1
|
Chen YM, Huang J, Fan H, Li WY, Shi TS, Zhao J, Wang CN, Chen WJ, Zhu BL, Qian JJ, Guan W, Jiang B. QRFP and GPR103 in the paraventricular nucleus play a role in chronic stress-induced depressive-like symptomatology by enhancing the hypothalamic-pituitary-adrenal axis. Neuropharmacology 2024; 262:110198. [PMID: 39442911 DOI: 10.1016/j.neuropharm.2024.110198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/04/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis during chronic stress is essential for depression neurobiology. As the latest member of the RFamide peptide family in mammals, pyroglutamylated RFamide peptide (QRFP) is closely implicated in neuroendocrine maintenance by activating G-protein-coupled receptor 103 (GPR103). We hypothesized that QRFP and GPR103 might contribute to chronic stress-induced depression by promoting corticotropin-releasing hormone (CRH) release from neurons in the paraventricular nucleus (PVN), and various methods were employed in this study, with male C57BL/6J mice adopted as the experimental subjects. Chronic stress induced not only depression-like behaviors but also significant enhancement in QRFP and GPR103 in the PVN. Genetic overexpression of QRFP/GPR103 and stereotactic infusion of QRFP-26/QRFP-43 peptide in the PVN all mimicked chronic stress that induced various depression-like phenotypes in naïve mice, and this was mediated by promoting CRH biosynthesis and HPA activity. In contrast, genetic knockdown of QRFP/GPR103 in the PVN produced notable antidepressant-like effects in mice exposed to chronic stress. Furthermore, genetic knockout of QRFP also protected against chronic stress in mice. In addition, both the C-terminal biological region of QRFP and the downstream PKA/PKC-CREB signaling coupled to GPR103 stimulation underlie the role of QRFP and GPR103 in depression. Collectively, QRFP and GPR103 in PVN neurons could be viable targets for novel antidepressants.
Collapse
Affiliation(s)
- Yan-Mei Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Jie Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Hua Fan
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, Henan, China
| | - Wei-Yu Li
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Tian-Shun Shi
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Jie Zhao
- Department of Pharmacy, The Sixth People's Hospital of Nantong, Nantong, 226011 Jiangsu, China
| | - Cheng-Niu Wang
- Basic Medical Research Centre, Medical College, Nantong University, Nantong 226001, Jiangsu, China
| | - Wei-Jia Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Bao-Lun Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Jun-Jie Qian
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Bo Jiang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
2
|
Iwama A, Kise R, Akasaka H, Sano FK, Oshima HS, Inoue A, Shihoya W, Nureki O. Structure and dynamics of the pyroglutamylated RF-amide peptide QRFP receptor GPR103. Nat Commun 2024; 15:4769. [PMID: 38897996 PMCID: PMC11187126 DOI: 10.1038/s41467-024-49030-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Pyroglutamylated RF-amide peptide (QRFP) is a peptide hormone with a C-terminal RF-amide motif. QRFP selectively activates a class A G-protein-coupled receptor (GPCR) GPR103 to exert various physiological functions such as energy metabolism and appetite regulation. Here, we report the cryo-electron microscopy structure of the QRFP26-GPR103-Gq complex at 3.19 Å resolution. QRFP26 adopts an extended structure bearing no secondary structure, with its N-terminal and C-terminal sides recognized by extracellular and transmembrane domains of GPR103 respectively. This movement, reminiscent of class B1 GPCRs except for orientation and structure of the ligand, is critical for the high-affinity binding and receptor specificity of QRFP26. Mutagenesis experiments validate the functional importance of the binding mode of QRFP26 by GPR103. Structural comparisons with closely related receptors, including RY-amide peptide-recognizing GPCRs, revealed conserved and diversified peptide recognition mechanisms, providing profound insights into the biological significance of RF-amide peptides. Collectively, this study not only advances our understanding of GPCR-ligand interactions, but also paves the way for the development of novel therapeutics targeting metabolic and appetite disorders and emergency medical care.
Collapse
Affiliation(s)
- Aika Iwama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Ryoji Kise
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Hiroaki Akasaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Fumiya K Sano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Hidetaka S Oshima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan.
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Wataru Shihoya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
3
|
Jin S, Guo S, Xu Y, Li X, Wu C, He X, Pan B, Xin W, Zhang H, Hu W, Yin Y, Zhang T, Wu K, Yuan Q, Xu HE, Xie X, Jiang Y. Structural basis for recognition of 26RFa by the pyroglutamylated RFamide peptide receptor. Cell Discov 2024; 10:58. [PMID: 38830850 PMCID: PMC11148045 DOI: 10.1038/s41421-024-00670-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/21/2024] [Indexed: 06/05/2024] Open
Abstract
The neuropeptide 26RFa, a member of the RF-amide peptide family, activates the pyroglutamylated RF-amide peptide receptor (QRFPR), a class A GPCR. The 26RFa/QRFPR system plays critical roles in energy homeostasis, making QRFPR an attractive drug target for treating obesity, diabetes, and eating disorders. However, the lack of structural information has hindered our understanding of the peptide recognition and regulatory mechanism of QRFPR, impeding drug design efforts. In this study, we determined the cryo-EM structure of the Gq-coupled QRFPR bound to 26RFa. The structure reveals a unique assembly mode of the extracellular region of the receptor and the N-terminus of the peptide, and elucidates the recognition mechanism of the C-terminal heptapeptide of 26RFa by the transmembrane binding pocket of QRFPR. The study also clarifies the similarities and distinctions in the binding pattern of the RF-amide moiety in five RF-amide peptides and the RY-amide segment in neuropeptide Y. These findings deepen our understanding of the RF-amide peptide recognition, aiding in the rational design of drugs targeting QRFPR and other RF-amide peptide receptors.
Collapse
Affiliation(s)
| | - Shimeng Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Youwei Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xin Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Canrong Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinheng He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Wenwen Xin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Heng Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wen Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- The Shanghai Advanced Electron Microscope Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | - Tianwei Zhang
- Lingang Laboratory, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Kai Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- The Shanghai Advanced Electron Microscope Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qingning Yuan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- The Shanghai Advanced Electron Microscope Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - H Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- The Shanghai Advanced Electron Microscope Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Xin Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China.
| | - Yi Jiang
- Lingang Laboratory, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
4
|
Devère M, Takhlidjt S, Prévost G, Chartrel N, Leprince J, Picot M. The 26RFa (QRFP)/GPR103 Neuropeptidergic System: A Key Regulator of Energy and Glucose Metabolism. Neuroendocrinology 2024:1-17. [PMID: 38599200 DOI: 10.1159/000538629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Obesity and type 2 diabetes are strongly associated pathologies, currently considered as a worldwide epidemic problem. Understanding the mechanisms that drive the development of these diseases would enable to develop new therapeutic strategies for their prevention and treatment. Particularly, the role of the brain in energy and glucose homeostasis has been studied for 2 decades. In specific, the hypothalamus contains well-identified neural networks that regulate appetite and potentially also glucose homeostasis. A new concept has thus emerged, suggesting that obesity and diabetes could be due to a dysfunction of the same, still poorly understood, neural networks. SUMMARY The neuropeptide 26RFa (also termed QRFP) belongs to the family of RFamide regulatory peptides and has been identified as the endogenous ligand of the human G protein-coupled receptor GPR103 (QRFPR). The primary structure of 26RFa is strongly conserved during vertebrate evolution, suggesting its crucial roles in the control of vital functions. Indeed, the 26RFa/GPR103 peptidergic system is reported to be involved in the control of various neuroendocrine functions, notably the control of energy metabolism in which it plays an important role, both centrally and peripherally, since 26RFa regulates feeding behavior, thermogenesis and lipogenesis. Moreover, 26RFa is reported to control glucose homeostasis both peripherally, where it acts as an incretin, and centrally, where the 26RFa/GPR103 system relays insulin signaling in the brain to control glucose metabolism. KEY MESSAGES This review gives a comprehensive overview of the role of the 26RFa/GPR103 system as a key player in the control of energy and glucose metabolism. In a pathophysiological context, this neuropeptidergic system represents a prime therapeutic target whose mechanisms are highly relevant to decipher.
Collapse
Affiliation(s)
- Mélodie Devère
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
| | - Saloua Takhlidjt
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
| | - Gaëtan Prévost
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Rouen Normandie, Inserm, Normandie University, NorDiC UMR 1239, CHU Rouen, Rouen, France
| | - Nicolas Chartrel
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
| | - Jérôme Leprince
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
- University Rouen Normandie, Normandie University, INSERM US 51, CNRS UAR 2026, HeRacLeS, Rouen, France
| | - Marie Picot
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
| |
Collapse
|
5
|
Point-Substitution of Phenylalanine Residues of 26RFa Neuropeptide: A Structure-Activity Relationship Study. Molecules 2021; 26:molecules26144312. [PMID: 34299587 PMCID: PMC8307317 DOI: 10.3390/molecules26144312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/02/2022] Open
Abstract
26RFa is a neuropeptide that activates the rhodopsin-like G protein-coupled receptor QRFPR/GPR103. This peptidergic system is involved in the regulation of a wide array of physiological processes including feeding behavior and glucose homeostasis. Herein, the pharmacological profile of a homogenous library of QRFPR-targeting peptide derivatives was investigated in vitro on human QRFPR-transfected cells with the aim to provide possible insights into the structural determinants of the Phe residues to govern receptor activation. Our work advocates to include in next generations of 26RFa(20–26)-based QRFPR agonists effective substitutions for each Phe unit, i.e., replacement of the Phe22 residue by a constrained 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid moiety, and substitution of both Phe24 and Phe26 by their para-chloro counterpart. Taken as a whole, this study emphasizes that optimized modifications in the C-terminal part of 26RFa are mandatory to design selective and potent peptide agonists for human QRFPR.
Collapse
|
6
|
Wang W, Tian Y, Shi X, Ma Q, Xu Y, Yang G, Yi W, Shi Y, Zhou N. N-glycosylation of the human neuropeptide QRFP receptor (QRFPR) is essential for ligand binding and receptor activation. J Neurochem 2021; 158:138-152. [PMID: 33655503 DOI: 10.1111/jnc.15337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 11/29/2022]
Abstract
The newly identified pyroglutamylated RFamide peptide (QRFP) signaling system has been shown to be implicated in regulating a variety of physiological processes. G-protein-coupled receptors (GPCRs) are preferentially N-glycosylated on extracellular domains. The human QRFP receptor QRFPR (GPR103) possesses three N-glycosylation consensus sites, two located on the N-terminal domain (N5 and N19) and one on the first extracellular loop (ECL1) (N106); however, to date, their role in QRFPR expression and signaling has not been established. Here, we combined mutants with glutamine substitution of the critical asparagines of the consensus sites with glycosidase PNGase F and N-glycosylation inhibitor tunicamycin to study the effect of N-glycosylation in the regulation of QRFPR cell surface expression and signaling. Western blot analysis performed with site-directed mutagenesis revealed that two asparagines at N19 in the N-terminus and N106 in ECL1, but not N5 in the N-terminus, served as sites for N-glycosylation. Treatment with PNGase F and tunicamycin resulted in a reduction in both two-protein species, ~43 kDa and ~85 kDa in size, by 2-4 kDa. Analysis with confocal microscopy and quantitative ELISA showed that N-glycosylation of QRFPR is not essentially required for targeting the cell membrane. However, further binding assay and functional assays demonstrated that removal of N-glycosylation sequons or treatment with tunicamycin led to significant impairments in the interaction of receptor with QRFP26 and downstream signaling. Thus, our findings suggest that for the human QRFP receptor (QRFPR), N-glycosylation is not important for cell surface expression but is a pre-requisite for ligand binding and receptor activation.
Collapse
Affiliation(s)
- Weiwei Wang
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanan Tian
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoliu Shi
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiang Ma
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yue Xu
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Gangjie Yang
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wen Yi
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Shi
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Naiming Zhou
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Alim K, Lefranc B, Sopkova-de Oliveira Santos J, Dubessy C, Picot M, Boutin JA, Vaudry H, Chartrel N, Vaudry D, Chuquet J, Leprince J. Design, Synthesis, Molecular Dynamics Simulation, and Functional Evaluation of a Novel Series of 26RFa Peptide Analogues Containing a Mono- or Polyalkyl Guanidino Arginine Derivative. J Med Chem 2018; 61:10185-10197. [PMID: 30358997 DOI: 10.1021/acs.jmedchem.8b01332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
26RFa, the endogenous QRFPR ligand, is implicated in several physiological and pathological conditions such as the regulation of glucose homeostasis and bone mineralization; hence, QRFPR ligands display therapeutic potential. At the molecular level, functional interaction occurs between residues Arg25 of 26RFa and Gln125 of QRFPR. We have designed 26RFa(20-26) analogues incorporating arginine derivatives modified by alkylated substituents. We found that the Arg25 side chain length was necessary to retain the activity of 26RFa(20-26) and that N-monoalkylation of arginine was accommodated by the QRFPR active site. In particular, [(Me)ωArg25]26RFa(20-26) (5b, LV-2186) appeared to be 25-fold more potent than 26RFa(20-26) and displayed a position in a QRFPR homology model slightly different to that of the unmodified heptapeptide. Other peptides were less potent than 26RFa(20-26), exhibited partial agonistic activity, or were totally inactive in accordance to different ligand-bound structures. In vivo, [(Me)ωArg25]26RFa(20-26) exerted a delayed 26RFa-like hypoglycemic effect. Finally, N-methyl substituted arginine-containing peptides represent lead compounds for further development of QRFPR agonists.
Collapse
Affiliation(s)
- Karima Alim
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication , Normandy University , 76000 Rouen , France
| | - Benjamin Lefranc
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication , Normandy University , 76000 Rouen , France.,Cell Imaging Platform of Normandy (PRIMACEN) , Normandy University , 76000 Rouen , France
| | | | - Christophe Dubessy
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication , Normandy University , 76000 Rouen , France.,Cell Imaging Platform of Normandy (PRIMACEN) , Normandy University , 76000 Rouen , France
| | - Marie Picot
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication , Normandy University , 76000 Rouen , France
| | - Jean A Boutin
- Institut de Recherches Internationales Servier , 50 rue Carnot , 92150 Suresnes , France
| | - Hubert Vaudry
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication , Normandy University , 76000 Rouen , France.,Cell Imaging Platform of Normandy (PRIMACEN) , Normandy University , 76000 Rouen , France
| | - Nicolas Chartrel
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication , Normandy University , 76000 Rouen , France
| | - David Vaudry
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication , Normandy University , 76000 Rouen , France.,Cell Imaging Platform of Normandy (PRIMACEN) , Normandy University , 76000 Rouen , France
| | - Julien Chuquet
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication , Normandy University , 76000 Rouen , France
| | - Jérôme Leprince
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication , Normandy University , 76000 Rouen , France.,Cell Imaging Platform of Normandy (PRIMACEN) , Normandy University , 76000 Rouen , France
| |
Collapse
|
8
|
Xu B, Vasile S, Østergaard S, Paulsson JF, Pruner J, Åqvist J, Wulff BS, Gutiérrez-de-Terán H, Larhammar D. Elucidation of the Binding Mode of the Carboxyterminal Region of Peptide YY to the Human Y 2 Receptor. Mol Pharmacol 2018; 93:323-334. [PMID: 29367257 DOI: 10.1124/mol.117.110627] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/19/2018] [Indexed: 11/22/2022] Open
Abstract
Understanding the agonist-receptor interactions in the neuropeptide Y (NPY)/peptide YY (PYY) signaling system is fundamental for the design of novel modulators of appetite regulation. We report here the results of a multidisciplinary approach to elucidate the binding mode of the native peptide agonist PYY to the human Y2 receptor, based on computational modeling, peptide chemistry and in vitro pharmacological analyses. The preserved binding orientation proposed for full-length PYY and five analogs, truncated at the amino terminus, explains our pharmacological results where truncations of the N-terminal proline helix showed little effect on peptide affinity. This was followed by receptor mutagenesis to investigate the roles of several receptor positions suggested by the modeling. As a complement, PYY-(3-36) analogs were synthesized with modifications at different positions in the common PYY/NPY C-terminal fragment (32TRQRY36-amide). The results were assessed and interpreted by molecular dynamics and Free Energy Perturbation (FEP) simulations of selected mutants, providing a detailed map of the interactions of the PYY/NPY C-terminal fragment with the transmembrane cavity of the Y2 receptor. The amidated C-terminus would be stabilized by polar interactions with Gln2886.55 and Tyr2195.39, while Gln1303.32 contributes to interactions with Q34 in the peptide and T32 is close to the tip of TM7 in the receptor. This leaves the core, α-helix of the peptide exposed to make potential interactions with the extracellular loops. This model agrees with most experimental data available for the Y2 system and can be used as a basis for optimization of Y2 receptor agonists.
Collapse
Affiliation(s)
- Bo Xu
- Departments of Neuroscience (B.X., J.P., D.L.) and Cell and Molecular Biology (S.V., J.Å., H.G.-T.), Biomedical Centre, Uppsala University, Uppsala, Sweden; and Protein and Peptide Chemistry 2 (S.Ø.) and Obesity Research (J.F.P., B.S.W.), Novo Nordisk A/S, Måløv, Denmark
| | - Silvana Vasile
- Departments of Neuroscience (B.X., J.P., D.L.) and Cell and Molecular Biology (S.V., J.Å., H.G.-T.), Biomedical Centre, Uppsala University, Uppsala, Sweden; and Protein and Peptide Chemistry 2 (S.Ø.) and Obesity Research (J.F.P., B.S.W.), Novo Nordisk A/S, Måløv, Denmark
| | - Søren Østergaard
- Departments of Neuroscience (B.X., J.P., D.L.) and Cell and Molecular Biology (S.V., J.Å., H.G.-T.), Biomedical Centre, Uppsala University, Uppsala, Sweden; and Protein and Peptide Chemistry 2 (S.Ø.) and Obesity Research (J.F.P., B.S.W.), Novo Nordisk A/S, Måløv, Denmark
| | - Johan F Paulsson
- Departments of Neuroscience (B.X., J.P., D.L.) and Cell and Molecular Biology (S.V., J.Å., H.G.-T.), Biomedical Centre, Uppsala University, Uppsala, Sweden; and Protein and Peptide Chemistry 2 (S.Ø.) and Obesity Research (J.F.P., B.S.W.), Novo Nordisk A/S, Måløv, Denmark
| | - Jasna Pruner
- Departments of Neuroscience (B.X., J.P., D.L.) and Cell and Molecular Biology (S.V., J.Å., H.G.-T.), Biomedical Centre, Uppsala University, Uppsala, Sweden; and Protein and Peptide Chemistry 2 (S.Ø.) and Obesity Research (J.F.P., B.S.W.), Novo Nordisk A/S, Måløv, Denmark
| | - Johan Åqvist
- Departments of Neuroscience (B.X., J.P., D.L.) and Cell and Molecular Biology (S.V., J.Å., H.G.-T.), Biomedical Centre, Uppsala University, Uppsala, Sweden; and Protein and Peptide Chemistry 2 (S.Ø.) and Obesity Research (J.F.P., B.S.W.), Novo Nordisk A/S, Måløv, Denmark
| | - Birgitte S Wulff
- Departments of Neuroscience (B.X., J.P., D.L.) and Cell and Molecular Biology (S.V., J.Å., H.G.-T.), Biomedical Centre, Uppsala University, Uppsala, Sweden; and Protein and Peptide Chemistry 2 (S.Ø.) and Obesity Research (J.F.P., B.S.W.), Novo Nordisk A/S, Måløv, Denmark
| | - Hugo Gutiérrez-de-Terán
- Departments of Neuroscience (B.X., J.P., D.L.) and Cell and Molecular Biology (S.V., J.Å., H.G.-T.), Biomedical Centre, Uppsala University, Uppsala, Sweden; and Protein and Peptide Chemistry 2 (S.Ø.) and Obesity Research (J.F.P., B.S.W.), Novo Nordisk A/S, Måløv, Denmark
| | - Dan Larhammar
- Departments of Neuroscience (B.X., J.P., D.L.) and Cell and Molecular Biology (S.V., J.Å., H.G.-T.), Biomedical Centre, Uppsala University, Uppsala, Sweden; and Protein and Peptide Chemistry 2 (S.Ø.) and Obesity Research (J.F.P., B.S.W.), Novo Nordisk A/S, Måløv, Denmark
| |
Collapse
|
9
|
Benmoussa K, Authier H, Prat M, AlaEddine M, Lefèvre L, Rahabi MC, Bernad J, Aubouy A, Bonnafé E, Leprince J, Pipy B, Treilhou M, Coste A. P17, an Original Host Defense Peptide from Ant Venom, Promotes Antifungal Activities of Macrophages through the Induction of C-Type Lectin Receptors Dependent on LTB4-Mediated PPARγ Activation. Front Immunol 2017; 8:1650. [PMID: 29250064 PMCID: PMC5716351 DOI: 10.3389/fimmu.2017.01650] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/10/2017] [Indexed: 11/30/2022] Open
Abstract
Despite the growing knowledge with regard to the immunomodulatory properties of host defense peptides, their impact on macrophage differentiation and on its associated microbicidal functions is still poorly understood. Here, we demonstrated that the P17, a new cationic antimicrobial peptide from ant venom, induces an alternative phenotype of human monocyte-derived macrophages (h-MDMs). This phenotype is characterized by a C-type lectin receptors (CLRs) signature composed of mannose receptor (MR) and Dectin-1 expression. Concomitantly, this activation is associated to an inflammatory profile characterized by reactive oxygen species (ROS), interleukin (IL)-1β, and TNF-α release. P17-activated h-MDMs exhibit an improved capacity to recognize and to engulf Candida albicans through the overexpression both of MR and Dectin-1. This upregulation requires arachidonic acid (AA) mobilization and the activation of peroxisome proliferator-activated receptor gamma (PPARγ) nuclear receptor through the leukotriene B4 (LTB4) production. AA/LTB4/PPARγ/Dectin-1-MR signaling pathway is crucial for P17-mediated anti-fungal activity of h-MDMs, as indicated by the fact that the activation of this axis by P17 triggered ROS production and inflammasome-dependent IL-1β release. Moreover, we showed that the increased anti-fungal immune response of h-MDMs by P17 was dependent on intracellular calcium mobilization triggered by the interaction of P17 with pertussis toxin-sensitive G-protein-coupled receptors on h-MDMs. Finally, we also demonstrated that P17-treated mice infected with C. albicans develop less severe gastrointestinal infection related to a higher efficiency of their macrophages to engulf Candida, to produce ROS and IL-1β and to kill the yeasts. Altogether, these results identify P17 as an original activator of the fungicidal response of macrophages that acts upstream PPARγ/CLRs axis and offer new immunomodulatory therapeutic perspectives in the field of infectious diseases.
Collapse
Affiliation(s)
- Khaddouj Benmoussa
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France.,IRD, UMR 152, Toulouse, France.,EA7417 BTSB, Université Fédérale Toulouse Midi-Pyrénées, INU Champollion, Albi, France
| | - Hélène Authier
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France.,IRD, UMR 152, Toulouse, France
| | - Mélissa Prat
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France.,IRD, UMR 152, Toulouse, France
| | - Mohammad AlaEddine
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France.,IRD, UMR 152, Toulouse, France
| | - Lise Lefèvre
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France.,IRD, UMR 152, Toulouse, France
| | - Mouna Chirine Rahabi
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France.,IRD, UMR 152, Toulouse, France
| | - José Bernad
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France.,IRD, UMR 152, Toulouse, France
| | - Agnès Aubouy
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France.,IRD, UMR 152, Toulouse, France
| | - Elsa Bonnafé
- EA7417 BTSB, Université Fédérale Toulouse Midi-Pyrénées, INU Champollion, Albi, France
| | - Jérome Leprince
- INSERM U982, PRIMACEN, IRIB, Université de Rouen, Mont-Saint-Aignan, France
| | - Bernard Pipy
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France.,IRD, UMR 152, Toulouse, France
| | - Michel Treilhou
- EA7417 BTSB, Université Fédérale Toulouse Midi-Pyrénées, INU Champollion, Albi, France
| | - Agnès Coste
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France.,IRD, UMR 152, Toulouse, France
| |
Collapse
|
10
|
Thakuria D, Shahi N, Singh AK, Khangembam VC, Singh AK, Kumar S. Conformational analysis of a synthetic fish kisspeptin 1 peptide in membrane mimicking environments. PLoS One 2017; 12:e0185892. [PMID: 28977030 PMCID: PMC5627949 DOI: 10.1371/journal.pone.0185892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 09/21/2017] [Indexed: 11/18/2022] Open
Abstract
Kisspeptin 1 is a neuropeptide hormone of the RFamide family, which act as an upstream regulator of brain-pituitary-gonad (BPG) axis in most vertebrates including teleosts. In the present study, a 16 amino acid long putative mature bioactive peptide (kiss 1) from preprokisspeptin 1 of golden mahseer, Tor putitora (Hamilton, 1822), was synthesized and characterized using an integrated (experimental and in silico) approach. The far-UV circular dichroism (CD) spectrum of this peptide was evaluated both in aqueous and membrane mimicking solvents (TFE, HFIP and Dioxane). The results indicate that kiss 1 peptide adopted helical, turn and β conformations in membrane like environments. The near-UV CD spectroscopy was also carried out to examine the tertiary packing around aromatic residues of kiss 1 peptide and the peptide-membrane complex. The kiss 1 peptide exhibited little signal in water, but a prominent negative band was observed at around 275 nm when membrane mimetic solution was added. The observed ordered conformations of kiss 1 peptide in the different solvents indicated its potential biological activity which could enhance the secretion of gonadotropin-releasing hormone (GnRH) at BPG axis. The conformational information generated from the present study reinforces the application prospects of bioactive synthetic peptide analogs of kisspeptin 1 in improving the reproductive performances of important cultivable fish species.
Collapse
Affiliation(s)
- Dimpal Thakuria
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, Nainital, Uttarakhand, India
- * E-mail:
| | - Neetu Shahi
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, Nainital, Uttarakhand, India
| | - Atul Kumar Singh
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, Nainital, Uttarakhand, India
| | | | - Arvind Kumar Singh
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttarpradesh, India
| | - Satish Kumar
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttarpradesh, India
| |
Collapse
|
11
|
Leprince J, Bagnol D, Bureau R, Fukusumi S, Granata R, Hinuma S, Larhammar D, Primeaux S, Sopkova-de Oliveiras Santos J, Tsutsui K, Ukena K, Vaudry H. The Arg-Phe-amide peptide 26RFa/glutamine RF-amide peptide and its receptor: IUPHAR Review 24. Br J Pharmacol 2017; 174:3573-3607. [PMID: 28613414 DOI: 10.1111/bph.13907] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 05/30/2017] [Accepted: 06/05/2017] [Indexed: 12/21/2022] Open
Abstract
The RFamide neuropeptide 26RFa was first isolated from the brain of the European green frog on the basis of cross-reactivity with antibodies raised against bovine neuropeptide FF (NPFF). 26RFa and its N-terminally extended form glutamine RF-amide peptide (QRFP) have been identified as cognate ligands of the former orphan receptor GPR103, now renamed glutamine RF-amide peptide receptor (QRFP receptor). The 26RFa/QRFP precursor has been characterized in various mammalian and non-mammalian species. In the brain of mammals, including humans, 26RFa/QRFP mRNA is almost exclusively expressed in hypothalamic nuclei. The 26RFa/QRFP transcript is also present in various organs especially in endocrine glands. While humans express only one QRFP receptor, two isoforms are present in rodents. The QRFP receptor genes are widely expressed in the CNS and in peripheral tissues, notably in bone, heart, kidney, pancreas and testis. Structure-activity relationship studies have led to the identification of low MW peptidergic agonists and antagonists of QRFP receptor. Concurrently, several selective non-peptidic antagonists have been designed from high-throughput screening hit optimization. Consistent with the widespread distribution of QRFP receptor mRNA and 26RFa binding sites, 26RFa/QRFP exerts a large range of biological activities, notably in the control of energy homeostasis, bone formation and nociception that are mediated by QRFP receptor or NPFF2. The present report reviews the current knowledge concerning the 26RFa/QRFP-QRFP receptor system and discusses the potential use of selective QRFP receptor ligands for therapeutic applications.
Collapse
Affiliation(s)
- Jérôme Leprince
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Normandy University, Rouen, France
| | - Didier Bagnol
- CNS Drug Discovery, Arena Pharmaceuticals Inc., San Diego, CA, USA
| | - Ronan Bureau
- Normandy Centre for Studies and Research on Medicines (CERMN), Normandy University, Caen, France
| | - Shoji Fukusumi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Riccarda Granata
- Laboratory of Molecular and Cellular Endocrinology, Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Shuji Hinuma
- Department of Food and Nutrition, Faculty of Human Life Science, Senri Kinran University, Suita-City, Osaka, Japan
| | - Dan Larhammar
- Department of Neuroscience, Unit of Pharmacology, Uppsala University, Uppsala, Sweden
| | - Stefany Primeaux
- Department of Physiology, Joint Diabetes, Endocrinology & Metabolism Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Center for Medical Life Science, Tokyo, Japan
| | - Kazuyoshi Ukena
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hubert Vaudry
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Normandy University, Rouen, France
| |
Collapse
|
12
|
Pasquier J, Lafont AG, Denis F, Lefranc B, Dubessy C, Moreno-Herrera A, Vaudry H, Leprince J, Dufour S, Rousseau K. Eel Kisspeptins: Identification, Functional Activity, and Inhibition on both Pituitary LH and GnRH Receptor Expression. Front Endocrinol (Lausanne) 2017; 8:353. [PMID: 29375473 PMCID: PMC5766898 DOI: 10.3389/fendo.2017.00353] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/04/2017] [Indexed: 12/12/2022] Open
Abstract
The European eel (Anguilla anguilla) presents a blockade of sexual maturation at a prepubertal stage due to a deficient production of gonadotropins. We previously initiated, in the eel, the investigation of the kisspeptin system, one of the major gatekeepers of puberty in mammals, and we predicted the sequence of two Kiss genes. In the present study, we cloned and sequenced Kiss1 and Kiss2 cDNAs from the eel brain. The tissue distributions of Kiss1 and Kiss2 transcripts, as investigated by quantitative real-time PCR, showed that both genes are primarily expressed in the eel brain and pituitary. The two 10-residue long sequences characteristic of kisspeptin, eel Kp1(10) and Kp2(10), as well as two longer sequences, predicted as mature peptides, eel Kp1(15) and Kp2(12), were synthesized and functionally analyzed. Using rat Kiss1 receptor-transfected Chinese hamster ovary cells, we found that the four synthesized eel peptides were able to induce [Ca2+]i responses, indicating their ability to bind mammalian KissR-1 and to activate second messenger pathways. In primary culture of eel pituitary cells, all four peptides were able to specifically and dose-dependently inhibit lhβ expression, without any effect on fshβ, confirming our previous data with heterologous kisspeptins. Furthermore, in this eel in vitro system, all four peptides inhibited the expression of the type 2 GnRH receptor (gnrh-r2). Our data revealed a dual inhibitory effect of homologous kisspeptins on both pituitary lhβ and gnrh-r2 expression in the European eel.
Collapse
Affiliation(s)
- Jérémy Pasquier
- Muséum National d’Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS 7208, IRD207, UPMC, UCN, UA, Paris, France
| | - Anne-Gaëlle Lafont
- Muséum National d’Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS 7208, IRD207, UPMC, UCN, UA, Paris, France
| | - Florian Denis
- Muséum National d’Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS 7208, IRD207, UPMC, UCN, UA, Paris, France
| | - Benjamin Lefranc
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U1239, Normandy University, Rouen, France
| | - Christophe Dubessy
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U1239, Normandy University, Rouen, France
| | - Antonio Moreno-Herrera
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U1239, Normandy University, Rouen, France
- Department of Cell Biology, Physiology, and Immunology, Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - Hubert Vaudry
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U1239, Normandy University, Rouen, France
| | - Jérôme Leprince
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U1239, Normandy University, Rouen, France
| | - Sylvie Dufour
- Muséum National d’Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS 7208, IRD207, UPMC, UCN, UA, Paris, France
| | - Karine Rousseau
- Muséum National d’Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS 7208, IRD207, UPMC, UCN, UA, Paris, France
- *Correspondence: Karine Rousseau,
| |
Collapse
|
13
|
Eustache S, Leprince J, Tufféry P. Progress with peptide scanning to study structure-activity relationships: the implications for drug discovery. Expert Opin Drug Discov 2016; 11:771-84. [PMID: 27310575 DOI: 10.1080/17460441.2016.1201058] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Peptides have gained renewed interest as candidate therapeutics. However, to bring them to a broader clinical use, challenges such as the rational optimization of their pharmacological properties remain. Peptide scanning techniques offer a systematic framework to gain information on the functional role of individual amino acids of a peptide. Due to progress in mastering new chemical synthesis routes targeting amino acid backbone, they are currently diversified. Structure-activity relationship (SAR) analyses such as alanine- or enantioneric- scanning can now be supplemented by N-substitution, lactam cyclisation- or aza-amino scanning procedures addressing not only SAR considerations but also the peptide pharmacological properties. AREAS COVERED This review highlights the different scanning techniques currently available and illustrates how they can impact drug discovery. EXPERT OPINION Progress in peptide scanning techniques opens new perspectives for peptide drug development. It comes with the promise of a paradigm change in peptide drug design in which peptide drugs will be closer to the parent peptides. However, scanning still remains assimilable to a trial and error strategy that could benefit from being combined with specific in silico approaches that start reaching maturity.
Collapse
Affiliation(s)
- Stéphanie Eustache
- a INSERM UMR-S 973 , University Paris-Diderot, Sorbonne Paris Cité , Paris , France
| | - Jérôme Leprince
- b INSERM U982 , Regional Platform for Cell Imaging of Normandy (PRIMACEN), University Rouen-Normandy , Mont-Saint-Aignan, France
| | - Pierre Tufféry
- a INSERM UMR-S 973 , University Paris-Diderot, Sorbonne Paris Cité , Paris , France
| |
Collapse
|
14
|
Quillet R, Ayachi S, Bihel F, Elhabazi K, Ilien B, Simonin F. RF-amide neuropeptides and their receptors in Mammals: Pharmacological properties, drug development and main physiological functions. Pharmacol Ther 2016; 160:84-132. [PMID: 26896564 DOI: 10.1016/j.pharmthera.2016.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RF-amide neuropeptides, with their typical Arg-Phe-NH2 signature at their carboxyl C-termini, belong to a lineage of peptides that spans almost the entire life tree. Throughout evolution, RF-amide peptides and their receptors preserved fundamental roles in reproduction and feeding, both in Vertebrates and Invertebrates. The scope of this review is to summarize the current knowledge on the RF-amide systems in Mammals from historical aspects to therapeutic opportunities. Taking advantage of the most recent findings in the field, special focus will be given on molecular and pharmacological properties of RF-amide peptides and their receptors as well as on their implication in the control of different physiological functions including feeding, reproduction and pain. Recent progress on the development of drugs that target RF-amide receptors will also be addressed.
Collapse
Affiliation(s)
- Raphaëlle Quillet
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Safia Ayachi
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Frédéric Bihel
- Laboratoire Innovation Thérapeutique, UMR 7200 CNRS, Université de Strasbourg, Illkirch, France
| | - Khadija Elhabazi
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Brigitte Ilien
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Frédéric Simonin
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
15
|
Measurement, Interpretation and Use of Free Ligand Solution Conformations in Drug Discovery. PROGRESS IN MEDICINAL CHEMISTRY 2016; 55:45-147. [DOI: 10.1016/bs.pmch.2015.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Rouméas L, Humbert JP, Schneider S, Doebelin C, Bertin I, Schmitt M, Bourguignon JJ, Simonin F, Bihel F. Effects of systematic N-terminus deletions and benzoylations of endogenous RF-amide peptides on NPFF1R, NPFF2R, GPR10, GPR54 and GPR103. Peptides 2015. [PMID: 26211894 DOI: 10.1016/j.peptides.2015.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Mammalian RF-amide peptides including RF-amide-related peptides-1 and -3, neuropeptides AF and FF, Prolactin releasing peptides, Kisspeptins and RFa peptides are currently considered endogenous peptides for the GPCRs NPFF1R, NPFF2R, GPR10, GPR54 and GPR103, respectively. While NPFF1R and NPFF2R displayed high affinity for all the RF-amide peptides, GPR10, GPR54 and GPR103 only bind their cognate ligands. Through a systematic and sequential N-terminus deletion and benzoylation of either RF-amide neuropeptide (RFRP-3, NPFF, Kp-10, PrRP20, and 26RFa), we report the corresponding impact on affinity and activity towards all the RF-amide receptors (NPFF1R, NPFF2R, GPR10, GPR54 and GPR103). Our results highlight the difficulty to develop selective peptide ligands for GPR10, GPR54 or GPR103 without a modification of the C-terminus RF-amide signature, but open the door to the design of new RF-amide peptides acting as agonist for one receptor and antagonist for another one.
Collapse
Affiliation(s)
- Laurent Rouméas
- University of Strasbourg, CNRS, UMR7200, Faculty of pharmacy, 67400 Illkirch Graffenstaden, France
| | - Jean-Paul Humbert
- University of Strasbourg, CNRS, UMR7242, ESBS, 67412 Illkirch Graffenstaden, France
| | - Séverine Schneider
- University of Strasbourg, CNRS, UMR7200, Faculty of pharmacy, 67400 Illkirch Graffenstaden, France
| | - Christelle Doebelin
- University of Strasbourg, CNRS, UMR7200, Faculty of pharmacy, 67400 Illkirch Graffenstaden, France
| | - Isabelle Bertin
- University of Strasbourg, CNRS, UMR7242, ESBS, 67412 Illkirch Graffenstaden, France
| | - Martine Schmitt
- University of Strasbourg, CNRS, UMR7200, Faculty of pharmacy, 67400 Illkirch Graffenstaden, France
| | - Jean-Jacques Bourguignon
- University of Strasbourg, CNRS, UMR7200, Faculty of pharmacy, 67400 Illkirch Graffenstaden, France
| | - Frédéric Simonin
- University of Strasbourg, CNRS, UMR7242, ESBS, 67412 Illkirch Graffenstaden, France.
| | - Frédéric Bihel
- University of Strasbourg, CNRS, UMR7200, Faculty of pharmacy, 67400 Illkirch Graffenstaden, France.
| |
Collapse
|
17
|
Xu B, Bergqvist CA, Sundström G, Lundell I, Vaudry H, Leprince J, Larhammar D. Characterization of peptide QRFP (26RFa) and its receptor from amphioxus, Branchiostoma floridae. Gen Comp Endocrinol 2015; 210:107-13. [PMID: 25449662 DOI: 10.1016/j.ygcen.2014.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 01/27/2023]
Abstract
A peptide ending with RFamide (Arg-Phe-amide) was discovered independently by three different laboratories in 2003 and named 26RFa or QRFP. In mammals, a longer version of the peptide, 43 amino acids, was identified and found to bind to the orphan G protein-coupled receptor GPR103. We searched the genome database of Branchiostoma floridae (Bfl) for receptor sequences related to those that bind peptides ending with RFa or RYa (including receptors for NPFF, PRLH, GnIH, and NPY). One receptor clustered in phylogenetic analyses with mammalian QRFP receptors. The gene has 3 introns in Bfl and 5 in human, but all intron positions differ, implying that the introns were inserted independently. A QRFP-like peptide consisting of 25 amino acids and ending with RFa was identified in the amphioxus genome. Eight of the ten last amino acids are identical between Bfl and human. The prepro-QRFP gene in Bfl has one intron in the propeptide whereas the human gene lacks introns. The Bfl QRFP peptide was synthesized and the receptor was functionally expressed in human cells. The response was measured as inositol phosphate (IP) turnover. The Bfl QRFP peptide was found to potently stimulate the receptor's ability to induce IP turnover with an EC50 of 0.28nM. Also the human QRFP peptides with 26 and 43 amino acids were found to stimulate the receptor (1.9 and 5.1nM, respectively). Human QRFP with 26 amino acids without the carboxyterminal amide had dramatically lower potency at 1.3μM. Thus, we have identified an amphioxus QRFP-related peptide and a corresponding receptor and shown that they interact to give a functional response.
Collapse
Affiliation(s)
- Bo Xu
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124 Uppsala, Sweden
| | - Christina A Bergqvist
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124 Uppsala, Sweden
| | - Görel Sundström
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124 Uppsala, Sweden
| | - Ingrid Lundell
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124 Uppsala, Sweden
| | - Hubert Vaudry
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine (IRIB), Regional Platform for Cell Imaging of Haute-Normandie (PRIMACEN), University of Rouen, 76821 Mont-Saint-Aignan, France
| | - Jérôme Leprince
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine (IRIB), Regional Platform for Cell Imaging of Haute-Normandie (PRIMACEN), University of Rouen, 76821 Mont-Saint-Aignan, France
| | - Dan Larhammar
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124 Uppsala, Sweden.
| |
Collapse
|
18
|
Shu H, Chen H, Liu Y, Yang L, Yang Y, Zhang H. Molecular cloning, characterization and functional analysis of QRFP in orange-spotted grouper (Epinephelus coioides). Comp Biochem Physiol B Biochem Mol Biol 2014; 176:34-41. [DOI: 10.1016/j.cbpb.2014.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 11/27/2022]
|
19
|
Neveu C, Dulin F, Lefranc B, Galas L, Calbrix C, Bureau R, Rault S, Chuquet J, Boutin JA, Guilhaudis L, Ségalas-Milazzo I, Vaudry D, Vaudry H, Santos JSDO, Leprince J. Molecular basis of agonist docking in a human GPR103 homology model by site-directed mutagenesis and structure-activity relationship studies. Br J Pharmacol 2014; 171:4425-39. [PMID: 24913445 DOI: 10.1111/bph.12808] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 04/04/2014] [Accepted: 05/15/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE The neuropeptide 26RFa and its cognate receptor GPR103 are involved in the control of food intake and bone mineralization. Here, we have tested, experimentally, the predicted ligand-receptor interactions by site-directed mutagenesis of GPR103 and designed point-substituted 26RFa analogues. EXPERIMENTAL APPROACH Using the X-ray structure of the β2 -adrenoceptor, a 3-D molecular model of GPR103 has been built. The bioactive C-terminal octapeptide 26RFa(19-26) , KGGFSFRF-NH2 , was docked in this GPR103 model and the ligand-receptor complex was submitted to energy minimization. KEY RESULTS In the most stable complex, the Phe-Arg-Phe-NH2 part was oriented inside the receptor cavity, whereas the N-terminal Lys residue remained outside. A strong intermolecular interaction was predicted between the Arg(25) residue of 26RFa and the Gln(125) residue located in the third transmembrane helix of GPR103. To confirm this interaction experimentally, we tested the ability of 26RFa and Arg-modified 26RFa analogues to activate the wild-type and the Q125A mutant receptors transiently expressed in CHO cells. 26RFa (10(-6) M) enhanced [Ca(2+) ]i in wild-type GPR103-transfected cells, but failed to increase [Ca(2+) ]i in Q125A mutant receptor-expressing cells. Moreover, asymmetric dimethylation of the side chain of arginine led to a 26RFa analogue, [ADMA(25) ]26RFa(20-26) , that was unable to activate the wild-type GPR103, but antagonized 26RFa-evoked [Ca(2+) ]i increase. CONCLUSION AND IMPLICATIONS Altogether, these data provide strong evidence for a functional interaction between the Arg(25) residue of 26RFa and the Gln(125) residue of GPR103 upon ligand-receptor activation, which can be exploited for the rational design of potent GPR103 agonists and antagonists.
Collapse
Affiliation(s)
- C Neveu
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Cell Differentiation and Communication, Neurotrophic Factors and Neuronal Differentiation Team, Institute for Research and Innovation in Biomedicine (IRIB); Cell Imaging Platform of Normandy (PRIMACEN), IRIB; Normandie Univ, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Georgsson J, Bergström F, Nordqvist A, Watson MJ, Blundell CD, Johansson MJ, Petersson AU, Yuan ZQ, Zhou Y, Kristensson L, Kakol-Palm D, Tyrchan C, Wellner E, Bauer U, Brodin P, Svensson Henriksson A. GPR103 Antagonists Demonstrating Anorexigenic Activity in Vivo: Design and Development of Pyrrolo[2,3-c]pyridines That Mimic the C-Terminal Arg-Phe Motif of QRFP26. J Med Chem 2014; 57:5935-48. [DOI: 10.1021/jm401951t] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | | | | | - Martin J. Watson
- C4X Discovery Ltd., Unit 310 Ducie House, Ducie Street, Manchester M1 2JW, U.K
| | - Charles D. Blundell
- C4X Discovery Ltd., Unit 310 Ducie House, Ducie Street, Manchester M1 2JW, U.K
| | | | | | | | - Yiqun Zhou
- Pharmaron Beijing, Co.
Ltd., 6 Taihe Road, BDA, Beijing, 100176, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Neuropeptides possessing the Arg-Phe-NH2 (RFamide) motif at their C-termini (designated as RFamide peptides) have been characterized in a variety of animals. Among these, neuropeptide 26RFa (also termed QRFP) is the latest member of the RFamide peptide family to be discovered in the hypothalamus of vertebrates. The neuropeptide 26RFa/QRFP is a 26-amino acid residue peptide that was originally identified in the frog brain. It has been shown to exert orexigenic activity in mammals and to be a ligand for the previously identified orphan G protein-coupled receptor, GPR103 (QRFPR). The cDNAs encoding 26RFa/QRFP and QRFPR have now been characterized in representative species of mammals, birds, and fish. Functional studies have shown that, in mammals, the 26RFa/QRFP-QRFPR system may regulate various functions, including food intake, energy homeostasis, bone formation, pituitary hormone secretion, steroidogenesis, nociceptive transmission, and blood pressure. Several biological actions have also been reported in birds and fish. This review summarizes the current state of identification, localization, and understanding of the functions of 26RFaQRFP and its cognate receptor, QRFPR, in vertebrates.
Collapse
Affiliation(s)
- Kazuyoshi Ukena
- Section of Behavioral SciencesGraduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, JapanLaboratory of Integrative Brain SciencesDepartment of Biology, Center for Medical Life Science of Waseda University, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, JapanINSERM U982Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, 76821 Mont-Saint-Aignan, France
| | - Tomohiro Osugi
- Section of Behavioral SciencesGraduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, JapanLaboratory of Integrative Brain SciencesDepartment of Biology, Center for Medical Life Science of Waseda University, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, JapanINSERM U982Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, 76821 Mont-Saint-Aignan, France
| | - Jérôme Leprince
- Section of Behavioral SciencesGraduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, JapanLaboratory of Integrative Brain SciencesDepartment of Biology, Center for Medical Life Science of Waseda University, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, JapanINSERM U982Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, 76821 Mont-Saint-Aignan, France
| | - Hubert Vaudry
- Section of Behavioral SciencesGraduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, JapanLaboratory of Integrative Brain SciencesDepartment of Biology, Center for Medical Life Science of Waseda University, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, JapanINSERM U982Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, 76821 Mont-Saint-Aignan, France
| | - Kazuyoshi Tsutsui
- Section of Behavioral SciencesGraduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, JapanLaboratory of Integrative Brain SciencesDepartment of Biology, Center for Medical Life Science of Waseda University, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, JapanINSERM U982Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, 76821 Mont-Saint-Aignan, France
| |
Collapse
|
22
|
Nordqvist A, Kristensson L, Johansson KE, Isaksson da Silva K, Fex T, Tyrchan C, Svensson Henriksson A, Nilsson K. New Hits as Antagonists of GPR103 Identified by HTS. ACS Med Chem Lett 2014; 5:527-32. [PMID: 24900874 DOI: 10.1021/ml400519h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 02/22/2014] [Indexed: 12/31/2022] Open
Abstract
Preclinical data indicate that GPR103 receptor and its endogenous neuropeptides QRFP26 and QRFP43 are involved in appetite regulation. A high throughput screening (HTS) for small molecule GPR103 antagonists was performed with the clinical goal to target weight management by modulation of appetite. A high hit rate from the HTS and initial low confirmation with respect to functional versus affinity data challenged us to revise the established screening cascade. To secure high quality data while increasing throughput, the binding assay was optimized on quality to run at single concentration. This strategy enabled evaluation of a larger fraction of chemical clusters and singletons delivering 17 new compound classes for GPR103 antagonism. Representative compounds from three clusters are presented. One of the identified clusters was further investigated, and an initial structure-activity relationship study is reported. The most potent compound identified had a pIC50 of 7.9 with an improved ligand lipophilic efficiency.
Collapse
Affiliation(s)
- Anneli Nordqvist
- CVMD Medicinal Chemistry, ‡Discovery Sciences, and §RIA Medicinal
Chemistry, AstraZeneca, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Lisbeth Kristensson
- CVMD Medicinal Chemistry, ‡Discovery Sciences, and §RIA Medicinal
Chemistry, AstraZeneca, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Kjell E. Johansson
- CVMD Medicinal Chemistry, ‡Discovery Sciences, and §RIA Medicinal
Chemistry, AstraZeneca, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Krystle Isaksson da Silva
- CVMD Medicinal Chemistry, ‡Discovery Sciences, and §RIA Medicinal
Chemistry, AstraZeneca, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Tomas Fex
- CVMD Medicinal Chemistry, ‡Discovery Sciences, and §RIA Medicinal
Chemistry, AstraZeneca, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Christian Tyrchan
- CVMD Medicinal Chemistry, ‡Discovery Sciences, and §RIA Medicinal
Chemistry, AstraZeneca, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Anette Svensson Henriksson
- CVMD Medicinal Chemistry, ‡Discovery Sciences, and §RIA Medicinal
Chemistry, AstraZeneca, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Kristina Nilsson
- CVMD Medicinal Chemistry, ‡Discovery Sciences, and §RIA Medicinal
Chemistry, AstraZeneca, Pepparedsleden 1, 431 83 Mölndal, Sweden
| |
Collapse
|
23
|
Abstract
QRFP, a member of the RFamide-related peptide family, is a strongly conserved hypothalamic neuropeptide that has been characterized in various species. Prepro-QRFP mRNA expression is localized to select regions of the hypothalamus, which are involved in the regulation of feeding behavior. The localization of the peptide precursor has led to the assessment of QRFP on feeding behaviors and the orexigenic effects of QRFP have been detected in mice, rats, and birds. QRFP acts in a macronutrient specific manner in satiated rats to increase the intake of a high fat diet, but not the intake of a low fat diet, and increases the intake of chow in food-restricted rats. Studies suggest that QRFP's effects on food intake are mediated by the adiposity signal, leptin, and hypothalamic neuropeptides. Additionally, QRFP regulates the expression and release of hypothalamic Neuropeptide Y and proopiomelanocortin/α-Melanocyte-Stimulating Hormone. QRFP binds to receptors throughout the brain, including regions associated with food intake and reward. Taken together, these data suggest that QRFP is a mediator of motivated behaviors, particularly the drive to ingest high fat food. The present review discusses the role of QRFP in the regulation of feeding behavior, with emphasis on the intake of dietary fat.
Collapse
Affiliation(s)
- S. D. Primeaux
- Joint Diabetes, Endocrinology & Metabolism Program, Louisiana State University System, Louisiana State University Health Science Center-New Orleans, New Orleans, USA
| | - M. J. Barnes
- Pennington Biomedical Research Center, Baton Rouge, USA
| | - H. D. Braymer
- Pennington Biomedical Research Center, Baton Rouge, USA
| |
Collapse
|
24
|
Ukena K, Tachibana T, Tobari Y, Leprince J, Vaudry H, Tsutsui K. Identification, localization and function of a novel neuropeptide, 26RFa, and its cognate receptor, GPR103, in the avian hypothalamus. Gen Comp Endocrinol 2013; 190:42-6. [PMID: 23548680 DOI: 10.1016/j.ygcen.2013.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 02/06/2023]
Abstract
Several neuropeptides possessing the RFamide motif at their C-termini (designated RFamide peptides) have been characterized in the hypothalamus of a variety of vertebrates. Since the discovery of the 26-amino acid RFamide peptide (termed 26RFa) from the frog brain, 26RFa has been shown to exert orexigenic activity in mammals and to be a ligand of the previously identified orphan G protein-coupled receptor GPR103. Recently, we have identified 26RFa in the avian brain by molecular cloning of the cDNA encoding the 26RFa precursor and mass spectrometry analysis of the mature peptide. 26RFa-producing neurons are exclusively located in the hypothalamus whereas GPR103 is widely distributed in the avian brain. Furthermore, avian 26RFa stimulates feeding behavior in broiler chicks. This review summarizes the advances in the identification, localization, and functions of 26RFa and its cognate receptor GPR103 in vertebrates and highlights recent progress made in birds.
Collapse
Affiliation(s)
- Kazuyoshi Ukena
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan.
| | | | | | | | | | | |
Collapse
|
25
|
Pierry C, Couve-Bonnaire S, Guilhaudis L, Neveu C, Marotte A, Lefranc B, Cahard D, Ségalas-Milazzo I, Leprince J, Pannecoucke X. Fluorinated pseudopeptide analogues of the neuropeptide 26RFa: synthesis, biological, and structural studies. Chembiochem 2013; 14:1620-33. [PMID: 23940098 DOI: 10.1002/cbic.201300325] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Indexed: 11/05/2022]
Abstract
A series of four fluorinated dipeptide analogues each containing a fluoro-olefin moiety as peptide bond surrogate has been designed and synthesized. These motifs have been successfully introduced into the bioactive C-terminal heptapeptide of the neuropeptide 26RFa by conventional SPPS. We then evaluated the ability of the generated pseudopeptides to increase [Ca²⁺](i) in GPR103-transfected cells. For these fluorinated analogues, greater stability in human serum was observed. Their conformations were also investigated, leading to the valuable identification of differences depending on the position of the fluoro-olefin moiety in the sequence.
Collapse
Affiliation(s)
- Camille Pierry
- UMR 6014 COBRA, INSA and University of Rouen, IRCOF, 1 rue Tesnière, 76130 Mont-Saint-Aignan (France)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Rifflet A, Gavalda S, Téné N, Orivel J, Leprince J, Guilhaudis L, Génin E, Vétillard A, Treilhou M. Identification and characterization of a novel antimicrobial peptide from the venom of the ant Tetramorium bicarinatum. Peptides 2012; 38:363-70. [PMID: 22960382 DOI: 10.1016/j.peptides.2012.08.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 08/29/2012] [Accepted: 08/30/2012] [Indexed: 11/21/2022]
Abstract
A novel antimicrobial peptide, named Bicarinalin, has been isolated from the venom of the ant Tetramorium bicarinatum. Its amino acid sequence has been determined by de novo sequencing using mass spectrometry and by Edman degradation. Bicarinalin contained 20 amino acid residues and was C-terminally amidated as the majority of antimicrobial peptides isolated to date from insect venoms. Interestingly, this peptide had a linear structure and exhibited no meaningful similarity with any known peptides. Antibacterial activities against Staphylococcus aureus and S. xylosus strains were evaluated using a synthetic replicate. Bicarinalin had a potent and broad antibacterial activity of the same magnitude as Melittin and other hymenopteran antimicrobial peptides such as Pilosulin or Defensin. Moreover, this antimicrobial peptide has a weak hemolytic activity compared to Melittin on erythrocytes, suggesting potential for development into an anti-infective agent for use against emerging antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Aline Rifflet
- Equipe VacBio EA 4357, PRES Université Toulouse, CUFR JF Champollion, Place de Verdun, 81012 Albi, France
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Enault J, Zatylny-Gaudin C, Bernay B, Lefranc B, Leprince J, Baudy-Floc'h M, Henry J. A complex set of sex pheromones identified in the cuttlefish Sepia officinalis. PLoS One 2012; 7:e46531. [PMID: 23118854 PMCID: PMC3484142 DOI: 10.1371/journal.pone.0046531] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 09/05/2012] [Indexed: 11/24/2022] Open
Abstract
Background The cephalopod mollusk Sepia officinalis can be considered as a relevant model for studying reproduction strategies associated to seasonal migrations. Using transcriptomic and peptidomic approaches, we aim to identify peptide sex pheromones that are thought to induce the aggregation of mature cuttlefish in their egg-laying areas. Results To facilitate the identification of sex pheromones, 576 5′-expressed sequence tags (ESTs) were sequenced from a single cDNA library generated from accessory sex glands of female cuttlefish. Our analysis yielded 223 unique sequences composed of 186 singletons and 37 contigs. Three major redundant ESTs called SPα, SPα′ and SPβ were identified as good candidates for putative sex pheromone transcripts and are part of the 87 unique sequences classified as unknown. The alignment of translated SPα and SPα′ revealed a high level of conservation, with 98.4% identity. Translation led to a 248-amino acid precursor containing six peptides with multiple putative disulfide bonds. The alignment of SPα-α′ with SPβ revealed a partial structural conservation, with 37.3% identity. Translation of SPβ led to a 252-amino acid precursor containing five peptides. The occurrence of a signal peptide on SPα, SPα′ and SPβ showed that the peptides were secreted. RT-PCR and mass spectrometry analyses revealed a co-localization of transcripts and expression products in the oviduct gland. Preliminary in vitro experiments performed on gills and penises revealed target organs involved in mating and ventilation. Conclusions The analysis of the accessory sex gland transcriptome of Sepia officinalis led to the identification of peptidic sex pheromones. Although preliminary functional tests suggested the involvement of the α3 and β2 peptides in ventilation and mating stimulation, further functional investigations will make it possible to identify the complete set of biological activities expected from waterborne pheromones.
Collapse
Affiliation(s)
- Jérémy Enault
- FRE CNRS 3484 BIOMEA, Biologie des Mollusques Marins et des Ecosystèmes Associés, Université de Caen Basse-Normandie, Caen, France
| | - Céline Zatylny-Gaudin
- FRE CNRS 3484 BIOMEA, Biologie des Mollusques Marins et des Ecosystèmes Associés, Université de Caen Basse-Normandie, Caen, France
| | - Benoît Bernay
- Post Genomic platform PROTEOGEN, Université de Caen Basse-Normandie, IFR ICORE 146, Caen, France
| | - Benjamin Lefranc
- INSERM U982, Différenciation et Communication Neuronale et Neuroendocrine, PRIMACEN, IFRMP23, Université de Rouen, Mont-Saint-Aignan, France
| | - Jérôme Leprince
- INSERM U982, Différenciation et Communication Neuronale et Neuroendocrine, PRIMACEN, IFRMP23, Université de Rouen, Mont-Saint-Aignan, France
| | - Michèle Baudy-Floc'h
- UMR CNRS 6226, Ciblage et Auto-Assemblages Fonctionnels, Sciences Chimiques de Rennes, Université de Rennes I, Av. du Général Leclerc, Rennes, France
| | - Joël Henry
- FRE CNRS 3484 BIOMEA, Biologie des Mollusques Marins et des Ecosystèmes Associés, Université de Caen Basse-Normandie, Caen, France
- Post Genomic platform PROTEOGEN, Université de Caen Basse-Normandie, IFR ICORE 146, Caen, France
- * E-mail:
| |
Collapse
|
28
|
Nichols R, Bass C, Demers L, Larsen B, Li E, Blewett N, Converso-Baran K, Russell MW, Westfall MV. Structure-activity studies of RFamide-related peptide-1 identify a functional receptor antagonist and novel cardiac myocyte signaling pathway involved in contractile performance. J Med Chem 2012; 55:7736-45. [PMID: 22909119 DOI: 10.1021/jm300760m] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human RFamide-related peptide-1 (hRFRP-1, MPHSFANLPLRF-NH(2)) binds to neuropeptide FF receptor 2 (NPFF(2)R) to dramatically diminish cardiovascular performance. hRFRP-1 and its signaling pathway may provide targets to address cardiac dysfunction. Here, structure-activity relationship, transcript, Ca(2+) transient, and phospholabeling data indicate the presence of a hRFRP-1 pathway in cardiomyocytes. Alanyl-substituted and N-terminal truncated analogues identified that R(11) was essential for activity, hRFRP-1((8-12)) mimicked hRFRP-1, and [A(11)]hRFRP-1((8-12)) antagonized the effect of hRFRP-1 in cellular and integrated cardiac performance. RFRP and NPFF(2)R transcripts were amplified from cardiomyocytes and heart. Maintenance of the Ca(2+) transient when hRFRP-1 impaired myocyte shortening indicated the myofilament was its primary downstream target. Enhanced myofilament protein phosphorylation detected after hRFRP-1 treatment but absent in [A(11)]hRFRP-1((8-12))-treated cells was consistent with this result. Protein kinase C (PKC) but not PKA inhibitor diminished the influence of hRFRP-1 on the Ca(2+) transient. Molecules targeting this pathway may help address cardiovascular disease.
Collapse
Affiliation(s)
- Ruthann Nichols
- Department of Biological Chemistry, The University of Michigan Medical School , Ann Arbor, Michigan 48109, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Neveu C, Lefranc B, Tasseau O, Do-Rego JC, Bourmaud A, Chan P, Bauchat P, Le Marec O, Chuquet J, Guilhaudis L, Boutin JA, Ségalas-Milazzo I, Costentin J, Vaudry H, Baudy-Floc'h M, Vaudry D, Leprince J. Rational design of a low molecular weight, stable, potent, and long-lasting GPR103 aza-β3-pseudopeptide agonist. J Med Chem 2012; 55:7516-24. [PMID: 22800498 DOI: 10.1021/jm300507d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
26RFa, a novel RFamide neuropeptide, is the endogenous ligand of the former orphan receptor GPR103. Intracerebroventricular injection of 26RFa and its C-terminal heptapeptide, 26RFa((20-26)), stimulates food intake in rodents. To develop potent, stable ligands of GPR103 with low molecular weight, we have designed a series of aza-β(3)-containing 26RFa((20-26)) analogues for their propensity to establish intramolecular hydrogen bonds, and we have evaluated their ability to increase [Ca(2+)](i) in GPR103-transfected cells. We have identified a compound, [Cmpi(21),aza-β(3)-Hht(23)]26RFa((21-26)), which was 8-fold more potent than 26RFa((20-26)) in mobilizing [Ca(2+)](i). This pseudopeptide was more stable in serum than 26RFa((20-26)) and exerted a longer lasting orexigenic effect in mice. This study constitutes an important step toward the development of 26RFa analogues that could prove useful for the treatment of feeding disorders.
Collapse
Affiliation(s)
- Cindy Neveu
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine (IRIB), INSERM U982, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Granata R, Settanni F, Julien M, Nano R, Togliatto G, Trombetta A, Gallo D, Piemonti L, Brizzi MF, Abribat T, van Der Lely AJ, Ghigo E. Des-acyl ghrelin fragments and analogues promote survival of pancreatic β-cells and human pancreatic islets and prevent diabetes in streptozotocin-treated rats. J Med Chem 2012; 55:2585-96. [PMID: 22352743 DOI: 10.1021/jm201223m] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Des-acyl ghrelin, although devoid of binding to ghrelin receptor (GRLN), exerts many biological effects, including regulation of glucose and lipid metabolism. Indeed, des-acyl ghrelin promotes pancreatic β-cell and human islet cell survival and prevents diabetes in streptozotocin (STZ) treated rats. We investigated whether des-acyl ghrelin fragments excluding serine(3), which is essential for binding to GRLN, would display similar actions. Among the different compounds tested, des-acyl ghrelin((6-13)) and des-acyl ghrelin((6-13)) with alanine substitutions or cyclization, but not with d-amino acid substitutions, showed the best survival effect, similar to des-acyl ghrelin. Des-acyl ghrelin((6-13)) even prevented diabetes in STZ-treated rats and protected human circulating angiogenic cells from oxidative stress and senescence, similar to des-acyl ghrelin. These results suggest that not only full-length des-acyl ghrelin but also short des-acyl ghrelin fragments have clear beneficial effects on several tissues in vitro and in vivo.
Collapse
Affiliation(s)
- Riccarda Granata
- Laboratory of Molecular and Cellular Endocrinology, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Findeisen M, Rathmann D, Beck-Sickinger AG. RFamide Peptides: Structure, Function, Mechanisms and Pharmaceutical Potential. Pharmaceuticals (Basel) 2011. [PMCID: PMC4058657 DOI: 10.3390/ph4091248] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Different neuropeptides, all containing a common carboxy-terminal RFamide sequence, have been characterized as ligands of the RFamide peptide receptor family. Currently, five subgroups have been characterized with respect to their N-terminal sequence and hence cover a wide pattern of biological functions, like important neuroendocrine, behavioral, sensory and automatic functions. The RFamide peptide receptor family represents a multiligand/multireceptor system, as many ligands are recognized by several GPCR subtypes within one family. Multireceptor systems are often susceptible to cross-reactions, as their numerous ligands are frequently closely related. In this review we focus on recent results in the field of structure-activity studies as well as mutational exploration of crucial positions within this GPCR system. The review summarizes the reported peptide analogs and recently developed small molecule ligands (agonists and antagonists) to highlight the current understanding of the pharmacophoric elements, required for affinity and activity at the receptor family. Furthermore, we address the biological functions of the ligands and give an overview on their involvement in physiological processes. We provide insights in the knowledge for the design of highly selective ligands for single receptor subtypes to minimize cross-talk and to eliminate effects from interactions within the GPCR system. This will support the drug development of members of the RFamide family.
Collapse
|