1
|
Huang W, Wan Y, Zhang S, Wang C, Zhang Z, Su H, Xiong P, Hou F. Recent Advances in Phenazine Natural Products: Chemical Structures and Biological Activities. Molecules 2024; 29:4771. [PMID: 39407699 PMCID: PMC11477647 DOI: 10.3390/molecules29194771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Phenazine natural products are a class of colored nitrogen-containing heterocycles produced by various microorganisms mainly originating from marine and terrestrial sources. The tricyclic ring molecules show various chemical structures and the decorating groups dedicate extensive pharmacological activities, including antimicrobial, anticancer, antiparasitic, anti-inflammatory, and insecticidal. These secondary metabolites provide natural materials for screening and developing medicinal compounds in the field of medicine and agriculture due to biological activities. The review presents a systematic summary of the literature on natural phenazines in the past decade, including over 150 compounds, such as hydroxylated, O-methylated, N-methylated, N-oxide, terpenoid, halogenated, glycosylated phenazines, saphenic acid derivatives, and other phenazine derivatives, along with their characterized antimicrobial and anticancer activities. This review may provide guidance for the investigation of phenazines in the future.
Collapse
Affiliation(s)
- Wei Huang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China; (W.H.); (C.W.)
- Shandong Freda Biotech Co., Ltd., Jinan 250101, China;
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (Y.W.); (Z.Z.)
| | - Yupeng Wan
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (Y.W.); (Z.Z.)
| | - Shuo Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Chaozhi Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China; (W.H.); (C.W.)
| | - Zhe Zhang
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (Y.W.); (Z.Z.)
| | - Huai Su
- Shandong Freda Biotech Co., Ltd., Jinan 250101, China;
| | - Peng Xiong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China; (W.H.); (C.W.)
| | - Feifei Hou
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China; (W.H.); (C.W.)
| |
Collapse
|
2
|
Chen GQ, Guo HY, Quan ZS, Shen QK, Li X, Luan T. Natural Products-Pyrazine Hybrids: A Review of Developments in Medicinal Chemistry. Molecules 2023; 28:7440. [PMID: 37959859 PMCID: PMC10649211 DOI: 10.3390/molecules28217440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Pyrazine is a six-membered heterocyclic ring containing nitrogen, and many of its derivatives are biologically active compounds. References have been downloaded through Web of Science, PubMed, Science Direct, and SciFinder Scholar. The structure, biological activity, and mechanism of natural product derivatives containing pyrazine fragments reported from 2000 to September 2023 were reviewed. Publications reporting only the chemistry of pyrazine derivatives are beyond the scope of this review and have not been included. The results of research work show that pyrazine-modified natural product derivatives have a wide range of biological activities, including anti-inflammatory, anticancer, antibacterial, antiparasitic, and antioxidant activities. Many of these derivatives exhibit stronger pharmacodynamic activity and less toxicity than their parent compounds. This review has a certain reference value for the development of heterocyclic compounds, especially pyrazine natural product derivatives.
Collapse
Affiliation(s)
- Guo-Qing Chen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (G.-Q.C.); (H.-Y.G.); (Z.-S.Q.); (Q.-K.S.)
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (G.-Q.C.); (H.-Y.G.); (Z.-S.Q.); (Q.-K.S.)
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (G.-Q.C.); (H.-Y.G.); (Z.-S.Q.); (Q.-K.S.)
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (G.-Q.C.); (H.-Y.G.); (Z.-S.Q.); (Q.-K.S.)
| | - Xiaoting Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (G.-Q.C.); (H.-Y.G.); (Z.-S.Q.); (Q.-K.S.)
| | - Tian Luan
- Department of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| |
Collapse
|
3
|
Patinote C, Raevens S, Baumann A, Pellegrin E, Bonnet PA, Deleuze-Masquéfa C. [1,2,4]triazolo[4,3- a]quinoxaline as Novel Scaffold in the Imiqualines Family: Candidates with Cytotoxic Activities on Melanoma Cell Lines. Molecules 2023; 28:5478. [PMID: 37513350 PMCID: PMC10384284 DOI: 10.3390/molecules28145478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Cutaneous melanoma is one of the most aggressive human cancers and is the deadliest form of skin cancer, essentially due to metastases. Novel therapies are always required, since cutaneous melanoma develop resistance to oncogenic pathway inhibition treatment. The Imiqualine family is composed of heterocycles diversely substituted around imidazo[1,2-a]quinoxaline, imidazo[1,2-a]pyrazine, imidazo[1,5-a]quinoxaline, and pyrazolo[1,5-a]quinoxaline scaffolds, which display interesting activities on a panel of cancer cell lines, especially melanoma cell lines. We have designed and prepared novel compounds based on the [1,2,4]triazolo[4,3-a]quinoxaline scaffold through a common synthetic route, using 1-chloro-2-hydrazinoquinoxaline and an appropriate aldehyde. Cyclization is ensured by an oxidation-reduction mechanism using chloranil. The substituents on positions 1 and 8 were chosen based on previous structure-activity relationship (SAR) studies conducted within our heterocyclic Imiqualine family. Physicochemical parameters of all compounds have also been predicted. A375 melanoma cell line viability has been evaluated for 16 compounds. Among them, three novel [1,2,4]triazolo[4,3-a]quinoxalines display cytotoxic activities. Compounds 16a and 16b demonstrate relative activities in the micromolar range (respectively, 3158 nM and 3527 nM). Compound 17a shows the best EC50 of the novel series (365 nM), even if EAPB02303 remains the lead of the entire Imiqualine family (3 nM).
Collapse
Affiliation(s)
- Cindy Patinote
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, (CNRS, ENSCM, Université de Montpellier), 1919 Route de Mende, 34090 Montpellier, France
| | - Sandy Raevens
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, (CNRS, ENSCM, Université de Montpellier), 1919 Route de Mende, 34090 Montpellier, France
| | - Amélie Baumann
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, (CNRS, ENSCM, Université de Montpellier), 1919 Route de Mende, 34090 Montpellier, France
| | - Eloise Pellegrin
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, (CNRS, ENSCM, Université de Montpellier), 1919 Route de Mende, 34090 Montpellier, France
| | - Pierre-Antoine Bonnet
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, (CNRS, ENSCM, Université de Montpellier), 1919 Route de Mende, 34090 Montpellier, France
| | - Carine Deleuze-Masquéfa
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, (CNRS, ENSCM, Université de Montpellier), 1919 Route de Mende, 34090 Montpellier, France
| |
Collapse
|
4
|
Ręka P, Grolik J, Stadnicka KM, Kołton-Wróż M, Wołkow P. Synthesis of Nonsymmetrically Substituted 2,3-Dialkoxyphenazine Derivatives and Preliminary Examination of Their Cytotoxicity. J Org Chem 2023; 88:1339-1351. [PMID: 36639775 PMCID: PMC9903326 DOI: 10.1021/acs.joc.2c01901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Fourteen new 2,3-dialkoxyphenazine derivatives with two different alkoxy groups bearing R1 and R2 alkyl chains, defined as -CH2CH(CH3)2 and -(CH2)n-1CH3 for n = 1, 2, 4, 6, 8, and 10, were prepared via regioselective synthesis. The applied synthetic protocol is based on the following reactions: the Buchwald-Hartwig coupling of a nonsymmetrically substituted 4,5-dialkoxy-2-nitroaniline with a 1-bromo-2-nitrobenzene derivative featuring additional tert-butyl, trifluoromethyl or two methoxy groups; the reduction of bis(2-nitrophenyl)amine; and a final step of tandem-like oxidation that leads to the preparation of a heterocyclic phenazine system. The regioselectivity of these steps and the molecular structure of the compounds under investigation were confirmed by nuclear magnetic resonance and additionally by single-crystal X-ray diffraction performed for some examples of 5 and 6 phenazine series. For 7-(tert-butyl)-3-isobutoxy-2-(octyloxy)phenazine (5f), 3-(hexyloxy)-2-isobutoxy-7-(trifluoromethyl)phenazine (6e), and 2,3-bis(hexyloxy)-7,8-dimethoxyphenazine (7), viability and cytotoxicity assays were performed on the LoVo human colon adenocarcinoma cell line, with 5f confirmed to exhibit cytotoxicity.
Collapse
Affiliation(s)
- Paweł Ręka
- Department
of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Jarosław Grolik
- Department
of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland,
| | - Katarzyna M. Stadnicka
- Department
of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Maria Kołton-Wróż
- Center
for Medical Genomics—OMICRON, Jagiellonian
University Medical College, Kopernika 7c, 31-034 Kraków, Poland
| | - Paweł Wołkow
- Center
for Medical Genomics—OMICRON, Jagiellonian
University Medical College, Kopernika 7c, 31-034 Kraków, Poland
| |
Collapse
|
5
|
Ramalingam V, Varunkumar K, Ravikumar V, Rajaram R. N-(2-hydroxyphenyl)-2-phenazinamine from Nocardiopsis exhalans induces p53-mediated intrinsic apoptosis signaling in lung cancer cell lines. Chem Biol Interact 2023; 369:110282. [PMID: 36427553 DOI: 10.1016/j.cbi.2022.110282] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
The present study aims to investigate the effect and the molecular mechanism of N-(2-hydroxyphenyl)-2-phenazinamine (NHP) isolated from Nocardiopsis exhalans against the proliferation of human lung cancer cells. The cytotoxic activity of NHP against A549 and H520 cells was determined using MTT assay. The cytotoxic activity of NHP against A549 and H520 lung cancer cells showed excellent activity at 75 μg/mL and damage the mitochondrial membrane and nucleus by generating oxidative stress. NHP causes nuclear condensation and induces apoptosis which was confirmed using AO/EB and PI/DAPI dual staining assay. Moreover, the NHP downregulates the oncogenic genes such as IL-8, TNFα, MMPs and BcL2 and also upregulates the expression of apoptosis marker genes such as Cyto C, p53, p21, caspase 9/3 in A549 and H520 human lung cancer cells. Considering the strong anticancer activity of NHP against lung cancer, NHP may be further evaluated as a potential anticancer drug for the treatment of lung cancer.
Collapse
Affiliation(s)
- Vaikundamoorthy Ramalingam
- Centre for Natural Products and Traditional Knowledge, Indian Institute of Chemical Technology, Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| | | | | | - Rajendran Rajaram
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, India.
| |
Collapse
|
6
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
7
|
Bao XF, Zhu YX, Xie WX, Liu ZY, Zhu L, Jiang H, Zhao Y. Synthesis of 1-substituted phenazines as novel antichlamydial agents. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:827-838. [PMID: 34657526 DOI: 10.1080/10286020.2021.1982909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
A novel series of 1-substituted phenazines 4a-4l were designed and synthesized via Palladium-catalyzed reactions from 1-phenazine trifluoromethanesulfonate. These phenazines showed antichlamydial activity with IC50 values from 1 to 10 μM. Among them, compounds 4c and 4i exhibited the best antichlamydial activity with IC50 values from 2.06 to 2.74 μM without apparent cytotoxicity to host cells.
Collapse
Affiliation(s)
- Xiao-Feng Bao
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Yi-Xin Zhu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Wen-Xia Xie
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Zi-Yi Liu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Li Zhu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - He Jiang
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Yu Zhao
- School of Pharmacy, Nantong University, Nantong 226001, China
| |
Collapse
|
8
|
Viktorsson EÖ, Aesoy R, Støa S, Lekve V, Døskeland SO, Herfindal L, Rongved P. New prodrugs and analogs of the phenazine 5,10-dioxide natural products iodinin and myxin promote selective cytotoxicity towards human acute myeloid leukemia cells. RSC Med Chem 2021; 12:767-778. [PMID: 34124675 PMCID: PMC8152588 DOI: 10.1039/d1md00020a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/29/2021] [Indexed: 12/22/2022] Open
Abstract
Novel chemotherapeutic strategies for acute myeloid leukemia (AML) treatment are called for. We have recently demonstrated that the phenazine 5,10-dioxide natural products iodinin (3) and myxin (4) exhibit potent and hypoxia-selective cell death on MOLM-13 human AML cells, and that the N-oxide functionalities are pivotal for the cytotoxic activity. Very few structure-activity relationship studies dedicated to phenazine 5,10-dioxides exist on mammalian cell lines and the present work describes our efforts regarding in vitro lead optimizations of the natural compounds iodinin (3) and myxin (4). Prodrug strategies reveal carbamate side chains to be the optimal phenol-attached group. Derivatives with no oxygen-based substituent (-OH or -OCH3) in the 6th position of the phenazine skeleton upheld potency if alkyl or carbamate side chains were attached to the phenol in position 1. 7,8-Dihalogenated- and 7,8-dimethylated analogs of 1-hydroxyphenazine 5,10-dioxide (21) displayed increased cytotoxic potency in MOLM-13 cells compared to all the other compounds studied. On the other hand, dihalogenated compounds displayed high toxicity towards the cardiomyoblast H9c2 cell line, while MOLM-13 selectivity of the 7,8-dimethylated analogs were less affected. Further, a parallel artificial membrane permeability assay (PAMPA) demonstrated the majority of the synthesized compounds to penetrate cell membranes efficiently, which corresponded to their cytotoxic potency. This work enhances the understanding of the structural characteristics essential for the activity of phenazine 5,10-dioxides, rendering them promising chemotherapeutic agents.
Collapse
Affiliation(s)
- Elvar Örn Viktorsson
- School of Pharmacy, Department of Pharmaceutical Chemistry, University of Oslo PO Box 1068 Blindern N0316 Oslo Norway
- School of Health Sciences, Faculty of Pharmaceutical Sciences, University of Iceland Hofsvallagata 53 IS-107 Reykjavik Iceland
| | - Reidun Aesoy
- Centre for Pharmacy, Department of Clinical Science, University of Bergen Jonas Lies vei 87 N-5021 Bergen Norway
| | - Sindre Støa
- School of Pharmacy, Department of Pharmaceutical Chemistry, University of Oslo PO Box 1068 Blindern N0316 Oslo Norway
| | - Viola Lekve
- Centre for Pharmacy, Department of Clinical Science, University of Bergen Jonas Lies vei 87 N-5021 Bergen Norway
| | - Stein Ove Døskeland
- Department of Biomedicine, University of Bergen Jonas Lies vei 91 N-5021 Bergen Norway
| | - Lars Herfindal
- Centre for Pharmacy, Department of Clinical Science, University of Bergen Jonas Lies vei 87 N-5021 Bergen Norway
| | - Pål Rongved
- School of Pharmacy, Department of Pharmaceutical Chemistry, University of Oslo PO Box 1068 Blindern N0316 Oslo Norway
| |
Collapse
|
9
|
Ukwitegetse N, Femia D, Muthiah Ravinson DS, Djurovich PI, Thompson ME. Synthesis and Characterization of Zinc(II) Complexes Bearing 4-Acridinol and 1-Phenazinol Ligands. Inorg Chem 2021; 60:866-871. [PMID: 33395530 DOI: 10.1021/acs.inorgchem.0c02942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis and characterization of zinc(II) chelates bearing acridin-4-ol (A), phenazin-1-ol (P), and benzo[b]phenazin-1-ol (bP) are presented. The formation of homoleptic (ZnX2) or heteroleptic (ZnX1) products can be controlled by stochiometric or excess amounts of zinc(II) acetylacetonate monohydrate, Zn(acac)2, respectively. Electrochemical and photophysical studies show that the homoleptic complexes (ZnA2, ZnP2, and ZnbP2) have ligand-centered properties inherited from the corresponding free ligands. Calculations using density functional theory (DFT) agree with the observed experimental ligand-centered photophysical and electrochemical behavior.
Collapse
Affiliation(s)
- Narcisse Ukwitegetse
- University of Southern California, Department of Chemistry, Los Angeles, California 90089, United States
| | - Denise Femia
- University of Southern California, Department of Chemistry, Los Angeles, California 90089, United States
| | | | - Peter I Djurovich
- University of Southern California, Department of Chemistry, Los Angeles, California 90089, United States
| | - Mark E Thompson
- University of Southern California, Department of Chemistry, Los Angeles, California 90089, United States
| |
Collapse
|
10
|
Agarwal M, Verma K, Kumar Tailor Y, Khandelwal S, Rushell E, Pathak S, Kumari Y, Awasthi K, Kumar M. Efficient and Sustainable Synthesis of Spiroannulated Hybrid Molecules with Privileged Substructures using Nanostructured Heterogeneous Catalyst. ChemistrySelect 2020. [DOI: 10.1002/slct.202003752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Monu Agarwal
- Department of Chemistry University of Rajasthan Jaipur India
| | - Kanchan Verma
- Department of Chemistry University of Rajasthan Jaipur India
| | | | | | - Esha Rushell
- Department of Chemistry University of Rajasthan Jaipur India
| | - Sakshi Pathak
- Department of Chemistry University of Rajasthan Jaipur India
| | - Yogita Kumari
- Soft Materials Lab, Department of Physics Malaviya National Institute of Technology Jaipur India
| | - Kamlendra Awasthi
- Soft Materials Lab, Department of Physics Malaviya National Institute of Technology Jaipur India
| | - Mahendra Kumar
- Department of Chemistry University of Rajasthan Jaipur India
| |
Collapse
|
11
|
Bao X, Liu Z, Ni M, Xia C, Xu S, Yang S, Zhao Y. Synthesis and Assessment of 3-Substituted Phenazines as Novel Antichlamydial Agents. Med Chem 2020; 16:413-421. [PMID: 31284867 DOI: 10.2174/1573406415666190708145639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the past century, many phenazines were isolated from the marine microorganism, and some of these phenazines possessed potent antibacterial activities. We found that a few of the synthesized 4-substituted phenazines could block the infectivity of chlamydiae without host cell toxicity. OBJECTIVE The aim of this study was to design and synthesize two series of novel 3-substituted phenazines to find novel antichlamydial agents. METHODS The 3-substituted phenazines were synthesized via Buchwald-Hartwig cross coupling reaction and Suzuki reaction from 3-bromo-1-methoxyphenazine. The antichlamydial activity of these synthesized compounds was evaluated by determining their effect on the yield of infectious progeny EBs. Cytotoxicity of these compounds on host cells was assessed by the treatment of uninfected HeLa cells using WST-1 method. RESULTS Most of the 3-substituted phenazines possessed potent antichlamydial activity with IC50 values from 0.15 to 12.08 μM against Chlamydia trachomatis L2, C. muridarum MoPn and C. pneumoniae AR39. Among them, 7d and 9a exhibited better antichlamydial activity with IC50 values from 0.20 to 1.01 μM while they have no apparent cytotoxicity to host cells. Biological assay disclosed that both 7d and 9a inhibited chlamydial infection by reducing elementary body infectivity and disturbing chlamydial growth during the whole chlamydial developmental cycle. CONCLUSION Our findings suggested that 3-substituted phenazine derivatives might be a promising class of therapeutic agents for chlamydial infections. More effective phenazines with low toxicity could be acquired through further chemical modification on C-3 position rather than C-4 position of phenazine.
Collapse
Affiliation(s)
- Xiaofeng Bao
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Ziyi Liu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Min Ni
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Chao Xia
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Shunxin Xu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Shengju Yang
- Department of Dermatology and Venereology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yu Zhao
- School of Pharmacy, Nantong University, Nantong 226001, China
| |
Collapse
|
12
|
Synthesis of phenazines from ortho-bromo azo compounds via sequential Buchwald-Hartwig amination under micellar conditions and acid promoted cyclization. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Janda E, Nepveu F, Calamini B, Ferry G, Boutin JA. Molecular Pharmacology of NRH:Quinone Oxidoreductase 2: A Detoxifying Enzyme Acting as an Undercover Toxifying Enzyme. Mol Pharmacol 2020; 98:620-633. [DOI: 10.1124/molpharm.120.000105] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/11/2020] [Indexed: 01/02/2023] Open
|
14
|
Mello FV, Kasper D, Alonso MB, Torres JPM. Halogenated natural products in birds associated with the marine environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137000. [PMID: 32062248 DOI: 10.1016/j.scitotenv.2020.137000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Halogenated natural products (HNPs) are widespread compounds found at high concentrations in top predators such as seabirds. This paper reviews available data on methoxylated polybrominated diphenyl ethers (MeO-BDEs), heptachloro-1'-methyl-1,2'-bipyrrole (Q1) and 1,1'-dimethyl-2,2'-bipyrroles (HDBPs) in these animals. In all, 25 papers reported such HNPs in seabirds. White tailed sea eagle from Sweden was the seabird species with higher MeO-BDEs levels in eggs and blood, while in liver the European shag from Norway was the one. Regarding HDBPs, glaucous gull livers from North Water Polynya and Leach's storm petrel eggs from South Canada (NE Atlantic) showed the highest levels, while brown skua eggs presented the highest concentration of Q1. DBP-Br4Cl2 and DBP-Br6 were the most abundant HDBPs in seabirds, although only one study investigated DBP-Br6. Furthermore, 2'-MeO-BDE-68/6'-MeO-BDE-47 ratios were lower than one in mostly of the studies (91%). The main sources of methoxylated congeners found in seabirds might to be from sponges and/or associated organisms (bacteria). The scarcity of data in seabirds showed the gap in knowledge. Few studies were done especially in tropical areas and Southern Hemisphere and the most were conducted in the northwest part of the globe. This review arouses the need of knowledge about the distribution of these compounds in seabirds worldwide as well as it encourages toxicological studies to better understand the possible effects of HNPs on seabirds.
Collapse
Affiliation(s)
- Flávia V Mello
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho 373, G0-61, CCS, RJ 21941-902, Brazil.
| | - Daniele Kasper
- Laboratório de Traçadores em Ciências Ambientais, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho 373, G0-49, CCS, RJ 21941-902, Brazil.
| | - Mariana B Alonso
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho 373, G0-61, CCS, RJ 21941-902, Brazil.
| | - João Paulo M Torres
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho 373, G0-61, CCS, RJ 21941-902, Brazil.
| |
Collapse
|
15
|
Liu K, Huigens RW. Instructive Advances in Chemical Microbiology Inspired by Nature's Diverse Inventory of Molecules. ACS Infect Dis 2020; 6:541-562. [PMID: 31842540 PMCID: PMC7346871 DOI: 10.1021/acsinfecdis.9b00413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Natural product antibiotics have played an essential role in the treatment of bacterial infection in addition to serving as useful tools to explore the intricate biology of bacteria. Our current arsenal of antibiotics operate through the inhibition of well-defined bacterial targets critical for replication and growth. Pathogenic bacteria effectively utilize a diversity of mechanisms that lead to acquired resistance and/or innate tolerance toward antibiotic therapies, which can result in devastating consequences to human life. Several research groups have established innovative programs that work at the chemistry-biology interface to develop new molecules that aim to define and address concerns related to antibiotic resistance and tolerance. In this Review, we present recent progress by select research groups that highlight a diversity of integrated chemical biology and medicinal chemistry approaches aimed at the development and utilization of chemical tools that have led to promising new microbiological insights that may lead to significant clinical advances regarding the treatment of pathogenic bacteria.
Collapse
Affiliation(s)
- Ke Liu
- 1345 Center Drive, Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Robert W. Huigens
- 1345 Center Drive, Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
16
|
Huigens RW, Abouelhassan Y, Yang H. Phenazine Antibiotic-Inspired Discovery of Bacterial Biofilm-Eradicating Agents. Chembiochem 2019; 20:2885-2902. [PMID: 30811834 PMCID: PMC7325843 DOI: 10.1002/cbic.201900116] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Indexed: 12/19/2022]
Abstract
Bacterial biofilms are surface-attached communities of slow-growing and non-replicating persister cells that demonstrate high levels of antibiotic tolerance. Biofilms occur in nearly 80 % of infections and present unique challenges to our current arsenal of antibiotic therapies, all of which were initially discovered for their abilities to target rapidly dividing, free-floating planktonic bacteria. Bacterial biofilms are credited as the underlying cause of chronic and recurring bacterial infections. Innovative approaches are required to identify new small molecules that operate through bacterial growth-independent mechanisms to effectively eradicate biofilms. One source of inspiration comes from within the lungs of young cystic fibrosis (CF) patients, who often endure persistent Staphylococcus aureus infections. As these CF patients age, Pseudomonas aeruginosa co-infects the lungs and utilizes phenazine antibiotics to eradicate the established S. aureus infection. Our group has taken a special interest in this microbial competition strategy and we are investigating the potential of phenazine antibiotic-inspired compounds and synthetic analogues thereof to eradicate persistent bacterial biofilms. To discover new biofilm-eradicating agents, we have established an interdisciplinary research program involving synthetic medicinal chemistry, microbiology and molecular biology. From these efforts, we have identified a series of halogenated phenazines (HPs) that potently eradicate bacterial biofilms, and future work aims to translate these preliminary findings into ground-breaking clinical advances for the treatment of persistent biofilm infections.
Collapse
Affiliation(s)
- Robert W. Huigens
- Department of Medicinal Chemistry; Center for Natural Products Drug Discovery and Development (CNPD3); University of Florida, Gainesville, FL, USA
| | - Yasmeen Abouelhassan
- Department of Medicinal Chemistry; Center for Natural Products Drug Discovery and Development (CNPD3); University of Florida, Gainesville, FL, USA
| | - Hongfen Yang
- Department of Medicinal Chemistry; Center for Natural Products Drug Discovery and Development (CNPD3); University of Florida, Gainesville, FL, USA
| |
Collapse
|
17
|
Zhang Y, Yang M, Jia C, Ji M. Iodine-Promoted Domino Oxidative Cyclization for the One-Pot Synthesis of Novel Fused Four-Ring Quinoxaline Fluorophores by sp 3 C-H Functionalization. Chemistry 2019; 25:13709-13713. [PMID: 31498477 DOI: 10.1002/chem.201903688] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/05/2019] [Indexed: 02/02/2023]
Abstract
A method for the synthesis of novel fused four-ring quinoxaline skeleton has been described by an I2 promoted sp3 C-H functionalization between 1,2,3,3-tetramethyl-3H-indolium iodides and 1,2-diamines. This transformation proceeds smoothly under metal- and peroxide-free conditions through a sequential iodination, oxidation, annulation and rearrangement. Moreover, 8,9-dichloro-5,12,12-trimethyl-2-(trifluoromethyl)-5,12-dihydroquinolino[2,3-b]quinoxaline showed good photophysical properties and was used in live cell imaging, indicating the potential value of this skeleton as a fluorophore in probes.
Collapse
Affiliation(s)
- Yong Zhang
- School of Biological Science and Medical Engineering, Southeast University, Dingjiaqiao 87, 210009, Nanjing, P. R. China
| | - Min Yang
- School of Biological Science and Medical Engineering, Southeast University, Dingjiaqiao 87, 210009, Nanjing, P. R. China
| | - Chengli Jia
- School of Biological Science and Medical Engineering, Southeast University, Dingjiaqiao 87, 210009, Nanjing, P. R. China
| | - Min Ji
- School of Biological Science and Medical Engineering, Southeast University, Dingjiaqiao 87, 210009, Nanjing, P. R. China
| |
Collapse
|
18
|
Dib N, Fernández L, Santo M, Otero L, Alustiza F, Liaudat AC, Bosch P, Lavaggi ML, Cerecetto H, González M. Formation of dendrimer-guest complexes as a strategy to increase the solubility of a phenazine N, N'-dioxide derivative with antitumor activity. Heliyon 2019; 5:e01528. [PMID: 31049437 PMCID: PMC6482317 DOI: 10.1016/j.heliyon.2019.e01528] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/22/2018] [Accepted: 04/11/2019] [Indexed: 11/20/2022] Open
Abstract
Poly(amidoamine) and Poly(propylenimine) dendrimers with different generations and peripheral groups were studied as solubility enhancers and nanocarriers for 7-bromo-2-hydroxy-phenazine N5,N10-dioxide. This compound possesses potential antitumoral and anti-trypanosomal activity, but its low solubility in physiological media precludes its possible application as therapeutic drug. The amino terminated dendrimers association with the active compounds as observed trough NMR studies showed that electrostatic interactions are essential in the solubilization enhancement process. The obtaining of a stable and no cytotoxic formulation makes the drug-carried association a suitable strategy for the generation of a drug delivery system for phenazine derivatives.
Collapse
Affiliation(s)
- Nahir Dib
- Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto, CONICET, Agencia Postal 3, X5804BYA, Río Cuarto, Argentina
| | - Luciana Fernández
- Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto, CONICET, Agencia Postal 3, X5804BYA, Río Cuarto, Argentina
| | - Marisa Santo
- Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto, CONICET, Agencia Postal 3, X5804BYA, Río Cuarto, Argentina
| | - Luis Otero
- Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto, CONICET, Agencia Postal 3, X5804BYA, Río Cuarto, Argentina
| | - Fabrisio Alustiza
- Grupo de Sanidad Animal, INTA Estación Experimental Agropecuaria Marcos Juárez, X2580, Marcos Juárez, Argentina
| | - Ana Cecilia Liaudat
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal 3, X5804BYA, Río Cuarto, Argentina
| | - Pablo Bosch
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal 3, X5804BYA, Río Cuarto, Argentina
| | - M Laura Lavaggi
- Departamento de Química Orgánica, Facultad de Química, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay
| | - Hugo Cerecetto
- Departamento de Química Orgánica, Facultad de Química, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay
| | - Mercedes González
- Departamento de Química Orgánica, Facultad de Química, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay
| |
Collapse
|
19
|
Ashu EE, Xu J, Yuan ZC. Bacteria in Cancer Therapeutics: A Framework for Effective Therapeutic Bacterial Screening and Identification. J Cancer 2019; 10:1781-1793. [PMID: 31205534 PMCID: PMC6547982 DOI: 10.7150/jca.31699] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/21/2019] [Indexed: 12/11/2022] Open
Abstract
By 2030, the global incidence of cancer is expected to increase by approximately 50%. However, most conventional therapies still lack cancer selectivity, which can have severe unintended side effects on healthy body tissue. Despite being an unconventional and contentious therapy, the last two decades have seen a significant renaissance of bacterium-mediated cancer therapy (BMCT). Although promising, most present-day therapeutic bacterial candidates have not shown satisfactory efficacy, effectiveness, or safety. Furthermore, therapeutic bacterial candidates are available to only a few of the approximately 200 existing cancer types. Excitingly, the recent surge in BMCT has piqued the interest of non-BMCT microbiologists. To help advance these interests, in this paper we reviewed important aspects of cancer, present-day cancer treatments, and historical aspects of BMCT. Here, we provided a four-step framework that can be used in screening and identifying bacteria with cancer therapeutic potential, including those that are uncultivable. Systematic methodologies such as the ones suggested here could prove valuable to new BMCT researchers, including experienced non-BMCT researchers in possession of extensive knowledge and resources of bacterial genomics. Lastly, our analyses highlight the need to establish and standardize quantitative methods that can be used to identify and compare bacteria with important cancer therapeutic traits.
Collapse
Affiliation(s)
- Eta E. Ashu
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Ze-Chun Yuan
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| |
Collapse
|
20
|
Tan LTH, Chan KG, Pusparajah P, Yin WF, Khan TM, Lee LH, Goh BH. Mangrove derived Streptomyces sp. MUM265 as a potential source of antioxidant and anticolon-cancer agents. BMC Microbiol 2019; 19:38. [PMID: 30760201 PMCID: PMC6375222 DOI: 10.1186/s12866-019-1409-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 01/31/2019] [Indexed: 01/11/2023] Open
Abstract
Background Colon cancer is the third most commonly diagnosed cancer worldwide, with a commensurately high mortality rate. The search for novel antioxidants and specific anticancer agents which may inhibit, delay or reverse the development of colon cancer is thus an area of great interest; Streptomyces bacteria have been demonstrated to be a source of such agents. Results The extract from Streptomyces sp. MUM265— a strain which was isolated and identified from Kuala Selangor mangrove forest, Selangor, Malaysia— was analyzed and found to exhibit antioxidant properties as demonstrated via metal-chelating ability as well as superoxide anion, DPPH and ABTS radical scavenging activities. This study also showed that MUM265 extract demonstrated cytotoxicity against colon cancer cells as evidenced by the reduced cell viability of Caco-2 cell line. Treatment with MUM265 extract induced depolarization of mitochondrial membrane potential and accumulation of subG1 cells in cell cycle analysis, suggesting that MUM265 exerted apoptosis-inducing effects on Caco-2 cells. Conclusion These findings indicate that mangrove derived Streptomyces sp. MUM265 represents a valuable bioresource of bioactive compounds for the future development of chemopreventive agents, with particular promise suggested for treatment of colon cancer. Electronic supplementary material The online version of this article (10.1186/s12866-019-1409-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Loh Teng-Hern Tan
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.,Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.,Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Kok-Gan Chan
- International Genome Centre, Jiangsu University, Zhenjiang, China. .,Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia.
| | - Priyia Pusparajah
- Medical Health and Translational Research Group, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Tahir Mehmood Khan
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.,Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.,Medical Health and Translational Research Group, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia. .,Institute of Pharmaceutical Science, University of Veterinary and Animal Science, Lahore, Pakistan. .,Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand.
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia. .,Institute of Pharmaceutical Science, University of Veterinary and Animal Science, Lahore, Pakistan. .,Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand.
| |
Collapse
|
21
|
Bao X, Yu X, Xia C, Yang N, Yang S, Zhao Y. Synthesis and Antichlamydial Activity of Novel Phenazines. LETT DRUG DES DISCOV 2018. [DOI: 10.2174/1570180815666180518112952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract: Background: Chlamydiae are widespread Gram-negative bacteria that cause a number of human diseases. Chlamydia trachomatis is the most prevalent sexually transmitted bacterial pathogen. </P><P> Methods: Fourteen novel phenazine derivatives were efficiently synthesized via Buchwald-Hartwig cross coupling reaction and Suzuki reaction from 4-bromo-1-methoxyphenazine. All the derivatives displayed antichlamydial activity with IC50 values from 1.01-19.77 µM against Chlamydia trachomatis D and L2 for inhibiting progeny formation.Results:C-4 morpholinyl 8a and C-4 phenyl phenazine 9c exhibited stronger antichlamydial activity with no apparent cytotoxicity. Both phenazine derivatives inhibited chlamydial inclusions formation and growth in a dose-dependent manner. They inhibited Chlamydia infection by reducing elementary body infectivity and disturbing Chlamydia growth at the mid-stage of the chlamydial developmental cycle.Conclusion:Our findings suggest C-4 aryl and C-4 amino phenazine derivatives as promising lead molecules for antichlamydials development.
Collapse
Affiliation(s)
- Xiaofeng Bao
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Xiaowei Yu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Chao Xia
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Ningjing Yang
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Shengju Yang
- Department of Dermatology and Venereology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yu Zhao
- School of Pharmacy, Nantong University, Nantong 226001, China
| |
Collapse
|
22
|
Verma K, Tailor YK, Khandelwal S, Agarwal M, Rushell E, Kumari Y, Awasthi K, Kumar M. An efficient and environmentally sustainable domino protocol for the synthesis of structurally diverse spiroannulated pyrimidophenazines using erbium doped TiO 2 nanoparticles as a recyclable and reusable heterogeneous acid catalyst. RSC Adv 2018; 8:30430-30440. [PMID: 35546857 PMCID: PMC9085390 DOI: 10.1039/c8ra04919j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/22/2018] [Indexed: 11/21/2022] Open
Abstract
An efficient and environmentally sustainable domino protocol has been presented for the synthesis of structurally diverse spiroannulated pyrimidophenazines involving a four component reaction of 2-hydroxynaphthalene-1,4-dione, benzene-1,2-diamine, cyclic ketones and amino derivatives in the presence of erbium doped TiO2 nanoparticles as a recyclable and reusable heterogeneous acid catalyst. The present synthetic protocol features mild reaction conditions with operational simplicity, excellent yield with high purity, short reaction time and high atom economy with the use of a recoverable and reusable environmentally sustainable heterogeneous catalyst.
Collapse
Affiliation(s)
- Kanchan Verma
- Department of Chemistry, University of Rajasthan Jaipur India
| | | | | | - Monu Agarwal
- Department of Chemistry, University of Rajasthan Jaipur India
| | - Esha Rushell
- Department of Chemistry, University of Rajasthan Jaipur India
| | - Yogita Kumari
- Soft Materials Lab, Department of Physics, Malaviya National Institute of Technology Jaipur India
| | - Kamlendra Awasthi
- Soft Materials Lab, Department of Physics, Malaviya National Institute of Technology Jaipur India
| | - Mahendra Kumar
- Department of Chemistry, University of Rajasthan Jaipur India
| |
Collapse
|
23
|
Microwave-assisted facile construction of quinoxalinone and benzimidazopyrazinone derivatives via two paths of post-Ugi cascade reaction. Mol Divers 2018; 23:137-145. [PMID: 30073609 DOI: 10.1007/s11030-018-9855-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
Abstract
A facile and efficient route to synthesize quinoxalinone and benzimidazopyrazinone was developed via two paths of a post-Ugi cascade reaction. By simply alternating the order of nucleophilic substitution reactions, both heterocycles could be accessed selectively from the same Ugi adduct. Microwave-assisted synthesis protocol provided these compounds with one purification procedure for three steps. These two scaffolds with more possible spaces for further modifications provide great benefit toward combinatorial and medicinal chemistry campaigns.
Collapse
|
24
|
Viault G, Helesbeux JJ, Richomme P, Séraphin D. Concise semisynthesis of novel phenazine-vitamin E hybrids via regioselective tocopheryl ortho -quinone formation. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
|
26
|
Ser HL, Tan LTH, Law JWF, Chan KG, Duangjai A, Saokaew S, Pusparajah P, Ab Mutalib NS, Khan TM, Goh BH, Lee LH. Focused Review: Cytotoxic and Antioxidant Potentials of Mangrove-Derived Streptomyces. Front Microbiol 2017; 8:2065. [PMID: 29163380 PMCID: PMC5672783 DOI: 10.3389/fmicb.2017.02065] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 10/09/2017] [Indexed: 12/31/2022] Open
Abstract
Human life expectancy is rapidly increasing with an associated increasing burden of chronic diseases, such as neurodegenerative diseases and cancer. However, there is limited progress in finding effective treatment for these conditions. For this reason, members of the genus Streptomyces have been explored extensively over the past decades as these filamentous bacteria are highly efficient in producing bioactive compounds with human health benefits. Being ubiquitous in nature, streptomycetes can be found in both terrestrial and marine environments. Previously, two Streptomyces strains (MUSC 137T and MUM 256) isolated from mangrove sediments in Peninsular Malaysia demonstrated potent antioxidant and cytotoxic activities against several human cancer cell lines on bioactivity screening. These results illustrate the importance of streptomycetes from underexplored regions aside from the terrestrial ecosystem. Here we provide the insights and significance of Streptomyces species in the search of anticancer and/or chemopreventive agents and highlight the impact of next generation sequencing on drug discovery from the Streptomyces arsenal.
Collapse
Affiliation(s)
- Hooi-Leng Ser
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Jodi Woan-Fei Law
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
- Vice Chancellor Office, Jiangsu University, Zhenjiang, China
| | - Acharaporn Duangjai
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao, Thailand
- Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | - Surasak Saokaew
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Pharmaceutical Outcomes Research Center, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Priyia Pusparajah
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute, UKM Medical Centre, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Tahir Mehmood Khan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Department of Pharmacy, Absyn University Peshawar, Peshawar, Pakistan
- Asian Centre for Evidence Synthesis in Population, Implementation and Clinical Outcomes, Health and Well-Being Cluster, Global Asia in the 21st Century Platform, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Asian Centre for Evidence Synthesis in Population, Implementation and Clinical Outcomes, Health and Well-Being Cluster, Global Asia in the 21st Century Platform, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Asian Centre for Evidence Synthesis in Population, Implementation and Clinical Outcomes, Health and Well-Being Cluster, Global Asia in the 21st Century Platform, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
27
|
Wróbel Z, Plichta K, Kwast A. Reactivity and substituent effects in the cyclization of N -aryl-2-nitrosoanilines to phenazines. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.04.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Tan LTH, Chan KG, Khan TM, Bukhari SI, Saokaew S, Duangjai A, Pusparajah P, Lee LH, Goh BH. Streptomyces sp. MUM212 as a Source of Antioxidants with Radical Scavenging and Metal Chelating Properties. Front Pharmacol 2017; 8:276. [PMID: 28567016 PMCID: PMC5434116 DOI: 10.3389/fphar.2017.00276] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 05/02/2017] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species and other radicals potentially cause oxidative damage to proteins, lipids, and DNA which may ultimately lead to various complications including mutations, carcinogenesis, neurodegeneration, cardiovascular disease, aging, and inflammatory disease. Recent reports demonstrate that Streptomyces bacteria produce metabolites with potent antioxidant activity that may be developed into therapeutic drugs to combat oxidative stress. This study shows that Streptomyces sp. MUM212 which was isolated from mangrove soil in Kuala Selangor, Malaysia, could be a potential source of antioxidants. Strain MUM212 was characterized and determined as belonging to the genus Streptomyces using 16S rRNA gene phylogenetic analysis. The MUM212 extract demonstrated significant antioxidant activity through DPPH, ABTS and superoxide radical scavenging assays and also metal-chelating activity of 22.03 ± 3.01%, 61.52 ± 3.13%, 37.47 ± 1.79%, and 41.98 ± 0.73% at 4 mg/mL, respectively. Moreover, MUM212 extract was demonstrated to inhibit lipid peroxidation up to 16.72 ± 2.64% at 4 mg/mL and restore survival of Vero cells from H2O2-induced oxidative damages. The antioxidant activities from the MUM212 extract correlated well with its total phenolic contents; and this in turn was in keeping with the gas chromatography-mass spectrometry analysis which revealed the presence of phenolic compounds that could be responsible for the antioxidant properties of the extract. Other chemical constituents detected included hydrocarbons, alcohols and cyclic dipeptides which may have contributed to the overall antioxidant capacity of MUM212 extract. As a whole, strain MUM212 seems to have potential as a promising source of novel molecules for future development of antioxidative therapeutic agents against oxidative stress-related diseases.
Collapse
Affiliation(s)
- Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of MalayaKuala Lumpur, Malaysia
| | - Tahir Mehmood Khan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia.,Department of Pharmacy, Abasyn UniversityPeshawar, Pakistan
| | - Sarah Ibrahim Bukhari
- Department of Pharmaceutics, College of Pharmacy, King Saud UniversityRiyadh, Saudi Arabia
| | - Surasak Saokaew
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia.,Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand.,Pharmaceutical Outcomes Research Center, Faculty of Pharmaceutical Sciences, Naresuan UniversityPhitsanulok, Thailand.,Unit of Excellence on Herbal Medicine, School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| | - Acharaporn Duangjai
- Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand.,Division of Physiology, School of Medical Sciences, University of PhayaoPhayao, Thailand
| | - Priyia Pusparajah
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia.,Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia.,Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| |
Collapse
|
29
|
Asolkar RN, Singh A, Jensen PR, Aalbersberg W, Carté BK, Feussner KD, Subramani R, DiPasquale A, Rheingold AL, Fenical W. Marinocyanins, cytotoxic bromo-phenazinone meroterpenoids from a marine bacterium from the streptomycete clade MAR4. Tetrahedron 2017; 73:2234-2241. [PMID: 28814819 PMCID: PMC5555602 DOI: 10.1016/j.tet.2017.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Six cytotoxic and antimicrobial metabolites of a new bromo-phenazinone class, the marinocyanins A-F (1-6), were isolated together with the known bacterial metabolites 2-bromo-1-hydroxyphenazine (7), lavanducyanin (8, WS-9659A) and its chlorinated analog WS-9659B (9). These metabolites were purified by bioassay-guided fractionation of the extracts of our MAR4 marine actinomycete strains CNS-284 and CNY-960. The structures of the new compounds were determined by detailed spectroscopic methods and marinocyanin A (1) was confirmed by crystallographic methods. The marinocyanins represent the first bromo-phenazinones with an N-isoprenoid substituent in the skeleton. Marinocyanins A-F show strong to weak cytotoxicity against HCT-116 human colon carcinoma and possess modest antimicrobial activities against Staphylococcus aureus and amphotericin-resistant Candida albicans.
Collapse
Affiliation(s)
- Ratnakar N. Asolkar
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093-0204, USA
| | - Ahilya Singh
- Institute of Applied Sciences, Faculty of Science, Technology and Environment, The University of the South Pacific, Laucala Campus, Private Mail Bag, Suva, Fiji
| | - Paul R. Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093-0204, USA
| | - William Aalbersberg
- Institute of Applied Sciences, Faculty of Science, Technology and Environment, The University of the South Pacific, Laucala Campus, Private Mail Bag, Suva, Fiji
| | - Brad K. Carté
- Institute of Applied Sciences, Faculty of Science, Technology and Environment, The University of the South Pacific, Laucala Campus, Private Mail Bag, Suva, Fiji
| | - Klaus-D. Feussner
- Institute of Applied Sciences, Faculty of Science, Technology and Environment, The University of the South Pacific, Laucala Campus, Private Mail Bag, Suva, Fiji
| | - Ramesh Subramani
- Department of Biology, College of Engineering, Science & Technology (CEST), School of Science, Dept. of Biology, Fiji National University, Natabua Campus, Lautoka, Fiji
| | - Antonio DiPasquale
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Arnold L. Rheingold
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093-0204, USA
| |
Collapse
|
30
|
Li Y, Lei J, Xu J, Tang DY, Chen ZZ, Zhu J, Xu C. A facile method for building fused quinoxaline-quinolinones via an acidless post-Ugi cascade reaction. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.10.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Guttenberger N, Blankenfeldt W, Breinbauer R. Recent developments in the isolation, biological function, biosynthesis, and synthesis of phenazine natural products. Bioorg Med Chem 2017; 25:6149-6166. [PMID: 28094222 DOI: 10.1016/j.bmc.2017.01.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/29/2016] [Accepted: 01/04/2017] [Indexed: 12/24/2022]
Abstract
Phenazines are natural products which are produced by bacteria or by archaeal Methanosarcina species. The tricyclic ring system enables redox processes, which producing organisms use for oxidation of NADH or for the generation of reactive oxygen species (ROS), giving them advantages over other microorganisms. In this review we summarize the progress in the field since 2005 regarding the isolation of new phenazine natural products, new insights in their biological function, and particularly the now almost completely understood biosynthesis. The review is complemented by a description of new synthetic methods and total syntheses of phenazines.
Collapse
Affiliation(s)
- Nikolaus Guttenberger
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria; Institute of Chemistry-Analytical Chemistry, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria
| | - Wulf Blankenfeldt
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany; Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Rolf Breinbauer
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria.
| |
Collapse
|
32
|
Udumula V, Endres JL, Harper CN, Jaramillo L, Zhong HA, Bayles KW, Conda-Sheridan M. Simple synthesis of endophenazine G and other phenazines and their evaluation as anti-methicillin-resistant Staphylococcus aureus agents. Eur J Med Chem 2017; 125:710-721. [DOI: 10.1016/j.ejmech.2016.09.079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/23/2016] [Accepted: 09/24/2016] [Indexed: 02/05/2023]
|
33
|
Kumar S, Saunthwal RK, Mujahid M, Aggarwal T, Verma AK. Palladium-Catalyzed Intramolecular Fujiwara-Hydroarylation: Synthesis of Benzo[a]phenazines Derivatives. J Org Chem 2016; 81:9912-9923. [DOI: 10.1021/acs.joc.6b02096] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sonu Kumar
- Synthetic Organic Chemistry
Research Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Rakesh K. Saunthwal
- Synthetic Organic Chemistry
Research Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Mohammad Mujahid
- Synthetic Organic Chemistry
Research Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Trapti Aggarwal
- Synthetic Organic Chemistry
Research Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Akhilesh K. Verma
- Synthetic Organic Chemistry
Research Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
34
|
Gulevskaya AV. Electrophile-Induced Cyclization of 3-Alkynyl-2-arylquinoxalines: A Method for Benzo- and Naphthophenazine Synthesis. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600660] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Anna V. Gulevskaya
- Department of Chemistry; Southern Federal University; Zorge str., 7 344090 Rostov-on-Don Russian Federation
| |
Collapse
|
35
|
Garrison AT, Abouelhassan Y, Norwood VM, Kallifidas D, Bai F, Nguyen MT, Rolfe M, Burch GM, Jin S, Luesch H, Huigens RW. Structure-Activity Relationships of a Diverse Class of Halogenated Phenazines That Targets Persistent, Antibiotic-Tolerant Bacterial Biofilms and Mycobacterium tuberculosis. J Med Chem 2016; 59:3808-25. [PMID: 27018907 DOI: 10.1021/acs.jmedchem.5b02004] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Persistent bacteria, including persister cells within surface-attached biofilms and slow-growing pathogens lead to chronic infections that are tolerant to antibiotics. Here, we describe the structure-activity relationships of a series of halogenated phenazines (HP) inspired by 2-bromo-1-hydroxyphenazine 1. Using multiple synthetic pathways, we probed diverse substitutions of the HP scaffold in the 2-, 4-, 7-, and 8-positions, providing critical information regarding their antibacterial and bacterial eradication profiles. Halogenated phenazine 14 proved to be the most potent biofilm-eradicating agent (≥99.9% persister cell killing) against MRSA (MBEC < 10 μM), MRSE (MBEC = 2.35 μM), and VRE (MBEC = 0.20 μM) biofilms while 11 and 12 demonstrated excellent antibacterial activity against M. tuberculosis (MIC = 3.13 μM). Unlike antimicrobial peptide mimics that eradicate biofilms through the general lysing of membranes, HPs do not lyse red blood cells. HPs are promising agents that effectively target persistent bacteria while demonstrating negligible toxicity against mammalian cells.
Collapse
Affiliation(s)
- Aaron T Garrison
- Department of Medicinal Chemistry, College of Pharmacy, ‡Department of Molecular Genetics & Microbiology, College of Medicine, and ⊥Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida , Gainesville, Florida 32610
| | - Yasmeen Abouelhassan
- Department of Medicinal Chemistry, College of Pharmacy, ‡Department of Molecular Genetics & Microbiology, College of Medicine, and ⊥Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida , Gainesville, Florida 32610
| | - Verrill M Norwood
- Department of Medicinal Chemistry, College of Pharmacy, ‡Department of Molecular Genetics & Microbiology, College of Medicine, and ⊥Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida , Gainesville, Florida 32610
| | - Dimitris Kallifidas
- Department of Medicinal Chemistry, College of Pharmacy, ‡Department of Molecular Genetics & Microbiology, College of Medicine, and ⊥Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida , Gainesville, Florida 32610
| | - Fang Bai
- Department of Medicinal Chemistry, College of Pharmacy, ‡Department of Molecular Genetics & Microbiology, College of Medicine, and ⊥Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida , Gainesville, Florida 32610
| | - Minh Thu Nguyen
- Department of Medicinal Chemistry, College of Pharmacy, ‡Department of Molecular Genetics & Microbiology, College of Medicine, and ⊥Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida , Gainesville, Florida 32610
| | - Melanie Rolfe
- Department of Medicinal Chemistry, College of Pharmacy, ‡Department of Molecular Genetics & Microbiology, College of Medicine, and ⊥Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida , Gainesville, Florida 32610
| | - Gena M Burch
- Department of Medicinal Chemistry, College of Pharmacy, ‡Department of Molecular Genetics & Microbiology, College of Medicine, and ⊥Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida , Gainesville, Florida 32610
| | - Shouguang Jin
- Department of Medicinal Chemistry, College of Pharmacy, ‡Department of Molecular Genetics & Microbiology, College of Medicine, and ⊥Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida , Gainesville, Florida 32610
| | - Hendrik Luesch
- Department of Medicinal Chemistry, College of Pharmacy, ‡Department of Molecular Genetics & Microbiology, College of Medicine, and ⊥Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida , Gainesville, Florida 32610
| | - Robert W Huigens
- Department of Medicinal Chemistry, College of Pharmacy, ‡Department of Molecular Genetics & Microbiology, College of Medicine, and ⊥Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida , Gainesville, Florida 32610
| |
Collapse
|
36
|
Cabrera M, Mastandrea I, Otero G, Cerecetto H, González M. In vivo phase II-enzymes inducers, as potential chemopreventive agents, based on the chalcone and furoxan skeletons. Bioorg Med Chem 2016; 24:1665-74. [DOI: 10.1016/j.bmc.2016.02.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/20/2016] [Accepted: 02/27/2016] [Indexed: 02/06/2023]
|
37
|
Cabrera M, Cerecetto H, González M. New hybrid bromopyridine-chalcones as in vivo phase II enzyme inducers: potential chemopreventive agents. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00456c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis of eighteen new potential cancer chemopreventive agents, structurally designed to combine (naphtho)chalcone and (bromo)pyridine skeletons.
Collapse
Affiliation(s)
- Mauricio Cabrera
- Grupo de Química Medicinal
- Laboratorio de Química Orgánica
- Facultad de Ciencias
- Universidad de la República
- 11400 Montevideo
| | - Hugo Cerecetto
- Grupo de Química Medicinal
- Laboratorio de Química Orgánica
- Facultad de Ciencias
- Universidad de la República
- 11400 Montevideo
| | - Mercedes González
- Grupo de Química Medicinal
- Laboratorio de Química Orgánica
- Facultad de Ciencias
- Universidad de la República
- 11400 Montevideo
| |
Collapse
|
38
|
Garrison AT, Abouelhassan Y, Kallifidas D, Bai F, Ukhanova M, Mai V, Jin S, Luesch H, Huigens RW. Halogenated Phenazines that Potently Eradicate Biofilms, MRSA Persister Cells in Non‐Biofilm Cultures, and
Mycobacterium tuberculosis. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201508155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Aaron T. Garrison
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Dr., Gainesville, FL 32610 (USA)
| | - Yasmeen Abouelhassan
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Dr., Gainesville, FL 32610 (USA)
| | - Dimitris Kallifidas
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Dr., Gainesville, FL 32610 (USA)
| | - Fang Bai
- Department of Molecular Genetics & Microbiology, University of Florida (USA)
| | - Maria Ukhanova
- Department of Epidemiology, University of Florida, P.O. Box 100009, Gainesville, FL 32610 (USA)
| | - Volker Mai
- Department of Epidemiology, University of Florida, P.O. Box 100009, Gainesville, FL 32610 (USA)
| | - Shouguang Jin
- Department of Molecular Genetics & Microbiology, University of Florida (USA)
| | - Hendrik Luesch
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Dr., Gainesville, FL 32610 (USA)
| | - Robert W. Huigens
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Dr., Gainesville, FL 32610 (USA)
| |
Collapse
|
39
|
Garrison AT, Abouelhassan Y, Kallifidas D, Bai F, Ukhanova M, Mai V, Jin S, Luesch H, Huigens RW. Halogenated Phenazines that Potently Eradicate Biofilms, MRSA Persister Cells in Non-Biofilm Cultures, and Mycobacterium tuberculosis. Angew Chem Int Ed Engl 2015; 54:14819-23. [PMID: 26480852 DOI: 10.1002/anie.201508155] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/22/2015] [Indexed: 01/23/2023]
Abstract
Conventional antibiotics are ineffective against non-replicating bacteria (for example, bacteria within biofilms). We report a series of halogenated phenazines (HP), inspired by marine antibiotic 1, that targets persistent bacteria. HP 14 demonstrated the most potent biofilm eradication activities to date against MRSA, MRSE, and VRE biofilms (MBEC = 0.2-12.5 μM), as well as the effective killing of MRSA persister cells in non-biofilm cultures. Frontline MRSA treatments, vancomycin and daptomycin, were unable to eradicate MRSA biofilms or non-biofilm persisters alongside 14. HP 13 displayed potent antibacterial activity against slow-growing M. tuberculosis (MIC = 3.13 μM), the leading cause of death by bacterial infection around the world. HP analogues effectively target persistent bacteria through a mechanism that is non-toxic to mammalian cells and could have a significant impact on treatments for chronic bacterial infections.
Collapse
Affiliation(s)
- Aaron T Garrison
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Dr., Gainesville, FL 32610 (USA)
| | - Yasmeen Abouelhassan
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Dr., Gainesville, FL 32610 (USA)
| | - Dimitris Kallifidas
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Dr., Gainesville, FL 32610 (USA)
| | - Fang Bai
- Department of Molecular Genetics & Microbiology, University of Florida (USA)
| | - Maria Ukhanova
- Department of Epidemiology, University of Florida, P.O. Box 100009, Gainesville, FL 32610 (USA)
| | - Volker Mai
- Department of Epidemiology, University of Florida, P.O. Box 100009, Gainesville, FL 32610 (USA)
| | - Shouguang Jin
- Department of Molecular Genetics & Microbiology, University of Florida (USA)
| | - Hendrik Luesch
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Dr., Gainesville, FL 32610 (USA)
| | - Robert W Huigens
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Dr., Gainesville, FL 32610 (USA).
| |
Collapse
|
40
|
Gribble GW. Biological Activity of Recently Discovered Halogenated Marine Natural Products. Mar Drugs 2015; 13:4044-136. [PMID: 26133553 PMCID: PMC4515607 DOI: 10.3390/md13074044] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 01/08/2023] Open
Abstract
This review presents the biological activity-antibacterial, antifungal, anti-parasitic, antiviral, antitumor, antiinflammatory, antioxidant, and enzymatic activity-of halogenated marine natural products discovered in the past five years. Newly discovered examples that do not report biological activity are not included.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
41
|
Luo Q, Hu H, Peng H, Zhang X, Wang W. Isolation and structural identification of two bioactive phenazines from Streptomyces griseoluteus P510. Chin J Chem Eng 2015. [DOI: 10.1016/j.cjche.2015.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Borrero NV, Bai F, Perez C, Duong BQ, Rocca JR, Jin S, Huigens RW. Phenazine antibiotic inspired discovery of potent bromophenazine antibacterial agents against Staphylococcus aureus and Staphylococcus epidermidis. Org Biomol Chem 2014; 12:881-6. [PMID: 24389824 DOI: 10.1039/c3ob42416b] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nearly all clinically used antibiotics have been (1) discovered from microorganisms (2) using phenotype screens to identify inhibitors of bacterial growth. The effectiveness of these antibiotics is attributed to their endogenous roles as bacterial warfare agents against competing microorganisms. Unfortunately, every class of clinically used antibiotic has been met with drug resistant bacteria. In fact, the emergence of resistant bacterial infections coupled to the dismal pipeline of new antibacterial agents has resulted in a global health care crisis. There is an urgent need for innovative antibacterial strategies and treatment options to effectively combat drug resistant bacterial pathogens. Here, we describe the implementation of a Pseudomonas competition strategy, using redox-active phenazines, to identify novel antibacterial leads against Staphylococcus aureus and Staphylococcus epidermidis. In this report, we describe the chemical synthesis and evaluation of a diverse 27-membered phenazine library. Using this microbial warfare inspired approach, we have identified several bromophenazines with potent antibacterial activities against S. aureus and S. epidermidis. The most potent bromophenazine analogue from this focused library demonstrated a minimum inhibitory concentration (MIC) of 0.78-1.56 μM, or 0.31-0.62 μg mL(-1), against S. aureus and S. epidermidis and proved to be 32- to 64-fold more potent than the phenazine antibiotic pyocyanin in head-to-head MIC experiments. In addition to the discovery of potent antibacterial agents against S. aureus and S. epidermidis, we also report a detailed structure-activity relationship for this class of bromophenazine small molecules.
Collapse
|
43
|
Gorantla J, Nishanth Kumar S, Nisha G, Sumandu A, Dileep C, Sudaresan A, Sree Kumar M, Lankalapalli R, Dileep Kumar B. Purification and characterization of antifungal phenazines from a fluorescent Pseudomonas strain FPO4 against medically important fungi. J Mycol Med 2014; 24:185-92. [DOI: 10.1016/j.mycmed.2014.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 01/20/2014] [Accepted: 02/03/2014] [Indexed: 01/10/2023]
|
44
|
Base-promoted cyclization of 3-alkynylquinoxaline-2-carbonitriles with CH-acids: a new method for the phenazine ring synthesis. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Parrish S, Yoshida WY, Kondratyuk TP, Park EJ, Pezzuto JM, Kelly M, Williams PG. Spongiapyridine and related spongians isolated from an Indonesian Spongia sp. JOURNAL OF NATURAL PRODUCTS 2014; 77:1644-9. [PMID: 24992702 PMCID: PMC4334272 DOI: 10.1021/np500256w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Indexed: 06/03/2023]
Abstract
New compounds 18-nor-3,17-dihydroxyspongia-3,13(16),14-trien-2-one (1), 18-nor-3,5,17-trihydroxyspongia-3,13(16),14-trien-2-one (2), and spongiapyridine (3) and the known compound 17-hydroxy-4-epi-spongialactone A (4) were isolated from an Indonesian sponge of the genus Spongia. The structures of 1-3 were deduced by analyses of physical and spectroscopic data. Diterpene 3 is unusual, as the D-ring is a pyridyl ring system rather than the standard δ-lactone. The structure elucidation of this compound was complicated by facile exchange of the axial proton at the C-11 methylene with deuterium from methanol-d4. The isolated compounds were tested for biological activity in a battery of in vitro assays (TNF-α-induced NFκB, LPS-induced iNOS, RXR stimulation, quinone reductase 1 induction, aromatase inhibition, TRPM7 ion channels, and aspartic protease BACE1 inhibition). Norditerpene 2 modestly inhibited aromatase with an IC50 of 34 μM and induced quinone reductase 1 activity with a CD (the concentration needed to double the enzymatic response) of 11.2 μM. The remaining isolates were inactive.
Collapse
Affiliation(s)
- Stephen
M. Parrish
- Department
of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Wesley Y. Yoshida
- Department
of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Tamara P. Kondratyuk
- Daniel
K. Inouye College of Pharmacy, University
of Hawaii at Hilo, Hilo, Hawaii 96720, United
States
| | - Eun-Jung Park
- Daniel
K. Inouye College of Pharmacy, University
of Hawaii at Hilo, Hilo, Hawaii 96720, United
States
| | - John M. Pezzuto
- Daniel
K. Inouye College of Pharmacy, University
of Hawaii at Hilo, Hilo, Hawaii 96720, United
States
| | - Michelle Kelly
- Coasts
and Oceans National Centre, National Institute
of Water & Atmospheric Research Ltd, 41 Market Place, Auckland
Central 1010, New Zealand
| | - Philip G. Williams
- Department
of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
46
|
Mahran AM, Ragab SS, Hashem AI, Ali MM, Nada AA. Synthesis and antiproliferative activity of novel polynuclear heterocyclic compounds derived from 2,3-diaminophenazine. Eur J Med Chem 2013; 90:568-76. [PMID: 25497130 DOI: 10.1016/j.ejmech.2013.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 12/07/2013] [Accepted: 12/09/2013] [Indexed: 11/16/2022]
Abstract
2,3-Diaminophenazine 1 was used as a precursor for the preparation of some novel phenazine derivatives such as imidazo[4,5-b]phenazine-2-thione 2, its methylthio 3, ethyl 1-aryl-3H-[1,2,4]triazolo[2,3-a]imidazo[4,5-b]phenazines 8a-c, ethyl (2Z)-[3-aminophenazin-2-yl)amino](phenylhydrazono)ethanoate 9, pyrazino[2,3-b]phenazine derivatives 10, 12, 15-17, [1,4]diazepino[2,3-b]phenazine derivatives 13, 14, 2,3-dibenzoylaminophenazine 18, 1H-Imidazo[4,5-b]phenazine derivatives 20, 23a-c, 24, 25 and 4-[(E)-(3-amino phenazin-2-yl)diazenyl] derivatives 27-29. All compounds were tested as inhibitors of the proliferation of human lung carcinoma and colorectal cancer cell lines through inhibition of Tyrosine Kinases. Most of compounds exert good activity against the two cancer cell lines. Five compounds (1, 2, 3, 25 and 28) were found to possess the same activity as the standard drug Cisplatin.
Collapse
Affiliation(s)
- Asma M Mahran
- Photochemistry Department, National Research Center, Dokki, Giza, Egypt.
| | - Sherif Sh Ragab
- Photochemistry Department, National Research Center, Dokki, Giza, Egypt
| | - Ahmed I Hashem
- Department of Chemistry, Faculty of Science, Ain Shams University, Egypt
| | - Mamdouh M Ali
- Biochemistry Department, Division of Genetic Engineering and Biotechnology, National Research Centre, Dokki, Giza, Egypt
| | - Afaf A Nada
- Photochemistry Department, National Research Center, Dokki, Giza, Egypt
| |
Collapse
|
47
|
Mayhoub AS, Marler L, Kondratyuk TP, Park EJ, Pezzuto JM, Cushman M. Optimization of thiazole analogues of resveratrol for induction of NAD(P)H:quinone reductase 1 (QR1). Bioorg Med Chem 2012; 20:7030-9. [PMID: 23142320 DOI: 10.1016/j.bmc.2012.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/03/2012] [Accepted: 10/09/2012] [Indexed: 11/25/2022]
Abstract
NAD(P)H:quinone reductase 1 (QR1) belongs to a class of enzymes called cytoprotective enzymes. It exhibits its cancer protective activity mainly by inhibiting the formation of intracellular semiquinone radicals, and by generating α-tocopherolhydroquinone, which acts as a free radical scavenger. It is therefore believed that QR1 inducers can act as cancer chemopreventive agents. Resveratrol (1) is a naturally occurring stilbene derivative that requires a concentration of 21 μM to double QR1 activity (CD = 21 μM). The stilbene double bond of resveratrol was replaced with a thiadiazole ring and the phenols were eliminated to provide a more potent and selective derivative 2 (CD = 2.1 μM). Optimizing the substitution pattern of the two phenyl rings and the central heterocyclic linker led to a highly potent and selective QR1 inducer 9o with a CD value of 0.087 μM.
Collapse
Affiliation(s)
- Abdelrahman S Mayhoub
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and the Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | |
Collapse
|
48
|
Kondratyuk TP, Park EJ, Yu R, van Breemen RB, Asolkar RN, Murphy BT, Fenical W, Pezzuto JM. Novel marine phenazines as potential cancer chemopreventive and anti-inflammatory agents. Mar Drugs 2012; 10:451-464. [PMID: 22412812 PMCID: PMC3297008 DOI: 10.3390/md10020451] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 02/08/2012] [Accepted: 02/13/2012] [Indexed: 02/07/2023] Open
Abstract
Two new (1 and 2) and one known phenazine derivative (lavanducyanin, 3) were isolated and identified from the fermentation broth of a marine-derived Streptomyces sp. (strain CNS284). In mammalian cell culture studies, compounds 1, 2 and 3 inhibited TNF-α-induced NFκB activity (IC50 values of 4.1, 24.2, and 16.3 μM, respectively) and LPS-induced nitric oxide production (IC50 values of >48.6, 15.1, and 8.0 μM, respectively). PGE2 production was blocked with greater efficacy (IC50 values of 7.5, 0.89, and 0.63 μM, respectively), possibly due to inhibition of cyclooxygenases in addition to the expression of COX-2. Treatment of cultured HL-60 cells led to dose-dependent accumulation in the subG1 compartment of the cell cycle, as a result of apoptosis. These data provide greater insight on the biological potential of phenazine derivatives, and some guidance on how various substituents may alter potential anti-inflammatory and anti-cancer effects.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/chemistry
- Anti-Inflammatory Agents, Non-Steroidal/isolation & purification
- Anti-Inflammatory Agents, Non-Steroidal/metabolism
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Antibiotics, Antineoplastic/chemistry
- Antibiotics, Antineoplastic/isolation & purification
- Antibiotics, Antineoplastic/metabolism
- Antibiotics, Antineoplastic/pharmacology
- Anticarcinogenic Agents/chemistry
- Anticarcinogenic Agents/isolation & purification
- Anticarcinogenic Agents/metabolism
- Anticarcinogenic Agents/pharmacology
- Apoptosis/drug effects
- Aquatic Organisms/metabolism
- Cell Line, Transformed
- Drug Discovery
- Fermentation
- G1 Phase/drug effects
- Gene Expression Regulation, Enzymologic/drug effects
- HL-60 Cells
- Humans
- Inhibitory Concentration 50
- Leukemia, Promyelocytic, Acute/drug therapy
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Mice
- Phenazines/chemistry
- Phenazines/isolation & purification
- Phenazines/metabolism
- Phenazines/pharmacology
- Streptomyces/metabolism
Collapse
Affiliation(s)
- Tamara P. Kondratyuk
- College of Pharmacy, University of Hawaii at Hilo, 34 Rainbow Drive, Hilo, HI 96720, USA; (T.P.K.); (E.-J.P.)
| | - Eun-Jung Park
- College of Pharmacy, University of Hawaii at Hilo, 34 Rainbow Drive, Hilo, HI 96720, USA; (T.P.K.); (E.-J.P.)
| | - Rui Yu
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA; (R.Y.); (R.B.B.); (B.T.M.)
| | - Richard B. van Breemen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA; (R.Y.); (R.B.B.); (B.T.M.)
| | - Ratnakar N. Asolkar
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California-San Diego, La Jolla, CA 92093, USA; (R.N.A.); (W.F.)
| | - Brian T. Murphy
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA; (R.Y.); (R.B.B.); (B.T.M.)
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California-San Diego, La Jolla, CA 92093, USA; (R.N.A.); (W.F.)
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California-San Diego, La Jolla, CA 92093, USA; (R.N.A.); (W.F.)
| | - John M. Pezzuto
- College of Pharmacy, University of Hawaii at Hilo, 34 Rainbow Drive, Hilo, HI 96720, USA; (T.P.K.); (E.-J.P.)
- Author to whom correspondence should be addressed; ; Tel.: +1-808-933-2909; Fax: +1-808-933-2981
| |
Collapse
|
49
|
Cimmino A, Evidente A, Mathieu V, Andolfi A, Lefranc F, Kornienko A, Kiss R. Phenazines and cancer. Nat Prod Rep 2012; 29:487-501. [DOI: 10.1039/c2np00079b] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
50
|
Reddy PVN, Jensen KC, Mesecar AD, Fanwick PE, Cushman M. Design, synthesis, and biological evaluation of potent quinoline and pyrroloquinoline ammosamide analogues as inhibitors of quinone reductase 2. J Med Chem 2011; 55:367-77. [PMID: 22206487 DOI: 10.1021/jm201251c] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A variety of ammosamide B analogues have been synthesized and evaluated as inhibitors of quinone reductase 2 (QR2). The potencies of the resulting series of QR2 inhibitors range from 4.1 to 25,200 nM. The data provide insight into the structural parameters necessary for QR2 inhibitory activity. The natural product ammosamide B proved to be a potent QR2 inhibitor, and the potencies of the analogues generally decreased as their structures became more distinct from that of ammosamide B. Methylation of the 8-amino group of ammosamide B was an exception, resulting in an increase in quinone reductase 2 inhibitory activity from an IC(50) of 61 nM to IC(50) 4.1 nM.
Collapse
Affiliation(s)
- P V Narasimha Reddy
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and The Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | | | | | | | | |
Collapse
|