasts acquire myogenic competence in vitro and in regenerating skeletal muscle. Cell Death Differ 2006; 13:2042-51. [PMID: 16729034 DOI: 10.1038/sj.cdd.4401958] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Stem cells hold a great potential for the regeneration of damaged tissues in cardiovascular or musculoskeletal diseases. Unfortunately, problems such as limited availability, control of cell fate, and allograft rejection need to be addressed before therapeutic applications may become feasible. Generation of multipotent progenitors from adult differentiated cells could be a very attractive alternative to the limited in vitro self-renewal of several types of stem cells. In this direction, a recently synthesized unnatural purine, named reversine, has been proposed to induce reversion of adult cells to a multipotent state, which could be then converted into other cell types under appropriate stimuli. Our study suggests that reversine treatment transforms primary murine and human dermal fibroblasts into myogenic-competent cells both in vitro and in vivo. Moreover, this is the first study to demonstrate that plasticity changes arise in primary mouse and human cells following reversine exposure.
Collapse
Affiliation(s)
- Luigi Anastasia
- Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, L.I.T.A. via F.lli Cervi 93, 20090 Segrate, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Adenosine receptors are major targets of caffeine, the most commonly consumed drug in the world. There is growing evidence that they could also be promising therapeutic targets in a wide range of conditions, including cerebral and cardiac ischaemic diseases, sleep disorders, immune and inflammatory disorders and cancer. After more than three decades of medicinal chemistry research, a considerable number of selective agonists and antagonists of adenosine receptors have been discovered, and some have been clinically evaluated, although none has yet received regulatory approval. However, recent advances in the understanding of the roles of the various adenosine receptor subtypes, and in the development of selective and potent ligands, as discussed in this review, have brought the goal of therapeutic application of adenosine receptor modulators considerably closer.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, USA.
| | | |
Collapse
|
50
|
Legraverend M, Grierson DS. The purines: potent and versatile small molecule inhibitors and modulators of key biological targets. Bioorg Med Chem 2006; 14:3987-4006. [PMID: 16503144 DOI: 10.1016/j.bmc.2005.12.060] [Citation(s) in RCA: 258] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 12/29/2005] [Accepted: 12/29/2005] [Indexed: 11/24/2022]
Abstract
The goal of this review is to highlight the wide range of biological activities displayed by purines, with particular emphasis on new purine-based agents which find potential application as chemical-biology tools and/or therapeutic agents. The expanding interest in the biological properties of polyfunctionalized purine derivatives issues, in large part, from the development of rapid high-throughput screening essays for new protein targets, and the corresponding development of efficient synthetic methodology adapted to the construction of highly diverse purine libraries. Purine-based compounds have found new applications as inducers of interferon and lineage-committed cell dedifferentiation, agonists and antagonists of adenosine receptors, ligands of corticotropin-releasing hormone receptors, and as inhibitors of HSP90, Src kinase, p38alpha MAP kinase, sulfotransferases, phosphodiesterases, and Cdks. The scope of application of purines in biology is most certainly far from being exhausted. Testing purine derivatives against the multitude of biological targets for which small molecule probes have not yet been found should thus be a natural reflex.
Collapse
Affiliation(s)
- Michel Legraverend
- UMR 176 CNRS-Institut Curie, Laboratoire de Pharmacochimie, Bât. 110, Centre Universitaire, 91405 Orsay, France.
| | | |
Collapse
|