1
|
Şener N, Aldwib AEO. New Antibacterial 1,3,4-Thiadiazole Derivatives With Pyridine Moiety. Chem Biodivers 2024; 21:e202400522. [PMID: 38606431 DOI: 10.1002/cbdv.202400522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/13/2024]
Abstract
1,3,4-Thiadiazole compounds were synthesized using pyridine carboxylic acid derivatives and thiosemicarbazide derivatives. The molecular structures of the resulting compounds were characterized by spectroscopic methods such as ATR-FTIR, 1H-NMR, and elemental analysis. Its compounds were also examined for their antibacterial properties against some strains of bacteria. Five synthesized compounds showed varying antibacterial effects on Escherichia coli, Salmonella kentucky, Bacillus substilis and Klebsiella pneumoniae. This result revealed that some of the resulting compounds could be antibacterial agents.
Collapse
Affiliation(s)
- Nesrin Şener
- Department of Chemistry, Faculty of Science, Kastamonu University, 37200, Kastamonu, Turkey
| | | |
Collapse
|
2
|
Jiang W, Li ZH, Li TJ, Liu JQ, Wang XS. Copper-Catalyzed Decarboxylation Cross-Coupling Cascade Reaction for Synthesis of Fused Dihydro-benzoxazinones. J Org Chem 2024. [PMID: 38754406 DOI: 10.1021/acs.joc.3c02862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
A protocol for a tandem copper-catalyzed intermolecular decarboxylation cross-coupling cascade between o-bromobenzoic acids and proline or piperic acid has been disclosed. The developed protocol allows access to a variety of synthetically useful fused benzoxazinones scaffolds with high efficiency and good functional group compatibility. A mechanistically sequential approach for the decarboxylation and dehydration coupling process was presented.
Collapse
Affiliation(s)
- Weidong Jiang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Zhuo-Huan Li
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Tuan-Jie Li
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Jian-Quan Liu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Xiang-Shan Wang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
3
|
Ren J, Jin T, Li R, Zhong YY, Xuan YX, Wang YL, Yao W, Yu SL, Yuan JT. Priority list of potential endocrine-disrupting chemicals in food chemical contaminants: a docking study and in vitro/epidemiological evidence integration. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:847-866. [PMID: 37920972 DOI: 10.1080/1062936x.2023.2269855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023]
Abstract
Diet is an important exposure route of endocrine-disrupting chemicals (EDCs), but many unfiltered potential EDCs remain in food. The in silico prediction of EDCs is a popular method for preliminary screening. Potential EDCs in food were screened using Endocrine Disruptome, an open-source platform for inverse docking, to predict the binding probabilities of 587 food chemical contaminants with 18 human nuclear hormone receptor (NHR) conformations. In total, 25 contaminants were bound to multiple NHRs such as oestrogen receptor α/β and androgen receptor. These 25 compounds mainly include pesticides and per- and polyfluoroalkyl substances (PFASs). The prediction results were validated with the in vitro data. The structural features and the crucial amino acid residues of the four NHRs were also validated based on previous literature. The findings indicate that the screening has good prediction efficiency. In addition, the epidemic evidence about endocrine interference of PFASs in food on children was further validated through this screening. This study provides preliminary screening results for EDCs in food and a priority list for in vitro and in vivo research.
Collapse
Affiliation(s)
- J Ren
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| | - T Jin
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| | - R Li
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| | - Y Y Zhong
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| | - Y X Xuan
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| | - Y L Wang
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| | - W Yao
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| | - S L Yu
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, Henan, P. R. China
| | - J T Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| |
Collapse
|
4
|
Oksuzoglu E, Yilmaz S, Yenice Cakmak G, Ataei S, Yildiz I. Antitumor activity against human promyelocytic leukemia and in silico studies of some benzoxazines. J Biomol Struct Dyn 2023; 41:8175-8190. [PMID: 36300440 DOI: 10.1080/07391102.2022.2130989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/24/2022] [Indexed: 10/31/2022]
Abstract
Cancer is one of the deadliest diseases in the world today, and the incidence of cancer is increasing. Leukemia is a type of blood cancer defined as the uncontrolled proliferation of abnormal leukocytes in the blood and bone marrow. The HL-60 (human promyelocytic leukemia) cell line, derived from a single patient with acute promyelocytic leukemia, provides a unique in vitro model system for studying the cellular and molecular events involved in the proliferation and differentiation of leukemic cells. In this study, antitumor activities on the HL-60 of some of the resynthesized benzoxazine derivatives (BXN-01 and BXN-02) were investigated. The results of in vitro studies obtained were compared a standard drug, etoposide. In vitro results showed that BXN-01 and BXN-02 were found to be extremely effective compared to etoposide (IC50 value: 10 µM) with IC50 values of 5 nM and 25 nM, respectively. Furthermore, molecular docking studies were carried out for preliminary prediction of possible interaction modes between compounds and the active site of the target macromolecules, hTopo IIα, HDAC2, and RXRA. Then, in silico ADME/Tox studies were performed to predict drug-likeness and pharmacokinetic properties of BXN-01 and BXN-02.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Emine Oksuzoglu
- Molecular Biology Division, Department of Biology, Faculty of Science and Letters, Aksaray University, Aksaray, Turkey
| | - Serap Yilmaz
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Trakya University, Edirne, Turkey
| | - Gozde Yenice Cakmak
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Trakya University, Edirne, Turkey
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - Sanaz Ataei
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Ankara University, Ankara, Turkey
| | - Ilkay Yildiz
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Ankara University, Ankara, Turkey
| |
Collapse
|
5
|
Johnston JG, Welch AK, Cain BD, Sayeski PP, Gumz ML, Wingo CS. Aldosterone: Renal Action and Physiological Effects. Compr Physiol 2023; 13:4409-4491. [PMID: 36994769 PMCID: PMC11472823 DOI: 10.1002/cphy.c190043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Aldosterone exerts profound effects on renal and cardiovascular physiology. In the kidney, aldosterone acts to preserve electrolyte and acid-base balance in response to changes in dietary sodium (Na+ ) or potassium (K+ ) intake. These physiological actions, principally through activation of mineralocorticoid receptors (MRs), have important effects particularly in patients with renal and cardiovascular disease as demonstrated by multiple clinical trials. Multiple factors, be they genetic, humoral, dietary, or otherwise, can play a role in influencing the rate of aldosterone synthesis and secretion from the adrenal cortex. Normally, aldosterone secretion and action respond to dietary Na+ intake. In the kidney, the distal nephron and collecting duct are the main targets of aldosterone and MR action, which stimulates Na+ absorption in part via the epithelial Na+ channel (ENaC), the principal channel responsible for the fine-tuning of Na+ balance. Our understanding of the regulatory factors that allow aldosterone, via multiple signaling pathways, to function properly clearly implicates this hormone as central to many pathophysiological effects that become dysfunctional in disease states. Numerous pathologies that affect blood pressure (BP), electrolyte balance, and overall cardiovascular health are due to abnormal secretion of aldosterone, mutations in MR, ENaC, or effectors and modulators of their action. Study of the mechanisms of these pathologies has allowed researchers and clinicians to create novel dietary and pharmacological targets to improve human health. This article covers the regulation of aldosterone synthesis and secretion, receptors, effector molecules, and signaling pathways that modulate its action in the kidney. We also consider the role of aldosterone in disease and the benefit of mineralocorticoid antagonists. © 2023 American Physiological Society. Compr Physiol 13:4409-4491, 2023.
Collapse
Affiliation(s)
- Jermaine G Johnston
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Amanda K Welch
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Brian D Cain
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Peter P Sayeski
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Michelle L Gumz
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Charles S Wingo
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| |
Collapse
|
6
|
Dong Z, Tang Q, Xu C, Chen L, Ji H, Zhou S, Song L, Chen LA. Directed Asymmetric Nickel-Catalyzed Reductive 1,2-Diarylation of Electronically Unactivated Alkenes. Angew Chem Int Ed Engl 2023; 62:e202218286. [PMID: 36719253 DOI: 10.1002/anie.202218286] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/01/2023]
Abstract
Transition-metal catalyzed intermolecular 1,2-diarylation of electronically unactivated alkenes has emerged as an extensive research topic in organic synthesis. However, most examples are mainly limited to terminal alkenes. Furthermore, transition-metal catalyzed asymmetric 1,2-diarylation of unactivated alkenes still remains unsolved and is a formidable challenge. Herein, we describe a highly efficient directed nickel-catalyzed reductive 1,2-diarylation of unactivated internal alkenes with high diastereoselectivities. More importantly, our further effort towards enantioselective 1,2-diarylation of the unactivated terminal and challenging internal alkenes is achieved, furnishing various polyarylalkanes featuring benzylic stereocenters in high yields and with good to high enantioselectivities and high diastereoselectivities. Interestingly, the generation of cationic Ni-catalyst by adding alkali metal fluoride is the key to increased efficiency of this enantioselective reaction.
Collapse
Affiliation(s)
- Zhan Dong
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Qiongyao Tang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Changyu Xu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Li Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Haiting Ji
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Sitian Zhou
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Liangliang Song
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Liang-An Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
7
|
Moussa Z, Paz AP, Judeh ZMA, Alzamly A, Saadeh HA, Asghar BH, Alsaedi S, Masoud B, Almeqbaali S, Estwani S, Aljaberi A, Al-Rooqi MM, Ahmed SA. First X-ray Crystal Structure Characterization, Computational Studies, and Improved Synthetic Route to the Bioactive 5-Arylimino-1,3,4-thiadiazole Derivatives. Int J Mol Sci 2023; 24:3759. [PMID: 36835167 PMCID: PMC9965731 DOI: 10.3390/ijms24043759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/16/2023] Open
Abstract
N-arylcyanothioformamides are useful coupling components for building key chemical intermediates and biologically active molecules in an expedited and efficient manner. Similarly, substituted (Z)-2-oxo-N-phenylpropanehydrazonoyl chlorides have been utilized in numerous one-step heteroannulation reactions to assemble the structural core of several different types of heterocyclic compounds. Herein, we demonstrate the effectiveness of the reaction of N-arylcyanothioformamides with various substituted (Z)-2-oxo-N-phenylpropanehydrazonoyl chlorides to produce, stereoselectively and regioselectively, a range of 5-arylimino-1,3,4-thiadiazole derivatives decorated with a multitude of functional groups on both aromatic rings. The synthetic methodology features mild room-temperature conditions, large substrate scope, wide array of functional groups on both reactants, and good to high reaction yields. The products were isolated by gravity filtration in all cases and structures were confirmed by multinuclear NMR spectroscopy and high accuracy mass spectral analysis. Proof of molecular structure of the isolated 5-arylimino-1,3,4-thiadiazole regioisomer was obtained for the first time by single-crystal X-ray diffraction analysis. Crystal-structure determination was carried out on (Z)-1-(5-((3-fluorophenyl)imino)-4-(4-iodophenyl)-4,5-dihydro-1,3,4-thiadiazol-2-yl)ethan-1-one and (Z)-1-(4-phenyl-5-(p-tolylimino)-4,5-dihydro-1,3,4-thiadiazol-2-yl)ethan-1-one. Similarly, the tautomeric structures of the N-arylcyanothioformamides and (Z)-geometries of the 2-oxo-N-phenylpropanehydrazonoyl chloride coupling partners were proven by X-ray diffraction studies. As representative examples, crystal-structure determination was carried out on (4-ethoxyphenyl)carbamothioyl cyanide and (Z)-N-(2,3-difluorophenyl)-2-oxopropanehydrazonoyl chloride. Density functional theory calculations at the B3LYP-D4/def2-TZVP level were carried out to rationalize the observed experimental findings.
Collapse
Affiliation(s)
- Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Alejandro Perez Paz
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Zaher M. A. Judeh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, N1.2–B1-14, Singapore 637459, Singapore
| | - Ahmed Alzamly
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Haythem A. Saadeh
- Department of Chemistry, School of Science, The University of Jordan, Amman 11942, Jordan
| | - Basim H. Asghar
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Sara Alsaedi
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Bayan Masoud
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Salama Almeqbaali
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Saeda Estwani
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Amna Aljaberi
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Munirah M. Al-Rooqi
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Saleh A. Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
8
|
Kumar S, Prince, Gupta M, Lalji RSK, Singh BK. Microwave assisted regioselective halogenation of benzo[ b][1,4]oxazin-2-ones via sp 2 C-H functionalization. RSC Adv 2023; 13:2365-2371. [PMID: 36741130 PMCID: PMC9841512 DOI: 10.1039/d2ra07259a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
A microwave assisted, palladium-catalyzed regioselective halogenation of 3-phenyl-2H-benzo[b][1,4]oxazin-2-ones has been demonstrated using inexpensive and readily available N-halosuccinimide. The reaction utilizes the nitrogen atom present in the heterocyclic ring as the directing group to afford regioselective halogenated products in good to moderate yields. The established protocol provides wide substrate scope, high functional group tolerance, and high atom and step economy. The reaction proved to be cost-effective and time-saving as it required only a few minutes for completion and is amenable to gram scale. The halogen atoms present in synthesized products provide further scope for post-functionalization. Several post-functionalized products have also been synthesised to demonstrate the high utility of the reaction in the field of drug discovery and late-stage functionalization.
Collapse
Affiliation(s)
- Sandeep Kumar
- Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi Delhi 110007 India
| | - Prince
- Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi Delhi 110007 India
| | - Mohit Gupta
- Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi Delhi 110007 India
| | - Ram Sunil Kumar Lalji
- Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi Delhi 110007 India
- Department of Chemistry, Kirori-mal College, Delhi University Delhi 110007 India
| | - Brajendra K Singh
- Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi Delhi 110007 India
| |
Collapse
|
9
|
Silver-catalyzed cross-dehydrogenative coupling of benzoxazine-2-ones with resorcinol. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Elwahy AHM, Eid EM, Abdel-Latif SA, Hassaneen HME, Abdelhamid IA. Design, Synthesis, DFT, TD-DFT/PCM Calculations, and Molecular Docking Studies on the Anti-COVID-19, and Anti-SARS Activities of Some New Bis-Thiazoles and Bis-Thiadiazole. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2117204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
| | - Elshimaa M. Eid
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | | | | |
Collapse
|
11
|
Omar AZ, Alshaye NA, Mosa TM, El-Sadany SK, Hamed EA, El-Atawy MA. Synthesis and Antimicrobial Activity Screening of Piperazines Bearing N, N'-Bis(1,3,4-thiadiazole) Moiety as Probable Enoyl-ACP Reductase Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123698. [PMID: 35744824 PMCID: PMC9228617 DOI: 10.3390/molecules27123698] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/29/2022] [Accepted: 05/29/2022] [Indexed: 11/16/2022]
Abstract
A new N,N'-disubstituted piperazine conjugated with 1,3,4-thiadiazole and 1,2,4-triazole was prepared and the chemical structures were identified by IR, NMR and elemental analysis. All the prepared compounds were tested for their antimicrobial activity. The antimicrobial results indicated that the tested compounds showed significant antibacterial activity against gram-negative strains, especially E. coli, relative to gram-positive bacteria. Docking analysis was performed to support the biological results; binding modes with the active site of enoyl reductase amino acids from E. coli showed very good scores, ranging from -6.1090 to -9.6184 kcal/mol. Correlation analysis was performed for the inhibition zone (nm) and the docking score.
Collapse
Affiliation(s)
- Alaa Z. Omar
- Chemistry Department, Faculty of Science, Alexandria University, P.O. 426 Ibrahemia, Alexandria 21321, Egypt; (T.M.M.); (S.K.E.-S.); (E.A.H.)
- Correspondence: (A.Z.O.); (M.A.E.-A.)
| | - Najla A. Alshaye
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Tawfik M. Mosa
- Chemistry Department, Faculty of Science, Alexandria University, P.O. 426 Ibrahemia, Alexandria 21321, Egypt; (T.M.M.); (S.K.E.-S.); (E.A.H.)
| | - Samir K. El-Sadany
- Chemistry Department, Faculty of Science, Alexandria University, P.O. 426 Ibrahemia, Alexandria 21321, Egypt; (T.M.M.); (S.K.E.-S.); (E.A.H.)
| | - Ezzat A. Hamed
- Chemistry Department, Faculty of Science, Alexandria University, P.O. 426 Ibrahemia, Alexandria 21321, Egypt; (T.M.M.); (S.K.E.-S.); (E.A.H.)
| | - Mohamed A. El-Atawy
- Chemistry Department, Faculty of Science, Alexandria University, P.O. 426 Ibrahemia, Alexandria 21321, Egypt; (T.M.M.); (S.K.E.-S.); (E.A.H.)
- Chemistry Department, Faculty of Science, Taibah University, Yanbu 46423, Saudi Arabia
- Correspondence: (A.Z.O.); (M.A.E.-A.)
| |
Collapse
|
12
|
Atmaram UA, Roopan SM. Biological activity of oxadiazole and thiadiazole derivatives. Appl Microbiol Biotechnol 2022; 106:3489-3505. [PMID: 35562490 PMCID: PMC9106569 DOI: 10.1007/s00253-022-11969-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022]
Abstract
Abstract
The 5-membered oxadiazole and thiadiazole scaffolds are the most privileged and well-known heterocycles, being a common and essential feature of a variety of natural products and medicinal agents. These scaffolds take up the center position and are the core structural components of numerous drugs that belong to different categories. These include antimicrobial, anti-tubercular, anti-inflammatory, analgesic, antiepileptic, antiviral, and anticancer agents. In this review, we mostly talk about the isomers 1,2,4-oxadiazole and 1,3,4-thiadiazole because they have important pharmacological properties. This is partly because they are chemical and heat resistant, unlike other isomers, and they can be used as bio-isosteric replacements in drug design. We are reviewing the structural modifications of different oxadiazole and thiadiazole derivatives, more specifically, the anti-tubercular and anticancer pharmacological activities reported over the last 5 years, as we have undertaken this as a core area of research. This review article desires to do a thorough study and analysis of the recent progress made in the important biological isomers 1,2,4-oxadiazole and 1,3,4-thiadiazol. This will be a great place to start for future research. Key points • Five-membered heterocyclic compound chemistry and biological activity recent survey. • Synthesis and pharmacological evolution of 1,2,4-oxadiazole and 1,3,4-thiadiazole are discussed in detail. • The value and significance of heterocyclic compounds in the field of drug designing are highlighted. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-11969-0.
Collapse
Affiliation(s)
- Upare Abhay Atmaram
- Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Selvaraj Mohana Roopan
- Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
13
|
Bhat MA, Jan M, Manzoor U, Shalla AH, Butcher RJ, Jasinski JP. Synthesis of novel 2,5-bis(substituted thio)-1,3,4-thiadiazoles by acid catalyzed intermolecular cyclization reactions of substituted dithiocarbazates as a possible 2019-nCoV main protease inhibitor. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Takedomi K, Ohta M, Ekimoto T, Ikeguchi M. Effect of Water Molecules on the Activating S810L Mutation of the Mineralocorticoid Receptor. J Chem Inf Model 2021; 61:3583-3592. [PMID: 34228431 DOI: 10.1021/acs.jcim.1c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mineralocorticoid receptor (MR) is a nuclear receptor whose endogenous ligands are mineralocorticoids, a type of steroid hormone. The activating S810L mutation is known to cause severe early-onset and pregnancy-related hypertension. Progesterone binds to the wild-type (WT) MR as a passive antagonist with fast dissociation; however, it binds to the S810L mutant as a full agonist with slow dissociation. The switch in the biological activity of progesterone is considered to be one of the causes of the disease. First, we used steered molecular dynamics simulations to analyze the dissociation process of progesterone for the WT and the S810L mutant. Progesterone in the WT dissociated from the ligand-binding pocket with a weak force in comparison with progesterone in the S810L mutant due to the large inflow of water molecules into the pocket. Therefore, we used conventional molecular dynamics simulations for the ligand-free structures of the WT and the S810L mutant to investigate the effect of the mutation on the inflow of water. In the WT, water molecules enter the ligand-binding pocket in two ways: in the vicinity of (i) Arg817 and (ii) Ser810. In contrast, few water molecules enter the pocket in the S810L mutant because of the large size and hydrophobic nature of the Leu810 side chain. Fast dissociation is a common feature among passive antagonists of MR; therefore, we inferred that the water inflow could be responsible for the dissociation kinetics of progesterone in the WT and the S810L mutant.
Collapse
Affiliation(s)
- Kei Takedomi
- Graduate School of Medicinal Life Science, Yokohama City University, Yokohama 230-0045, Japan.,Modality Laboratories, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida, Aoba-ku, Yokohama 227-0033, Japan
| | - Masateru Ohta
- HPC- and AI-driven Drug Development Platform Division, Center for Computational Science, RIKEN, Yokohama 230-0045, Japan
| | - Toru Ekimoto
- Graduate School of Medicinal Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medicinal Life Science, Yokohama City University, Yokohama 230-0045, Japan.,HPC- and AI-driven Drug Development Platform Division, Center for Computational Science, RIKEN, Yokohama 230-0045, Japan
| |
Collapse
|
15
|
Cruz JV, Giuliatti S, Alves LB, Silva RC, Ferreira EFB, Kimani NM, Silva CHTP, Souza JSND, Espejo-Román JM, Santos CBR. Identification of novel potential cyclooxygenase-2 inhibitors using ligand- and structure-based virtual screening approaches. J Biomol Struct Dyn 2021; 40:5386-5408. [PMID: 33427075 DOI: 10.1080/07391102.2020.1871413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cyclooxygenase 2 (COX-2) is a well-established target for the design of anti-inflammatory intermediates. Celecoxib was selected as a template molecule to perform ligand-based virtual screening, i.e. to search for structures with similarity in shape and electrostatic potential, with a gradual increase in accuracy through the combined fitting of several steps using eight commercial databases. The molecules ZINC408709 and ZINC2090319 reproduced values within the limits established in an initial study of absorption and distribution in the body. No alert was fired for possible toxic groups when these molecules were subjected to toxicity prediction. Molecular docking results with these compounds showed a higher binding affinity in comparison to rofecoxib for the COX-2 target. Additionally, ZINC408709 and ZINC2090319 were predicted to be potentially biologically active. In in silico prediction of endocrine disruption potential, it was established that the molecule ZINC2090319 binds strongly to the target related to cardiovascular risk in a desirable way as a non-steroidal antagonist and ZINC408709 binds strongly to the target that is associated with the treatment of inflammatory pathologies and similar to celecoxib. Metabolites generated from these compounds are less likely to have side effects. Simulations were used to evaluate the interaction of compounds with COX-1 and COX-2 during 200 ns. Despite the differences, ZINC408709 molecule showed better stability for COX-2 during molecular dynamics simulation. In the calculations of free energy MM/PBSA, the molecule ZINC408709 ΔGbind value has a higher affinity to celecoxib and rofecoxib COX-2. This demonstrates that the selected substances can be considered as promising COX-2 inhibitors. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Josiane V Cruz
- Graduate Program in Pharmaceutical Innovation, Department of Biological Sciences and Health, Federal University of Amapá, Macapá, Brazil.,Laboratory of Modeling and Computational Chemistry, Department of Biological Sciences and Health, Federal University of Amapá, Macapá, Brazil
| | - Silvana Giuliatti
- Bioinformatics Group, Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Levy B Alves
- Bioinformatics Group, Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Raí C Silva
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto-SP, Brazil
| | - Elenilze F B Ferreira
- Graduate Program in Pharmaceutical Innovation, Department of Biological Sciences and Health, Federal University of Amapá, Macapá, Brazil.,Laboratory of Modeling and Computational Chemistry, Department of Biological Sciences and Health, Federal University of Amapá, Macapá, Brazil.,Laboratory of Organic Chemistry and Biochemistry, University of the State of Amapá, Macapá, Brazil
| | - Njogu M Kimani
- Department of Physical Sciences, University of Embu, Embu, Kenya
| | - Carlos H T P Silva
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto-SP, Brazil.,Computational Laboratory of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - João S N de Souza
- Department of Chemistry, Federal University of Piaui, Teresina, Brazil
| | - José M Espejo-Román
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Biosanitary Institute of Granada (Ibs.GRANADA), University of Granada, Granada, Spain
| | - Cleydson B R Santos
- Graduate Program in Pharmaceutical Innovation, Department of Biological Sciences and Health, Federal University of Amapá, Macapá, Brazil.,Laboratory of Modeling and Computational Chemistry, Department of Biological Sciences and Health, Federal University of Amapá, Macapá, Brazil
| |
Collapse
|
16
|
Bondock S, Albarqi T, Abboud M. Advances in the synthesis and chemical transformations of 5-acetyl-1,3,4-thiadiazolines. J Sulphur Chem 2020. [DOI: 10.1080/17415993.2020.1843170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Samir Bondock
- Chemistry Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Tallah Albarqi
- Chemistry Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohamed Abboud
- Chemistry Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
17
|
Recent advances in the catalytic fixation of carbon dioxide to value-added chemicals over alkali metal salts. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101252] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Rawat R, Verma SM. Pd2(dba)3-catalyzed amination of C5-bromo-imidazo[2,1-b][1,3,4] thiadiazole with substituted anilines at conventional heating in Schlenk tube. J Sulphur Chem 2020. [DOI: 10.1080/17415993.2020.1817458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Ravi Rawat
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Saurabh M. Verma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
19
|
Mohamed AMM, Ismail MF, Madkour HMF, Aly AF, Salem MS. Straightforward synthesis of 2-chloro-N-(5-(cyanomethyl)-1,3,4-thiadiazol-2-yl)benzamide as a precursor for synthesis of novel heterocyclic compounds with insecticidal activity. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1802652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Ali M. M. Mohamed
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, Abbassia, Egypt
| | - Mahmoud F. Ismail
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, Abbassia, Egypt
| | - Hassan M. F. Madkour
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, Abbassia, Egypt
| | - Aly Fahmy Aly
- Pesticide Formulations Department, Central Agricultural Pesticide Lab., Agricultural research Center, Giza, Dokky, Egypt
| | - Marwa S. Salem
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, Abbassia, Egypt
| |
Collapse
|
20
|
Sridhar G, Palle S, Vantikommu J, Gangarapu K. Design, synthesis, and biological evaluation of amide derivatives of imidazo[2,1-b][1,3,4]thiadiazole as anticancer agents. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1797814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gattu Sridhar
- Organic and Biomolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Department of Chemistry, Kakatiya Institute of Technology and Science, Warangal, India
| | - Sadanandam Palle
- Centre for Chemical Sciences & Technology, Institute of Science & Technology, Jawaharlal Nehru Technological University, Hyderabad, India
| | - Jyothi Vantikommu
- Centre for Chemical Sciences & Technology, Institute of Science & Technology, Jawaharlal Nehru Technological University, Hyderabad, India
| | - Kiran Gangarapu
- School of Pharmacy, Anurag Group of Institutions, Medchal, India
| |
Collapse
|
21
|
Farooqi SI, Arshad N, Channar PA, Perveen F, Saeed A, Larik FA, Javed A, Yamin M. New aryl Schiff bases of thiadiazole derivative of ibuprofen as DNA binders and potential anticancer drug candidates. J Biomol Struct Dyn 2020; 39:3548-3564. [PMID: 32397836 DOI: 10.1080/07391102.2020.1766569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The work presented in this paper describes the synthesis of two new aryl Schiff bases [(E)-N-(4-(benzyloxy)-3-methoxybenzylidene)-5-(1-(4-isobutylphenyl)ethyl)-1,3,4-thiadiazol-2-amine] (ASB-1) and [(E)-N-(4-(benzyloxy)benzylidene)-5-(1-(4-isobutylphenyl)ethyl)-1,3,4-thiadiazol-2-amine] (ASB-2). These compounds were characterized by different analytical techniques and then studied for DNA binding. Binding studies were carried out at neutral pH (7.0) and at 37 °C by theoretical and experimental methods including DFT, molecular docking, spectroscopy (UV-visible, fluorescence), cyclic voltammetry (CV) and viscometry. Further investigations of these compounds were done on hepatocellular carcinoma; Huh-7 cancer cell line. Binding constant, free energy change and binding site size, i.e. Kb, ΔG and n were evaluated which indicated that both ASB-1 and ASB-2 bind significantly and spontaneously with the DNA. However, data revealed relatively greater binding of ASB-1 with DNA. Spectral and voltammetric results were found supportive of each other. Binding site sizes and viscosity measurements verified the mixed binding mode of interactions as observed in molecular docking analysis, i.e. intercalation with groove binding. DNA binding studies were very well correlated with the in-vitro studies performed on Huh-7 cell line as well as normal HEK-293 cell lines. The compound ASB-1 not only showed greater binding affinity toward DNA but also showed greater anticancer potency with least IC50 value as compared to ASB-2.
Collapse
Affiliation(s)
| | - Nasima Arshad
- Department of Chemistry, Allama Iqbal Open University, Islamabad, Pakistan
| | | | - Fouzia Perveen
- Research Center for Modeling and Simulations, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fayaz Ali Larik
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aneela Javed
- Healthcare Biotechnology Atta-ur-Rehman School of Applied Biosciences, National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Maham Yamin
- Healthcare Biotechnology Atta-ur-Rehman School of Applied Biosciences, National University of Science and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
22
|
Abstract
In the last few decades, pyrazole chemistry has attracted chemists’ and biologists’ attention
mainly due to the discovery of the interesting properties of a great number of pyrazole derivatives.
The resulting proliferation of research literature reflects the enormous biological potential of
pyrazole derivatives as antitumor, anti-inflammatory, anti-HIV and antimicrobial agents. This review
focuses on research concerning the antimicrobial activity of pyrazole derivatives conducted from
2010-2018, and is intended to assist in the development of a new generation of antimicrobial drugs.
Collapse
Affiliation(s)
- Anshul Bansal
- Department of Chemistry, S. A. Jain (PG) College, Ambala City-134003, India
| |
Collapse
|
23
|
Frija LMT, Ntungwe E, Sitarek P, Andrade JM, Toma M, Śliwiński T, Cabral L, S. Cristiano ML, Rijo P, Pombeiro AJL. In Vitro Assessment of Antimicrobial, Antioxidant, and Cytotoxic Properties of Saccharin-Tetrazolyl and -Thiadiazolyl Derivatives: The Simple Dependence of the pH Value on Antimicrobial Activity. Pharmaceuticals (Basel) 2019; 12:E167. [PMID: 31726663 PMCID: PMC6958446 DOI: 10.3390/ph12040167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023] Open
Abstract
The antimicrobial, antioxidant, and cytotoxic activities of a series of saccharin-tetrazolyl and -thiadiazolyl analogs were examined. The assessment of the antimicrobial properties of the referred-to molecules was completed through an evaluation of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values against Gram-positive and Gram-negative bacteria and yeasts. Scrutiny of the MIC and MBC values of the compounds at pH 4.0, 7.0, and 9.0 against four Gram-positive strains revealed high values for both the MIC and MBC at pH 4.0 (ranging from 0.98 to 125 µg/mL) and moderate values at pH 7.0 and 9.0, exposing strong antimicrobial activities in an acidic medium. An antioxidant activity analysis of the molecules was performed by using the DPPH (2,2-diphenyl-1-picrylhydrazyl) method, which showed high activity for the TSMT (N-(1-methyl-2H-tetrazol-5-yl)-N-(1,1-dioxo-1,2-benzisothiazol-3-yl) amine, 7) derivative (90.29% compared to a butylated hydroxytoluene positive control of 61.96%). Besides, the general toxicity of the saccharin analogs was evaluated in an Artemia salina model, which displayed insignificant toxicity values. In turn, upon an assessment of cell viability, all of the compounds were found to be nontoxic in range concentrations of 0-100 µg/mL in H7PX glioma cells. The tested molecules have inspiring antimicrobial and antioxidant properties that represent potential core structures in the design of new drugs for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Luís M. T. Frija
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Epole Ntungwe
- CBIOS—Research Center for Health Sciences & Technologies, ULusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; (E.N.); (J.M.A.)
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszyńskiego Street 1, 90-151 Łódź, Poland;
| | - Joana M. Andrade
- CBIOS—Research Center for Health Sciences & Technologies, ULusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; (E.N.); (J.M.A.)
| | - Monika Toma
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-151 Lodz, Poland; (M.T.); (T.Ś.)
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-151 Lodz, Poland; (M.T.); (T.Ś.)
| | - Lília Cabral
- Department of Chemistry and Pharmacy (FCT) and Center of Marine Sciences (CCMar), Universidade do Algarve, P-8005-039 Faro, Portugal; (L.C.); (M.L.S.C.)
| | - M. Lurdes S. Cristiano
- Department of Chemistry and Pharmacy (FCT) and Center of Marine Sciences (CCMar), Universidade do Algarve, P-8005-039 Faro, Portugal; (L.C.); (M.L.S.C.)
| | - Patrícia Rijo
- CBIOS—Research Center for Health Sciences & Technologies, ULusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; (E.N.); (J.M.A.)
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Armando J. L. Pombeiro
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| |
Collapse
|
24
|
Khidre RE, Radini IAM, Ibrahim DA. Design and synthesis of some new thiophene and 1,3,4-thiadiazole based heterocycles. PHOSPHORUS SULFUR 2019. [DOI: 10.1080/10426507.2019.1598408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Rizk E. Khidre
- Chemical Industries Division, National Research Centre, Giza, Egypt
- Chemistry Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | | | - Diaa A. Ibrahim
- Chemistry Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia
- National Organization for Drug Control & Research, Giza, Egypt
| |
Collapse
|
25
|
Mannam MR, S. S, Kumar P, K RSP. Synthesis of Novel 1‐(5‐(Benzylsulfinyl)‐3‐methyl‐1,3,4‐thiadiazol‐2(3
H
)‐ylidene)‐thiourea/urea Derivatives and Evaluation of Their Antimicrobial Activities. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Madhava Rao Mannam
- Department of ChemistryKoneru Lakshmaiah Education Foundation Vaddeswaram Andhra Pradesh 522 502 India
- Chemical Research DivisionAPI R&D Centre, Micro Labs Ltd. Bommasandra–Jigani Link Road Bangalore Karnataka 560 105 India
| | - Srimurugan S.
- Chemical Research DivisionAPI R&D Centre, Micro Labs Ltd. Bommasandra–Jigani Link Road Bangalore Karnataka 560 105 India
| | - Pramod Kumar
- Chemical Research DivisionAPI R&D Centre, Micro Labs Ltd. Bommasandra–Jigani Link Road Bangalore Karnataka 560 105 India
| | - R. S. Prasad K
- Department of ChemistryKoneru Lakshmaiah Education Foundation Vaddeswaram Andhra Pradesh 522 502 India
| |
Collapse
|
26
|
Abstract
Nuclear receptors (NRs) are ligand-inducible transcription factors that play an essential role in a multitude of physiological processes as well as diseases, rendering them attractive drug targets. Crystal structures revealed the binding site of NRs to be buried in the core of the protein, with no obvious route for ligands to access this cavity. The process of ligand binding is known to be an often-neglected contributor to the efficacy of drug candidates and is thought to influence the selectivity and specificity of NRs. While experimental methods generally fail to highlight the dynamic processes of ligand access or egress on the atomistic scale, computational methods have provided fundamental insight into the pathways connecting the buried binding pocket to the surrounding environment. Methods based on molecular dynamics (MD) and Monte Carlo simulations have been applied to identify pathways and quantify their capability to transport ligands. Here, we systematically review findings of more than 20 years of research in the field, including the applied methodology and controversies. Further, we establish a unified nomenclature to describe the pathways with respect to their location relative to protein secondary structure elements and summarize findings relevant to drug design. Lastly, we discuss the effect of NR interaction partners such as coactivators and corepressors, as well as mutations on the pathways.
Collapse
Affiliation(s)
- André Fischer
- Molecular Modeling, Pharmacenter of the University of Basel , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
| | - Martin Smieško
- Molecular Modeling, Pharmacenter of the University of Basel , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
| |
Collapse
|
27
|
Hadadianpour E, Pouramiri B. Facile, efficient and one-pot access to diverse new functionalized aminoalkyl and amidoalkyl naphthol scaffolds via green multicomponent reaction using triethylammonium hydrogen sulfate ([Et 3NH][HSO 4]) as an acidic ionic liquid under solvent-free conditions. Mol Divers 2019; 24:241-252. [PMID: 30953294 DOI: 10.1007/s11030-019-09945-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 03/24/2019] [Indexed: 01/21/2023]
Abstract
An efficient, clean and one-pot multicomponent synthesis of divers kind of new functionalized aminoalkyl naphthol and amidoalkyl naphthol derivatives via tandem condensation reaction of 2-naphthol, aromatic aldehydes and 5-methyl-1,3,4-thiadiazol-2-amine/5-aryl-1,3,4-thiadiazol-2-amines urea/acetamide under solvent-free conditions is reported. Following this protocol, it was possible to synthesize novel 1-(((5-methyl-1,3,4-thiadiazol-2-yl)amino)(aryl)methyl)naphthalen-2-ol, 1-(aryl((5-aryl-1,3,4-thiadiazol-2-yl)amino)methyl)naphthalen-2-ol and amidoalkyl naphthol derivatives. This protocol includes some salient features, such as the use of triethylammonium hydrogen sulfate ([Et3NH][HSO4]) ionic liquid as a green, clean and reusable catalyst, no column chromatographic separation, high atom economy, good yields, low cost and finally no need for a complex procedure.
Collapse
Affiliation(s)
| | - Behjat Pouramiri
- Faculty of Medicine, Jiroft University of Medical Sciences, Jiroft, Kerman, 76179, Iran.
| |
Collapse
|
28
|
Abdelhamid AO, El Sayed IE, Zaki YH, Hussein AM, Mangoud MM, Hosny MA. Utility of 5-(furan-2-yl)-3-( p-tolyl)-4,5-dihydro-1 H-pyrazole-1-carbothioamide in the synthesis of heterocyclic compounds with antimicrobial activity. BMC Chem 2019; 13:48. [PMID: 31384796 PMCID: PMC6661803 DOI: 10.1186/s13065-019-0566-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/22/2019] [Indexed: 12/26/2022] Open
Abstract
Background Pyrazolines show different biological activities. In recent years, interest in the chemistry of hydrazonoyl halides has been renewed. 1,3,4-Thiadiazoles are one of the most common heterocyclic pharmacophores with a wide range of biological activities. Results Ethyl 2-(5-(furan-2-yl)-3-(p-tolyl)-4,5-dihydro-1H-pyrazol-1-yl)-4-methyl-thiazole-5-carboxylate, 2-(5-(furan-2-yl)-3-(p-tolyl)-4,5-dihydro-1H-pyrazol-1-yl)thiazol-4(5H)-one, and 1-(2-(5-(furan-2-yl)-3-(p-tolyl)-4,5-dihydro-1H-pyrazol-1-yl)-4-methylthiazol-5-yl)ethan-1-one were synthesized from the reaction of 5-(furan-2-yl)-3-(p-tolyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide with different halogenated compounds. Thiazole, 1,3,4-thiadiazole and pyrano[2,3-d]thiazole derivatives were also synthesized. The structures of the newly synthesized compounds were elucidated based on elemental analysis, spectral data, and alternative synthetic routes whenever possible. Additionally, the newly synthesized compounds were screened for antimicrobial activity against various microorganisms. Conclusions A new series of novel functionalized 1,3,4-thiadiazoles, 1,3-thiazoles, and pyrazoline-containing moieties were synthesized using hydrazonoyl halides as precursors and evaluated for their in vitro antibacterial, and antifungal activities. The antimicrobial results of the examined compounds revealed promising results and some derivatives have activities similar to the references used.![]() Electronic supplementary material The online version of this article (10.1186/s13065-019-0566-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Abdou O Abdelhamid
- 1Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613 Egypt
| | - Ibrahim E El Sayed
- 2Department of Chemistry, Faculty of Science, El Menoufia University, Shebin El Koom, 32511 Egypt
| | - Yasser H Zaki
- 3Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, 62514 Egypt
| | - Ahmed M Hussein
- 3Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, 62514 Egypt
| | - Mangoud M Mangoud
- Environmental Research Department, National Center for Social and Criminological Research, IbnKhaldoun Square, Mohandesin, Zamalek, Giza, 11561 Egypt
| | - Mona A Hosny
- 5Department of Chemistry, Faculty of Women for Arts, Science and Education, Ain Shams University, Heliopolis, Cairo, 11757 Egypt
| |
Collapse
|
29
|
Ibuprofen-thiadiazole hybrid compounds: Synthesis, vibrational analysis and molecular structure of 5-(1-(4-isobutylphenyl)ethyl)-1,3,4-thiadiazol-2-amine hydrochloride. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.10.082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
30
|
|
31
|
Granberg KL, Yuan ZQ, Lindmark B, Edman K, Kajanus J, Hogner A, Malmgren M, O’Mahony G, Nordqvist A, Lindberg J, Tångefjord S, Kossenjans M, Löfberg C, Brånalt J, Liu D, Selmi N, Nikitidis G, Nordberg P, Hayen A, Aagaard A, Hansson E, Hermansson M, Ivarsson I, Jansson-Löfmark R, Karlsson U, Johansson U, William-Olsson L, Hartleib-Geschwindner J, Bamberg K. Identification of Mineralocorticoid Receptor Modulators with Low Impact on Electrolyte Homeostasis but Maintained Organ Protection. J Med Chem 2018; 62:1385-1406. [DOI: 10.1021/acs.jmedchem.8b01523] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Dongmei Liu
- Pharmaron Beijing Co., Ltd., No. 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sujatha K, Deshpande RP, Kesharwani RK, Babu PP, Rao Vedula R. An efficient one-pot expeditious synthesis of 3-phenyl-1-(6-phenyl-7H-[1,2,4] triazolo[3,4-b] [1,3,4] thiadiazin-3-yl)-1H-pyrazol-5-amines via multicomponent approach. SYNTHETIC COMMUN 2018. [DOI: 10.1080/00397911.2018.1537398] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Kodam Sujatha
- Department of Chemistry, National Institute of Technology , Warangal , India
| | - Ravindra Pramod Deshpande
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad , Hyderabad , India
| | - Rajesh Kumar Kesharwani
- Department of Advanced Science & Technology, NIET, Nims University Rajasthan , Jaipur , India
| | - Phanithi Prakash Babu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad , Hyderabad , India
| | - Rajeswar Rao Vedula
- Department of Chemistry, National Institute of Technology , Warangal , India
| |
Collapse
|
33
|
El-Bordany EA, Ali RS. Synthesis of New Benzoxazinone, Quinazolinone, and Pyrazoloquinazolinone Derivatives and Evaluation of Their Cytotoxic Activity Against Human Breast Cancer Cells. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Eman A. El-Bordany
- Department of Chemistry, Faculty of Science; Ain Shams University; Cairo 11566 Egypt
| | - Rania S. Ali
- Faculty of Industrial Education; Helwan University; Cairo 11795 Egypt
- Department of Chemistry, Faculty of Science; Taif University; Taif 21974 Saudi Arabia
| |
Collapse
|
34
|
Piotrowski DW, Futatsugi K, Casimiro-Garcia A, Wei L, Sammons MF, Herr M, Jiao W, Lavergne SY, Coffey SB, Wright SW, Song K, Loria PM, Banker ME, Petersen DN, Bauman J. Identification of Morpholino-2H-pyrido[3,2-b][1,4]oxazin-3(4H)-ones as Nonsteroidal Mineralocorticoid Antagonists. J Med Chem 2018; 61:1086-1097. [PMID: 29300474 DOI: 10.1021/acs.jmedchem.7b01515] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A novel series of morpholine-based nonsteroidal mineralocorticoid receptor antagonists is reported. Starting from a pyrrolidine HTS hit 9 that possessed modest potency but excellect selectivity versus related nuclear hormone receptors, a series of libraries led to identification of morpholine lead 10. After further optimization, cis disubstituted morpholine 22 was discovered, which showed a 45-fold boost in binding affinity and corresponding functional potency compared to 13. While 22 had high clearance in rat, it provided sufficient exposure at high doses to favorably assess in vivo efficacy (increased urinary Na+/K+ ratio) and safety. In contrast to rat, the dog and human MetID and PK profiles of 22 were adequate, suggesting that it could be suitable as a potential clinical asset.
Collapse
Affiliation(s)
- David W Piotrowski
- Pfizer Research and Development , Groton, Connecticut 06340, United States
| | - Kentaro Futatsugi
- Pfizer Research and Development , Groton, Connecticut 06340, United States
| | | | - Liuqing Wei
- Pfizer Research and Development , Groton, Connecticut 06340, United States
| | - Matthew F Sammons
- Pfizer Research and Development , Groton, Connecticut 06340, United States
| | - Michael Herr
- Pfizer Research and Development , Groton, Connecticut 06340, United States
| | - Wenhua Jiao
- Pfizer Research and Development , Groton, Connecticut 06340, United States
| | - Sophie Y Lavergne
- Pfizer Research and Development , Groton, Connecticut 06340, United States
| | - Steven B Coffey
- Pfizer Research and Development , Groton, Connecticut 06340, United States
| | - Stephen W Wright
- Pfizer Research and Development , Groton, Connecticut 06340, United States
| | - Kun Song
- Pfizer Research and Development , Groton, Connecticut 06340, United States
| | - Paula M Loria
- Pfizer Research and Development , Groton, Connecticut 06340, United States
| | - Mary Ellen Banker
- Pfizer Research and Development , Groton, Connecticut 06340, United States
| | - Donna N Petersen
- Pfizer Research and Development , Groton, Connecticut 06340, United States
| | - Jonathan Bauman
- Pfizer Research and Development , Groton, Connecticut 06340, United States
| |
Collapse
|
35
|
Sharma AK, Prasad S, Sharma SK. Synthesis and characterization of novel benzoxazine-based arylidinyl succinimide derivatives. SYNTHETIC COMMUN 2017. [DOI: 10.1080/00397911.2017.1354027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Atul K. Sharma
- Department of Chemistry, University of Delhi, Delhi, India
| | - Suchita Prasad
- Department of Chemistry, University of Delhi, Delhi, India
| | | |
Collapse
|
36
|
Wesenberg LJ, Herold S, Shimizu A, Yoshida JI, Waldvogel SR. New Approach to 1,4-Benzoxazin-3-ones by Electrochemical C−H Amination. Chemistry 2017; 23:12096-12099. [DOI: 10.1002/chem.201701979] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Lars Julian Wesenberg
- Institut für Organische Chemie; Johannes Gutenberg Universität Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Sebastian Herold
- Institut für Organische Chemie; Johannes Gutenberg Universität Mainz; Duesbergweg 10-14 55128 Mainz Germany
- Graduate School Material Science in Mainz; Johannes Gutenberg Universität Mainz; Staudingerweg 9 55128 Mainz Germany
| | - Akihiro Shimizu
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering; Kyoto University; Nishikyo-ku Kyoto 615-8510 Japan
| | - Jun-ichi Yoshida
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering; Kyoto University; Nishikyo-ku Kyoto 615-8510 Japan
| | - Siegfried R. Waldvogel
- Institut für Organische Chemie; Johannes Gutenberg Universität Mainz; Duesbergweg 10-14 55128 Mainz Germany
- Graduate School Material Science in Mainz; Johannes Gutenberg Universität Mainz; Staudingerweg 9 55128 Mainz Germany
| |
Collapse
|
37
|
Synthesis and anti-proliferative activity of a small library of 7-substituted 5H-pyrrole [1,2-a][3,1]benzoxazin-5-one derivatives. Bioorg Med Chem Lett 2017; 27:3092-3095. [DOI: 10.1016/j.bmcl.2017.05.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/09/2017] [Accepted: 05/13/2017] [Indexed: 11/17/2022]
|
38
|
“On water” ultrasound-assisted one pot efficient synthesis of functionalized 2-oxo-benzo[1,4]oxazines: First application to the synthesis of anticancer indole alkaloid, Cephalandole A. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.03.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Martín-Martínez M, Pérez-Gordillo FL, Álvarez de la Rosa D, Rodríguez Y, Gerona-Navarro G, González-Muñiz R, Zhou MM. Modulating Mineralocorticoid Receptor with Non-steroidal Antagonists. New Opportunities for the Development of Potent and Selective Ligands without Off-Target Side Effects. J Med Chem 2017; 60:2629-2650. [DOI: 10.1021/acs.jmedchem.6b01065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | | | - Diego Álvarez de la Rosa
- Institute
of Biomedical Technologies and Department of Physiology, Campus de
Ciencias de la Salud, Facultad de Medicina, Universidad de La Laguna, 38204 Tenerife, Spain
| | - Yoel Rodríguez
- Department
of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New
York, New York 10029, United States
- Department
of Natural Sciences, Hostos Community College of CUNY, 475 Grand Concourse, Bronx, New York 10451, United States
| | - Guillermo Gerona-Navarro
- Department
of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, United States
| | | | - Ming-Ming Zhou
- Department
of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New
York, New York 10029, United States
| |
Collapse
|
40
|
Pandit RP, Shim JJ, Kim SH, Lee YR. Copper-catalyzed direct coupling of benzoxazin-2-ones with indoles for the synthesis of diverse 3-indolylbenzoxazin-2-ones: access to natural cephalandole A. RSC Adv 2017. [DOI: 10.1039/c7ra10634c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Diverse and functionalized 3-indolyl benzo[b][1,4]oxazin-2-ones were synthesized via copper-catalyzed direct coupling of benzo[b][1,4]oxazin-2-one and indoles in air.
Collapse
Affiliation(s)
| | - Jae-Jin Shim
- School of Chemical Engineering
- Yeungnam University
- Gyeongsan
- Republic of Korea
| | - Sung Hong Kim
- Analysis Research Division
- Daegu Center
- Korea Basic Science Institute
- Daegu 41566
- Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering
- Yeungnam University
- Gyeongsan
- Republic of Korea
| |
Collapse
|
41
|
Nordqvist A, O'Mahony G, Fridén-Saxin M, Fredenwall M, Hogner A, Granberg KL, Aagaard A, Bäckström S, Gunnarsson A, Kaminski T, Xue Y, Dellsén A, Hansson E, Hansson P, Ivarsson I, Karlsson U, Bamberg K, Hermansson M, Georgsson J, Lindmark B, Edman K. Structure-Based Drug Design of Mineralocorticoid Receptor Antagonists to Explore Oxosteroid Receptor Selectivity. ChemMedChem 2016; 12:50-65. [DOI: 10.1002/cmdc.201600529] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/22/2016] [Indexed: 01/05/2023]
Affiliation(s)
- Anneli Nordqvist
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 43183 Sweden
| | - Gavin O'Mahony
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 43183 Sweden
| | - Maria Fridén-Saxin
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 43183 Sweden
| | - Marlene Fredenwall
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 43183 Sweden
| | - Anders Hogner
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 43183 Sweden
| | - Kenneth L. Granberg
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 43183 Sweden
| | - Anna Aagaard
- Discovery Sciences; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 43183 Mölndal Sweden
| | - Stefan Bäckström
- Discovery Sciences; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 43183 Mölndal Sweden
| | - Anders Gunnarsson
- Discovery Sciences; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 43183 Mölndal Sweden
| | - Tim Kaminski
- Discovery Sciences; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 43183 Mölndal Sweden
| | - Yafeng Xue
- Discovery Sciences; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 43183 Mölndal Sweden
| | - Anita Dellsén
- Discovery Sciences; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 43183 Mölndal Sweden
| | - Eva Hansson
- Discovery Sciences; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 43183 Mölndal Sweden
| | - Pia Hansson
- Discovery Sciences; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 43183 Mölndal Sweden
| | - Ida Ivarsson
- Discovery Sciences; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 43183 Mölndal Sweden
| | - Ulla Karlsson
- Discovery Sciences; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 43183 Mölndal Sweden
| | - Krister Bamberg
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 43183 Sweden
| | - Majlis Hermansson
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 43183 Sweden
| | - Jennie Georgsson
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 43183 Sweden
| | - Bo Lindmark
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 43183 Sweden
| | - Karl Edman
- Discovery Sciences; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 43183 Mölndal Sweden
| |
Collapse
|
42
|
Zhou Z, Liu Y, Chen J, Yao E, Cheng J. Multicomponent Coupling Reactions of Two N-Tosyl Hydrazones and Elemental Sulfur: Selective Denitrogenation Pathway toward Unsymmetric 2,5-Disubstituted 1,3,4-Thiadiazoles. Org Lett 2016; 18:5268-5271. [DOI: 10.1021/acs.orglett.6b02583] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zhen Zhou
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Yang Liu
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jiangfei Chen
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - En Yao
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jiang Cheng
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|
43
|
Martinand-Lurin E, Dos Santos A, Robineau E, Retailleau P, Dauban P, Grimaud L, El Kaïm L. Optimized Conditions for Passerini-Smiles Reactions and Applications to Benzoxazinone Syntheses. Molecules 2016; 21:molecules21091257. [PMID: 27657034 PMCID: PMC6273966 DOI: 10.3390/molecules21091257] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/13/2016] [Accepted: 09/13/2016] [Indexed: 11/16/2022] Open
Abstract
Initial conditions disclosed for the Passerini-Smiles reaction are associated with a lack of efficiency that has prevented chemists from using it since its discovery. We wish to report herein our thorough study in the development of new experimental conditions for this coupling between electron-poor phenols, isocyanides, and carbonyl derivatives. These new conditions have been applied to several synthetic strategies towards benzoxazinones.
Collapse
Affiliation(s)
- Elodie Martinand-Lurin
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91198 Gif-sur-Yvette CEDEX, France.
- 1 Ecole Normale Supérieure, PSL Research University, UPMC Univ. Paris 06, CNRS, Département de Chimie, PASTEUR, 24, rue Lhomond, 75005 Paris, France; 2 Sorbonne Universités, UPMC Univ. Paris 06, ENS, CNRS, PASTEUR, 75005 Paris, France.
| | - Aurélie Dos Santos
- Laboratoire de Synthèse Organique, CNRS, Ecole Polytechnique, ENSTA ParisTech-UMR 7652, Université Paris-Saclay, 91128 Palaiseau, France.
| | - Emmanuelle Robineau
- 1 Ecole Normale Supérieure, PSL Research University, UPMC Univ. Paris 06, CNRS, Département de Chimie, PASTEUR, 24, rue Lhomond, 75005 Paris, France; 2 Sorbonne Universités, UPMC Univ. Paris 06, ENS, CNRS, PASTEUR, 75005 Paris, France.
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91198 Gif-sur-Yvette CEDEX, France.
| | - Philippe Dauban
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91198 Gif-sur-Yvette CEDEX, France.
| | - Laurence Grimaud
- 1 Ecole Normale Supérieure, PSL Research University, UPMC Univ. Paris 06, CNRS, Département de Chimie, PASTEUR, 24, rue Lhomond, 75005 Paris, France; 2 Sorbonne Universités, UPMC Univ. Paris 06, ENS, CNRS, PASTEUR, 75005 Paris, France.
| | - Laurent El Kaïm
- Laboratoire de Synthèse Organique, CNRS, Ecole Polytechnique, ENSTA ParisTech-UMR 7652, Université Paris-Saclay, 91128 Palaiseau, France.
| |
Collapse
|
44
|
Chen ZM, Hilton MJ, Sigman MS. Palladium-Catalyzed Enantioselective Redox-Relay Heck Arylation of 1,1-Disubstituted Homoallylic Alcohols. J Am Chem Soc 2016; 138:11461-4. [PMID: 27571167 PMCID: PMC5039009 DOI: 10.1021/jacs.6b06994] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An enantioselective redox-relay oxidative Heck arylation of 1,1-disubstituted alkenes to construct β-stereocenters was developed using a new pyridyl-oxazoline ligand. Various 1,2-diaryl carbonyl compounds were readily obtained in moderate yield and good to excellent enantioselectivity. Additionally, analysis of the reaction outcomes using multidimensional correlations revealed that enantioselectivity is tied to specific electronic features of the 1,1-disubstituted alkenol and the extent of polarizability of the ligand.
Collapse
Affiliation(s)
- Zhi-Min Chen
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Margaret J. Hilton
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
45
|
The therapeutic voyage of pyrazole and its analogs: A review. Eur J Med Chem 2016; 120:170-201. [DOI: 10.1016/j.ejmech.2016.04.077] [Citation(s) in RCA: 262] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/25/2016] [Accepted: 04/28/2016] [Indexed: 02/05/2023]
|
46
|
Abdelhamid AO, El Sayed IE, Hussein MZ, Mangoud MM. Synthesis and Antimicrobial Activity of Some New Thiadiazoles, Thioamides, 5-Arylazothiazoles and Pyrimido[4,5-d][1,2,4]triazolo[4,3-a]pyrimidines. Molecules 2016; 21:molecules21081072. [PMID: 27548118 PMCID: PMC6273447 DOI: 10.3390/molecules21081072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 11/21/2022] Open
Abstract
A novel series of 1,3,4-thiadiazoles, 5-arylazothiazoles and hexahydropyrimido-[4,5-d][1,2,4]triazolo[4,3-a]pyrimidines were synthesized via reaction of hydrazonoyl halides with each of alkyl carbothioates, carbothioamides and 7-thioxo-5,6,7,8-tetrahydropyrimido-[4,5-d]pyrimidine-2,4(1H,3H)-diones in the presence of triethylamine. The structures of the newly synthesized compounds were established based on their spectral data, elemental analyses and alternative synthetic routes whenever possible. Also, the newly synthesized compounds were screened for their antimicrobial activity against various microorganisms.
Collapse
Affiliation(s)
- Abdou O Abdelhamid
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Ibrahim E El Sayed
- Department of Chemistry, Faculty of Science, El Menoufia University, Shebin El Koom 32511, Egypt.
| | - Mohamed Z Hussein
- Environmental Research Department, National Center for Social and Criminological Research, Ibn Khaldoun Square, Mohandesin, Zamalek, Giza 11561, Egypt.
| | - Mangoud M Mangoud
- Environmental Research Department, National Center for Social and Criminological Research, Ibn Khaldoun Square, Mohandesin, Zamalek, Giza 11561, Egypt.
| |
Collapse
|
47
|
Jiménez-Canino R, Fernandes MX, Alvarez de la Rosa D. Phosphorylation of Mineralocorticoid Receptor Ligand Binding Domain Impairs Receptor Activation and Has a Dominant Negative Effect over Non-phosphorylated Receptors. J Biol Chem 2016; 291:19068-78. [PMID: 27422824 DOI: 10.1074/jbc.m116.718395] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Indexed: 11/06/2022] Open
Abstract
Post-translational modification of steroid receptors allows fine-tuning different properties of this family of proteins, including stability, activation, or interaction with co-regulators. Recently, a novel effect of phosphorylation on steroid receptor biology was described. Phosphorylation of human mineralocorticoid receptor (MR) on Ser-843, a residue placed on the ligand binding domain, lowers affinity for agonists, producing inhibition of gene transactivation. We now show that MR inhibition by phosphorylation occurs even at high agonist concentration, suggesting that phosphorylation may also impair coupling between ligand binding and receptor activation. Our results demonstrate that agonists are able to induce partial nuclear translocation of MR but fail to produce transactivation due at least in part to impaired co-activator recruitment. The inhibitory effect of phosphorylation on MR acts in a dominant-negative manner, effectively amplifying its functional effect on gene transactivation.
Collapse
Affiliation(s)
- Rubén Jiménez-Canino
- From the Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas y Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, 38071 La Laguna, Tenerife, Spain
| | - Miguel X Fernandes
- From the Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas y Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, 38071 La Laguna, Tenerife, Spain
| | - Diego Alvarez de la Rosa
- From the Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas y Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, 38071 La Laguna, Tenerife, Spain
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW The broad clinical use of steroidal mineralocorticoid receptor antagonists (MRAs) is limited by the potential risk of inducing hyperkalemia when given on top of renin-angiotensin system blockade. Drug discovery campaigns have been launched aiming for the identification of nonsteroidal MRAs with an improved safety profile. This review analyses the evidence for the potential of improved safety profiles of nonsteroidal MRAs and the current landscape of clinical trials with nonsteroidal MRAs. RECENT FINDINGS At least three novel nonsteroidal MRAs have reportedly demonstrated an improved therapeutic index (i.e. less risk for hyperkalemia) in comparison to steroidal antagonists in preclinical models. Five pharmaceutical companies have nonsteroidal MRAs in clinical development with a clear focus on the treatment of chronic kidney diseases. No clinical data have been published so far for MT-3995 (Mitsubishi), SC-3150 (Daiichi-Sankyo), LY2623091 (Eli Lilly) and PF-03882845 (Pfizer). In contrast, data from two clinical phase II trials are available for finerenone (Bayer) which demonstrated safety and efficacy in patients with heart failure and additional chronic kidney diseases, and significantly reduced albuminuria in patients with diabetic nephropathy. Neither hyperkalemia nor reductions in kidney function were limiting factors to its use. SUMMARY Novel, nonsteroidal MRAs are currently tested in clinical trials. Based on preclinical and first clinical data, these nonsteroidal MRAs might overcome the limitations of today's steroidal antagonists.
Collapse
|
49
|
Salem ME, Darweesh AF, Farag AM, Elwahy AHM. Synthesis and Structures of Novel Multi-armed Molecules Involving Benzene as a Core and 4-Phenylthiazole, 4-Pyrazolylthiazole, or Thiadiazole Units as Arms. J Heterocycl Chem 2016. [DOI: 10.1002/jhet.2629] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mostafa E. Salem
- Chemistry Department, Faculty of Science; Cairo University; Giza 12613 Egypt
| | - Ahmed F. Darweesh
- Chemistry Department, Faculty of Science; Cairo University; Giza 12613 Egypt
| | - Ahmad M. Farag
- Chemistry Department, Faculty of Science; Cairo University; Giza 12613 Egypt
| | - Ahmed H. M. Elwahy
- Chemistry Department, Faculty of Science; Cairo University; Giza 12613 Egypt
| |
Collapse
|
50
|
Copin C, Buron F, Routier S. Palladium-Catalyzed Amination of C-5 Bromoimidazo[2,1-b][1,3,4]thiadiazoles. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|