1
|
Lee YT, Tan YJ, Mok PY, Kaur G, Sreenivasan S, Falasca M, Oon CE. Sex-divergent expression of cytochrome P450 and SIRTUIN 1-7 proteins in toxicity evaluation of a benzimidazole-derived epigenetic modulator in mice. Toxicol Appl Pharmacol 2022; 445:116039. [PMID: 35489524 DOI: 10.1016/j.taap.2022.116039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 10/18/2022]
Abstract
Efforts in precision medicine to combat aberrant epigenome have led to the development of epigenetic targeting drugs. We have previously reported the capability of the BZD9L1 epigenetic modulator to impede colorectal tumour growth in vitro and in vivo through sirtuin (SIRT) inhibition. Although most benzimidazole derivatives are commonly less toxic, their effects on SIRTs and cytochrome P450 (CYP) regulations have not been explored alongside toxicity assessments. SIRTs are histone deacetylases that are crucial in maintaining metabolic homeostasis, whereas CYP is essential in drug metabolism. This study aims to determine the toxicology profile of BZD9L1 through oral acute and repeated dose toxicity evaluations, along with molecular analyses of SIRT, CYP and relevant toxicity markers through western blot and quantitative polymerase chain reaction (qPCR). BZD9L1 demonstrated no sign of acute toxicity at the limit dose (2000 mg/kg). The 28-day toxicity study highlighted the tolerability of repeated dose administration without adverse effects. BZD9L1 showed a sex-divergent regulation of hepatic SIRT1-7, CYP2A5 and CYP2D proteins. Furthermore, BZD9L1 did not induce the expression of organ injury proteins or alter the gene expression of cellular function indicators in mouse liver and kidneys, hence demonstrating, at least in part, the safety of BZD9L1 in short-term evaluations. The present study cautions for personalised strategies when employing benzimidazole-derived epigenetic therapeutics.
Collapse
Affiliation(s)
- Yeuan Ting Lee
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Yi Jer Tan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Pei Yi Mok
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Gurjeet Kaur
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Sasidharan Sreenivasan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Marco Falasca
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Chern Ein Oon
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
2
|
Extracellular haem utilization by the opportunistic pathogen Pseudomonas aeruginosa and its role in virulence and pathogenesis. Adv Microb Physiol 2021; 79:89-132. [PMID: 34836613 DOI: 10.1016/bs.ampbs.2021.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Iron is an essential micronutrient for all bacteria but presents a significant challenge given its limited bioavailability. Furthermore, iron's toxicity combined with the need to maintain iron levels within a narrow physiological range requires integrated systems to sense, regulate and transport a variety of iron complexes. Most bacteria encode systems to chelate and transport ferric iron (Fe3+) via siderophore receptor mediated uptake or via cytoplasmic energy dependent transport systems. Pathogenic bacteria have further lowered the barrier to iron acquisition by employing systems to utilize haem as a source of iron. Haem, a lipophilic and toxic molecule, presents a significant challenge for transport into the cell. As such pathogenic bacteria have evolved sophisticated cell surface signaling (CSS) and transport systems to sense and obtain haem from the host. Once internalized haem is cleaved by both oxidative and non-oxidative mechanisms to release iron. Herein we summarize our current understanding of the mechanism of haem sensing, uptake and utilization in Pseudomonas aeruginosa, its role in pathogenesis and virulence, and the potential of these systems as antimicrobial targets.
Collapse
|
3
|
Rahman M, Talukder A, Akter R. Computational Designing and Prediction of ADMET Properties of Four Novel Imidazole-Based Drug Candidates Inhibiting Heme Oxygenase-1 Causing Cancers. Mol Inform 2021; 40:e2060033. [PMID: 34241977 DOI: 10.1002/minf.202060033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 06/29/2021] [Indexed: 11/07/2022]
Abstract
The overexpression of heme oxygenase-1 (HO-1) contributes to the development of several types of cancers. The inhibition of HO-1 through imidazole-based drugs, which is non-competitive with heme, is a focus of anticancer drug research. We designed the four following novel HO-1 inhibiting compounds: 2-(1-cyclopentyl-4-(1H-imidazol-4-yl)butan-2-yl)pyrazine (M11), 2-[(2-chloro-3-methylcyclohexyl)methyl]-1H-imidazole (M26), 2-(2-phenethyl-1H-imidazol-4-yl)ethanesulfonamide (M28), and 5-chloro-2-[2-(2,5-dihydro-1H-imidazol-2-yl)propan-2-yl]-1H-imidazole (M31). All compounds showed a strong binding affinity with HO-1 in molecular docking studies. The in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) data showed that the compounds would be available orally in an acceptable manner. The bioactivity scores revealed that they were moderately active substances. They were found as non-mutagen, non-tumorigenic, non-irritant, and non-detrimental to the reproductive system. Finally, the drug-likeness values of the compounds were obtained as -0.71, -1.64, -2.04, and 0.4 respectively, with the final drug-score of 0.60, 0.54, 0.51, and 0.77 respectively.
Collapse
Affiliation(s)
- Mijanur Rahman
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Asma Talukder
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Rekha Akter
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram, 4331, Bangladesh
| |
Collapse
|
4
|
Heme Oxygenase-1 Signaling and Redox Homeostasis in Physiopathological Conditions. Biomolecules 2021; 11:biom11040589. [PMID: 33923744 PMCID: PMC8072688 DOI: 10.3390/biom11040589] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Heme-oxygenase is the enzyme responsible for degradation of endogenous iron protoporphyirin heme; it catalyzes the reaction’s rate-limiting step, resulting in the release of carbon monoxide (CO), ferrous ions, and biliverdin (BV), which is successively reduced in bilirubin (BR) by biliverdin reductase. Several studies have drawn attention to the controversial role of HO-1, the enzyme inducible isoform, pointing out its implications in cancer and other diseases development, but also underlining the importance of its antioxidant activity. The contribution of HO-1 in redox homeostasis leads to a relevant decrease in cells oxidative damage, which can be reconducted to its cytoprotective effects explicated alongside other endogenous mechanisms involving genes like TIGAR (TP53-induced glycolysis and apoptosis regulator), but also to the therapeutic functions of heme main transformation products, especially carbon monoxide (CO), which has been shown to be effective on GSH levels implementation sustaining body’s antioxidant response to oxidative stress. The aim of this review was to collect most of the knowledge on HO-1 from literature, analyzing different perspectives to try and put forward a hypothesis on revealing yet unknown HO-1-involved pathways that could be useful to promote development of new therapeutical strategies, and lay the foundation for further investigation to fully understand this important antioxidant system.
Collapse
|
5
|
Fernández-Fierro A, Funes SC, Rios M, Covián C, González J, Kalergis AM. Immune Modulation by Inhibitors of the HO System. Int J Mol Sci 2020; 22:ijms22010294. [PMID: 33396647 PMCID: PMC7794909 DOI: 10.3390/ijms22010294] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/23/2022] Open
Abstract
The heme oxygenase (HO) system involves three isoforms of this enzyme, HO-1, HO-2, and HO-3. The three of them display the same catalytic activity, oxidating the heme group to produce biliverdin, ferrous iron, and carbon monoxide (CO). HO-1 is the isoform most widely studied in proinflammatory diseases because treatments that overexpress this enzyme promote the generation of anti-inflammatory products. However, neonatal jaundice (hyperbilirubinemia) derived from HO overexpression led to the development of inhibitors, such as those based on metaloproto- and meso-porphyrins inhibitors with competitive activity. Further, non-competitive inhibitors have also been identified, such as synthetic and natural imidazole-dioxolane-based, small synthetic molecules, inhibitors of the enzyme regulation pathway, and genetic engineering using iRNA or CRISPR cas9. Despite most of the applications of the HO inhibitors being related to metabolic diseases, the beneficial effects of these molecules in immune-mediated diseases have also emerged. Different medical implications, including cancer, Alzheimer´s disease, and infections, are discussed in this article and as to how the selective inhibition of HO isoforms may contribute to the treatment of these ailments.
Collapse
Affiliation(s)
- Ayleen Fernández-Fierro
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile; (A.F.-F.); (M.R.); (C.C.); (J.G.)
| | - Samanta C. Funes
- Instituto Multidisciplinario de Investigaciones Biológicas-San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas—Universidad Nacional de San Luis, 5700 San Luis, Argentina;
| | - Mariana Rios
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile; (A.F.-F.); (M.R.); (C.C.); (J.G.)
| | - Camila Covián
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile; (A.F.-F.); (M.R.); (C.C.); (J.G.)
| | - Jorge González
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile; (A.F.-F.); (M.R.); (C.C.); (J.G.)
| | - Alexis M. Kalergis
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile; (A.F.-F.); (M.R.); (C.C.); (J.G.)
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
- Correspondence: ; Tel.: +56-22-686-2842
| |
Collapse
|
6
|
Hansen TWR, Wong RJ, Stevenson DK. Molecular Physiology and Pathophysiology of Bilirubin Handling by the Blood, Liver, Intestine, and Brain in the Newborn. Physiol Rev 2020; 100:1291-1346. [PMID: 32401177 DOI: 10.1152/physrev.00004.2019] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Bilirubin is the end product of heme catabolism formed during a process that involves oxidation-reduction reactions and conserves iron body stores. Unconjugated hyperbilirubinemia is common in newborn infants, but rare later in life. The basic physiology of bilirubin metabolism, such as production, transport, and excretion, has been well described. However, in the neonate, numerous variables related to nutrition, ethnicity, and genetic variants at several metabolic steps may be superimposed on the normal physiological hyperbilirubinemia that occurs in the first week of life and results in bilirubin levels that may be toxic to the brain. Bilirubin exists in several isomeric forms that differ in their polarities and is considered a physiologically important antioxidant. Here we review the chemistry of the bilirubin molecule and its metabolism in the body with a particular focus on the processes that impact the newborn infant, and how differences relative to older children and adults contribute to the risk of developing both acute and long-term neurological sequelae in the newborn infant. The final section deals with the interplay between the brain and bilirubin and its entry, clearance, and accumulation. We conclude with a discussion of the current state of knowledge regarding the mechanism(s) of bilirubin neurotoxicity.
Collapse
Affiliation(s)
- Thor W R Hansen
- Division of Paediatric and Adolescent Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Ronald J Wong
- Division of Paediatric and Adolescent Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - David K Stevenson
- Division of Paediatric and Adolescent Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
7
|
Sugishima M, Wada K, Fukuyama K. Recent Advances in the Understanding of the Reaction Chemistries of the Heme Catabolizing Enzymes HO and BVR Based on High Resolution Protein Structures. Curr Med Chem 2020; 27:3499-3518. [PMID: 30556496 PMCID: PMC7509768 DOI: 10.2174/0929867326666181217142715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/21/2018] [Accepted: 12/11/2018] [Indexed: 01/15/2023]
Abstract
In mammals, catabolism of the heme group is indispensable for life. Heme is first cleaved by the enzyme Heme Oxygenase (HO) to the linear tetrapyrrole Biliverdin IXα (BV), and BV is then converted into bilirubin by Biliverdin Reductase (BVR). HO utilizes three Oxygen molecules (O2) and seven electrons supplied by NADPH-cytochrome P450 oxidoreductase (CPR) to open the heme ring and BVR reduces BV through the use of NAD(P)H. Structural studies of HOs, including substrate-bound, reaction intermediate-bound, and several specific inhibitor-bound forms, reveal details explaining substrate binding to HO and mechanisms underlying-specific HO reaction progression. Cryo-trapped structures and a time-resolved spectroscopic study examining photolysis of the bond between the distal ligand and heme iron demonstrate how CO, produced during the HO reaction, dissociates from the reaction site with a corresponding conformational change in HO. The complex structure containing HO and CPR provides details of how electrons are transferred to the heme-HO complex. Although the tertiary structure of BVR and its complex with NAD+ was determined more than 10 years ago, the catalytic residues and the reaction mechanism of BVR remain unknown. A recent crystallographic study examining cyanobacterial BVR in complex with NADP+ and substrate BV provided some clarification regarding these issues. Two BV molecules are bound to BVR in a stacked manner, and one BV may assist in the reductive catalysis of the other BV. In this review, recent advances illustrated by biochemical, spectroscopic, and crystallographic studies detailing the chemistry underlying the molecular mechanism of HO and BVR reactions are presented.
Collapse
Affiliation(s)
- Masakazu Sugishima
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Japan
| | - Kei Wada
- Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | - Keiichi Fukuyama
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan.,Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Japan
| |
Collapse
|
8
|
Drummond GS, Baum J, Greenberg M, Lewis D, Abraham NG. HO-1 overexpression and underexpression: Clinical implications. Arch Biochem Biophys 2019; 673:108073. [PMID: 31425676 DOI: 10.1016/j.abb.2019.108073] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/23/2019] [Accepted: 08/10/2019] [Indexed: 12/11/2022]
Abstract
In this review we examine the effects of both over- and under-production of heme oxygenase-1 (HO-1) and HO activity on a broad spectrum of biological systems and on vascular disease. In a few instances e.g., neonatal jaundice, overproduction of HO-1 and increased HO activity results in elevated levels of bilirubin requiring clinical intervention with inhibitors of HO activity. In contrast HO-1 levels and HO activity are low in obesity and the HO system responds to mitigate the deleterious effects of oxidative stress through increased levels of bilirubin (anti-inflammatory) and CO (anti-apoptotic) and decreased levels of heme (pro-oxidant). Site specific HO-1 overexpression diminishes adipocyte terminal differentiation and lipid accumulation of obesity mediated release of inflammatory molecules. A series of diverse strategies have been implemented that focus on increasing HO-1 and HO activity that are central to reversing the clinical complications associated with diseases including, obesity, metabolic syndrome and vascular disease.
Collapse
Affiliation(s)
- George S Drummond
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Jeffrey Baum
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Menachem Greenberg
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - David Lewis
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Nader G Abraham
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA; Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25701, USA.
| |
Collapse
|
9
|
Development and characterization of a new inhibitor of heme oxygenase activity for cancer treatment. Arch Biochem Biophys 2019; 671:130-142. [PMID: 31276659 DOI: 10.1016/j.abb.2019.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/24/2019] [Accepted: 07/01/2019] [Indexed: 11/20/2022]
Abstract
Heme oxygenase-1 (HO-1, HMOX1) degrades pro-oxidant heme into carbon monoxide (CO), ferrous ions (Fe2+) and biliverdin. The enzyme exerts multiple cytoprotective functions associated with the promotion of angiogenesis and counteraction of the detrimental effects of cellular stress which are crucial for the survival of both normal and tumor cells. Accordingly, in many tumor types, high expression of HO-1 correlates with poor prognosis and resistance to treatment, i.e. chemotherapy, suggesting inhibition of HO-1 as a possible antitumor approach. At the same time, the lack of selective and well-profiled inhibitors of HO-1 determines the unmet need for new modulators of this enzyme, with the potential to be used in either adjuvant therapy or as the stand-alone targeted therapeutics. In the current study, we provided novel inhibitors of HO-1 and validated the effect of pharmacological inhibition of HO activity by the imidazole-based inhibitor (SLV-11199) in human pancreatic (PANC-1) and prostate (DU-145) cancer cell lines. We demonstrated potent inhibition of HO activity in vitro and showed associated anticancer effectiveness of SLV-11199. Treatment with the tested compound led to decreased cancer cell viability and clonogenic potential. It has also sensitized the cancer cells to chemotherapy. In PANC-1 cells, diminished HO activity resulted in down-regulation of pro-angiogenic factors like IL-8. Mechanistic investigations revealed that the treatment with SLV-11199 decreased cell migration and inhibited MMP-1 and MMP-9 expression. Moreover, it affected mesenchymal phenotype by regulating key modulators of the epithelial to mesenchymal transition (EMT) signalling axis. Finally, F-actin cytoskeleton and focal contacts were destabilized by the reported compound. Overall, the current study suggests a possible relevance of the tested novel inhibitor of HO activity as a potential anticancer compound. To support such utility, further investigation is still needed, especially in in vivo conditions.
Collapse
|
10
|
Drummond HA, Mitchell ZL, Abraham NG, Stec DE. Targeting Heme Oxygenase-1 in Cardiovascular and Kidney Disease. Antioxidants (Basel) 2019; 8:antiox8060181. [PMID: 31216709 PMCID: PMC6617021 DOI: 10.3390/antiox8060181] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/13/2019] [Accepted: 06/15/2019] [Indexed: 12/13/2022] Open
Abstract
Heme oxygenase (HO) plays an important role in the cardiovascular system. It is involved in many physiological and pathophysiological processes in all organs of the cardiovascular system. From the regulation of blood pressure and blood flow to the adaptive response to end-organ injury, HO plays a critical role in the ability of the cardiovascular system to respond and adapt to changes in homeostasis. There have been great advances in our understanding of the role of HO in the regulation of blood pressure and target organ injury in the last decade. Results from these studies demonstrate that targeting of the HO system could provide novel therapeutic opportunities for the treatment of several cardiovascular and renal diseases. The goal of this review is to highlight the important role of HO in the regulation of cardiovascular and renal function and protection from disease and to highlight areas in which targeting of the HO system needs to be translated to help benefit patient populations.
Collapse
Affiliation(s)
- Heather A Drummond
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MI 39216, USA.
| | - Zachary L Mitchell
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MI 39216, USA.
| | - Nader G Abraham
- Departments of Medicine and Pharmacology, New York Medical College, Vahalla, NY 10595, USA.
- Joan C. Edwards School of Medicine, Marshall University, Huntington, VA 25701, USA.
| | - David E Stec
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MI 39216, USA.
| |
Collapse
|
11
|
A Dual Role of Heme Oxygenase-1 in Cancer Cells. Int J Mol Sci 2018; 20:ijms20010039. [PMID: 30583467 PMCID: PMC6337503 DOI: 10.3390/ijms20010039] [Citation(s) in RCA: 284] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023] Open
Abstract
Heme oxygenase (HO)-1 is known to metabolize heme into biliverdin/bilirubin, carbon monoxide, and ferrous iron, and it has been suggested to demonstrate cytoprotective effects against various stress-related conditions. HO-1 is commonly regarded as a survival molecule, exerting an important role in cancer progression and its inhibition is considered beneficial in a number of cancers. However, increasing studies have shown a dark side of HO-1, in which HO-1 acts as a critical mediator in ferroptosis induction and plays a causative factor for the progression of several diseases. Ferroptosis is a newly identified iron- and lipid peroxidation-dependent cell death. The critical role of HO-1 in heme metabolism makes it an important candidate to mediate protective or detrimental effects via ferroptosis induction. This review summarizes the current understanding on the regulatory mechanisms of HO-1 in ferroptosis. The amount of cellular iron and reactive oxygen species (ROS) is the determinative momentum for the role of HO-1, in which excessive cellular iron and ROS tend to enforce HO-1 from a protective role to a perpetrator. Despite the dark side that is related to cell death, there is a prospective application of HO-1 to mediate ferroptosis for cancer therapy as a chemotherapeutic strategy against tumors.
Collapse
|
12
|
Subashini G, Vidhya K, Arasakumar T, Angayarkanni J, Murugesh E, Saravanan A, Shanmughavel P, Mohan PS. Quinoline-Based Imidazole Derivative as Heme Oxygenase-1 Inhibitor: A Strategy for Cancer Treatment. ChemistrySelect 2018. [DOI: 10.1002/slct.201800173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gopalan Subashini
- Department of Chemistry; Bharathiar University; Coimbatore-641046, Tamilnadu India
| | - Kalieswaran Vidhya
- Department of Microbial Biotechnology; Bharathiar University; Coimbatore- 641046, Tamilnadu India
| | - Thangaraj Arasakumar
- Department of Chemistry; Bharathiar University; Coimbatore-641046, Tamilnadu India
| | - Jayaraman Angayarkanni
- Department of Microbial Biotechnology; Bharathiar University; Coimbatore- 641046, Tamilnadu India
| | - Easwaran Murugesh
- Department of Bioinformatics; Bharathiar University; Coimbatore- 641046, Tamilnadu India
| | - Arjunan Saravanan
- BU-DRDO CLS; Bharathiar University; Coimbatore- 641046, Tamilnadu India
| | | | | |
Collapse
|
13
|
Abstract
Heme oxygenase-1 (HO-1, encoded by HMOX1) through degradation of pro-oxidant heme into carbon monoxide (CO), ferrous ions (Fe2+) and biliverdin, exhibits cytoprotective, anti-apoptotic and anti-inflammatory properties. All of these potentially beneficial functions of HO-1 may play an important role in tumors’ development and progression. Moreover, HO-1 is very often upregulated in tumors in comparison to healthy tissues, and its expression is further induced upon chemo-, radio- and photodynamic therapy, what results in decreased effectiveness of the treatment. Consequently, HO-1 can be proposed as a therapeutic target for anticancer treatment in many types of tumors. Nonetheless, possibilities of specific inhibition of HO-1 are strongly limited. Metalloporphyrins are widely used in in vitro studies, however, they are unselective and may exert serious side effects including an increase in HMOX1 mRNA level. On the other hand, detailed information about pharmacokinetics and biodistribution of imidazole-dioxolane derivatives, other potential inhibitors, is lacking. The genetic inhibition of HO-1 by RNA interference (RNAi) or CRISPR/Cas9 approaches provides the possibility to specifically target HO-1; however, the potential therapeutic application of those methods are distant at best. In summary, HO-1 inhibition might be the valuable anticancer approach, however, the ideal strategy for HO-1 targeting requires further studies.
Collapse
|
14
|
Salerno L, Amata E, Romeo G, Marrazzo A, Prezzavento O, Floresta G, Sorrenti V, Barbagallo I, Rescifina A, Pittalà V. Potholing of the hydrophobic heme oxygenase-1 western region for the search of potent and selective imidazole-based inhibitors. Eur J Med Chem 2018; 148:54-62. [PMID: 29454190 DOI: 10.1016/j.ejmech.2018.02.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/29/2018] [Accepted: 02/03/2018] [Indexed: 10/18/2022]
Abstract
Here we report the design, synthesis, and molecular modeling of new potent and selective imidazole-based HO-1 inhibitors in which the imidazole nucleus and the hydrophobic groups are linked by a phenylethanolic spacer. Most of the tested compounds showed a good inhibitor activity with IC50 values in the low micromolar range, with two of them (1b and 1j) exhibiting also high selectivity toward HO-2. These results were obtained by the idea of potholing the entire volume of the principal hydrophobic western region with an appropriate ligand volume. Molecular modeling studies showed that these molecules bind to the HO-1 in the consolidated fashion where the imidazolyl moiety coordinates the heme iron while the aromatic groups are stabilized by hydrophobic interaction in the western region of the binding pocket. Finally, the synthesized compounds were analyzed for in silico ADME-Tox properties to establish oral drug-like behavior and showed satisfactory results.
Collapse
Affiliation(s)
- Loredana Salerno
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Emanuele Amata
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Giuseppe Romeo
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Agostino Marrazzo
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Orazio Prezzavento
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Giuseppe Floresta
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy; Department of Chemical Sciences, University of Catania, V.le A. Doria, 95125, Catania, Italy
| | - Valeria Sorrenti
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Ignazio Barbagallo
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy.
| | - Valeria Pittalà
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy.
| |
Collapse
|
15
|
Hum M, McLaughlin BE, Kong X, Vlahakis JZ, Vukomanovic D, Szarek WA, Nakatsu K. Differential inhibition of rat and mouse microsome heme oxygenase by derivatives of imidazole and benzimidazole. Can J Physiol Pharmacol 2017; 95:1454-1461. [PMID: 28793202 DOI: 10.1139/cjpp-2017-0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metalloporphyrin heme oxygenase (HO) inhibitors have made an important contribution to elucidating the role of HO in physiological processes. Nevertheless, their off-target effects have drawn substantial criticism, which prompted us to develop non-porphyrin, azole-based inhibitors of HO. These second-generation HO inhibitors were evaluated using spleen and brain microsomes from rats as native sources of HO-1 and HO-2, respectively. Recently, the use of azole-based inhibitors of HO has been extended to other mammalian species and, as a consequence, it will be important to characterize the inhibitors in these species. The goal of this study was to compare the inhibitory profile of imidazole- and benzimidazole-based inhibitors of HO in a breast-cancer-implanted mouse to that of an untreated rat. For spleen and brain microsomes from both species, HO protein expression was determined by Western blotting and concentration-response curves for imidazole- and benzimidazole-derivative inhibition of HO activity were determined using a headspace gas-chromatographic assay. It was found that the effects on HO activity by imidazole and benzimidazole derivatives were different between the 2 species and were not explained by differences in HO expression. Thus, the HO inhibitory profile should be determined for azole derivatives before they are used in mammalian species other than rats.
Collapse
Affiliation(s)
- Maaike Hum
- a Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Brian E McLaughlin
- a Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Xianqi Kong
- b Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Jason Z Vlahakis
- b Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Dragic Vukomanovic
- a Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Walter A Szarek
- b Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Kanji Nakatsu
- a Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
16
|
Amata E, Marrazzo A, Dichiara M, Modica MN, Salerno L, Prezzavento O, Nastasi G, Rescifina A, Romeo G, Pittalà V. Heme Oxygenase Database (HemeOxDB) and QSAR Analysis of Isoform 1 Inhibitors. ChemMedChem 2017; 12:1873-1881. [PMID: 28708269 DOI: 10.1002/cmdc.201700321] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/04/2017] [Indexed: 11/12/2022]
Abstract
Due to increasing interest in the field of heme oxygenases (HOs), we built a ligand database called HemeOxDB that includes the entire set of known HO-1 and HO-2 inhibitors, resulting in more than 400 compounds. The HemeOxDB is available online at http://www.researchdsf.unict.it/hemeoxdb/, and having a robust search engine allows end users to build complex queries, sort tabulated results, and generate color-coded two- and three-dimensional graphs. This database will grow to be a tool for the design of potent and selective HO-1 or HO-2 inhibitors. We were also interested in virtually searching for alternative inhibitors, and, for the first time in the field of HOs, a quantitative structure-activity relationship (QSAR) model was built using half-maximal inhibitory concentration (IC50 ) values of the whole set of known HO-1 inhibitors, taken from the HemeOxDB and employing the Monte Carlo technique. The statistical quality suggested that the model is robust and possesses desirable predictive potential. The screening of US Food and Drug Administration (FDA)-approved drugs, external to our dataset, suggested new predicted inhibitors, opening the way for replacing imidazole groups. The HemeOxDB and the QSAR model reported herein may help in prospectively identifying or repurposing new drugs with optimal structural attributes for HO enzyme inhibition.
Collapse
Affiliation(s)
- Emanuele Amata
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Agostino Marrazzo
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Maria Dichiara
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Maria N Modica
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Loredana Salerno
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Orazio Prezzavento
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Giovanni Nastasi
- Department of Mathematics and Computer Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Giuseppe Romeo
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Valeria Pittalà
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| |
Collapse
|
17
|
Synthesis and characterization of Zwitterionic Zn(II) and Cu(II) coordination compounds with ring-substituted 2,2′-biimidazole derivatives. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Abstract
Heme oxygenases are composed of two isozymes, Hmox1 and Hmox2, that catalyze the degradation of heme to carbon monoxide (CO), ferrous iron, and biliverdin, the latter of which is subsequently converted to bilirubin. While initially considered to be waste products, CO and biliverdin/bilirubin have been shown over the last 20 years to modulate key cellular processes, such as inflammation, cell proliferation, and apoptosis, as well as antioxidant defense. This shift in paradigm has led to the importance of heme oxygenases and their products in cell physiology now being well accepted. The identification of the two human cases thus far of heme oxygenase deficiency and the generation of mice deficient in Hmox1 or Hmox2 have reiterated a role for these enzymes in both normal cell function and disease pathogenesis, especially in the context of cardiovascular disease. This review covers the current knowledge on the function of both Hmox1 and Hmox2 at both a cellular and tissue level in the cardiovascular system. Initially, the roles of heme oxygenases in vascular health and the regulation of processes central to vascular diseases are outlined, followed by an evaluation of the role(s) of Hmox1 and Hmox2 in various diseases such as atherosclerosis, intimal hyperplasia, myocardial infarction, and angiogenesis. Finally, the therapeutic potential of heme oxygenases and their products are examined in a cardiovascular disease context, with a focus on how the knowledge we have gained on these enzymes may be capitalized in future clinical studies.
Collapse
Affiliation(s)
- Anita Ayer
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - Abolfazl Zarjou
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - Anupam Agarwal
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - Roland Stocker
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| |
Collapse
|
19
|
Ryter SW, Choi AMK. Targeting heme oxygenase-1 and carbon monoxide for therapeutic modulation of inflammation. Transl Res 2016; 167:7-34. [PMID: 26166253 PMCID: PMC4857893 DOI: 10.1016/j.trsl.2015.06.011] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 12/19/2022]
Abstract
The heme oxygenase-1 (HO-1) enzyme system remains an attractive therapeutic target for the treatment of inflammatory conditions. HO-1, a cellular stress protein, serves a vital metabolic function as the rate-limiting step in the degradation of heme to generate carbon monoxide (CO), iron, and biliverdin-IXα (BV), the latter which is converted to bilirubin-IXα (BR). HO-1 may function as a pleiotropic regulator of inflammatory signaling programs through the generation of its biologically active end products, namely CO, BV and BR. CO, when applied exogenously, can affect apoptotic, proliferative, and inflammatory cellular programs. Specifically, CO can modulate the production of proinflammatory or anti-inflammatory cytokines and mediators. HO-1 and CO may also have immunomodulatory effects with respect to regulating the functions of antigen-presenting cells, dendritic cells, and regulatory T cells. Therapeutic strategies to modulate HO-1 in disease include the application of natural-inducing compounds and gene therapy approaches for the targeted genetic overexpression or knockdown of HO-1. Several compounds have been used therapeutically to inhibit HO activity, including competitive inhibitors of the metalloporphyrin series or noncompetitive isoform-selective derivatives of imidazole-dioxolanes. The end products of HO activity, CO, BV and BR may be used therapeutically as pharmacologic treatments. CO may be applied by inhalation or through the use of CO-releasing molecules. This review will discuss HO-1 as a therapeutic target in diseases involving inflammation, including lung and vascular injury, sepsis, ischemia-reperfusion injury, and transplant rejection.
Collapse
Affiliation(s)
- Stefan W Ryter
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY.
| | - Augustine M K Choi
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY
| |
Collapse
|
20
|
Yoshida T, Ashino T, Kobayashi Y. Chemical-induced coordinated and reciprocal changes in heme metabolism, cytochrome P450 synthesis and others in the liver of humans and rodents. J Toxicol Sci 2016; 41:SP89-SP103. [PMID: 28320986 DOI: 10.2131/jts.41.sp89] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A wide variety of drugs and chemicals have been shown to produce induction and inhibition of heme-metabolizing enzymes, and of drug-metabolizing enzymes, including cytochrome P450s (P450s, CYPs), which consist of many molecular species with lower substrate specificity. Such chemically induced enzyme alterations are coordinately or reciprocally regulated through the same and/or different signal transductions. From the toxicological point of view, these enzymatic changes sometimes exacerbate inherited diseases, such as precipitation of porphyrogenic attacks, although the induction of these enzymes is dependent on the animal species in response to the differences in the stimuli of the liver, where they are also metabolized by P450s. Since P450s are hemoproteins, their induction and/or inhibition by chemical compounds could be coordinately accompanied by heme synthesis and/or inhibition. This review will take a retrospective view of research works carried out in our department and current findings on chemical-induced changes in hepatic heme metabolism in many places, together with current knowledge. Specifically, current beneficial aspects of induction of heme oxygenase-1, a rate-limiting heme degradation enzyme, and its relation to reciprocal and coordinated changes in P450s, with special reference to CYP2A5, in the liver are discussed. Mechanistic studies are also summarized in relation to current understanding on these aspects. Emphasis is also paid to an example of a single chemical compound that could cause various changes by mediating multiple signal transduction systems. Current toxicological studies have been developing by utilizing a sophisticated "omics" technology and survey integrated changes in the tissues produced by the administration of a chemical, even in time- and dose-dependent manners. Toxicological studies are generally carried out step by step to determine and elucidate mechanisms produced by drugs and chemicals. Such approaches are correct; however, current "omics" technology can clarify overall changes occurring in the cells and tissues after treating animals with drugs and chemicals, integrate them and discuss the results. In the present review, we will discuss chemical-induced similar changes of heme synthesis and degradation, and of P450s and finally convergence to similar or different directions.
Collapse
|
21
|
LEE DONGSUNG, KIM KYOUNGSU, KO WONMIN, BAE GISANG, PARK SUNGJOO, JANG JUNHYEOG, OH HYUNCHEOL, KIM YOUNCHUL. A fraction from Dojuksan 30% ethanol extract exerts its anti-inflammatory effects through Nrf2-dependent heme oxygenase-1 expression. Int J Mol Med 2015; 37:475-84. [DOI: 10.3892/ijmm.2015.2424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 11/24/2015] [Indexed: 11/06/2022] Open
|
22
|
Carletta A, Tilborg A, Moineaux L, de Ruyck J, Basile L, Salerno L, Romeo G, Wouters J, Guccione S. How does binding of imidazole-based inhibitors to heme oxygenase-1 influence their conformation? Insights combining crystal structures and molecular modelling. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS 2015. [DOI: 10.1107/s2052520615010410] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Heme oxygenase-1 (HO-1) inhibition is associated with antitumor activity. Imidazole-based analogues show effective and selective inhibitory potency of HO-1. In this work, five single-crystal structures of four imidazole-based compounds are presented, with an in-depth structural analysis. In order to study the influence of the conformation of the ligands on binding to protein, conformational data from crystallography are compared with quantum mechanics analysis and molecular docking studies. Molecular docking of imidazole-based analogues in the active site of HO-1 is in good agreement with the experimental structures. Inhibitors interact with the heme cofactor and a hydrophobic pocket (Met34, Phe37, Val50, Leu147 and Phe214) in the HO-1 binding site. An alternate binding mode can be hypothesized for some inhibitors in the series.
Collapse
|
23
|
Muthusamy S, Ramkumar R. Rhodium(II) catalyzed highly diastereoselective synthesis of conformationally restricted dispiro[1,3-dioxolane]bisoxindoles. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.06.085] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Muñoz-Sánchez J, Chánez-Cárdenas ME. A review on hemeoxygenase-2: focus on cellular protection and oxygen response. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:604981. [PMID: 25136403 PMCID: PMC4127239 DOI: 10.1155/2014/604981] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/30/2014] [Indexed: 12/13/2022]
Abstract
Hemeoxygenase (HO) system is responsible for cellular heme degradation to biliverdin, iron, and carbon monoxide. Two isoforms have been reported to date. Homologous HO-1 and HO-2 are microsomal proteins with more than 45% residue identity, share a similar fold and catalyze the same reaction. However, important differences between isoforms also exist. HO-1 isoform has been extensively studied mainly by its ability to respond to cellular stresses such as hemin, nitric oxide donors, oxidative damage, hypoxia, hyperthermia, and heavy metals, between others. On the contrary, due to its apparently constitutive nature, HO-2 has been less studied. Nevertheless, its abundance in tissues such as testis, endothelial cells, and particularly in brain, has pointed the relevance of HO-2 function. HO-2 presents particular characteristics that made it a unique protein in the HO system. Since attractive results on HO-2 have been arisen in later years, we focused this review in the second isoform. We summarize information on gene description, protein structure, and catalytic activity of HO-2 and particular facts such as its cellular impact and activity regulation. Finally, we call attention on the role of HO-2 in oxygen sensing, discussing proposed hypothesis on heme binding motifs and redox/thiol switches that participate in oxygen sensing as well as evidences of HO-2 response to hypoxia.
Collapse
Affiliation(s)
- Jorge Muñoz-Sánchez
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, 14269 Delegación Tlalpan, DF, Mexico
| | - María Elena Chánez-Cárdenas
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, 14269 Delegación Tlalpan, DF, Mexico
| |
Collapse
|
25
|
Vlahakis JZ, Vukomanovic D, Nakatsu K, Szarek WA. Selective inhibition of heme oxygenase-2 activity by analogs of 1-(4-chlorobenzyl)-2-(pyrrolidin-1-ylmethyl)-1H-benzimidazole (clemizole): Exploration of the effects of substituents at the N-1 position. Bioorg Med Chem 2013; 21:6788-95. [DOI: 10.1016/j.bmc.2013.07.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/22/2013] [Accepted: 07/30/2013] [Indexed: 11/16/2022]
|
26
|
Chen Z, Xiao Y, Zhang J. Reaction of Two Differently Functionalized Oxiranes with Nickel Perchlorate: A Modular Entry to Highly Substituted 1,3-Dioxolanes. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300558] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
Salerno L, Pittalà V, Romeo G, Modica MN, Siracusa MA, Di Giacomo C, Acquaviva R, Barbagallo I, Tibullo D, Sorrenti V. Evaluation of novel aryloxyalkyl derivatives of imidazole and 1,2,4-triazole as heme oxygenase-1 (HO-1) inhibitors and their antitumor properties. Bioorg Med Chem 2013; 21:5145-53. [PMID: 23867390 DOI: 10.1016/j.bmc.2013.06.040] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/13/2013] [Accepted: 06/16/2013] [Indexed: 12/19/2022]
Abstract
A novel series of aryloxyalkyl derivatives of imidazole and 1,2,4-triazole, 17-31, was designed and synthesized as inhibitors of heme oxygenase-1 (HO-1) and heme oxygenase-2 (HO-2). Some of these compounds were found to be good inhibitors of HO-1, in particular those carrying an imidazole moiety as azolyl group and a 3-bromo or 4-iodophenyl as aryl moiety. The most potent compounds 6 and 30 were selected and studied for their antitumor properties in a model of LAMA-84 R cell line overexpressing HO-1 and resistant to imatinib mesylate (IM), a tyrosine-kinase inhibitor used in the treatment of multiple types of cancer, most notably Philadelphia Chromosome positive (Ph(+)) Chronic Myelogenous Leukemia (CML). Results show that both 6 and 30 sensitized LAMA-84 R cell line to antitumor properties of IM.
Collapse
Affiliation(s)
- Loredana Salerno
- Department of Drug Sciences, Section of Medicinal Chemistry, University of Catania, viale A. Doria 6, 95125 Catania, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hom K, Heinzl GA, Eakanunkul S, Lopes PEM, Xue F, MacKerell AD, Wilks A. Small molecule antivirulents targeting the iron-regulated heme oxygenase (HemO) of P. aeruginosa. J Med Chem 2013; 56:2097-109. [PMID: 23379514 DOI: 10.1021/jm301819k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bacteria require iron for survival and virulence and employ several mechanisms including utilization of the host heme containing proteins. The final step in releasing iron is the oxidative cleavage of heme by HemO. A recent computer aided drug design (CADD) study identified several inhibitors of the bacterial HemOs. Herein we report the near complete HN, N, CO, Cα, and Cβ chemical shift assignment of the P. aeruginosa HemO in the absence and presence of inhibitors (E)-3-(4-(phenylamino)phenylcarbamoyl)acrylic acid (3) and (E)-N'-(4-(dimethylamino)benzylidene) diazenecarboximidhydrazide (5). The NMR data confirm that the inhibitors bind within the heme pocket of HemO consistent with in silico molecular dynamic simulations. Both inhibitors and the phenoxy derivative of 3 have activity against P. aeruginosa clinical isolates. Furthermore, 5 showed antimicrobial activity in the in vivo C. elegans curing assay. Thus, targeting virulence mechanisms required within the host is a viable antimicrobial strategy for the development of novel antivirulants.
Collapse
Affiliation(s)
- Kellie Hom
- The Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1140, United States
| | | | | | | | | | | | | |
Collapse
|
29
|
Eftekhari-Sis B, Zirak M, Akbari A. Arylglyoxals in Synthesis of Heterocyclic Compounds. Chem Rev 2013; 113:2958-3043. [DOI: 10.1021/cr300176g] [Citation(s) in RCA: 228] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Bagher Eftekhari-Sis
- Department of Chemistry, Faculty
of Science, University of Maragheh, Golshahr,
P.O. Box. 55181-83111, Maragheh, Iran
| | - Maryam Zirak
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran,
Iran
| | - Ali Akbari
- Department of Chemistry, Faculty
of Science, University of Maragheh, Golshahr,
P.O. Box. 55181-83111, Maragheh, Iran
| |
Collapse
|
30
|
Rahman MN, Vukomanovic D, Vlahakis JZ, Szarek WA, Nakatsu K, Jia Z. Structural insights into human heme oxygenase-1 inhibition by potent and selective azole-based compounds. J R Soc Interface 2012; 10:20120697. [PMID: 23097500 DOI: 10.1098/rsif.2012.0697] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The development of heme oxygenase (HO) inhibitors, especially those that are isozyme-selective, promises powerful pharmacological tools to elucidate the regulatory characteristics of the HO system. It is already known that HO has cytoprotective properties and may play a role in several disease states, making it an enticing therapeutic target. Traditionally, the metalloporphyrins have been used as competitive HO inhibitors owing to their structural similarity with the substrate, heme. However, given heme's important role in several other proteins (e.g. cytochromes P450, nitric oxide synthase), non-selectivity is an unfortunate side-effect. Reports that azalanstat and other non-porphyrin molecules inhibited HO led to a multi-faceted effort to develop novel compounds as potent, selective inhibitors of HO. This resulted in the creation of non-competitive inhibitors with selectivity for HO, including a subset with isozyme selectivity for HO-1. Using X-ray crystallography, the structures of several complexes of HO-1 with novel inhibitors have been elucidated, which provided insightful information regarding the salient features required for inhibitor binding. This included the structural basis for non-competitive inhibition, flexibility and adaptability of the inhibitor binding pocket, and multiple, potential interaction subsites, all of which can be exploited in future drug-design strategies.
Collapse
Affiliation(s)
- Mona N Rahman
- 1Department of Biomedical and Molecular Sciences, and 2Department of Chemistry, Queen’s University, Kingston, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
31
|
Sorrenti V, Guccione S, Di Giacomo C, Modica MN, Pittalà V, Acquaviva R, Basile L, Pappalardo M, Salerno L. Evaluation of Imidazole-Based Compounds as Heme Oxygenase-1 Inhibitors. Chem Biol Drug Des 2012; 80:876-86. [DOI: 10.1111/cbdd.12015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Vlahakis JZ, Lazar C, Roman G, Vukomanovic D, Nakatsu K, Szarek WA. Heme oxygenase inhibition by α-(1H-imidazol-1-yl)-ω-phenylalkanes: effect of introduction of heteroatoms in the alkyl linker. ChemMedChem 2012; 7:897-902. [PMID: 22431362 DOI: 10.1002/cmdc.201100602] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 01/25/2012] [Indexed: 11/10/2022]
Abstract
Several α-(1H-imidazol-1-yl)-ω-phenylalkanes were synthesized and evaluated as novel inhibitors of heme oxygenase (HO). These compounds were found to be potent and selective for the stress-induced isozyme HO-1, showing mostly weak activity toward the constitutive isozyme HO-2. The introduction of an oxygen atom in the alkyl linker produced analogues with decreased potency toward HO-1, whereas the presence of a sulfur atom in the linker gave rise to analogues with greater potency toward HO-1 than the carbon-containing analogues. The most potent compounds studied contained a five-atom linker between the imidazolyl and phenyl moieties, whereas the most HO-1-selective compounds contained a four-atom linker between these groups. The compounds with a five-atom linker containing a heteroatom (O or S) were found to be the most potent inhibitors of HO-2; 1-(N-benzylamino)-3-(1H-imidazol-1-yl)propane dihydrochloride, with a nitrogen atom in the linker, was found to be inactive.
Collapse
Affiliation(s)
- Jason Z Vlahakis
- Department of Chemistry, Queen's University, Kingston, ON, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Rahman MN, Vlahakis JZ, Vukomanovic D, Lee W, Szarek WA, Nakatsu K, Jia Z. A novel, "double-clamp" binding mode for human heme oxygenase-1 inhibition. PLoS One 2012; 7:e29514. [PMID: 22276118 PMCID: PMC3261875 DOI: 10.1371/journal.pone.0029514] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 11/29/2011] [Indexed: 11/23/2022] Open
Abstract
The development of heme oxygenase (HO) inhibitors is critical in dissecting and understanding the HO system and for potential therapeutic applications. We have established a program to design and optimize HO inhibitors using structure-activity relationships in conjunction with X-ray crystallographic analyses. One of our previous complex crystal structures revealed a putative secondary hydrophobic binding pocket which could be exploited for a new design strategy by introducing a functional group that would fit into this potential site. To test this hypothesis and gain further insights into the structural basis of inhibitor binding, we have synthesized and characterized 1-(1H-imidazol-1-yl)-4,4-diphenyl-2-butanone (QC-308). Using a carbon monoxide (CO) formation assay on rat spleen microsomes, the compound was found to be ∼15 times more potent (IC50 = 0.27±0.07 µM) than its monophenyl analogue, which is already a potent compound in its own right (QC-65; IC50 = 4.0±1.8 µM). The crystal structure of hHO-1 with QC-308 revealed that the second phenyl group in the western region of the compound is indeed accommodated by a definitive secondary proximal hydrophobic pocket. Thus, the two phenyl moieties are each stabilized by distinct hydrophobic pockets. This “double-clamp” binding offers additional inhibitor stabilization and provides a new route for improvement of human heme oxygenase inhibitors.
Collapse
Affiliation(s)
- Mona N. Rahman
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | | | - Dragic Vukomanovic
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Wallace Lee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | | | - Kanji Nakatsu
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- * E-mail:
| |
Collapse
|
34
|
Nie YB, Duan Z, Ding MW. New efficient synthesis of 1,2,4-trisubstituted imidazoles and imidazo[1,2-c]quinazolines by a tandem aza-Wittig/electrocyclic ring-closure process. Tetrahedron 2012. [DOI: 10.1016/j.tet.2011.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Renal Inhibition of Heme Oxygenase-1 Increases Blood Pressure in Angiotensin II-Dependent Hypertension. Int J Hypertens 2011; 2012:497213. [PMID: 22164328 PMCID: PMC3227477 DOI: 10.1155/2012/497213] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 09/06/2011] [Indexed: 01/31/2023] Open
Abstract
The goal of this study was to test the hypothesis that renal medullary heme oxygenase (HO) acts as a buffer against Ang-II dependent hypertension. To test this hypothesis, renal medullary HO activity was blocked using QC-13, an imidazole-dioxolane HO-1 inhibitor, or SnMP, a classical porphyrin based HO inhibitor. HO inhibitors were infused via IRMI catheters throughout the study starting 3 days prior to implantation of an osmotic minipump which delivered Ang II or saline vehicle. MAP was increased by Ang II infusion and further increased by IRMI infusion of QC-13 or SnMP. MAP averaged 113 ± 3, 120 ± 7, 141 ± 2, 153 ± 2, and 154 ± 3 mmHg in vehicle, vehicle + IRMI QC-13, Ang II, Ang II + IRMI QC-13, and Ang II + IRMI SnMP treated mice, respectively (n = 6). Inhibition of renal medullary HO activity with QC-13 in Ang II infused mice was also associated with a significant increase in superoxide production as well as significant decreases in antioxidant enzymes catalase and MnSOD. These results demonstrate that renal inhibition of HO exacerbates Ang II dependent hypertension through a mechanism which is associated with increases in superoxide production and decreases in antioxidant enzymes.
Collapse
|
36
|
Wong RJ, Vreman HJ, Schulz S, Kalish FS, Pierce NW, Stevenson DK. In vitro inhibition of heme oxygenase isoenzymes by metalloporphyrins. J Perinatol 2011; 31 Suppl 1:S35-41. [PMID: 21448202 DOI: 10.1038/jp.2010.173] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Neonatal jaundice results from an increased bilirubin production and decreased hepatic bilirubin conjugation and excretion. Severe hyperbilirubinemia is currently treated with phototherapy or exchange transfusion; however, its prevention by inhibiting bilirubin formation is a more logical strategy. Heme oxygenase (HO), with inducible (HO-1) and constitutive (HO-2) isoenzymes, is the rate-limiting enzyme in heme catabolism, producing equimolar amounts of bilirubin and carbon monoxide (CO). Metalloporphyrins (Mps) are heme derivatives that competitively inhibit HO and thereby suppress hyperbilirubinemia. No systematic studies have been reported evaluating whether the HO isoenzymes are inhibited differentially by various Mps. Identification of Mps that selectively inhibit the inducible HO-1 without affecting the 'housekeeping' HO-2 isoenzyme might be desirable in the clinical setting of hemolytic disease, in which the Hmox1 gene is greatly induced. Although bilirubin production is due to the activity of both HO-1 and HO-2, the inhibition of HO-1 with a relative sparing of HO-2 activity might provide the most selective approach for the treatment of hemolytic disease. STUDY DESIGN We determined for the deutero-, proto-, meso- and bis-glycol porphyrins with zinc, tin and chromium as central atoms, respectively, the concentration needed for 50% inhibition (I(50)) of HO-1 and HO-2 activities in rat spleen and brain tissue. RESULT For a given Mp, HO-1 activity was less inhibited than that of HO-2. The order of inhibitor potency of each Mp was nearly identical for both isoenzymes. Tin mesoporphyrin was the most potent inhibitor for both isoenzymes. HO-2 selectivity was greatest for tin protoporphyrin. Conversely, the Zn compounds were least inhibitory toward HO-2. No Mp preferentially inhibited HO-1. CONCLUSION Mps that produce a less inhibitory effect on HO-2, while limiting the response of the inducible HO-1, such as ZnPP, may be a useful clinical tool.
Collapse
Affiliation(s)
- R J Wong
- Department of Pediatrics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Roman G, Vlahakis JZ, Vukomanovic D, Nakatsu K, Szarek WA. Heme oxygenase inhibition by 1-aryl-2-(1h-imidazol-1-yl/1h-1,2,4-triazol-1-yl)ethanones and their derivatives. ChemMedChem 2011; 5:1541-55. [PMID: 20652928 DOI: 10.1002/cmdc.201000120] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Previous studies by our research group have been concerned with the design of selective inhibitors of heme oxygenases (HO-1 and HO-2). The majority of these were based on a four-carbon linkage of an azole, usually an imidazole, and an aromatic moiety. In the present study, we designed and synthesized a series of inhibition candidates containing a shorter linkage between these groups, specifically, a series of 1-aryl-2-(1H-imidazol-1-yl/1H-1,2,4-triazol-1-yl)ethanones and their derivatives. As regards HO-1 inhibition, the aromatic moieties yielding best results were found to be halogen-substituted residues such as 3-bromophenyl, 4-bromophenyl, and 3,4-dichlorophenyl, or hydrocarbon residues such as 2-naphthyl, 4-biphenyl, 4-benzylphenyl, and 4-(2-phenethyl)phenyl. Among the imidazole-ketones, five (36-39, and 44) were found to be very potent (IC(50)<5 muM) toward both isozymes. Relative to the imidazole-ketones, the series of corresponding triazole-ketones showed four compounds (54, 55, 61, and 62) having a selectivity index >50 in favor of HO-1. In the case of the azole-dioxolanes, two of them (80 and 85), each possessing a 2-naphthyl moiety, were found to be particularly potent and selective HO-1 inhibitors. Three non-carbonyl analogues (87, 89, and 91) of 1-(4-chlorophenyl)-2-(1H-imidazol-1-yl)ethanone were found to be good inhibitors of HO-1. For the first time in our studies, two azole-based inhibitors (37 and 39) were found to exhibit a modest selectivity index in favor of HO-2. The present study has revealed additional candidates based on inhibition of heme oxygenases for potentially useful pharmacological and therapeutic applications.
Collapse
Affiliation(s)
- Gheorghe Roman
- Department of Chemistry, Queen's University, Chernoff Hall, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
| | | | | | | | | |
Collapse
|
38
|
Vukomanovic D, McLaughlin B, Rahman MN, Vlahakis JZ, Roman G, Dercho RA, Kinobe RT, Hum M, Brien JF, Jia Z, Szarek WA, Nakatsu K. Recombinant truncated and microsomal heme oxygenase-1 and -2: differential sensitivity to inhibitors. Can J Physiol Pharmacol 2010; 88:480-6. [PMID: 20555417 DOI: 10.1139/y10-004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Recombinant truncated forms of heme oxygenase-1 and -2 (HO-1 and HO-2) were compared with their crude microsomal counterparts from brain and spleen tissue of adult male rats with respect to their inhibition by azole-based, nonporphyrin HO inhibitors. The drugs tested were an imidazole-alcohol, an imidazole-dioxolane, and a triazole-ketone. Both the recombinant and crude forms of HO-2 were similarly inhibited by the 3 drugs. The crude microsomal spleen form of HO-1 was more susceptible to inhibition than was the truncated recombinant form. This difference is attributed to the extra amino acids in the full-length enzyme. These observations may be relevant in the design of drugs as inhibitors of HO and other membrane proteins.
Collapse
Affiliation(s)
- Dragic Vukomanovic
- Department of Pharmacology and Toxicology, Queen's University, Kingston, ON K7L 3N6, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Vlahakis JZ, Rahman MN, Roman G, Jia Z, Nakatsu K, Szarek WA. Rapid, convenient method for screening imidazole-containing compounds for heme oxygenase inhibition. J Pharmacol Toxicol Methods 2010; 63:79-88. [PMID: 20561893 DOI: 10.1016/j.vascn.2010.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 03/22/2010] [Accepted: 05/26/2010] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Sensitive assays for measuring heme oxygenase activity have been based on the gas-chromatographic detection of carbon monoxide using elaborate, expensive equipment. The present study describes a rapid and convenient method for screening imidazole-containing candidates for inhibitory activity against heme oxygenase using a plate reader, based on the spectroscopic evaluation of heme degradation. METHODS A PowerWave XS plate reader was used to monitor the absorbance (as a function of time) of heme bound to purified truncated human heme oxygenase-1 (hHO-1) in the individual wells of a standard 96-well plate (with or without the addition of a test compound). The degradation of heme by heme oxygenase-1 was initiated using l-ascorbic acid, and the collected relevant absorbance data were analyzed by three different methods to calculate the percent control activity occurring in wells containing test compounds relative to that occurring in control wells with no test compound present. RESULTS In the cases of wells containing inhibitory compounds, significant shifts in λ(max) from 404 to near 412 nm were observed as well as a decrease in the rate of heme degradation relative to that of the control. Each of the three methods of data processing (overall percent drop in absorbance over 1.5h, initial rate of reaction determined over the first 5 min, and estimated pseudo first-order reaction rate constant determined over 1.5h) gave similar and reproducible results for percent control activity. The fastest and easiest method of data analysis was determined to be that using initial rates, involving data acquisition for only 5 min once reactions have been initiated using l-ascorbic acid. DISCUSSION The results of the study demonstrate that this simple assay based on the spectroscopic detection of heme represents a rapid, convenient method to determine the relative inhibitory activity of candidate compounds, and is useful in quickly screening a series or library of compounds for heme oxygenase inhibition.
Collapse
|
40
|
Stevenson DK, Wong RJ. Metalloporphyrins in the management of neonatal hyperbilirubinemia. Semin Fetal Neonatal Med 2010; 15:164-8. [PMID: 20006567 PMCID: PMC2859976 DOI: 10.1016/j.siny.2009.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neonatal jaundice in the first week of life is a common problem in newborns. It is due to an imbalance of bilirubin production and its elimination, which can lead to significantly elevated levels of circulating bilirubin or hyperbilirubinemia. Use of phototherapy and/or exchange transfusion are the current modes for treating neonatal hyperbilirubinemia and preventing any neurologic damage. These strategies, however, only remove bilirubin that has already been formed. Preventing the production of excess bilirubin may be a more logical approach. Synthetic heme analogs, metalloporphyrins, are competitive inhibitors of heme oxygenase, the rate-limiting enzyme in bilirubin production, and their use has been proposed as an attractive alternative strategy for preventing or treating severe hyperbilirubinemia.
Collapse
Affiliation(s)
- David K. Stevenson
- Corresponding author. Tel.: +1 650-723-5711; fax: +1 650-725-8351., (D. Stevenson)
| | | |
Collapse
|
41
|
Hum M, McLaughlin BE, Roman G, Vlahakis JZ, Szarek WA, Nakatsu K. The effects of azole-based heme oxygenase inhibitors on rat cytochromes P450 2E1 and 3A1/2 and human cytochromes P450 3A4 and 2D6. J Pharmacol Exp Ther 2010; 334:981-7. [PMID: 20501634 DOI: 10.1124/jpet.110.168492] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heme oxygenases (HOs) catalyze the degradation of heme to biliverdin, carbon monoxide (CO), and free iron. The two major isoforms, HO-1 (inducible) and HO-2 (constitutive), are involved in a variety of physiological functions, including inflammation, apoptosis, neuromodulation, and vascular regulation. Major tools used in exploring these actions have been metalloporphyrin analogs of heme that inhibit the HOs. However, these tools are limited by their lack of selectivity; they affect other heme-dependent enzymes, such as cytochromes P450 (P450s), soluble guanylyl cyclase (sGC), and nitric-oxide synthase (NOS). Our laboratory has successfully synthesized a number of nonporphyrin azole-based HO inhibitors (QC-xx) that had little or no effect on sGC and NOS activity. However, their effects on various P450 isoforms have yet to be fully elucidated. To determine the effects of the QC-xx inhibitors on P450 enzyme activity, microsomal preparations of two rat P450 isoforms (2E1 and 3A1/3A2) and two human P450 supersome isoforms (3A4 and 2D6) were incubated with varying concentrations of HO inhibitor, and the activity was determined by spectrophotometric or fluorometric analysis. Results indicated that some QC compounds demonstrated little to no inhibition of the P450s, whereas others did inhibit these P450 isoforms. Four structural regions of QC-xx were analyzed, leading to the identification of structures that confer a decreased effect on both rat and human P450 isoforms studied while maintaining an inhibitory effect on the HOs.
Collapse
Affiliation(s)
- Maaike Hum
- Department of Pharmacology and Toxicology, Queen's University, Kingston, ON, Canada K7L 3N6
| | | | | | | | | | | |
Collapse
|
42
|
Roman G, Rahman MN, Vukomanovic D, Jia Z, Nakatsu K, Szarek WA. Heme oxygenase inhibition by 2-oxy-substituted 1-azolyl-4-phenylbutanes: effect of variation of the azole moiety. X-ray crystal structure of human heme oxygenase-1 in complex with 4-phenyl-1-(1H-1,2,4-triazol-1-yl)-2-butanone. Chem Biol Drug Des 2010; 75:68-90. [PMID: 19954435 DOI: 10.1111/j.1747-0285.2009.00909.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A series of 1-azolyl-4-phenyl-2-butanones was designed and synthesized for the inhibition of heme oxygenases (heme oxygenase-1 and heme oxygenase-2). The replacement of imidazole by other azoles led to the discovery of novel 1H-1,2,4-triazole- and 1H-tetrazole-based inhibitors equipotent to a lead imidazole-based inhibitor. The inhibitors featuring 2H-tetrazole or 1H-1,2,3-triazole as the pharmacophore were less potent. Monosubstitution at position 2 or 4(5), or identical disubstitution at positions 4 and 5 of imidazole by a variety of electron-withdrawing or electron-donating, small or bulky groups, as well as the replacement of the traditional imidazole pharmacophore by an array of 3- or 5-substituted triazoles, identically 3,5-disubstituted triazoles, 5-substituted-1H- and 5-substituted-2H-tetrazoles proved to be detrimental to the inhibition of HO, with a few exceptions. The azole-dioxolanes and the azole-alcohols derived from the active azole-ketones were synthesized also, but these inhibitors were less active than the corresponding imidazole-based analogs. The first reported X-ray crystal structure of human heme oxygenase-1 in complex with a 1,2,4-triazole-based inhibitor, namely 4-phenyl-1-(1H-1,2,4-triazol-1-yl)-2-butanone, was also determined. The inhibitor binds to the human heme oxygenase-1 distal pocket through the coordination of heme iron by the N4 in the triazole moiety, whereas the phenyl group is stabilized by hydrophobic interactions from residues within the binding pocket.
Collapse
Affiliation(s)
- Gheorghe Roman
- Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada
| | | | | | | | | | | |
Collapse
|
43
|
Csongradi E, Vera T, Rimoldi JM, Gadepalli RSV, Stec DE. In vivo inhibition of renal heme oxygenase with an imidazole-dioxolane inhibitor. Pharmacol Res 2010; 61:525-30. [PMID: 20338241 DOI: 10.1016/j.phrs.2010.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Revised: 02/10/2010] [Accepted: 02/12/2010] [Indexed: 10/19/2022]
Abstract
Recent studies have identified imidazole-dioxolane based compounds as novel heme oxygenase (HO) inhibitors. While these compounds have been demonstrated to be specific HO inhibitors in vitro, they have yet to be used to inhibit renal HO activity in vivo. The goal of this study was to determine the effectiveness of the imidazole-dioxolane HO-1 inhibitor, QC-13, in the inhibition of renal HO activity in vivo. HO-1 was induced in mice by treatment with cobalt protoporphyrin (CoPP). After 5 days, QC-13 was delivered either by continuous intrarenal medullary interstitial infusion (IRMI) into one kidney at several concentrations for 72 h or by two intraperitoneal injections over a 48-h period. IRMI infusion of QC-13 at a concentration of 25 microM resulted in a significant decrease in medullary but not cortical HO activity as compared to CoPP treated kidneys. IRMI infusion of QC-13 at a lower concentration (2.5 microM) had no effect on either medullary or cortical HO activity in CoPP treated mice. In contrast, administration of QC-13 at a higher concentration (250 microM) resulted in a significant decrease in both medullary and cortical HO activity in CoPP treated mice. Systemic administration of QC-13 resulted in significant decrease both renal cortical and medullary HO activity in CoPP treated mice. In contrast to classical porphyrin based HO inhibitors, IRMI infusion of QC-13 did not induce HO-1 protein levels as determined by Western blot analysis of medullary protein samples. Our results demonstrated that imidazole-dioxolane inhibitors are renal HO inhibitors in vivo and can inhibit HO activity independent of HO-1 induction. These inhibitors may be useful tools to elucidate the role of renal HO-1 in numerous physiologic and pathophysiologic conditions.
Collapse
Affiliation(s)
- Eva Csongradi
- Department of Physiology & Biophysics, Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | | | | | | | | |
Collapse
|
44
|
Rahman MN, Vlahakis JZ, Vukomanovic D, Szarek WA, Nakatsu K, Jia Z. X-ray Crystal Structure of Human Heme Oxygenase-1 with (2R,4S)-2-[2-(4-Chlorophenyl)ethyl]-2-[(1H-imidazol-1-yl)methyl]-4[((5-trifluoromethylpyridin-2-yl)thio)methyl]-1,3-dioxolane: A Novel, Inducible Binding Mode. J Med Chem 2009; 52:4946-50. [DOI: 10.1021/jm900434f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
45
|
Olson KR, Donald JA. Nervous control of circulation--the role of gasotransmitters, NO, CO, and H2S. Acta Histochem 2009; 111:244-56. [PMID: 19128825 DOI: 10.1016/j.acthis.2008.11.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The origins and actions of gaseous signaling molecules, nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H(2)S) in the mammalian cardiovascular system have received considerable attention and it is evident that these three "gasotransmitters" perform a variety of homeostatic functions. The origins, actions and disposition of these gasotransmitters in the piscine vasculature are far from resolved. In most fish examined to date, NO or NO donors are generally in vitro and in vivo vasodilators acting via soluble guanylyl cyclase, although there is evidence for NO-mediated vasoconstriction. Injection of sodium nitroprusside into trout causes hypotension that is attributed to a reduction in systemic resistance. Unlike mammals, NO does not appear to have an endothelial origin in fish blood vessels as an endothelial NO synthase has not identified. However, neural NO synthase is prevalent in perivascular nerves and is the most likely source of NO for cardiovascular control in fish. CO is a vasodilator in lamprey and trout vessels, and it, like NO, appears to exert its action, at least in part, via guanylyl cyclase and potassium channel activation. Inhibition of CO production increases resting tone in trout vessels suggestive of tonic CO activity, but little else is known about the origin or control of CO in the fish vasculature. H(2)S is synthesized by fish vessels and its constrictory, dilatory, or even multi-phasic actions, are both species- and vessel-specific. A small component of H(2)S-mediated basal activity may be endothelial in origin, but to a large extent H(2)S affects vascular smooth muscle directly and the mechanisms are unclear. H(2)S injected into the dorsal aorta of unanesthetized trout often produces oscillations in arterial blood pressure suggestive of H(2)S activity in the central nervous system as well as peripheral vasculature. Collectively, these studies hint at significant involvement of the gasotransmitters in piscine cardiovascular function and hopefully provide a variety of avenues for future research.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA.
| | | |
Collapse
|
46
|
Vlahakis JZ, Hum M, Rahman MN, Jia Z, Nakatsu K, Szarek WA. Synthesis and evaluation of imidazole–dioxolane compounds as selective heme oxygenase inhibitors: Effect of substituents at the 4-position of the dioxolane ring. Bioorg Med Chem 2009; 17:2461-75. [DOI: 10.1016/j.bmc.2009.01.078] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 01/30/2009] [Accepted: 01/31/2009] [Indexed: 01/08/2023]
|
47
|
Sheets MR, Li A, Bower EA, Weigel AR, Abbott MP, Gallo RM, Mitton AA, Klumpp DA. Superelectrophilic Chemistry of Imidazoles. J Org Chem 2009; 74:2502-7. [DOI: 10.1021/jo802798x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Matthew R. Sheets
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115
| | - Ang Li
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115
| | - Edward A. Bower
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115
| | - Andrew R. Weigel
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115
| | - Matthew P. Abbott
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115
| | - Robert M. Gallo
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115
| | - Adam A. Mitton
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115
| | - Douglas A. Klumpp
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115
| |
Collapse
|
48
|
Shamloul R. REVIEWS: The Potential Role of the Heme Oxygenase/Carbon Monoxide System in Male Sexual Dysfunctions. J Sex Med 2009; 6:324-33. [DOI: 10.1111/j.1743-6109.2008.01068.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Kinobe RT, Dercho RA, Nakatsu K. Inhibitors of the heme oxygenase - carbon monoxide system: on the doorstep of the clinic? Can J Physiol Pharmacol 2008; 86:577-99. [PMID: 18758507 DOI: 10.1139/y08-066] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The past decade has seen substantial developments in our understanding of the physiology, pathology, and pharmacology of heme oxygenases (HO), to the point that investigators in the field are beginning to contemplate therapies based on administration of HO agonists or HO inhibitors. A significant amount of our current knowledge is based on the judicious application of metalloporphyrin inhibitors of HO, despite their limitations of selectivity. Recently, imidazole-based compounds have been identified as potent and more selective HO inhibitors. This 'next generation' of HO inhibitors offers a number of desirable characteristics, including isozyme selectivity, negligible effects on HO protein expression, and physicochemical properties favourable for in vivo distribution. Some of the applications of HO inhibitors that have been suggested are treatment of hyperbilirubinemia, neurodegenerative disorders, certain types of cancer, and bacterial and fungal infections. In this review, we address various approaches to altering HO activity with a focus on the potential applications of second-generation inhibitors of HO.
Collapse
Affiliation(s)
- Robert T Kinobe
- Department of Pharmacology and Toxicology, Queen's University, Kingston, ON Canada
| | | | | |
Collapse
|
50
|
Rahman MN, Vlahakis JZ, Szarek WA, Nakatsu K, Jia Z. X-ray crystal structure of human heme oxygenase-1 in complex with 1-(adamantan-1-yl)-2-(1H-imidazol-1-yl)ethanone: a common binding mode for imidazole-based heme oxygenase-1 inhibitors. J Med Chem 2008; 51:5943-52. [PMID: 18798608 DOI: 10.1021/jm800505m] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Development of inhibitors specific for heme oxygenases (HOs) should aid our understanding of the HO system and facilitate future therapeutic applications. The crystal structure of human HO-1 complexed with 1-(adamantan-1-yl)-2-(1H-imidazol-1-yl)ethanone (3) was determined. This inhibitor binds to the HO-1 distal pocket such that the imidazolyl moiety coordinates with heme iron while the adamantyl group is stabilized by a hydrophobic binding pocket. Distal helix flexibility, coupled with shifts in proximal residues and heme, acts to expand the distal pocket, thus accommodating the bulky inhibitor without displacing heme. Inhibitor binding effectively displaces the catalytically critical distal water ligand. Comparison with the binding of 2-[2-(4-chlorophenyl)ethyl]-2-[1H-imidazol-1-yl)methyl]-1,3-dioxolane (2) revealed a common binding mode, despite differing chemical structures beyond the imidazolyl moiety. The inhibitor binding pocket is flexible, yet contains well-defined subpockets to accommodate appropriate functional groups. On the basis of these structural insights, we rationalize binding features to optimize inhibitor design.
Collapse
Affiliation(s)
- Mona N Rahman
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | |
Collapse
|