1
|
Bulloch MS, Huynh LK, Kennedy K, Ralton JE, McConville MJ, Ralph SA. Apicoplast-derived isoprenoids are essential for biosynthesis of GPI protein anchors, and consequently for egress and invasion in Plasmodium falciparum. PLoS Pathog 2024; 20:e1012484. [PMID: 39241090 PMCID: PMC11414934 DOI: 10.1371/journal.ppat.1012484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/20/2024] [Accepted: 08/06/2024] [Indexed: 09/08/2024] Open
Abstract
Glycophosphatidylinositol (GPI) anchors are the predominant glycoconjugate in Plasmodium parasites, enabling modified proteins to associate with biological membranes. GPI biosynthesis commences with donation of a mannose residue held by dolichol-phosphate at the endoplasmic reticulum membrane. In Plasmodium dolichols are derived from isoprenoid precursors synthesised in the Plasmodium apicoplast, a relict plastid organelle of prokaryotic origin. We found that treatment of Plasmodium parasites with apicoplast inhibitors decreases the synthesis of isoprenoid and GPI intermediates resulting in GPI-anchored proteins becoming untethered from their normal membrane association. Even when other isoprenoids were chemically rescued, GPI depletion led to an arrest in schizont stage parasites, which had defects in segmentation and egress. In those daughter parasites (merozoites) that did form, proteins that would normally be GPI-anchored were mislocalised, and when these merozoites were artificially released they were able to attach to but not invade new red blood cells. Our data provides further evidence for the importance of GPI biosynthesis during the asexual cycle of P. falciparum, and indicates that GPI biosynthesis, and by extension egress and invasion, is dependent on isoprenoids synthesised in the apicoplast.
Collapse
Affiliation(s)
- Michaela S. Bulloch
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Long K. Huynh
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Kit Kennedy
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Julie E. Ralton
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Malcolm J. McConville
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Stuart A. Ralph
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Salamanca DR, Gómez M, Camargo A, Cuy-Chaparro L, Molina-Franky J, Reyes C, Patarroyo MA, Patarroyo ME. Plasmodium falciparum Blood Stage Antimalarial Vaccines: An Analysis of Ongoing Clinical Trials and New Perspectives Related to Synthetic Vaccines. Front Microbiol 2019; 10:2712. [PMID: 31849871 PMCID: PMC6901501 DOI: 10.3389/fmicb.2019.02712] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/08/2019] [Indexed: 01/10/2023] Open
Abstract
Plasmodium falciparum malaria is a disease causing high morbidity and mortality rates worldwide, mainly in sub-Saharan Africa. Candidates have been identified for vaccines targeting the parasite's blood stage; this stage is important in the development of symptoms and clinical complications. However, no vaccine that can directly affect morbidity and mortality rates is currently available. This review analyzes the formulation, methodological design, and results of active clinical trials for merozoite-stage vaccines, regarding their safety profile, immunological response (phase Ia/Ib), and protective efficacy levels (phase II). Most vaccine candidates are in phase I trials and have had an acceptable safety profile. GMZ2 has made the greatest progress in clinical trials; its efficacy has been 14% in children aged less than 5 years in a phase IIb trial. Most of the available candidates that have shown strong immunogenicity and that have been tested for their protective efficacy have provided good results when challenged with a homologous parasite strain; however, their efficacy has dropped when they have been exposed to a heterologous strain. In view of these vaccines' unpromising results, an alternative approach for selecting new candidates is needed; such line of work should be focused on how to increase an immune response induced against the highly conserved (i.e., common to all strains), functionally relevant, protein regions that the parasite uses to invade target cells. Despite binding regions tending to be conserved, they are usually poorly antigenic and/or immunogenic, being frequently discarded as vaccine candidates when the conventional immunological approach is followed. The Fundación Instituto de Inmunología de Colombia (FIDIC) has developed a logical and rational methodology based on including conserved high-activity binding peptides (cHABPs) from the main P. falciparum biologically functional proteins involved in red blood cell (RBC) invasion. Once appropriately modified (mHABPs), these minimal, subunit-based, chemically synthesized peptides can be used in a system covering the human immune system's main genetic variables (the human leukocyte antigen HLA-DR isotype) inducing a suitable, immunogenic, and protective immune response in most of the world's populations.
Collapse
Affiliation(s)
- David Ricardo Salamanca
- Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,Ph.D. Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia.,Medicine Programme, Health Sciences Faculty, Universidad de Boyacá, Tunja, Colombia
| | - Marcela Gómez
- Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,Ph.D. Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia.,Medicine Programme, Health Sciences Faculty, Universidad de Boyacá, Tunja, Colombia
| | - Anny Camargo
- Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,Ph.D. Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia.,Medicine Programme, Health Sciences Faculty, Universidad de Boyacá, Tunja, Colombia
| | - Laura Cuy-Chaparro
- Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,Ph.D. Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia.,Medicine Programme, Health Sciences Faculty, Universidad de Boyacá, Tunja, Colombia
| | - Jessica Molina-Franky
- Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,Ph.D. Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia.,Medicine Programme, Health Sciences Faculty, Universidad de Boyacá, Tunja, Colombia
| | - César Reyes
- Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,Ph.D. Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Manuel Alfonso Patarroyo
- Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Manuel Elkin Patarroyo
- Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,Department of Pathology, School of Medicine, Universidad Nacional de Colombia, Boyacá, Colombia
| |
Collapse
|
3
|
Macromolecular Conjugate and Biological Carrier Approaches for the Targeted Delivery of Antibiotics. Antibiotics (Basel) 2017; 6:antibiotics6030014. [PMID: 28677631 PMCID: PMC5617978 DOI: 10.3390/antibiotics6030014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/24/2017] [Accepted: 06/29/2017] [Indexed: 01/21/2023] Open
Abstract
For the past few decades, the rapid rise of antibiotic multidrug-resistance has presented a palpable threat to human health worldwide. Meanwhile, the number of novel antibiotics released to the market has been steadily declining. Therefore, it is imperative that we utilize innovative approaches for the development of antimicrobial therapies. This article will explore alternative strategies, namely drug conjugates and biological carriers for the targeted delivery of antibiotics, which are often eclipsed by their nanomedicine-based counterparts. A variety of macromolecules have been investigated as conjugate carriers, but only those most widely studied in the field of infectious diseases (e.g., proteins, peptides, antibodies) will be discussed in detail. For the latter group, blood cells, especially erythrocytes, have been successfully tested as homing carriers of antimicrobial agents. Bacteriophages have also been studied as a candidate for similar functions. Once these alternative strategies receive the amount of research interest and resources that would more accurately reflect their latent applicability, they will inevitably prove valuable in the perennial fight against antibiotic resistance.
Collapse
|
4
|
Castillo AI, Andreína Pacheco M, Escalante AA. Evolution of the merozoite surface protein 7 (msp7) family in Plasmodium vivax and P. falciparum: A comparative approach. INFECTION GENETICS AND EVOLUTION 2017; 50:7-19. [PMID: 28163236 DOI: 10.1016/j.meegid.2017.01.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 01/17/2023]
Abstract
Malaria parasites (genus Plasmodium) are a diverse group found in many species of vertebrate hosts. These parasites invade red blood cells in a complex process comprising several proteins, many encoded by multigene families, one of which is merozoite surface protein 7 (msp7). In the case of Plasmodium vivax, the most geographically widespread human-infecting species, differences in the number of paralogs within multigene families have been previously explained, at least in part, as potential adaptations to the human host. To explore this in msp7, we studied its orthologs in closely related nonhuman primate parasites; investigating both paralog evolutionary history and genetic polymorphism. The emerging patterns were then compared with the human parasite Plasmodium falciparum. We found that the evolution of the msp7 family is consistent with a birth-and-death model, where duplications, pseudogenizations, and gene loss events are common. However, all paralogs in P. vivax and P. falciparum had orthologs in their closely related species in non-human primates indicating that the ancestors of those paralogs precede the events leading to their origins as human parasites. Thus, the number of paralogs cannot be explained as an adaptation to human hosts. Although there is no functional information for msp7 in P. vivax, we found evidence for purifying selection in the genetic polymorphism of some of its paralogs as well as their orthologs in closely related non-human primate parasites. We also found evidence indicating that a few of P. vivax's paralogs may have diverged from their orthologs in non-human primates by episodic positive selection. Hence, they may had been under selection when the lineage leading to P. vivax diverged from the Asian non-human primates and switched into Homininae. All these lines of evidence suggest that msp7 is functionally important in P. vivax.
Collapse
Affiliation(s)
| | - M Andreína Pacheco
- Department of Biology, Institute for Genomics and Evolutionary Medicine (igem), Temple University, Philadelphia, PA, USA
| | - Ananias A Escalante
- Department of Biology, Institute for Genomics and Evolutionary Medicine (igem), Temple University, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Patarroyo ME, Alba MP, Rojas-Luna R, Bermudez A, Aza-Conde J. Functionally relevant proteins in Plasmodium falciparum host cell invasion. Immunotherapy 2017; 9:131-155. [DOI: 10.2217/imt-2016-0091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A totally effective, antimalarial vaccine must involve sporozoite and merozoite proteins (or their fragments) to ensure complete parasite blocking during critical invasion stages. This Special Report examines proteins involved in critical biological functions for parasite survival and highlights the conserved amino acid sequences of the most important proteins involved in sporozoite invasion of hepatocytes and merozoite invasion of red blood cells. Conserved high activity binding peptides are located in such proteins’ functionally strategic sites, whose functions are related to receptor binding, nutrient and protein transport, enzyme activity and molecule–molecule interactions. They are thus excellent targets for vaccine development as they block proteins binding function involved in invasion and also their biological function.
Collapse
Affiliation(s)
- Manuel E Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26–20 Bogotá, Colombia
- Universidad Nacional de Colombia, Bogotá DC, Colombia
| | - Martha P Alba
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26–20 Bogotá, Colombia
- Universidad de Ciencias Aplicadas y Ambientales (UDCA), Bogotá, Colombia
| | - Rocío Rojas-Luna
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26–20 Bogotá, Colombia
| | - Adriana Bermudez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26–20 Bogotá, Colombia
- Universidad del Rosario, Bogotá DC, Colombia
| | - Jorge Aza-Conde
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26–20 Bogotá, Colombia
| |
Collapse
|
6
|
Garzón-Ospina D, Forero-Rodríguez J, Patarroyo MA. Evidence of functional divergence in MSP7 paralogous proteins: a molecular-evolutionary and phylogenetic analysis. BMC Evol Biol 2016; 16:256. [PMID: 27894257 PMCID: PMC5126858 DOI: 10.1186/s12862-016-0830-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/17/2016] [Indexed: 11/10/2022] Open
Abstract
Background The merozoite surface protein 7 (MSP7) is a Plasmodium protein which is involved in parasite invasion; the gene encoding it belongs to a multigene family. It has been proposed that MSP7 paralogues seem to be functionally redundant; however, recent experiments have suggested that they could have different roles. Results The msp7 multigene family has been described in newly available Plasmodium genomes; phylogenetic relationships were established in 12 species by using different molecular evolutionary approaches for assessing functional divergence amongst MSP7 members. Gene expansion and contraction rule msp7 family evolution; however, some members could have had concerted evolution. Molecular evolutionary analysis showed that relaxed and/or intensified selection modulated Plasmodium msp7 paralogous evolution. Furthermore, episodic diversifying selection and changes in evolutionary rates suggested that some paralogous proteins have diverged functionally. Conclusions Even though msp7 has mainly evolved in line with a birth-and-death evolutionary model, gene conversion has taken place between some paralogous genes allowing them to maintain their functional redundancy. On the other hand, the evolutionary rate of some MSP7 paralogs has become altered, as well as undergoing relaxed or intensified (positive) selection, suggesting functional divergence. This could mean that some MSP7s can form different parasite protein complexes and/or recognise different host receptors during parasite invasion. These results highlight the importance of this gene family in the Plasmodium genus. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0830-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Diego Garzón-Ospina
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá, DC, Colombia.,PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Carrera 24#63C-69, Bogotá, DC, Colombia
| | - Johanna Forero-Rodríguez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá, DC, Colombia
| | - Manuel A Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá, DC, Colombia. .,School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24#63C-69, Bogotá, DC, Colombia.
| |
Collapse
|
7
|
Beeson JG, Drew DR, Boyle MJ, Feng G, Fowkes FJI, Richards JS. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol Rev 2016; 40:343-72. [PMID: 26833236 PMCID: PMC4852283 DOI: 10.1093/femsre/fuw001] [Citation(s) in RCA: 242] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2016] [Indexed: 01/11/2023] Open
Abstract
Malaria accounts for an enormous burden of disease globally, with Plasmodium falciparum accounting for the majority of malaria, and P. vivax being a second important cause, especially in Asia, the Americas and the Pacific. During infection with Plasmodium spp., the merozoite form of the parasite invades red blood cells and replicates inside them. It is during the blood-stage of infection that malaria disease occurs and, therefore, understanding merozoite invasion, host immune responses to merozoite surface antigens, and targeting merozoite surface proteins and invasion ligands by novel vaccines and therapeutics have been important areas of research. Merozoite invasion involves multiple interactions and events, and substantial processing of merozoite surface proteins occurs before, during and after invasion. The merozoite surface is highly complex, presenting a multitude of antigens to the immune system. This complexity has proved challenging to our efforts to understand merozoite invasion and malaria immunity, and to developing merozoite antigens as malaria vaccines. In recent years, there has been major progress in this field, and several merozoite surface proteins show strong potential as malaria vaccines. Our current knowledge on this topic is reviewed, highlighting recent advances and research priorities. The authors summarize current knowledge of merozoite surface proteins of malaria parasites; their function in invasion, processing of surface proteins before, during and after invasion, their importance as targets of immunity, and the current status of malaria vaccines that target merozoite surface proteins.
Collapse
Affiliation(s)
- James G Beeson
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Microbiology, Monash University, Clayton, Victoria, Australia Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Damien R Drew
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Michelle J Boyle
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Gaoqian Feng
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Freya J I Fowkes
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Epidemiology and Preventive Medicine, Monash University, Clayton, Victoria, Australia School of Population Health, University of Melbourne, Parkville, Victoria, Australia
| | - Jack S Richards
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Microbiology, Monash University, Clayton, Victoria, Australia Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
8
|
Heterogeneous genetic diversity pattern in Plasmodium vivax genes encoding merozoite surface proteins (MSP) -7E, -7F and -7L. Malar J 2014; 13:495. [PMID: 25496322 PMCID: PMC4300842 DOI: 10.1186/1475-2875-13-495] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/10/2014] [Indexed: 11/15/2022] Open
Abstract
Background The msp-7 gene has become differentially expanded in the Plasmodium genus; Plasmodium vivax has the highest copy number of this gene, several of which encode antigenic proteins in merozoites. Methods DNA sequences from thirty-six Colombian clinical isolates from P. vivax (pv) msp-7E, −7F and -7L genes were analysed for characterizing and studying the genetic diversity of these pvmsp-7 members which are expressed during the intra-erythrocyte stage; natural selection signals producing the variation pattern so observed were evaluated. Results The pvmsp-7E gene was highly polymorphic compared to pvmsp-7F and pvmsp-7L which were seen to have limited genetic diversity; pvmsp-7E polymorphism was seen to have been maintained by different types of positive selection. Even though these copies seemed to be species-specific duplications, a search in the Plasmodium cynomolgi genome (P. vivax sister taxon) showed that both species shared the whole msp-7 repertoire. This led to exploring the long-term effect of natural selection by comparing the orthologous sequences which led to finding signatures for lineage-specific positive selection. Conclusions The results confirmed that the P. vivax msp-7 family has a heterogeneous genetic diversity pattern; some members are highly conserved whilst others are highly diverse. The results suggested that the 3′-end of these genes encode MSP-7 proteins’ functional region whilst the central region of pvmsp-7E has evolved rapidly. The lineage-specific positive selection signals found suggested that mutations occurring in msp-7s genes during host switch may have succeeded in adapting the ancestral P. vivax parasite population to humans. Electronic supplementary material The online version of this article (doi:10.1186/1475-2875-13-495) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Antimalarial activity of granzyme B and its targeted delivery by a granzyme B-single-chain Fv fusion protein. Antimicrob Agents Chemother 2014; 59:669-72. [PMID: 25313223 DOI: 10.1128/aac.04190-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We present here the first evidence that granzyme B acts against Plasmodium falciparum (50% inhibitory concentration [IC50], 1,590 nM; 95% confidence interval [95% CI], 1,197 to 2,112 nM). We created a novel antimalarial fusion protein consisting of granzyme B fused to a merozoite surface protein 4 (MSP4)-specific single-chain Fv protein (scFv), which targets the enzyme to infected erythrocytes, with up to an 8-fold reduction in the IC50 (176 nM; 95% CI, 154 to 202 nM). This study confirms the therapeutic efficacies of recombinant antibody-mediated antimalarial immunotherapeutics based on granzyme B.
Collapse
|
10
|
Forero-Rodríguez J, Garzón-Ospina D, Patarroyo MA. Low genetic diversity and functional constraint in loci encoding Plasmodium vivax P12 and P38 proteins in the Colombian population. Malar J 2014; 13:58. [PMID: 24533461 PMCID: PMC3930544 DOI: 10.1186/1475-2875-13-58] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 02/13/2014] [Indexed: 11/11/2022] Open
Abstract
Background Plasmodium vivax is one of the five species causing malaria in human beings, affecting around 391 million people annually. The development of an anti-malarial vaccine has been proposed as an alternative for controlling this disease. However, its development has been hampered by allele-specific responses produced by the high genetic diversity shown by some parasite antigens. Evaluating these antigens’ genetic diversity is thus essential when designing a completely effective vaccine. Methods The gene sequences of Plasmodium vivax p12 (pv12) and p38 (pv38), obtained from field isolates in Colombia, were used for evaluating haplotype polymorphism and distribution by population genetics analysis. The evolutionary forces generating the variation pattern so observed were also determined. Results Both pv12 and pv38 were shown to have low genetic diversity. The neutral model for pv12 could not be discarded, whilst polymorphism in pv38 was maintained by balanced selection restricted to the gene’s 5′ region. Both encoded proteins seemed to have functional/structural constraints due to the presence of s48/45 domains, which were seen to be highly conserved. Conclusions Due to the role that malaria parasite P12 and P38 proteins seem to play during invasion in Plasmodium species, added to the Pv12 and Pv38 antigenic characteristics and the low genetic diversity observed, these proteins might be good candidates to be evaluated in the design of a multistage/multi-antigen vaccine.
Collapse
Affiliation(s)
| | | | - Manuel A Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No, 26-20, Bogotá, DC, Colombia.
| |
Collapse
|
11
|
Lavazec C, Deplaine G, Safeukui I, Perrot S, Milon G, Mercereau-Puijalon O, David PH, Buffet P. Microsphiltration: a microsphere matrix to explore erythrocyte deformability. Methods Mol Biol 2013; 923:291-297. [PMID: 22990786 DOI: 10.1007/978-1-62703-026-7_20] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The altered deformability of erythrocytes infected with Plasmodium falciparum is central in malaria -pathogenesis, as it influences the hemodynamic properties of the infected cell and its retention in the spleen. Exported parasite proteins, as well as the shape and volume of the parasite itself, influence the deformability of the infected erythrocyte. To explore changes in erythrocyte deformability, we have developed a new method, called microsphiltration, based on filtration of erythrocytes through a mixture of metal microspheres that mimic the geometry of inter-endothelial splenic slits. As P. falciparum develops in its host cell, the retention rates observed in microspheres correlate with the progressive decrease of erythrocyte deformability and with the retention rates in the spleen. The yields of microsphiltration separation allow for molecular analyses of subpopulations with distinct mechanical phenotypes.
Collapse
Affiliation(s)
- Catherine Lavazec
- Unité d'Immunologie Moléculaire des Parasites, Institut Pasteur, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Garzón-Ospina D, López C, Forero-Rodríguez J, Patarroyo MA. Genetic diversity and selection in three Plasmodium vivax merozoite surface protein 7 (Pvmsp-7) genes in a Colombian population. PLoS One 2012; 7:e45962. [PMID: 23049905 PMCID: PMC3458108 DOI: 10.1371/journal.pone.0045962] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 08/28/2012] [Indexed: 11/18/2022] Open
Abstract
A completely effective vaccine for malaria (one of the major infectious diseases worldwide) is not yet available; different membrane proteins involved in parasite-host interactions have been proposed as candidates for designing it. It has been found that proteins encoded by the merozoite surface protein (msp)-7 multigene family are antibody targets in natural infection; the nucleotide diversity of three Pvmsp-7 genes was thus analyzed in a Colombian parasite population. By contrast with P. falciparum msp-7 loci and ancestral P. vivax msp-7 genes, specie-specific duplicates of the latter specie display high genetic variability, generated by single nucleotide polymorphisms, repeat regions, and recombination. At least three major allele types are present in Pvmsp-7C, Pvmsp-7H and Pvmsp-7I and positive selection seems to be operating on the central region of these msp-7 genes. Although this region has high genetic polymorphism, the C-terminus (Pfam domain ID: PF12948) is conserved and could be an important candidate when designing a subunit-based antimalarial vaccine.
Collapse
Affiliation(s)
- Diego Garzón-Ospina
- Fundación Instituto de Inmunología de Colombia – FIDIC, Bogotá DC, Colombia
- Microbiology postgraduate program, Universidad Nacional de Colombia, Bogotá DC, Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá DC, Colombia
| | - Carolina López
- Fundación Instituto de Inmunología de Colombia – FIDIC, Bogotá DC, Colombia
- Microbiology postgraduate program, Universidad Nacional de Colombia, Bogotá DC, Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá DC, Colombia
| | | | - Manuel A. Patarroyo
- Fundación Instituto de Inmunología de Colombia – FIDIC, Bogotá DC, Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá DC, Colombia
- * E-mail:
| |
Collapse
|
13
|
Patarroyo ME, Bermúdez A, Patarroyo MA. Structural and Immunological Principles Leading to Chemically Synthesized, Multiantigenic, Multistage, Minimal Subunit-Based Vaccine Development. Chem Rev 2011; 111:3459-507. [DOI: 10.1021/cr100223m] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Manuel Elkin Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50, No. 26-00, Bogotá, Colombia
- Universidad Nacional de Colombia
| | - Adriana Bermúdez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50, No. 26-00, Bogotá, Colombia
- Universidad del Rosario
| | - Manuel Alfonso Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50, No. 26-00, Bogotá, Colombia
- Universidad del Rosario
| |
Collapse
|
14
|
Merozoite surface proteins of the malaria parasite: The MSP1 complex and the MSP7 family. Int J Parasitol 2010; 40:1155-61. [PMID: 20451527 DOI: 10.1016/j.ijpara.2010.04.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 04/22/2010] [Accepted: 04/26/2010] [Indexed: 11/21/2022]
|
15
|
Obando-Martinez AZ, Curtidor H, Vanegas M, Arévalo-Pinzón G, Patarroyo MA, Patarroyo ME. Conserved regions from Plasmodium falciparum MSP11 specifically interact with host cells and have a potential role during merozoite invasion of red blood cells. J Cell Biochem 2010; 110:882-92. [DOI: 10.1002/jcb.22600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Deletion of the Plasmodium falciparum merozoite surface protein 7 gene impairs parasite invasion of erythrocytes. EUKARYOTIC CELL 2008; 7:2123-32. [PMID: 18820076 DOI: 10.1128/ec.00274-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Merozoite surface proteins have been implicated in the initial attachment to the host red blood cell membrane that begins the process of invasion, an important step in the life cycle of the malaria parasite. In Plasmodium falciparum, merozoite surface proteins include several glycosylphosphatidyl inositol-anchored proteins and peripheral proteins attached to the membrane through protein-protein interactions. The most abundant of these proteins is the merozoite surface protein 1 (MSP1) complex, encoded by at least three genes: msp1, msp6, and msp7. The msp7 gene is part of a six-member multigene family in Plasmodium falciparum. We have disrupted msp7 in the Plasmodium falciparum D10 parasite, as confirmed by Southern hybridization. Immunoblot and indirect immunofluorescence analyses confirmed the MSP7 null phenotype of D10DeltaMSP7 parasites. The synthesis, distribution, and processing of MSP1 were not affected in this parasite line. The level of expression and cellular distribution of the proteins MSP1, MSP3, MSP6, MSP9, and SERA5 remained comparable to those for the parental line. Furthermore, no significant change in the expression of MSP7-related proteins, except for that of MSRP5, was detected at the transcriptional level. The lack of MSP7 was not lethal at the asexual blood stage, but it did impair invasion of erythrocytes by merozoites to a significant degree. Despite this reduction in efficiency, D10DeltaMSP7 parasites did not show any obvious preference for alternate pathways of invasion.
Collapse
|
17
|
Rodriguez LE, Curtidor H, Urquiza M, Cifuentes G, Reyes C, Patarroyo ME. Intimate Molecular Interactions of P. falciparum Merozoite Proteins Involved in Invasion of Red Blood Cells and Their Implications for Vaccine Design. Chem Rev 2008; 108:3656-705. [DOI: 10.1021/cr068407v] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | - Mauricio Urquiza
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | - Gladys Cifuentes
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | - Claudia Reyes
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | | |
Collapse
|