1
|
Alfei S, Zuccari G. Ellagic Acid: A Green Multi-Target Weapon That Reduces Oxidative Stress and Inflammation to Prevent and Improve the Condition of Alzheimer's Disease. Int J Mol Sci 2025; 26:844. [PMID: 39859559 PMCID: PMC11766176 DOI: 10.3390/ijms26020844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Oxidative stress (OS), generated by the overrun of reactive species of oxygen and nitrogen (RONS), is the key cause of several human diseases. With inflammation, OS is responsible for the onset and development of clinical signs and the pathological hallmarks of Alzheimer's disease (AD). AD is a multifactorial chronic neurodegenerative syndrome indicated by a form of progressive dementia associated with aging. While one-target drugs only soften its symptoms while generating drug resistance, multi-target polyphenols from fruits and vegetables, such as ellagitannins (ETs), ellagic acid (EA), and urolithins (UROs), having potent antioxidant and radical scavenging effects capable of counteracting OS, could be new green options to treat human degenerative diseases, thus representing hopeful alternatives and/or adjuvants to one-target drugs to ameliorate AD. Unfortunately, in vivo ETs are not absorbed, while providing mainly ellagic acid (EA), which, due to its trivial water-solubility and first-pass effect, metabolizes in the intestine to yield UROs, or irreversible binding to cellular DNA and proteins, which have very low bioavailability, thus failing as a therapeutic in vivo. Currently, only UROs have confirmed the beneficial effect demonstrated in vitro by reaching tissues to the extent necessary for therapeutic outcomes. Unfortunately, upon the administration of food rich in ETs or ETs and EA, URO formation is affected by extreme interindividual variability that renders them unreliable as novel clinically usable drugs. Significant attention has therefore been paid specifically to multitarget EA, which is incessantly investigated as such or nanotechnologically manipulated to be a potential "lead compound" with protective action toward AD. An overview of the multi-factorial and multi-target aspects that characterize AD and polyphenol activity, respectively, as well as the traditional and/or innovative clinical treatments available to treat AD, constitutes the opening of this work. Upon focus on the pathophysiology of OS and on EA's chemical features and mechanisms leading to its antioxidant activity, an all-around updated analysis of the current EA-rich foods and EA involvement in the field of AD is provided. The possible clinical usage of EA to treat AD is discussed, reporting results of its applications in vitro, in vivo, and during clinical trials. A critical view of the need for more extensive use of the most rapid diagnostic methods to detect AD from its early symptoms is also included in this work.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genova, Italy
| | - Guendalina Zuccari
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genova, Italy
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genoa, Italy
| |
Collapse
|
2
|
Feng Q, De Chavez D, Kihlberg J, Poongavanam V. A membrane permeability database for nonpeptidic macrocycles. Sci Data 2025; 12:10. [PMID: 39753569 PMCID: PMC11698989 DOI: 10.1038/s41597-024-04302-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/13/2024] [Indexed: 01/06/2025] Open
Abstract
The process of developing new drugs is arduous and costly, particularly for targets classified as "difficult-to-drug." Macrocycles show a particular ability to modulate difficult-to-drug targets, including protein-protein interactions, while still allowing oral administration. However, the determination of membrane permeability, critical for reaching intracellular targets and for oral bioavailability, is laborious and expensive. In silico methods are a cost-effective alternative, enabling predictions prior to compound synthesis. Here, we present a comprehensive online database ( https://swemacrocycledb.com/ ), housing 5638 membrane permeability datapoints for 4216 nonpeptidic macrocycles, curated from the literature, patents, and bioactivity repositories. In addition, we present a new descriptor, the "amide ratio" (AR), that quantifies the peptidic nature of macrocyclic compounds, enabling the classification of peptidic, semipeptidic, and nonpeptidic macrocycles. Overall, this resource fills a gap among existing databases, offering valuable insights into the membrane permeability of nonpeptidic and semipeptidic macrocycles, and facilitating predictions for drug discovery projects.
Collapse
Affiliation(s)
- Qiushi Feng
- Department of Chemistry-BMC, Uppsala University, SE-75123, Uppsala, Sweden
| | - Danjo De Chavez
- Department of Chemistry-BMC, Uppsala University, SE-75123, Uppsala, Sweden
| | - Jan Kihlberg
- Department of Chemistry-BMC, Uppsala University, SE-75123, Uppsala, Sweden.
| | | |
Collapse
|
3
|
Cogswell TJ, Lewis RJ, Sköld C, Nordqvist A, Ahlqvist M, Knerr L. The effect of gem-difluorination on the conformation and properties of a model macrocyclic system. Chem Sci 2024; 15:19770-19776. [PMID: 39568894 PMCID: PMC11575594 DOI: 10.1039/d4sc05424e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
Conformational control of drug candidates to engineer improved potency and ADME properties is an ongoing area of research. Macrocyclic rings tend to offer a greater degree of rigidity than non-cyclised small molecules, and, as a result they are perfect platforms to instil conformational controls. In this study, the difluoroalkoxyphenyl moiety is examined as a tool to alter the conformation of macrocycles. A fluorinated and non-fluorinated macrocyclic matched pair is compared in terms of conformation preferences and related ADME properties. The synthesised macrocycles are found to give similar major conformations exhibiting a trans amide in the macrocyclic backbone. However, for the fluorinated macrocycle, the major trans amide conformation is in equilibrium with a cis amide minor conformation, seen by 1H NMR in a 4 : 1 ratio of trans/cis. The conformational fits for the minor fluorinated isomer demonstrate the out of plane preference of the difluoroalkoxy system encouraging the amide within the macrocycle backbone to adopt a cis conformation. The fluorinated macrocycle was less metabolically stable compared to the non-fluorinated, postulated to be a result of the interconversion of trans amide to the cis amide, which potentially could be more readily metabolised.
Collapse
Affiliation(s)
- T J Cogswell
- Medicinal Chemistry, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca Gothenburg Sweden
| | - R J Lewis
- Medicinal Chemistry, Early Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca Gothenburg Sweden
| | - C Sköld
- Drug Design and Discovery, Department of Medicinal Chemistry, BMC, Uppsala University P.O. Box 574 SE751 23 Uppsala Sweden
| | - A Nordqvist
- Medicinal Chemistry, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca Gothenburg Sweden
| | - M Ahlqvist
- DMPK, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca Gothenburg Sweden
| | - L Knerr
- Medicinal Chemistry, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca Gothenburg Sweden
| |
Collapse
|
4
|
Stockinger F, Poc P, Möhwald A, Karch S, Häfner S, Alzheimer C, Sandoz G, Huth T, Broichhagen J. Multicolor, Cell-Impermeable, and High Affinity BACE1 Inhibitor Probes Enable Superior Endogenous Staining and Imaging of Single Molecules. J Med Chem 2024; 67:10152-10167. [PMID: 38842406 PMCID: PMC11215771 DOI: 10.1021/acs.jmedchem.4c00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
The prevailing but not undisputed amyloid cascade hypothesis places the β-site of APP cleaving enzyme 1 (BACE1) center stage in Alzheimer's Disease pathogenesis. Here, we investigated functional properties of BACE1 with novel tag- and antibody-free labeling tools, which are conjugates of the BACE1-inhibitor IV (also referred to as C3) linked to different impermeable Alexa Fluor dyes. We show that these fluorescent small molecules bind specifically to BACE1, with a 1:1 labeling stoichiometry at their orthosteric site. This is a crucial property especially for single-molecule and super-resolution microscopy approaches, allowing characterization of the dyes' labeling capabilities in overexpressing cell systems and in native neuronal tissue. With multiple colors at hand, we evaluated BACE1-multimerization by Förster resonance energy transfer (FRET) acceptor-photobleaching and single-particle imaging of native BACE1. In summary, our novel fluorescent inhibitors, termed Alexa-C3, offer unprecedented insights into protein-protein interactions and diffusion behavior of BACE1 down to the single molecule level.
Collapse
Affiliation(s)
- Florian Stockinger
- Institut
für Physiologie und Pathophysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Pascal Poc
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Heidelberg 69120, Germany
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Berlin 13125, Germany
| | - Alexander Möhwald
- Institut
für Physiologie und Pathophysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Sandra Karch
- Institut
für Physiologie und Pathophysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Stephanie Häfner
- Université
Côte d’Azur, CNRS, INSERM,
iBV, Nice 06108, Cedex 2, France
- Laboratories
of Excellence, Ion Channel Science and Therapeutics, Nice 06108, Cedex 2, France
| | - Christian Alzheimer
- Institut
für Physiologie und Pathophysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Guillaume Sandoz
- Université
Côte d’Azur, CNRS, INSERM,
iBV, Nice 06108, Cedex 2, France
- Laboratories
of Excellence, Ion Channel Science and Therapeutics, Nice 06108, Cedex 2, France
| | - Tobias Huth
- Institut
für Physiologie und Pathophysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Johannes Broichhagen
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Heidelberg 69120, Germany
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Berlin 13125, Germany
| |
Collapse
|
5
|
Malinky CA, Bender AM. Brain-Penetrant Macrocycles: Design Considerations, Future Prospects, and Call for Papers. J Med Chem 2024; 67:7665-7667. [PMID: 38713144 DOI: 10.1021/acs.jmedchem.4c00968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Affiliation(s)
- Cori A Malinky
- University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Aaron M Bender
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, 393 Nichol Mill Ln., Franklin, Tennessee 37067, United States
| |
Collapse
|
6
|
Bao LQ, Baecker D, Mai Dung DT, Phuong Nhung N, Thi Thuan N, Nguyen PL, Phuong Dung PT, Huong TTL, Rasulev B, Casanola-Martin GM, Nam NH, Pham-The H. Development of Activity Rules and Chemical Fragment Design for In Silico Discovery of AChE and BACE1 Dual Inhibitors against Alzheimer's Disease. Molecules 2023; 28:molecules28083588. [PMID: 37110831 PMCID: PMC10142303 DOI: 10.3390/molecules28083588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Multi-target drug development has become an attractive strategy in the discovery of drugs to treat of Alzheimer's disease (AzD). In this study, for the first time, a rule-based machine learning (ML) approach with classification trees (CT) was applied for the rational design of novel dual-target acetylcholinesterase (AChE) and β-site amyloid-protein precursor cleaving enzyme 1 (BACE1) inhibitors. Updated data from 3524 compounds with AChE and BACE1 measurements were curated from the ChEMBL database. The best global accuracies of training/external validation for AChE and BACE1 were 0.85/0.80 and 0.83/0.81, respectively. The rules were then applied to screen dual inhibitors from the original databases. Based on the best rules obtained from each classification tree, a set of potential AChE and BACE1 inhibitors were identified, and active fragments were extracted using Murcko-type decomposition analysis. More than 250 novel inhibitors were designed in silico based on active fragments and predicted AChE and BACE1 inhibitory activity using consensus QSAR models and docking validations. The rule-based and ML approach applied in this study may be useful for the in silico design and screening of new AChE and BACE1 dual inhibitors against AzD.
Collapse
Affiliation(s)
- Le-Quang Bao
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Daniel Baecker
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald, Germany
| | - Do Thi Mai Dung
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Nguyen Phuong Nhung
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Nguyen Thi Thuan
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Phuong Linh Nguyen
- College of Computing & Informatics, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, USA
| | - Phan Thi Phuong Dung
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Tran Thi Lan Huong
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Bakhtiyor Rasulev
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA
| | | | - Nguyen-Hai Nam
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Hai Pham-The
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| |
Collapse
|
7
|
Zou J, Li Z, Liu S, Peng C, Fang D, Wan X, Lin Z, Lee TS, Raleigh DP, Yang M, Simmerling C. Scaffold Hopping Transformations Using Auxiliary Restraints for Calculating Accurate Relative Binding Free Energies. J Chem Theory Comput 2021; 17:3710-3726. [PMID: 34029468 PMCID: PMC8215533 DOI: 10.1021/acs.jctc.1c00214] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In silico screening of drug-target interactions is a key part of the drug discovery process. Changes in the drug scaffold via contraction or expansion of rings, the breaking of rings, and the introduction of cyclic structures from acyclic structures are commonly applied by medicinal chemists to improve binding affinity and enhance favorable properties of candidate compounds. These processes, commonly referred to as scaffold hopping, are challenging to model computationally. Although relative binding free energy (RBFE) calculations have shown success in predicting binding affinity changes caused by perturbing R-groups attached to a common scaffold, applications of RBFE calculations to modeling scaffold hopping are relatively limited. Scaffold hopping inevitably involves breaking and forming bond interactions of quadratic functional forms, which is highly challenging. A novel method for handling ring opening/closure/contraction/expansion and linker contraction/expansion is presented here. To the best of our knowledge, RBFE calculations on linker contraction/expansion have not been previously reported. The method uses auxiliary restraints to hold the atoms at the ends of a bond in place during the breaking and forming of the bonds. The broad applicability of the method was demonstrated by examining perturbations involving small-molecule macrocycles and mutations of proline in proteins. High accuracy was obtained using the method for most of the perturbations studied. The rigor of the method was isolated from the force field by validating the method using relative and absolute hydration free energy calculations compared to standard simulation results. Unlike other methods that rely on λ-dependent functional forms for bond interactions, the method presented here can be employed using modern molecular dynamics software without modification of codes or force field functions.
Collapse
Affiliation(s)
- Junjie Zou
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Zhipeng Li
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China
| | - Shuai Liu
- XtalPi Inc., 245 Main St, 11th Floor, Cambridge, MA 02142, United States
| | - Chunwang Peng
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China
| | - Dong Fang
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China
| | - Xiao Wan
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China
| | - Zhixiong Lin
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China
| | - Tai-Sung Lee
- Laboratory for Biomolecular Simulation Research, Center for Integrative Proteomics Research, Rutgers University, Piscataway, New Jersey, 08854-8076, United States
| | - Daniel P. Raleigh
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Mingjun Yang
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China
| | - Carlos Simmerling
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
8
|
Ortet PC, Muellers SN, Viarengo-Baker LA, Streu K, Szymczyna BR, Beeler AB, Allen KN, Whitty A. Recapitulating the Binding Affinity of Nrf2 for KEAP1 in a Cyclic Heptapeptide, Guided by NMR, X-ray Crystallography, and Machine Learning. J Am Chem Soc 2021; 143:3779-3793. [DOI: 10.1021/jacs.0c09799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Yen YC, Kammeyer AM, Tirlangi J, Ghosh AK, Mesecar AD. A Structure-Based Discovery Platform for BACE2 and the Development of Selective BACE Inhibitors. ACS Chem Neurosci 2021; 12:581-588. [PMID: 33544569 DOI: 10.1021/acschemneuro.0c00629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The ability to perform routine structure-guided drug design for selective BACE inhibitors has been limited because of the lack of robust platform for BACE2 expression, purification, and crystallization. To overcome this limitation, we developed a platform that produces 2-3 mg of pure BACE2 protein per liter of E. coli culture, and we used this protein to design macrocyclic compounds that potently and selectively inhibit BACE1 over BACE2. Compound 2 was found to potently inhibit BACE 1 (Ki = 5 nM) with a selectivity of 214-fold over BACE2. The X-ray crystal structures of unbound BACE2 (2.2 Å) and BACE2 bound to compound 3 (3.0 Å and Ki = 7 nM) were determined and compared to the X-ray structures of BACE1 revealing the S1-S3 subsite as a selectivity determinant. This platform should enable a more rapid development of new and selective BACE inhibitors for the treatment of Alzheimer's disease or type II diabetes.
Collapse
|
10
|
Spencer JA, Baldwin IR, Barton N, Chung CW, Convery MA, Edwards CD, Jamieson C, Mallett DN, Rowedder JE, Rowland P, Thomas DA, Hardy CJ. Design and Development of a Macrocyclic Series Targeting Phosphoinositide 3-Kinase δ. ACS Med Chem Lett 2020; 11:1386-1391. [PMID: 32676144 DOI: 10.1021/acsmedchemlett.0c00061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/03/2020] [Indexed: 11/29/2022] Open
Abstract
A macrocyclization approach has been explored on a series of benzoxazine phosphoinositide 3-kinase δ inhibitors, resulting in compounds with improved potency, permeability, and in vivo clearance while maintaining good solubility. The thermodynamics of binding was explored via surface plasmon resonance, and the binding of lead macrocycle 19 was found to be almost exclusively entropically driven compared with progenitor 18, which demonstrated both enthalpic and entropic contributions. The pharmacokinetics of macrocycle 19 was also explored in vivo, where it showed reduced clearance when compared with the progenitor 18. This work adds to the growing body of evidence that macrocyclization could provide an alternative and complementary approach to the design of small-molecule inhibitors, with the potential to deliver differentiated properties.
Collapse
Affiliation(s)
- Jonathan A. Spencer
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Ian R. Baldwin
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Nick Barton
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Chun-Wa Chung
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Máire A. Convery
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | | | - Craig Jamieson
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - David N. Mallett
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - James E. Rowedder
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Paul Rowland
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Daniel A. Thomas
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Charlotte J. Hardy
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| |
Collapse
|
11
|
Yen YC, Kammeyer AM, Jensen KC, Tirlangi J, Ghosh AK, Mesecar AD. Development of an Efficient Enzyme Production and Structure-Based Discovery Platform for BACE1 Inhibitors. Biochemistry 2019; 58:4424-4435. [PMID: 31549827 PMCID: PMC7284891 DOI: 10.1021/acs.biochem.9b00714] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACE1 (Beta-site Amyloid Precursor Protein (APP) Cleaving Enzyme 1) is a promising therapeutic target for Alzheimer's Disease (AD). However, efficient expression, purification, and crystallization systems are not well described or detailed in the literature nor are approaches for treatment of enzyme kinetic data for potent inhibitors well described. We therefore developed a platform for expression and purification of BACE1, including protein refolding from E.coli inclusion bodies, in addition to optimizing a reproducible crystallization procedure of BACE1 bound with inhibitors. We also report a detailed approach to the proper analysis of enzyme kinetic data for compounds that exhibit either rapid-equilibrium or tight-binding mechanisms. Our methods allow for the purification of ∼15 mg of BACE1 enzyme from 1 L of culture which is higher than reported yields in the current literature. To evaluate the data analysis approach developed here, a well-known potent inhibitor and two of its derivatives were tested, analyzed, and compared. The inhibitory constants (Ki) obtained from the kinetic studies are in agreement with dissociation constants (Kd) that were also determined using isothermal titration calorimetry (ITC) experiments. The X-ray structures of these three compounds in complex with BACE1 were readily obtained and provide important insight into the structure and thermodynamics of the BACE1-inhibitor interactions.
Collapse
Affiliation(s)
- Yu-Chen Yen
- Department of Biological Sciences, Purdue University, West Lafayette Indiana 47907, United States
| | - Annalissa M. Kammeyer
- Department of Biological Sciences, Purdue University, West Lafayette Indiana 47907, United States
| | - Katherine C. Jensen
- Department of Biological Sciences, Purdue University, West Lafayette Indiana 47907, United States
| | | | - Arun K. Ghosh
- Department of Chemistry, Purdue University, West Lafayette Indiana 47907, United States, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette Indiana 47907, United States
| | - Andrew D. Mesecar
- Department of Biological Sciences, Purdue University, West Lafayette Indiana 47907, United States, Department of Chemistry, Purdue University, West Lafayette Indiana 47907, United States, Department of Biochemistry, Purdue University, West Lafayette Indiana 47907, United States,Corresponding Author:. Tel.: (765) 494-1924
| |
Collapse
|
12
|
Mortensen KT, Osberger TJ, King TA, Sore HF, Spring DR. Strategies for the Diversity-Oriented Synthesis of Macrocycles. Chem Rev 2019; 119:10288-10317. [DOI: 10.1021/acs.chemrev.9b00084] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kim T. Mortensen
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Thomas J. Osberger
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Thomas A. King
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Hannah F. Sore
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - David R. Spring
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| |
Collapse
|
13
|
Ali S, Asad MHHB, Maity S, Zada W, Rizvanov AA, Iqbal J, Babak B, Hussain I. Fluoro-benzimidazole derivatives to cure Alzheimer's disease: In-silico studies, synthesis, structure-activity relationship and in vivo evaluation for β secretase enzyme inhibition. Bioorg Chem 2019; 88:102936. [PMID: 31054426 DOI: 10.1016/j.bioorg.2019.102936] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/07/2019] [Accepted: 04/15/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Sayyad Ali
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan; Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Muhammad Hassham Hassan Bin Asad
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan; Department of Genetics, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420021, Russia.
| | - Soham Maity
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Wahid Zada
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Albert A Rizvanov
- Department of Genetics, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420021, Russia
| | - Jamshed Iqbal
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Borhan Babak
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Izhar Hussain
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan.
| |
Collapse
|
14
|
Cummings MD, Sekharan S. Structure-Based Macrocycle Design in Small-Molecule Drug Discovery and Simple Metrics To Identify Opportunities for Macrocyclization of Small-Molecule Ligands. J Med Chem 2019; 62:6843-6853. [DOI: 10.1021/acs.jmedchem.8b01985] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Maxwell D. Cummings
- Janssen Research and Development, LLC, Welsh and McKean Roads, Spring House, Pennsylvania 19477, United States
| | - Sivakumar Sekharan
- Cambridge Crystallographic Data Centre, 252 Nassau Street, Princeton, New Jersey 08542, United States
| |
Collapse
|
15
|
Schaduangrat N, Prachayasittikul V, Choomwattana S, Wongchitrat P, Phopin K, Suwanjang W, Malik AA, Vincent B, Nantasenamat C. Multidisciplinary approaches for targeting the secretase protein family as a therapeutic route for Alzheimer's disease. Med Res Rev 2019; 39:1730-1778. [PMID: 30628099 DOI: 10.1002/med.21563] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/21/2018] [Accepted: 12/24/2018] [Indexed: 12/27/2022]
Abstract
The continual increase of the aging population worldwide renders Alzheimer's disease (AD) a global prime concern. Several attempts have been focused on understanding the intricate complexity of the disease's development along with the on- andgoing search for novel therapeutic strategies. Incapability of existing AD drugs to effectively modulate the pathogenesis or to delay the progression of the disease leads to a shift in the paradigm of AD drug discovery. Efforts aimed at identifying AD drugs have mostly focused on the development of disease-modifying agents in which effects are believed to be long lasting. Of particular note, the secretase enzymes, a group of proteases responsible for the metabolism of the β-amyloid precursor protein (βAPP) and β-amyloid (Aβ) peptides production, have been underlined for their promising therapeutic potential. This review article attempts to comprehensively cover aspects related to the identification and use of drugs targeting the secretase enzymes. Particularly, the roles of secretases in the pathogenesis of AD and their therapeutic modulation are provided herein. Moreover, an overview of the drug development process and the contribution of computational (in silico) approaches for facilitating successful drug discovery are also highlighted along with examples of relevant computational works. Promising chemical scaffolds, inhibitors, and modulators against each class of secretases are also summarized herein. Additionally, multitarget secretase modulators are also taken into consideration in light of the current growing interest in the polypharmacology of complex diseases. Finally, challenging issues and future outlook relevant to the discovery of drugs targeting secretases are also discussed.
Collapse
Affiliation(s)
- Nalini Schaduangrat
- Faculty of Medical Technology, Center of Data Mining and Biomedical Informatics, Mahidol University, Bangkok, Thailand
| | - Veda Prachayasittikul
- Faculty of Medical Technology, Center of Data Mining and Biomedical Informatics, Mahidol University, Bangkok, Thailand
| | - Saowapak Choomwattana
- Faculty of Medical Technology, Center of Data Mining and Biomedical Informatics, Mahidol University, Bangkok, Thailand
| | - Prapimpun Wongchitrat
- Faculty of Medical Technology, Center for Research and Innovation, Mahidol University, Bangkok, Thailand
| | - Kamonrat Phopin
- Faculty of Medical Technology, Center for Research and Innovation, Mahidol University, Bangkok, Thailand
| | - Wilasinee Suwanjang
- Faculty of Medical Technology, Center for Research and Innovation, Mahidol University, Bangkok, Thailand
| | - Aijaz Ahmad Malik
- Faculty of Medical Technology, Center of Data Mining and Biomedical Informatics, Mahidol University, Bangkok, Thailand
| | - Bruno Vincent
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand.,Centre National de la Recherche Scientifique, Paris, France
| | - Chanin Nantasenamat
- Faculty of Medical Technology, Center of Data Mining and Biomedical Informatics, Mahidol University, Bangkok, Thailand
| |
Collapse
|
16
|
Lovell MA, Lynn BC, Fister S, Bradley-Whitman M, Murphy MP, Beckett TL, Norris CM. A Novel Small Molecule Modulator of Amyloid Pathology. J Alzheimers Dis 2018; 53:273-87. [PMID: 27163808 DOI: 10.3233/jad-151160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Because traditional approaches to drug development for Alzheimer's disease are becoming increasingly expensive and in many cases disappointingly unsuccessful, alternative approaches are required to shift the paradigm. Following leads from investigations of dihydropyridine calcium channel blockers, we observed unique properties from a class of functionalized naphthyridines and sought to develop these as novel therapeutics that minimize amyloid pathology without the adverse effects associated with current therapeutics. Our data show methyl 2,4-dimethyl-5-oxo-5,6-dihydrobenzo[c][2,7]naphthyridine-1-carboxylate (BNC-1) significantly decreases amyloid burden in a well-established mouse model of amyloid pathology through a unique mechanism mediated by Elk-1, a transcriptional repressor of presenilin-1. Additionally, BNC-1 treatment leads to increased levels of synaptophysin and synapsin, markers of synaptic integrity, but does not adversely impact presenilin-2 or processing of Notch-1, thus avoiding negative off target effects associated with pan-gamma secretase inhibition. Overall, our data show BNC-1 significantly decreases amyloid burden and improves markers of synaptic integrity in a well-established mouse model of amyloid deposition by promoting phosphorylation and activation of Elk-1, a transcriptional repressor of presenilin-1 but not presenilin-2. These data suggest BNC-1 might be a novel, disease-modifying therapeutic that will alter the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Mark A Lovell
- Department of Chemistry, University of Kentucky, Lexington, KY, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Bert C Lynn
- Department of Chemistry, University of Kentucky, Lexington, KY, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.,Universisty of Kentucky Mass Spectrometry Center, Lexington, KY, USA
| | - Shuling Fister
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | | | - M Paul Murphy
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.,Department of Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Tina L Beckett
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Christopher M Norris
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.,Department of Pharmacology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
17
|
Yu HS, Deng Y, Wu Y, Sindhikara D, Rask AR, Kimura T, Abel R, Wang L. Accurate and Reliable Prediction of the Binding Affinities of Macrocycles to Their Protein Targets. J Chem Theory Comput 2017; 13:6290-6300. [PMID: 29120625 DOI: 10.1021/acs.jctc.7b00885] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Macrocycles have been emerging as a very important drug class in the past few decades largely due to their expanded chemical diversity benefiting from advances in synthetic methods. Macrocyclization has been recognized as an effective way to restrict the conformational space of acyclic small molecule inhibitors with the hope of improving potency, selectivity, and metabolic stability. Because of their relatively larger size as compared to typical small molecule drugs and the complexity of the structures, efficient sampling of the accessible macrocycle conformational space and accurate prediction of their binding affinities to their target protein receptors poses a great challenge of central importance in computational macrocycle drug design. In this article, we present a novel method for relative binding free energy calculations between macrocycles with different ring sizes and between the macrocycles and their corresponding acyclic counterparts. We have applied the method to seven pharmaceutically interesting data sets taken from recent drug discovery projects including 33 macrocyclic ligands covering a diverse chemical space. The predicted binding free energies are in good agreement with experimental data with an overall root-mean-square error (RMSE) of 0.94 kcal/mol. This is to our knowledge the first time where the free energy of the macrocyclization of linear molecules has been directly calculated with rigorous physics-based free energy calculation methods, and we anticipate the outstanding accuracy demonstrated here across a broad range of target classes may have significant implications for macrocycle drug discovery.
Collapse
Affiliation(s)
- Haoyu S Yu
- Schrodinger, Inc. , 120 West 45th Street, New York, New York 10036, United States
| | - Yuqing Deng
- Schrodinger, Inc. , 120 West 45th Street, New York, New York 10036, United States
| | - Yujie Wu
- Schrodinger, Inc. , 120 West 45th Street, New York, New York 10036, United States
| | - Dan Sindhikara
- Schrodinger, Inc. , 120 West 45th Street, New York, New York 10036, United States
| | - Amy R Rask
- Schrodinger, Inc. , 120 West 45th Street, New York, New York 10036, United States
| | - Takayuki Kimura
- Schrodinger, Inc. , 120 West 45th Street, New York, New York 10036, United States
| | - Robert Abel
- Schrodinger, Inc. , 120 West 45th Street, New York, New York 10036, United States
| | - Lingle Wang
- Schrodinger, Inc. , 120 West 45th Street, New York, New York 10036, United States
| |
Collapse
|
18
|
Tarazi H, Odeh RA, Al-Qawasmeh R, Yousef IA, Voelter W, Al-Tel TH. Design, synthesis and SAR analysis of potent BACE1 inhibitors: Possible lead drug candidates for Alzheimer's disease. Eur J Med Chem 2017; 125:1213-1224. [DOI: 10.1016/j.ejmech.2016.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 10/12/2016] [Accepted: 11/10/2016] [Indexed: 11/29/2022]
|
19
|
Eketjäll S, Janson J, Kaspersson K, Bogstedt A, Jeppsson F, Fälting J, Haeberlein SB, Kugler AR, Alexander RC, Cebers G. AZD3293: A Novel, Orally Active BACE1 Inhibitor with High Potency and Permeability and Markedly Slow Off-Rate Kinetics. J Alzheimers Dis 2016; 50:1109-23. [PMID: 26890753 PMCID: PMC4927864 DOI: 10.3233/jad-150834] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A growing body of pathological, biomarker, genetic, and mechanistic data suggests that amyloid accumulation, as a result of changes in production, processing, and/or clearance of brain amyloid-β peptide (Aβ) concentrations, plays a key role in the pathogenesis of Alzheimer’s disease (AD). Beta-secretase 1 (BACE1) mediates the first step in the processing of amyloid-β protein precursor (AβPP) to Aβ peptides, with the soluble N terminal fragment of AβPP (sAβPPβ) as a direct product, and BACE1 inhibition is an attractive target for therapeutic intervention to reduce the production of Aβ. Here, we report the in vitro and in vivo pharmacological profile of AZD3293, a potent, highly permeable, orally active, blood-brain barrier (BBB) penetrating, BACE1 inhibitor with unique slow off-rate kinetics. The in vitro potency of AZD3293 was demonstrated in several cellular models, including primary cortical neurons. In vivo in mice, guinea pigs, and dogs, AZD3293 displayed significant dose- and time-dependent reductions in plasma, cerebrospinal fluid, and brain concentrations of Aβ40, Aβ42, and sAβPPβ. The in vitro potency of AZD3293 in mouse and guinea pig primary cortical neuronal cells was correlated to the in vivo potency expressed as free AZD3293 concentrations in mouse and guinea pig brains. In mice and dogs, the slow off-rate from BACE1 may have translated into a prolongation of the observed effect beyond the turnover rate of Aβ. The preclinical data strongly support the clinical development of AZD3293, and patients with AD are currently being recruited into a combined Phase 2/3 study to test the disease-modifying properties of AZD3293.
Collapse
Affiliation(s)
- Susanna Eketjäll
- AstraZeneca Translational Sciences Centre, Science for Life Laboratory, Personal Healthcare and Biomarkers, AstraZeneca, Solna, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Juliette Janson
- AstraZeneca Translational Sciences Centre, Science for Life Laboratory, Personal Healthcare and Biomarkers, AstraZeneca, Solna, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden
| | | | - Anna Bogstedt
- AstraZeneca Translational Sciences Centre, Science for Life Laboratory, Personal Healthcare and Biomarkers, AstraZeneca, Solna, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Fredrik Jeppsson
- CNS and Pain iMed, AstraZeneca, Södertälje, Sweden.,Operations Global Quality, AstraZeneca, Södertälje, Sweden
| | | | | | - Alan R Kugler
- Neuroscience iMed, IMED Biotech Unit, AstraZeneca, Cambridge, MA, USA
| | | | - Gvido Cebers
- Neuroscience iMed, IMED Biotech Unit, AstraZeneca, Cambridge, MA, USA
| |
Collapse
|
20
|
Pošta M, Soós V, Beier P. Design of photoaffinity labeling probes derived from 3,4,5-trimethylfuran-2(5 H )-one for mode of action elucidation. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.03.096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Ghosh AK, Cárdenas EL, Osswald HL. The Design, Development, and Evaluation of BACE1 Inhibitors for the Treatment of Alzheimer’s Disease. TOPICS IN MEDICINAL CHEMISTRY 2016. [DOI: 10.1007/7355_2016_16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
22
|
Hassam M, Taher A, Arnott GE, Green IR, van Otterlo WAL. Isomerization of Allylbenzenes. Chem Rev 2015; 115:5462-569. [DOI: 10.1021/acs.chemrev.5b00052] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mohammad Hassam
- Department
of Chemistry and Polymer Science, Stellenbosch University, Private Bag
X1, Matieland 7602, South Africa
| | - Abu Taher
- Department
of Chemistry and Polymer Science, Stellenbosch University, Private Bag
X1, Matieland 7602, South Africa
| | - Gareth E. Arnott
- Department
of Chemistry and Polymer Science, Stellenbosch University, Private Bag
X1, Matieland 7602, South Africa
| | - Ivan R. Green
- Department
of Chemistry and Polymer Science, Stellenbosch University, Private Bag
X1, Matieland 7602, South Africa
| | - Willem A. L. van Otterlo
- Department
of Chemistry and Polymer Science, Stellenbosch University, Private Bag
X1, Matieland 7602, South Africa
- School
of Chemistry, University of the Witwatersrand, Braamfontein, Johannesburg 2000, South Africa
| |
Collapse
|
23
|
Ghosh AK, Osswald HL. BACE1 (β-secretase) inhibitors for the treatment of Alzheimer's disease. Chem Soc Rev 2015; 43:6765-813. [PMID: 24691405 DOI: 10.1039/c3cs60460h] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACE1 (β-secretase, memapsin 2, Asp2) has emerged as a promising target for the treatment of Alzheimer's disease. BACE1 is an aspartic protease which functions in the first step of the pathway leading to the production and deposition of amyloid-β peptide (Aβ). Its gene deletion showed only mild phenotypes. BACE1 inhibition has direct implications in the Alzheimer's disease pathology without largely affecting viability. However, inhibiting BACE1 selectively in vivo has presented many challenges to medicinal chemists. Since its identification in 2000, inhibitors covering many different structural classes have been designed and developed. These inhibitors can be largely classified as either peptidomimetic or non-peptidic inhibitors. Progress in these fields resulted in inhibitors that contain many targeted drug-like characteristics. In this review, we describe structure-based design strategies and evolution of a wide range of BACE1 inhibitors including compounds that have been shown to reduce brain Aβ, rescue the cognitive decline in transgenic AD mice and inhibitor drug candidates that are currently in clinical trials.
Collapse
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
24
|
Sandgren V, Belda O, Kvarnström I, Lindberg J, Samuelsson B, Dahlgren A. Design and Synthesis of Novel Arylketo-containing P1-P3 Linked Macro-cyclic BACE-1 Inhibitors. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2015; 9:13-26. [PMID: 25937848 PMCID: PMC4412958 DOI: 10.2174/1874104501509010013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/06/2015] [Accepted: 01/22/2015] [Indexed: 11/22/2022]
Abstract
A series of arylketo-containing P1-P3 linked macrocyclic BACE-1 inhibitors were designed, synthesized, and compared with compounds with a previously known and extensively studied corresponding P2 isophthalamide moiety with the aim to improve on permeability whilst retaining the enzyme- and cell-based activities. Several inhibitors displayed substantial increases in Caco-2 cell-based permeability compared to earlier synthesized inhibitors and notably also with retained activities, showing that this approach might yield BACE-1 inhibitors with improved properties.
Collapse
Affiliation(s)
- Veronica Sandgren
- Department of Chemistry, Linköping University, S-581 83 Linköping, Sweden
| | - Oscar Belda
- Medivir AB, Lunastigen 7, S-141 44 Huddinge, Sweden
| | - Ingemar Kvarnström
- Department of Chemistry, Linköping University, S-581 83 Linköping, Sweden
| | | | | | - Anders Dahlgren
- Department of Chemistry, Linköping University, S-581 83 Linköping, Sweden
| |
Collapse
|
25
|
Hill TA, Shepherd NE, Diness F, Fairlie DP. Constraining cyclic peptides to mimic protein structure motifs. Angew Chem Int Ed Engl 2014; 53:13020-41. [PMID: 25287434 DOI: 10.1002/anie.201401058] [Citation(s) in RCA: 328] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/02/2013] [Indexed: 12/18/2022]
Abstract
Many proteins exert their biological activities through small exposed surface regions called epitopes that are folded peptides of well-defined three-dimensional structures. Short synthetic peptide sequences corresponding to these bioactive protein surfaces do not form thermodynamically stable protein-like structures in water. However, short peptides can be induced to fold into protein-like bioactive conformations (strands, helices, turns) by cyclization, in conjunction with the use of other molecular constraints, that helps to fine-tune three-dimensional structure. Such constrained cyclic peptides can have protein-like biological activities and potencies, enabling their uses as biological probes and leads to therapeutics, diagnostics and vaccines. This Review highlights examples of cyclic peptides that mimic three-dimensional structures of strand, turn or helical segments of peptides and proteins, and identifies some additional restraints incorporated into natural product cyclic peptides and synthetic macrocyclic peptidomimetics that refine peptide structure and confer biological properties.
Collapse
Affiliation(s)
- Timothy A Hill
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072 (Australia)
| | | | | | | |
Collapse
|
26
|
Hill TA, Shepherd NE, Diness F, Fairlie DP. Fixierung cyclischer Peptide: Mimetika von Proteinstrukturmotiven. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201401058] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
|
28
|
Chua KCH, Pietsch M, Zhang X, Hautmann S, Chan HY, Bruning JB, Gütschow M, Abell AD. Macrocyclic Protease Inhibitors with Reduced Peptide Character. Angew Chem Int Ed Engl 2014; 53:7828-31. [DOI: 10.1002/anie.201404301] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Indexed: 01/14/2023]
|
29
|
(11)C-Labeling of a potent hydroxyethylamine BACE-1 inhibitor and evaluation in vitro and in vivo. Nucl Med Biol 2014; 41:536-43. [PMID: 24857866 DOI: 10.1016/j.nucmedbio.2014.03.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/13/2014] [Accepted: 03/27/2014] [Indexed: 02/01/2023]
Abstract
INTRODUCTION The enzyme β-secretase 1 (BACE-1) is associated with the catalytic cleavage of amyloid precursor protein (APP) which leads to the production of amyloid-β, an amyloidogenic peptide that forms insoluble fibrils and is linked to neurodegeneration and Alzheimer's disease (AD). A PET-radioligand for the quantification of BACE-1 would be useful for the understanding of AD. In this report, we describe the synthesis and carbon-11 radiolabeling of a potent hydroxyethylamine BACE-1 enzyme inhibitor (BSI-IV) and its evaluation in vitro and in vivo. METHODS (11)[C]-N(1)-((2S,3R)-4-(cyclopropylamino)-3-hydroxy-1-phenylbutan-2-yl)-5-(N-methylmethyl-sulfonamido)-N(3)-((R)-1-phenylethyl)isophthalamide, a β-secretase inhibitor, denoted here as [(11)C]BSI-IV was synthesized through a palladium-mediated aminocarbonylation with an aryl halide precursor (I or Br) and [(11)C]CO. The effect of different palladium/ligand-complexes on radiochemical yield in the carbonylative reaction was investigated. The binding of the labeled compound to BACE-1 enzyme was studied in vitro by frozen section autoradiography from brains of healthy rats. Dynamic small animal PET-CT studies and ex vivo biodistribution were performed in male rats. RESULTS The halide precursors were synthesized in six steps starting from methyl-3-nitrobenzoate with an overall yield of 21-26%. [(11)C]BSI-IV was obtained in 29±12% decay corrected radiochemical yield (n=12) with a specific activity of 790±155GBq/μmol at the end of synthesis with a radiochemical purity of >99%. The preclinical studies showed that [(11)C]BSI-IV has a rapid metabolism in rat with excretion to the small intestines. CONCLUSION (11)[C]BSI-IV was obtained in sufficient amount and purity to enable preclinical investigation. The preclinical studies showed low specific binding in vitro and fast clearance in vivo and a low uptake in the brain. These findings suggests that [(11)C]BSI-IV has limited use as a PET-ligand for the study of BACE-1 or AD.
Collapse
|
30
|
Janson J, Eketjäll S, Tunblad K, Jeppsson F, Von Berg S, Niva C, Radesäter AC, Fälting J, Visser SAG. Population PKPD modeling of BACE1 inhibitor-induced reduction in Aβ levels in vivo and correlation to in vitro potency in primary cortical neurons from mouse and guinea pig. Pharm Res 2013; 31:670-83. [PMID: 24092053 DOI: 10.1007/s11095-013-1189-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 08/09/2013] [Indexed: 12/26/2022]
Abstract
PURPOSE The aims were to quantify the in vivo time-course between the oral dose, the plasma and brain exposure and the inhibitory effect on Amyloid β (Aβ) in brain and cerebrospinal fluid, and to establish the correlation between in vitro and in vivo potency of novel β-secretase (BACE1) inhibitors. METHODS BACE1-mediated inhibition of Aβ was quantified in in vivo dose- and/or time-response studies and in vitro in SH-SY5Y cells, N2A cells, and primary cortical neurons (PCN). An indirect response model with inhibition on Aβ production rate was used to estimate unbound in vivo IC 50 in a population pharmacokinetic-pharmacodynamic modeling approach. RESULTS Estimated in vivo inhibitory potencies varied between 1 and 1,000 nM. The turnover half-life of Aβ40 in brain was predicted to be 0.5 h in mouse and 1 h in guinea pig. An excellent correlation between PCN and in vivo potency was observed. Moreover, a strong correlation in potency was found between human SH-SY5Y cells and mouse PCN, being 4.5-fold larger in SH-SY5Y cells. CONCLUSION The strong in vivo-in vitro correlation increased the confidence in using human cell lines for screening and optimization of BACE1 inhibitors. This can optimize the design and reduce the number of preclinical in vivo effect studies.
Collapse
Affiliation(s)
- Juliette Janson
- Modeling & Simulation, DMPK, Innovative Medicines CNSP AstraZeneca, SE-15185, Södertälje, Sweden,
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sen S, Mamidala R, Gundla R, Charya MT. Diversity Oriented Synthesis of Macrocyclic Diaryl Ethers by Dötz Benzannulation. ASIAN J ORG CHEM 2013. [DOI: 10.1002/ajoc.201300125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
AZ-4217: a high potency BACE inhibitor displaying acute central efficacy in different in vivo models and reduced amyloid deposition in Tg2576 mice. J Neurosci 2013; 33:10075-84. [PMID: 23761903 DOI: 10.1523/jneurosci.1165-13.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aβ, the product of APP (amyloid precursor protein), has been implicated in the pathophysiology of Alzheimer's disease (AD). β-Site APP cleaving enzyme1 (BACE1) is the enzyme initiating the processing of the APP to Aβ peptides. Small molecule BACE1 inhibitors are expected to decrease Aβ-peptide generation and thereby reduce amyloid plaque formation in the brain, a neuropathological hallmark of AD. BACE1 inhibition thus addresses a key mechanism in AD and its potential as a therapeutic target is currently being addressed in clinical studies. Here, we report the discovery and the pharmacokinetic and pharmacodynamic properties of BACE1 inhibitor AZ-4217, a high potency compound (IC50 160 pM in human SH-SY5Y cells) with an excellent in vivo efficacy. Central efficacy of BACE1 inhibition was observed after a single dose in C57BL/6 mice, guinea pigs, and in an APP transgenic mouse model of cerebral amyloidosis (Tg2576). Furthermore, we demonstrate that in a 1 month treatment paradigm BACE1 inhibition of Aβ production does lower amyloid deposition in 12-month-old Tg2576 mice. These results strongly support BACE1 inhibition as concretely impacting amyloid deposition and therefore potentially an important approach for therapeutic intervention in AD.
Collapse
|
33
|
Pennington LD, Whittington DA, Bartberger MD, Jordan SR, Monenschein H, Nguyen TT, Yang BH, Xue QM, Vounatsos F, Wahl RC, Chen K, Wood S, Citron M, Patel VF, Hitchcock SA, Zhong W. Hydroxyethylamine-based inhibitors of BACE1: P1–P3 macrocyclization can improve potency, selectivity, and cell activity. Bioorg Med Chem Lett 2013; 23:4459-64. [DOI: 10.1016/j.bmcl.2013.05.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/01/2013] [Accepted: 05/07/2013] [Indexed: 10/26/2022]
|
34
|
Butini S, Brogi S, Novellino E, Campiani G, Ghosh AK, Brindisi M, Gemma S. The structural evolution of β-secretase inhibitors: a focus on the development of small-molecule inhibitors. Curr Top Med Chem 2013; 13:1787-807. [PMID: 23931442 PMCID: PMC6034716 DOI: 10.2174/15680266113139990137] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/11/2013] [Indexed: 12/12/2022]
Abstract
Effective treatment of Alzheimer's disease (AD) remains a critical unmet need in medicine. The lack of useful treatment for AD led to an intense search for novel therapies based on the amyloid hypothesis, which states that amyloid β-42 (Aβ42) plays an early and crucial role in all cases of AD. β-Secretase (also known as BACE-1 β-site APP-cleaving enzyme, Asp-2 or memapsin-2) is an aspartyl protease representing the rate limiting step in the generation of Aβ peptide fragments, therefore it could represent an important target in the steady hunt for a disease-modifying treatment. Generally, β-secretase inhibitors are grouped into two families: peptidomimetic and nonpeptidomimetic inhibitors. However, irrespective of the class, serious challenges with respect to blood-brain barrier (BBB) penetration and selectivity still remain. Discovering a small molecule inhibitor of β-secretase represents an unnerving challenge but, due to its significant potential as a therapeutic target, growing efforts in this task are evident from both academic and industrial laboratories. In this frame, the rising availability of crystal structures of β-secretase-inhibitor complexes represents an invaluable opportunity for optimization. Nevertheless, beyond the inhibitory activity, the major issue of the current research approaches is about problems associated with BBB penetration and pharmacokinetic properties. This review follows the structural evolution of the early β-secretase inhibitors and gives a snap-shot of the hottest chemical templates in the literature of the last five years, showing research progress in this field.
Collapse
Affiliation(s)
- Stefania Butini
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Italy
| | - Simone Brogi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Italy
| | - Ettore Novellino
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Italy
- Dipartimento di Farmacia, University of Naples Federico II, Italy
| | - Giuseppe Campiani
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Italy
| | - Arun K. Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Margherita Brindisi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Italy
| | - Sandra Gemma
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Italy
| |
Collapse
|
35
|
Jeppsson F, Eketjäll S, Janson J, Karlström S, Gustavsson S, Olsson LL, Radesäter AC, Ploeger B, Cebers G, Kolmodin K, Swahn BM, von Berg S, Bueters T, Fälting J. Discovery of AZD3839, a potent and selective BACE1 inhibitor clinical candidate for the treatment of Alzheimer disease. J Biol Chem 2012; 287:41245-57. [PMID: 23048024 PMCID: PMC3510823 DOI: 10.1074/jbc.m112.409110] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/24/2012] [Indexed: 01/16/2023] Open
Abstract
β-Site amyloid precursor protein cleaving enzyme1 (BACE1) is one of the key enzymes involved in the processing of the amyloid precursor protein (APP) and formation of amyloid β peptide (Aβ) species. Because cerebral deposition of Aβ species might be critical for the pathogenesis of Alzheimer disease, BACE1 has emerged as a key target for the treatment of this disease. Here, we report the discovery and comprehensive preclinical characterization of AZD3839, a potent and selective inhibitor of human BACE1. AZD3839 was identified using fragment-based screening and structure-based design. In a concentration-dependent manner, AZD3839 inhibited BACE1 activity in a biochemical fluorescence resonance energy transfer (FRET) assay, Aβ and sAPPβ release from modified and wild-type human SH-SY5Y cells and mouse N2A cells as well as from mouse and guinea pig primary cortical neurons. Selectivity against BACE2 and cathepsin D was 14 and >1000-fold, respectively. AZD3839 exhibited dose- and time-dependent lowering of plasma, brain, and cerebrospinal fluid Aβ levels in mouse, guinea pig, and non-human primate. Pharmacokinetic/pharmacodynamic analyses of mouse and guinea pig data showed a good correlation between the potency of AZD3839 in primary cortical neurons and in vivo brain effects. These results suggest that AZD3839 effectively reduces the levels of Aβ in brain, CSF, and plasma in several preclinical species. It might, therefore, have disease-modifying potential in the treatment of Alzheimer disease and related dementias. Based on the overall pharmacological profile and its drug like properties, AZD3839 has been progressed into Phase 1 clinical trials in man.
Collapse
Affiliation(s)
- Fredrik Jeppsson
- From the Innovative Medicines AstraZeneca, CNS and Pain, 15185 Södertälje, Sweden
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165 Solna, Sweden
| | - Susanna Eketjäll
- From the Innovative Medicines AstraZeneca, CNS and Pain, 15185 Södertälje, Sweden
- AstraZeneca Translational Sciences Centre, Science for Life Laboratory, 17165 Solna, Sweden
| | - Juliette Janson
- From the Innovative Medicines AstraZeneca, CNS and Pain, 15185 Södertälje, Sweden
| | - Sofia Karlström
- From the Innovative Medicines AstraZeneca, CNS and Pain, 15185 Södertälje, Sweden
| | - Susanne Gustavsson
- From the Innovative Medicines AstraZeneca, CNS and Pain, 15185 Södertälje, Sweden
| | | | | | - Bart Ploeger
- From the Innovative Medicines AstraZeneca, CNS and Pain, 15185 Södertälje, Sweden
| | - Gvido Cebers
- AstraZeneca Neuroscience, Cambridge, Massachusetts 02139
| | - Karin Kolmodin
- From the Innovative Medicines AstraZeneca, CNS and Pain, 15185 Södertälje, Sweden
| | - Britt-Marie Swahn
- From the Innovative Medicines AstraZeneca, CNS and Pain, 15185 Södertälje, Sweden
| | - Stefan von Berg
- From the Innovative Medicines AstraZeneca, CNS and Pain, 15185 Södertälje, Sweden
| | - Tjerk Bueters
- From the Innovative Medicines AstraZeneca, CNS and Pain, 15185 Södertälje, Sweden
| | - Johanna Fälting
- From the Innovative Medicines AstraZeneca, CNS and Pain, 15185 Södertälje, Sweden
| |
Collapse
|
36
|
Abstract
The use of drug-like macrocycles is emerging as an exciting area of medicinal chemistry, with several recent examples highlighting the favorable changes in biological and physicochemical properties that macrocyclization can afford. Natural product macrocycles and their synthetic derivatives have long been clinically useful and attention is now being focused on the wider use of macrocyclic scaffolds in medicinal chemistry in the search for new drugs for increasingly challenging targets. With the increasing awareness of concepts of drug-likeness and the dangers of ‘molecular obesity’, functionalized macrocyclic scaffolds could provide a way to generate ligand-efficient molecules with enhanced properties. In this review we will separately discuss the effects of macrocyclization upon potency, selectivity and physicochemical properties, concentrating on recent case histories in oncology drug discovery. Additionally, we will highlight selected advances in the synthesis of macrocycles and provide an outlook on the future use of macrocyclic scaffolds in medicinal chemistry.
Collapse
|
37
|
Sandgren V, Agback T, Johansson PO, Lindberg J, Kvarnström I, Samuelsson B, Belda O, Dahlgren A. Highly potent macrocyclic BACE-1 inhibitors incorporating a hydroxyethylamine core: design, synthesis and X-ray crystal structures of enzyme inhibitor complexes. Bioorg Med Chem 2012; 20:4377-89. [PMID: 22698785 DOI: 10.1016/j.bmc.2012.05.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 04/17/2012] [Accepted: 05/16/2012] [Indexed: 11/30/2022]
Abstract
A series of P1-P3 linked macrocyclic BACE-1 inhibitors containing a hydroxyethylamine (HEA) isostere scaffold has been synthesized. All inhibitors comprise a toluene or N-phenylmethanesulfonamide P2 moiety. Excellent BACE-1 potencies, both in enzymatic and cell-based assays, were observed in this series of target compounds, with the best candidates displaying cell-based IC(50) values in the low nanomolar range. As an attempt to improve potency, a phenyl substituent aiming at the S3 subpocket was introduced in the macrocyclic ring. X-ray analyzes were performed on selected compounds, and enzyme-inhibitor interactions are discussed.
Collapse
Affiliation(s)
- Veronica Sandgren
- Department of Chemistry, Linköping University, S-581 83 Linköping, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Probst G, Xu YZ. Small-molecule BACE1 inhibitors: a patent literature review (2006 - 2011). Expert Opin Ther Pat 2012; 22:511-40. [PMID: 22512789 DOI: 10.1517/13543776.2012.681302] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Alzheimer's disease is a devastating neurodegenerative disorder for which no disease-modifying therapy exists. The amyloid hypothesis, which implicates Aβ as the toxin initiating a biological cascade leading to neurodegeneration, is the most prominent theory concerning the underlying cause of the disease. BACE1 is one of two aspartyl proteinases that generate Aβ, thus inhibition of BACE1 has the potential to ameliorate the progression of Alzheimer's disease by abating the production of Aβ. AREAS COVERED This review chronicles small-molecule BACE1 inhibitors as described in the patent literature between 2006 and 2011 and their potential use as disease-modifying treatments for Alzheimer's disease. Over the past half a dozen years, numerous BACE1 inhibitors have been published in the patent applications, but often these contain a paltry amount of pertinent biological data (e.g. potency, selectivity, and efficacy). Fortunately, numerous relevant publications containing important data have appeared in the journal literature during this period. The goal in this effort was to create an amalgam of the two records to add value to this review. EXPERT OPINION The pharmaceutical industry has made tremendous progress in the development of small-molecule BACE1 inhibitors that lower Aβ in the central nervous system. Assuming the amyloid hypothesis is veracious, we anticipate a disease-modifying therapy to combat Alzheimer's disease is near.
Collapse
Affiliation(s)
- Gary Probst
- Elan Pharmaceuticals, Molecular Design, 180 Oyster Point Boulevard, South San Francisco, CA 94080, USA.
| | | |
Collapse
|
39
|
Ghosh AK, Brindisi M, Tang J. Developing β-secretase inhibitors for treatment of Alzheimer's disease. J Neurochem 2011; 120 Suppl 1:71-83. [PMID: 22122681 DOI: 10.1111/j.1471-4159.2011.07476.x] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
β-Secretase (memapsin 2; BACE-1) is the first protease in the processing of amyloid precursor protein leading to the production of amyloid-β (Aβ) in the brain. It is believed that high levels of brain Aβ are responsible for the pathogenesis of Alzheimer's disease (AD). Therefore, β-secretase is a major therapeutic target for the development of inhibitor drugs. During the past decade, steady progress has been made in the evolution of β-secretase inhibitors toward better drug properties. Recent inhibitors are potent, selective and have been shown to penetrate the blood-brain barrier to inhibit Aβ levels in the brains of experimental animals. Moreover, continuous administration of a β-secretase inhibitor was shown to rescue age-related cognitive decline in transgenic AD mice. A small number of β-secretase inhibitors have also entered early phase clinical trials. These developments offer some optimism for the clinical development of a disease-modifying drug for AD.
Collapse
Affiliation(s)
- Arun K Ghosh
- Departments of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Margherita Brindisi
- Departments of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Jordan Tang
- Protein Studies Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
40
|
Al-Tel TH, Semreen MH, Al-Qawasmeh RA, Schmidt MF, El-Awadi R, Ardah M, Zaarour R, Rao SN, El-Agnaf O. Design, Synthesis, and Qualitative Structure–Activity Evaluations of Novel β-Secretase Inhibitors as Potential Alzheimer’s Drug Leads. J Med Chem 2011; 54:8373-85. [DOI: 10.1021/jm201181f] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | - Marco F. Schmidt
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge
CB2 EW1, U.K
| | | | - Mustafa Ardah
- Faculty of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666 Al-Ain, UAE
| | | | - Shashidhar N. Rao
- Tripos International, Inc., 1699 South Hanley Road, St. Louis, Missouri 63144,
United States
| | - Omar El-Agnaf
- Faculty of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666 Al-Ain, UAE
| |
Collapse
|
41
|
Albert JS. Progress in the development of beta-secretase inhibitors for Alzheimer's disease. PROGRESS IN MEDICINAL CHEMISTRY 2011; 48:133-61. [PMID: 21544959 DOI: 10.1016/s0079-6468(09)04804-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Since the original identification of BACE in 1999 and until quite recently, BACE was often regarded as a "difficult" drug target, much as renin has proven to be. The reasons for this include the following. First, the long and shallow nature of the substrate binding pocket suggested that it would not be possible to identify small molecule drugs that could have adequate binding affinity. Second, functional groups that typically interact with the active site aspartates are usually highly polarized and, therefore, contribute to reduced CNS localization. Early BACE inhibitors were all designed using knowledge of the peptide substrates and usually contained some variation of a few well-known transition-state isosteres. While these had great impact on fundamental understanding of the enzyme structure and key interaction regions, they were very large, very polar, and had essentially no CNS availability. Continued progress by reducing the peptidic nature of these compounds resulted in incremental advances and has provided compounds that meet, or nearly meet, typical CNS drug-like criteria. The challenges associated with peptidic starting points inspired innovative new approaches to search for different starting points. Several groups employed high concentration screening (ligand concentration 100 microM and higher) to find weak hits after conventional screening (typically at 10 microM) failed to find more potent ones. Fragment-based methods have also been developed to identify even weaker hits (IC50 1 mM and greater). This was accomplished through the evolution and refinement of several detection methodologies including calorimetry, surface plasmon resonance, NMR, and crystallography. Coupled with detailed structural understanding of ligand-enzyme interactions and focus on maintaining ligand efficiency, these developments have resulted in several examples where potency was improved by 10,000-fold to afford compounds with IC50 values < 10 nM and promising drug-like characteristics. Together, all these efforts have afforded a diverse array of chemotypes as BACE inhibitors. Early work focused on improving BACE potency in isolated enzyme assays. However, most of these compounds showed potency reductions in cellular assays. Continued improvements in drug properties and in understanding of the physiologically relevant conditions have resulted in many compounds that show strong potency in both isolated and cellular assays. Several compounds have shown reduction of Abeta using rodent in-vivo models both peripherally and in the brain. Recently, one compound has demonstrated reduction of brain Abeta levels in a non-human primate. Phase I clinical trials were initiated on BACE inhibitor CTS-21166 from CoMentis in July of 2007. This compound derives from the earliest described peptidic inhibitors such as OM99-2 [58] but no details have been reported. In addition to strategies involving small molecule inhibitors of BACE and gamma-secretase to reduce Abeta levels, the application of biological agents has been under investigation since the identification of Abeta. The earliest efforts in this area failed. Despite encouraging results in preclinical models, immunization against Abeta by administration of AN-1792 from Elan led to development of aseptic meningoencephalitis in 6% of the patients receiving the drug. Nevertheless, continued efforts with other biological approaches appear encouraging. Most advanced in clinical trials is bapineuzumab from Elan, which is in Phase III clinical trials. This is a humanized monoclonal antibody against Abeta plaques. A recent monograph is devoted to progress in these areas. Taken together, considerable progress has been made in developing CNS-penetrant agents that reduce AP levels and in providing validation that such agents will be therapeutically beneficial for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Jeffrey S Albert
- CNS Discovery Research, AstraZeneca Pharmaceuticals, 1800 Concord Pike, P O Box 15437, Wilmington, DE 19850-5437, USA
| |
Collapse
|
42
|
|
43
|
Bogdan AR, James K. Efficient access to new chemical space through flow--construction of druglike macrocycles through copper-surface-catalyzed azide-alkyne cycloaddition reactions. Chemistry 2011; 16:14506-12. [PMID: 21038332 DOI: 10.1002/chem.201002215] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A series of 12- to 22-membered macrocycles, with druglike functionality and properties, have been generated by using a simple and efficient copper-catalyzed azide-acetylene cycloaddition reaction, conducted in flow in high-temperature copper tubing, under environmentally friendly conditions. The triazole-containing macrocycles have been generated in up to 90 % yield in a 5 min reaction, without resorting to the high-dilution conditions typical of macrocyclization reactions. This approach represents a very efficient method for constructing this important class of molecules, in terms of yield, concentration, and environmental considerations.
Collapse
Affiliation(s)
- Andrew R Bogdan
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
44
|
Takagi K, Sugimoto S, Yamakado R, Nobuke K. Self-Assembly of Oligothiophene Chromophores by m-Calix[3]amide Scaffold. J Org Chem 2011; 76:2471-8. [DOI: 10.1021/jo102160x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Koji Takagi
- Department of Materials Science and Engineering, Nagoya Institute of Technology Gokiso, Showa, Nagoya 466-8555, Japan
| | - Shinri Sugimoto
- Department of Materials Science and Engineering, Nagoya Institute of Technology Gokiso, Showa, Nagoya 466-8555, Japan
| | - Ryohei Yamakado
- Department of Materials Science and Engineering, Nagoya Institute of Technology Gokiso, Showa, Nagoya 466-8555, Japan
| | - Katsuya Nobuke
- Department of Materials Science and Engineering, Nagoya Institute of Technology Gokiso, Showa, Nagoya 466-8555, Japan
| |
Collapse
|
45
|
Marsault E, Peterson ML. Macrocycles Are Great Cycles: Applications, Opportunities, and Challenges of Synthetic Macrocycles in Drug Discovery. J Med Chem 2011; 54:1961-2004. [DOI: 10.1021/jm1012374] [Citation(s) in RCA: 653] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Eric Marsault
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke Québec, J1H5N4, Canada
| | - Mark L. Peterson
- Tranzyme Pharma Inc., 3001 12e Avenue Nord, Sherbrooke, Québec, J1H5N4, Canada
| |
Collapse
|
46
|
John S, Thangapandian S, Sakkiah S, Lee KW. Potent BACE-1 inhibitor design using pharmacophore modeling, in silico screening and molecular docking studies. BMC Bioinformatics 2011; 12 Suppl 1:S28. [PMID: 21342558 PMCID: PMC3044283 DOI: 10.1186/1471-2105-12-s1-s28] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Beta-site amyloid precursor protein cleaving enzyme (BACE-1) is a single-membrane protein belongs to the aspartyl protease class of catabolic enzymes. This enzyme involved in the processing of the amyloid precursor protein (APP). The cleavage of APP by BACE-1 is the rate-limiting step in the amyloid cascade leading to the production of two peptide fragments Aβ40 and Aβ42. Among two peptide fragments Aβ42 is the primary species thought to be responsible for the neurotoxicity and amyloid plaque formation that lead to memory and cognitive defects in Alzheimer's disease (AD). AD is a ravaging neurodegenerative disorder for which no disease-modifying treatment is currently available. Inhibition of BACE-1 is expected to stop amyloid plaque formation and emerged as an interesting and attractive therapeutic target for AD. METHODS Ligand-based computational approach was used to identify the molecular chemical features required for the inhibition of BACE-1 enzyme. A training set of 20 compounds with known experimental activity was used to generate pharmacophore hypotheses using 3D QSAR Pharmacophore Generation module available in Discovery studio. The hypothesis was validated by four different methods and the best hypothesis was utilized in database screening of four chemical databases like Maybridge, Chembridge, NCI and Asinex. The retrieved hit compounds were subjected to molecular docking study using GOLD 4.1 program. RESULTS Among ten generated pharmacophore hypotheses, Hypo 1 was chosen as best pharmacophore hypothesis. Hypo 1 consists of one hydrogen bond donor, one positive ionizable, one ring aromatic and two hydrophobic features with high correlation coefficient of 0.977, highest cost difference of 121.98 bits and lowest RMSD value of 0.804. Hypo 1 was validated using Fischer randomization method, test set with a correlation coefficient of 0.917, leave-one-out method and decoy set with a goodness of hit score of 0.76. The validated Hypo 1 was used as a 3D query in database screening and retrieved 773 compounds with the estimated activity value <100 nM. These hits were docked into the active site of BACE-1 and further refined based on molecular interactions with the essential amino acids and good GOLD fitness score. CONCLUSION The best pharmacophore hypothesis, Hypo 1, with high predictive ability contains chemical features required for the effective inhibition of BACE-1. Using Hypo 1, we have identified two compounds with diverse chemical scaffolds as potential virtual leads which, as such or upon further optimization, can be used in the designing of new BACE-1 inhibitors.
Collapse
Affiliation(s)
- Shalini John
- Department of Biochemistry and Division of Applied Life Science, BK21 Program) Environmental Biotechnology National Core Research Center, Gyeongsang National University 900 Gazwa-dong, Jinju 660-701, Republic of Korea.
| | | | | | | |
Collapse
|
47
|
Sund C, Belda O, Wiktelius D, Sahlberg C, Vrang L, Sedig S, Hamelink E, Henderson I, Agback T, Jansson K, Borkakoti N, Derbyshire D, Eneroth A, Samuelsson B. Design and synthesis of potent macrocyclic renin inhibitors. Bioorg Med Chem Lett 2011; 21:358-62. [DOI: 10.1016/j.bmcl.2010.10.140] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 10/29/2010] [Accepted: 10/31/2010] [Indexed: 02/02/2023]
|
48
|
Abstract
The blood-brain barrier (BBB) is a dynamic physical and biological barrier between blood circulation and the central nervous system (CNS). This unique feature of the BBB lies in the structure of the neurovascular unit and its cerebral micro-vascular endothelial cells. The BBB restricts the passage of blood-borne drugs, neurotoxic substances and peripheral immune cells from entering the brain, while selectively facilitating the transport of nutrients across the BBB into the brain. Thus, the integrity and proper function of the BBB is crucial to homeostasis and physiological function of the CNS. A number of transport and carrier systems are expressed and polarized on the luminal or abluminal surface of the BBB to realize these discrete functions. Among these systems, ABC transporters play a critical role in keeping drugs and neurotoxic substances from entering the brain and in transporting toxic metabolites out of the brain. A number of studies have demonstrated that ABCB1 and ABCG2 are critical to drug efflux at the BBB and that ABCC1 is essential for the blood-cerebral spinal fluid (CSF) barrier. The presence of these efflux ABC transporters also creates a major obstacle for drug delivery into the brain. We have comprehensively reviewed the literature on ABC transporters and drug efflux at the BBB. Understanding the molecular mechanisms of these transporters is important in the development of new drugs and new strategies for drug delivery into the brain.
Collapse
Affiliation(s)
- Shanshan Shen
- Neurobiology Program, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Canada K1A 0R6
| | | |
Collapse
|
49
|
Huang Y, Strobel ED, Ho CY, Reynolds CH, Conway KA, Piesvaux JA, Brenneman DE, Yohrling GJ, Moore Arnold H, Rosenthal D, Alexander RS, Tounge BA, Mercken M, Vandermeeren M, Parker MH, Reitz AB, Baxter EW. Macrocyclic BACE inhibitors: Optimization of a micromolar hit to nanomolar leads. Bioorg Med Chem Lett 2010; 20:3158-60. [DOI: 10.1016/j.bmcl.2010.03.097] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 03/18/2010] [Accepted: 03/26/2010] [Indexed: 12/21/2022]
|
50
|
Elvang AB, Volbracht C, Pedersen LØ, Jensen KG, Karlsson JJ, Larsen SA, Mørk A, Stensbøl TB, Bastlund JF. Differential effects of gamma-secretase and BACE1 inhibition on brain Abeta levels in vitro and in vivo. J Neurochem 2009; 110:1377-87. [PMID: 19519664 DOI: 10.1111/j.1471-4159.2009.06215.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) is hypothesized to result from elevated brain levels of beta-amyloid peptide (Abeta) which is the main component of plaques found in AD brains and which cause memory impairment in mice. Therefore, there has been a major focus on the development of inhibitors of the Abeta producing enzymes gamma-secretase and beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1). In this study, we investigated the Abeta-lowering effects of the BACE1 inhibitor LY2434074 in vitro and in vivo, comparing it to the well characterized gamma-secretase inhibitor LY450139. We sampled interstitial fluid Abeta from awake APPswe/PS1dE9 AD mice by in vivo Abeta microdialysis. In addition, we measured levels of endogenous brain Abeta extracted from wildtype C57BL/6 mice. In our in vitro assays both compounds showed similar Abeta-lowering effects. However, while systemic administration of LY450139 resulted in transient reduction of Abeta in both in vivo models, we were unable to show any Abeta-lowering effect by systemic administration of the BACE1 inhibitor LY2434074 despite brain exposure exceeding the in vitro IC(50) value several fold. In contrast, significant reduction of 40-50% of interstitial fluid Abeta and wildtype cortical Abeta was observed when infusing LY2434074 directly into the brain by means of reverse microdialysis or by dosing the BACE1 inhibitor to p-glycoprotein (p-gp) mutant mice. The effects seen in p-gp mutant mice and subsequent data from our cell-based p-gp transport assay suggested that LY2434074 is a p-gp substrate. This may partly explain why BACE1 inhibition by LY2434074 has lower in vivo efficacy, with respect to decreased Abeta40 levels, compared with gamma-secretase inhibition by LY450139.
Collapse
Affiliation(s)
- Anders Brandt Elvang
- Department of In Vivo Neurobiology-Neurodegeneration, H. Lundbeck A/S, Ottiliavej 9, Valby 2500, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|