1
|
Berglin M, Cavanagh JP, Caous JS, Thakkar BS, Vasquez JM, Stensen W, Lyvén B, Svendsen JS, Svenson J. Flexible and Biocompatible Antifouling Polyurethane Surfaces Incorporating Tethered Antimicrobial Peptides through Click Reactions. Macromol Biosci 2024; 24:e2300425. [PMID: 38009664 DOI: 10.1002/mabi.202300425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Efficient, simple antibacterial materials to combat implant-associated infections are much in demand. Herein, the development of polyurethanes, both cross-linked thermoset and flexible and versatile thermoplastic, suitable for "click on demand" attachment of antibacterial compounds enabled via incorporation of an alkyne-containing diol monomer in the polymer backbone, is described. By employing different polyolic polytetrahydrofurans, isocyanates, and chain extenders, a robust and flexible material comparable to commercial thermoplastic polyurethane is prepared. A series of short synthetic antimicrobial peptides are designed, synthesized, and covalently attached in a single coupling step to generate a homogenous coating. The lead material is shown to be biocompatible and does not display any toxicity against either mouse fibroblasts or reconstructed human epidermis according to ISO and OECD guidelines. The repelling performance of the peptide-coated materials is illustrated against colonization and biofilm formation by Staphylococcus aureus and Staphylococcus epidermidis on coated plastic films and finally, on coated commercial central venous catheters employing LIVE/DEAD staining, confocal laser scanning microscopy, and bacterial counts. This study presents the successful development of a versatile and scalable polyurethane with the potential for use in the medical field to reduce the impact of bacterial biofilms.
Collapse
Affiliation(s)
- Mattias Berglin
- Department of Materials and Production, RISE Research Institutes of Sweden, Gothenburg, 413 46, Sweden
- Department of Chemistry and Molecular Biology, Gothenburg University, Gothenburg, 413 90, Sweden
| | - Jorunn Pauline Cavanagh
- Amicoat A/S, Oslo Science Park, Oslo, 1386, Norway
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, 9019, Norway
| | - Josefin Seth Caous
- Department of Materials and Production, RISE Research Institutes of Sweden, Gothenburg, 413 46, Sweden
| | | | - Jeddah Marie Vasquez
- Department of Materials and Production, RISE Research Institutes of Sweden, Gothenburg, 413 46, Sweden
| | - Wenche Stensen
- Department of Chemistry, UiT The Arctic University of Norway, Tromsø, 9019, Norway
| | - Benny Lyvén
- Department of Materials and Production, RISE Research Institutes of Sweden, Gothenburg, 413 46, Sweden
| | - John-Sigurd Svendsen
- Amicoat A/S, Oslo Science Park, Oslo, 1386, Norway
- Department of Chemistry, UiT The Arctic University of Norway, Tromsø, 9019, Norway
| | - Johan Svenson
- Department of Materials and Production, RISE Research Institutes of Sweden, Gothenburg, 413 46, Sweden
| |
Collapse
|
2
|
Ghosh S, Chatterjee S, Satpati P. Effect of Spacer Length Modification of the Cationic Side Chain on the Energetics of Antimicrobial Peptide Binding to Membrane-Mimetic Bilayers. J Chem Inf Model 2023; 63:5823-5833. [PMID: 37684221 DOI: 10.1021/acs.jcim.3c01080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Understanding the mechanism of action of the antimicrobial peptide (AMP) in terms of its structure and energetics is the key to designing new potent and selective AMPs. Recently, we reported a membranolytic 14-residue-long lysine-rich cationic antimicrobial peptide (LL-14: NH3+-LKWLKKLLKWLKKL-CONH2) against Pseudomonas aeruginosa, Klebsiella pneumoniae, and Staphylococcus aureus, which is limited by cytotoxicity and expected to undergo facile protease degradation. Aliphatic side-chain-length modification of the cationic amino-acid residues (Lys and Arg) is a popular strategy for designing protease-resistant AMPs. However, the effect of the peptide side-chain length modifications on the membrane binding affinity and its relation to the atomic structure remain an unsolved problem. We report computer simulations that quantitatively calculated the difference in peptide binding affinity to membrane-mimetic-bilayer models (bacterial: 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE)/1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) bilayer and mammalian: 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayer) upon decreasing or increasing the spacer length of the cationic lysine residues of LL-14 (as well as their arginine analogues). We show that the peptide/bilayer interaction energetics varies drastically in response to spacer length modification. The strength of peptide discrimination depends strongly on the nature of the bilayer (bacterial or mammalian mimetic model). An increase in the lysine spacer length by one carbon (i.e., homolysine analogue of LL-14) is weakly/strongly disfavored by the bacterial/mammalian-membrane-mimetic bilayer. Recently, we have demonstrated an excellent correlation between the antimicrobial activity of the membranolytic cationic peptides and their binding affinity to membrane-mimetic-bilayer models. Thus, the homolysine analogue of LL-14 is a promising noncytotoxic AMP with conserved activity. On the other hand, homoarginine analogue (arginine spacer length increment by a single carbon) was preferred by both the bacteria and the mammalian mimetic bilayers and displayed the strongest affinity for the former among the peptides studied in this work. Thus, the promising most potent homoarginine analogue is likely to be cytotoxic. Shortening the Lys/Arg side chain to a three-carbon spacer (Dab/Agb) improves the binding affinity to bacterial and mammalian-membrane-mimetic bilayers. Arginine and arginine-derivative peptides exhibited stronger binding affinity to the bilayers relative to the lysine analogue. The results provide a plausible explanation to the previous experimental observations, viz., superior antimicrobial activity of the arginine peptides relative to Lys peptides and the improvement of antimicrobial activity upon substitution of Lys with Dab in the cationic peptides. The simulations revealed that the small change in the peptide hydrophobicity by Lys/Arg spacer length modification could drastically alter the energetics of peptide/bilayer binding by fine-tuning the electrostatic interactions. The energetics underlying the peptide selectivity by simple membrane-mimetic bilayer models may be beneficial for designing new selective and protease-resistant AMPs.
Collapse
Affiliation(s)
- Suvankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Sunanda Chatterjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Priyadarshi Satpati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
3
|
Craig A, Ermolovich Y, Cameron A, Rodler A, Wang H, Hawkes JA, Hubert M, Björkling F, Molchanova N, Brimble MA, Moodie LWK, Svenson J. Antimicrobial Peptides Incorporating Halogenated Marine-Derived Amino Acid Substituents. ACS Med Chem Lett 2023; 14:802-809. [PMID: 37312845 PMCID: PMC10258904 DOI: 10.1021/acsmedchemlett.3c00093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/01/2023] [Indexed: 06/15/2023] Open
Abstract
Small synthetic mimics of cationic antimicrobial peptides represent a promising class of compounds with leads in clinical development for the treatment of persistent microbial infections. The activity and selectivity of these compounds rely on a balance between hydrophobic and cationic components, and here, we explore the activity of 19 linear cationic tripeptides against five different pathogenic bacteria and fungi, including clinical isolates. The compounds incorporated modified hydrophobic amino acids inspired by motifs often found in bioactive marine secondary metabolites in combination with different cationic residues to probe the possibility of generating active compounds with improved safety profiles. Several of the compounds displayed high activity (low μM concentrations), comparable with the positive controls AMC-109, amoxicillin, and amphotericin B. A higher activity was observed against the fungal strains, and a low in vitro off-target toxicity was observed against erythrocytes and HeLa cells, thereby illustrating effective means for tuning the activity and selectivity of short antimicrobial peptides.
Collapse
Affiliation(s)
- Alexander
J. Craig
- Drug
Design and Discovery, Department of Medicinal Chemistry, Biomedical
Centre, Uppsala University, 75123 Uppsala, Sweden
- Analytical
Chemistry, Department of Chemistry, Biomedical Centre, Uppsala University, 75123 Uppsala, Sweden
| | - Yuri Ermolovich
- Department
of Drug Design and Pharmacology, University
of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Alan Cameron
- School
of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Agnes Rodler
- Department
of Pharmacy, Biomedical Centre, Uppsala
University, 75123 Uppsala, Sweden
| | - Helen Wang
- Department
of Medical Biochemistry and Microbiology, Biomedical Centre, Uppsala University, 75123 Uppsala, Sweden
| | - Jeffrey A. Hawkes
- Analytical
Chemistry, Department of Chemistry, Biomedical Centre, Uppsala University, 75123 Uppsala, Sweden
| | - Madlen Hubert
- Department
of Pharmacy, Biomedical Centre, Uppsala
University, 75123 Uppsala, Sweden
| | - Fredrik Björkling
- Department
of Drug Design and Pharmacology, University
of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Natalia Molchanova
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Margaret A. Brimble
- School
of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Lindon W. K. Moodie
- Drug
Design and Discovery, Department of Medicinal Chemistry, Biomedical
Centre, Uppsala University, 75123 Uppsala, Sweden
- Uppsala
Antibiotic Centre, Biomedical Centre, Uppsala
University, 75123 Uppsala, Sweden
| | - Johan Svenson
- Cawthron
Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| |
Collapse
|
4
|
Moncalvo F, Lacroce E, Franzoni G, Altomare A, Fasoli E, Aldini G, Sacchetti A, Cellesi F. Selective Protein Conjugation of Poly(glycerol monomethacrylate) and Poly(polyethylene glycol methacrylate) with Tunable Topology via Reductive Amination with Multifunctional ATRP Initiators for Activity Preservation. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Filippo Moncalvo
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Elisa Lacroce
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Giulia Franzoni
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Alessandra Altomare
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, 20133 Milan, Italy
| | - Elisa Fasoli
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, 20133 Milan, Italy
| | - Alessandro Sacchetti
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Francesco Cellesi
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| |
Collapse
|
5
|
Svenson J, Molchanova N, Schroeder CI. Antimicrobial Peptide Mimics for Clinical Use: Does Size Matter? Front Immunol 2022; 13:915368. [PMID: 35720375 PMCID: PMC9204644 DOI: 10.3389/fimmu.2022.915368] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
The search for efficient antimicrobial therapies that can alleviate suffering caused by infections from resistant bacteria is more urgent than ever before. Infections caused by multi-resistant pathogens represent a significant and increasing burden to healthcare and society and researcher are investigating new classes of bioactive compounds to slow down this development. Antimicrobial peptides from the innate immune system represent one promising class that offers a potential solution to the antibiotic resistance problem due to their mode of action on the microbial membranes. However, challenges associated with pharmacokinetics, bioavailability and off-target toxicity are slowing down the advancement and use of innate defensive peptides. Improving the therapeutic properties of these peptides is a strategy for reducing the clinical limitations and synthetic mimics of antimicrobial peptides are emerging as a promising class of molecules for a variety of antimicrobial applications. These compounds can be made significantly shorter while maintaining, or even improving antimicrobial properties, and several downsized synthetic mimics are now in clinical development for a range of infectious diseases. A variety of strategies can be employed to prepare these small compounds and this review describes the different compounds developed to date by adhering to a minimum pharmacophore based on an amphiphilic balance between cationic charge and hydrophobicity. These compounds can be made as small as dipeptides, circumventing the need for large compounds with elaborate three-dimensional structures to generate simplified and potent antimicrobial mimics for a range of medical applications. This review highlight key and recent development in the field of small antimicrobial peptide mimics as a promising class of antimicrobials, illustrating just how small you can go.
Collapse
Affiliation(s)
| | - Natalia Molchanova
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Christina I. Schroeder
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| |
Collapse
|
6
|
Pandit G, Sarkar T, S. R. V, Debnath S, Satpati P, Chatterjee S. Delineating the Mechanism of Action of a Protease Resistant and Salt Tolerant Synthetic Antimicrobial Peptide against Pseudomonas aeruginosa. ACS OMEGA 2022; 7:15951-15968. [PMID: 35571791 PMCID: PMC9097201 DOI: 10.1021/acsomega.2c01089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
Rapidly growing antimicrobial resistance (AMR) against antibiotics has propelled the development of synthetic antimicrobial peptides (AMPs) as potential antimicrobial agents. An antimicrobial peptide Nle-Dab-Trp-Nle-Dab-Dab-Nle-CONH2 (P36; Nle = norleucine, Dab = diaminobutyric acid, Trp = tryptophan) potent against Pseudomonas aeruginosa (P. aeruginosa) has been developed in the present study. Rational design strategy adopted in this study led to the improvisation of the therapeutic qualities such as activity, salt tolerance, cytotoxicity, and protease resistance of the template peptide P4, which was earlier reported from our group. P36 exhibited salt tolerant antimicrobial potency against P. aeruginosa, along with very low cytotoxicity against mammalian cell lines. P36 was found to be nonhemolytic and resistant toward protease degradation which qualified it as a potent antimicrobial agent. We have investigated the mechanism of action of this molecule in detail using several experimental techniques (spectroscopic, biophysical, and microscopic) and molecular dynamics simulations. P36 was a membrane active AMP with membrane destabilization and deformation abilities, leading to leakage of the intracellular materials and causing eventual cell death. The interaction between P36 and the microbial membrane/membrane mimics was primarily driven by electrostatics. P36 was unstructured in water and upon binding to the microbial membrane mimic SDS, suggesting no influence of secondary structure on its antimicrobial potency. Positive charge, optimum hydrophobic-hydrophilic balance, and chain length remained the most important concerns to be addressed while designing small cationic antimicrobial peptides.
Collapse
Affiliation(s)
- Gopal Pandit
- Department
of Chemistry, Indian Institute of Technology.
Guwahati (IITG), Guwahati, Assam 781039, India
| | - Tanumoy Sarkar
- Department
of Chemistry, Indian Institute of Technology.
Guwahati (IITG), Guwahati, Assam 781039, India
| | - Vignesh S. R.
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology. Guwahati (IITG), Guwahati, Assam 781039, India
| | - Swapna Debnath
- Department
of Chemistry, Indian Institute of Technology.
Guwahati (IITG), Guwahati, Assam 781039, India
| | - Priyadarshi Satpati
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology. Guwahati (IITG), Guwahati, Assam 781039, India
| | - Sunanda Chatterjee
- Department
of Chemistry, Indian Institute of Technology.
Guwahati (IITG), Guwahati, Assam 781039, India
| |
Collapse
|
7
|
Grant TM, Rennison D, Krause AL, Mros S, Ferguson SA, Cook GM, Cameron A, Arabshahi HJ, Brimble MA, Cahill P, Svenson J. Stereochemical Effects on the Antimicrobial Properties of Tetrasubstituted 2,5-Diketopiperazines. ACS Med Chem Lett 2022; 13:632-640. [PMID: 35450374 PMCID: PMC9014430 DOI: 10.1021/acsmedchemlett.1c00683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/31/2022] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial drug resistance is a looming health crisis facing us in the modern era, and new drugs are urgently needed to combat this growing problem. Synthetic mimics of antimicrobial peptides have recently emerged as a promising class of compounds for the treatment of persistent microbial infections. In the current study, we investigate five cyclic N-alkylated amphiphilic 2,5-diketopiperazines against 15 different strains of bacteria and fungi, including drug-resistant clinical isolates. Several of the 2,5-diketopiperazines displayed activities similar or superior to antibiotics currently in clinical use, with activities coupled to both the cationic and hydrophobic substituents. All possible stereoisomers of the lead peptide were prepared, and the effects of stereochemistry and amphiphilicity were investigated via 1D and 2D NMR spectroscopy, solution dynamics, and membrane interaction modeling. Clear differences in solution structures and membrane interaction potentials explain the differences seen in the bioactivity and physicochemical properties of each stereoisomer.
Collapse
Affiliation(s)
- Thomas M. Grant
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand
| | - David Rennison
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand
| | - Alexandra L. Krause
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
| | - Sonya Mros
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
| | - Scott A. Ferguson
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
| | - Gregory M. Cook
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1142, New Zealand
| | - Alan Cameron
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand
| | - Homayon J. Arabshahi
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1142, New Zealand
| | - Patrick Cahill
- Cawthron Institute, 98 Halifax Street, Nelson 7010, New Zealand
| | - Johan Svenson
- Cawthron Institute, 98 Halifax Street, Nelson 7010, New Zealand
| |
Collapse
|
8
|
Glibowicka M, He S, Deber CM. Enhanced proteolytic resistance of cationic antimicrobial peptides through lysine side chain analogs and cyclization. Biochem Biophys Res Commun 2022; 612:105-109. [DOI: 10.1016/j.bbrc.2022.04.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/26/2022]
|
9
|
Grant TM, Rennison D, Cervin G, Pavia H, Hellio C, Foulon V, Brimble MA, Cahill P, Svenson J. Towards eco-friendly marine antifouling biocides - Nature inspired tetrasubstituted 2,5-diketopiperazines. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152487. [PMID: 34953845 DOI: 10.1016/j.scitotenv.2021.152487] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Marine biofouling plagues all maritime industries at vast economic and environmental cost. Previous and most current methods to control biofouling have employed highly persistent toxins and heavy metals, including tin, copper, and zinc. These toxic methods are resulting in unacceptable environmental harm and are coming under immense regulatory pressure. Eco-friendly alternatives are urgently required to effectively mitigate the negative consequence of biofouling without causing collateral harm. Amphiphilic micropeptides have recently been shown to exhibit excellent broad-spectrum antifouling activity, with a non-toxic mode of action and innate biodegradability. The present work focused on incorporating the pharmacophore derived from amphiphilic micropeptides into a 2,5-diketopiperazine (DKP) scaffold. This privileged structure is present in a vast number of natural products, including marine natural product antifoulants, and provides advantages of synthetic accessibility and adaptability. A novel route to symmetrical tetrasubstituted DKPs was developed and a library of amphiphilic 2,5-DKPs were subsequently synthesised. These biodegradable compounds were demonstrated to be potent marine antifoulants displaying broad-spectrum activity in the low micromolar range against a range of common marine fouling organisms. The outcome of planned coating and field trials will dictate the future development of the lead compounds.
Collapse
Affiliation(s)
- Thomas M Grant
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - David Rennison
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - Gunnar Cervin
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, SE-452 96 Strömstad, Sweden
| | - Henrik Pavia
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, SE-452 96 Strömstad, Sweden
| | - Claire Hellio
- Univ. Brest, Laboratoire des Sciences de l'Environnement MARin (LEMAR), CNRS, IRD, IFREMER, Brest 29285, France
| | - Valentin Foulon
- Univ. Brest, Laboratoire des Sciences de l'Environnement MARin (LEMAR), CNRS, IRD, IFREMER, Brest 29285, France
| | - Margaret A Brimble
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - Patrick Cahill
- Cawthron Institute, 98 Halifax Street, Nelson, New Zealand
| | - Johan Svenson
- Cawthron Institute, 98 Halifax Street, Nelson, New Zealand.
| |
Collapse
|
10
|
Potent antibacterial and antibiofilm activities of TICbf-14, a peptide with increased stability against trypsin. J Microbiol 2021; 60:89-99. [PMID: 34964945 DOI: 10.1007/s12275-022-1368-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/17/2021] [Accepted: 10/01/2021] [Indexed: 10/19/2022]
Abstract
The poor stability of peptides against trypsin largely limits their development as potential antibacterial agents. Here, to obtain a peptide with increased trypsin stability and potent antibacterial activity, TICbf-14 derived from the cationic peptide Cbf-14 was designed by the addition of disulfide-bridged hendecapeptide (CWTKSIPPKPC) loop. Subsequently, the trypsin stability and antimicrobial and antibiofilm activities of this peptide were evaluated. The possible mechanisms underlying its mode of action were also clarified. The results showed that TICbf-14 exhibited elevated trypsin inhibitory activity and effectively mitigated lung histopathological damage in bacteria-infected mice by reducing the bacterial counts, further inhibiting the systemic dissemination of bacteria and host inflammation. Additionally, TICbf-14 significantly repressed bacterial swimming motility and notably inhibited biofilm formation. Considering the mode of action, we observed that TICbf-14 exhibited a potent membrane-disruptive mechanism, which was attributable to its destructive effect on ionic bridges between divalent cations and LPS of the bacterial membrane. Overall, TICbf-14, a bifunctional peptide with both antimicrobial and trypsin inhibitory activity, is highly likely to become an ideal candidate for drug development against bacteria.
Collapse
|
11
|
Håkansson J, Cavanagh JP, Stensen W, Mortensen B, Svendsen JS, Svenson J. In vitro and in vivo antibacterial properties of peptide AMC-109 impregnated wound dressings and gels. J Antibiot (Tokyo) 2021; 74:337-345. [PMID: 33495549 DOI: 10.1038/s41429-021-00406-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/16/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023]
Abstract
Synthetic mimics of antimicrobial peptides (AMPs) is a promising class of molecules for a variety of antimicrobial applications. Several hurdles must be passed before effective systemic infection therapies with AMPs can be achieved, but the path to effective topical treatment of skin, nail, and soft tissue infections appears less challenging to navigate. Skin and soft tissue infection is closely coupled to the emergence of antibiotic resistance and represents a major burden to the healthcare system. The present study evaluates the promising synthetic cationic AMP mimic, AMC-109, for treatment of skin infections in vivo. The compound is evaluated both in impregnated cotton wound dressings and in a gel formulation against skin infections caused by Staphylococcus aureus and methicillin resistant S. aureus. Both the ability to prevent colonization and formation of an infection, as well as eradicate an ongoing infection in vivo with a high bacterial load, were evaluated. The present work demonstrates that AMC-109 displays a significantly higher antibacterial activity with up to a seven-log reduction in bacterial loads compared to current clinical standard therapy; Altargo cream (1% retapamulin) and Fucidin cream (2% fusidic acid) in the in vivo wound models. It is thus concluded that AMC-109 represents a promising entry in the development of new and effective remedies for various skin infections.
Collapse
Affiliation(s)
- Joakim Håkansson
- Department of Chemistry, Biomaterial & Textile, RISE Research Institutes of Sweden, Borås, Sweden.,Department of Laboratory Medicine, Institute of Biomedicine, Gothenburg University, Gothenburg, Sweden
| | - Jorunn Pauline Cavanagh
- Amicoat A/S, Sandvika, Norway.,Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Wenche Stensen
- Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - John-Sigurd Svendsen
- Amicoat A/S, Sandvika, Norway.,Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway
| | - Johan Svenson
- Department of Chemistry, Biomaterial & Textile, RISE Research Institutes of Sweden, Borås, Sweden. .,Cawthron Institute, Nelson, New Zealand.
| |
Collapse
|
12
|
Lu J, Xu H, Xia J, Ma J, Xu J, Li Y, Feng J. D- and Unnatural Amino Acid Substituted Antimicrobial Peptides With Improved Proteolytic Resistance and Their Proteolytic Degradation Characteristics. Front Microbiol 2020; 11:563030. [PMID: 33281761 PMCID: PMC7688903 DOI: 10.3389/fmicb.2020.563030] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/22/2020] [Indexed: 01/10/2023] Open
Abstract
The transition of antimicrobial peptides (AMPs) from the laboratory to market has been severely hindered by their instability toward proteases in biological systems. In the present study, we synthesized derivatives of the cationic AMP Pep05 (KRLFKKLLKYLRKF) by substituting L-amino acid residues with D- and unnatural amino acids, such as D-lysine, D-arginine, L-2,4-diaminobutanoic acid (Dab), L-2,3-diaminopropionic acid (Dap), L-homoarginine, 4-aminobutanoic acid (Aib), and L-thienylalanine, and evaluated their antimicrobial activities, toxicities, and stabilities toward trypsin, plasma proteases, and secreted bacterial proteases. In addition to measuring changes in the concentration of the intact peptides, LC-MS was used to identify the degradation products of the modified AMPs in the presence of trypsin and plasma proteases to determine degradation pathways and examine whether the amino acid substitutions afforded improved proteolytic resistance. The results revealed that both D- and unnatural amino acids enhanced the stabilities of the peptides toward proteases. The derivative DP06, in which all of the L-lysine and L-arginine residues were replaced by D-amino acids, displayed remarkable stability and mild toxicity in vitro but only slight activity and severe toxicity in vivo, indicating a significant difference between the in vivo and in vitro results. Unexpectedly, we found that the incorporation of a single Aib residue at the N-terminus of compound UP09 afforded remarkably enhanced plasma stability and improved activity in vivo. Hence, this derivative may represent a candidate AMP for further optimization, providing a new strategy for the design of novel AMPs with improved bioavailability.
Collapse
Affiliation(s)
- Jianguang Lu
- Key State Laboratory of Drug Innovation and Pharmaceutical Technology, China State Institute of Pharmaceutical Industry, Shanghai, China.,Department of Peptide Drugs R&D, Shanghai Duomirui Biotechnology Co., Ltd., Shanghai, China
| | - Hongjiang Xu
- Key State Laboratory of Drug Innovation and Pharmaceutical Technology, China State Institute of Pharmaceutical Industry, Shanghai, China.,Department of Drug Evaluation and Research, Chia Tai Tianqing Pharmaceutical Group Co., Ltd., Nanjing, China
| | - Jianghua Xia
- Key State Laboratory of Drug Innovation and Pharmaceutical Technology, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Jie Ma
- Department of Peptide Drugs R&D, Shanghai Duomirui Biotechnology Co., Ltd., Shanghai, China
| | - Jun Xu
- Department of Peptide Drugs R&D, Shanghai Duomirui Biotechnology Co., Ltd., Shanghai, China
| | - Yanan Li
- Key State Laboratory of Drug Innovation and Pharmaceutical Technology, China State Institute of Pharmaceutical Industry, Shanghai, China.,School of Pharmacy, Fudan University, Shanghai, China
| | - Jun Feng
- Key State Laboratory of Drug Innovation and Pharmaceutical Technology, China State Institute of Pharmaceutical Industry, Shanghai, China.,Department of Peptide Drugs R&D, Shanghai Duomirui Biotechnology Co., Ltd., Shanghai, China
| |
Collapse
|
13
|
Correlation between hemolytic activity, cytotoxicity and systemic in vivo toxicity of synthetic antimicrobial peptides. Sci Rep 2020; 10:13206. [PMID: 32764602 PMCID: PMC7414031 DOI: 10.1038/s41598-020-69995-9] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/13/2020] [Indexed: 01/08/2023] Open
Abstract
The use of non-standard toxicity models is a hurdle in the early development of antimicrobial peptides towards clinical applications. Herein we report an extensive in vitro and in vivo toxicity study of a library of 24 peptide-based antimicrobials with narrow spectrum activity towards veterinary pathogens. The haemolytic activity of the compounds was evaluated against four different species and the relative sensitivity against the compounds was highest for canine erythrocytes, intermediate for rat and human cells and lowest for bovine cells. Selected peptides were additionally evaluated against HeLa, HaCaT and HepG2 cells which showed increased stability towards the peptides. Therapeutic indexes of 50–500 suggest significant cellular selectivity in comparison to bacterial cells. Three peptides were administered to rats in intravenous acute dose toxicity studies up to 2–8 × MIC. None of the injected compounds induced any systemic toxic effects in vivo at the concentrations employed illustrating that the correlation between the different assays is not obvious. This work sheds light on the in vitro and in vivo toxicity of this class of promising compounds and provides insights into the relationship between the different toxicity models often employed in different manners to evaluate the toxicity of novel bioactive compounds in general.
Collapse
|
14
|
Haney EF, Barbosa SC, Baquir B, Hancock REW. Influence of Non-natural Cationic Amino Acids on the Biological Activity Profile of Innate Defense Regulator Peptides. J Med Chem 2019; 62:10294-10304. [DOI: 10.1021/acs.jmedchem.9b01344] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Evan F. Haney
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Simone C. Barbosa
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Beverlie Baquir
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
15
|
Svendsen JSM, Grant TM, Rennison D, Brimble MA, Svenson J. Very Short and Stable Lactoferricin-Derived Antimicrobial Peptides: Design Principles and Potential Uses. Acc Chem Res 2019; 52:749-759. [PMID: 30829472 DOI: 10.1021/acs.accounts.8b00624] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The alarming rate at which micro-organisms are developing resistance to conventional antibiotics represents one of the global challenges of our time. There is currently ample space in the antibacterial drug pipeline, and scientists are trying to find innovative and novel strategies to target the microbial enemies. Nature has remained a source of inspiration for most of the antibiotics developed and used, and the immune molecules produced by the innate defense systems, as a first line of defense, have been heralded as the next source of antibiotics. Most living organisms produce an arsenal of antimicrobial peptides (AMPs) to rapidly fend off intruding pathogens, and several different attempts have been made to transform this versatile group of compounds into the next generation of antibiotics. However, faced with the many hurdles of using peptides as drugs, the success of these defense molecules as therapeutics remains to be realized. AMPs derived from the proteolytic degradation of the innate defense protein lactoferrin have been shown to display several favorable antimicrobial properties. In an attempt to investigate the biological and pharmacological properties of these much shorter AMPs, the sequence dependence was investigated, and it was shown, through a series of truncation experiments, that these AMPs in fact can be prepared as tripeptides, with improved antimicrobial activity, via the incorporation of unnatural hydrophobic residues and terminal cappings. In this Account, we describe how this class of promising cationic tripeptides has been developed to specifically address the main challenges limiting the general use of AMPs. This has been made possible through the identification of the antibacterial pharmacophore and via the incorporation of a range of unnatural hydrophobic and cationic amino acids. Incorporation of these residues at selected positions has allowed us to extensively establish how these compounds interact with the major proteolytic enzymes trypsin and chymotrypsin and also the two major drug-binding plasma proteins serum albumin and α-1 glycoprotein. Several of the challenges associated with using AMPs relate to their size, susceptibility to rapid proteolytic degradation, and poor oral bioavailability. Our studies have addressed these issues in detail, and the results have allowed us to effectively design and prepare active and metabolically stable AMPs that have been evaluated in a range of functional settings. The optimized short AMPs display inhibitory activities against a plethora of micro-organisms at low micromolar concentrations, and they have been shown to target resistant strains of both bacteria and fungi alike with a very rapid mode of action. Our Account further describes how these compounds behave in in vivo experiments and highlights both the challenges and possibilities of the intriguing compounds. In several areas, they have been shown to exhibit comparable or superior activity to established antibacterial, antifungal, and antifouling commercial products. This illustrates their ability to effectively target and eradicate various microbes in a variety of settings ranging from the ocean to the clinic.
Collapse
Affiliation(s)
| | - Thomas M. Grant
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
| | - David Rennison
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Johan Svenson
- Department of Chemistry and Materials, RISE Research Institutes of Sweden, SE-501 15 Borås, Sweden
| |
Collapse
|
16
|
Ghosh S, Alam S, Rathore AS, Khare SK. Stability of Therapeutic Enzymes: Challenges and Recent Advances. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:131-150. [DOI: 10.1007/978-981-13-7709-9_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
17
|
Chih YH, Wang SY, Yip BS, Cheng KT, Hsu SY, Wu CL, Yu HY, Cheng JW. Dependence on size and shape of non-nature amino acids in the enhancement of lipopolysaccharide (LPS) neutralizing activities of antimicrobial peptides. J Colloid Interface Sci 2018; 533:492-502. [PMID: 30176540 DOI: 10.1016/j.jcis.2018.08.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022]
Abstract
HYPOTHESIS Release of lipopolysaccharides (LPS) from bacteria into bloodstream may cause serious unwanted stimulation of the host immune system. P-113 is a clinically active histidine-rich antimicrobial peptide. Nal-P-113, a β-naphthylalanine-substituted P-113, is salt-resistant but has limited LPS neutralizing activity. We suspected the size and shape of the non-natural bulky amino acid may affect its LPS neutralizing activity. Herein, antimicrobial, LPS neutralizing, and antiproteolytic effects of phenylalanine- (Phe-P-113), β-naphthylalanine- (Nal-P-113), β-diphenylalanine- (Dip-P-113), and β-(4,4'-biphenyl)alanine- (Bip-P-113) substituted P-113 were studied. EXPERIMENTS Structure-activity relationships of P-113, Phe-P-113, Nal-P-113, Dip-P-113, and Bip-P-113 were evaluated using antimicrobial activity assays, serum proteolytic assays, peptide-induced permeabilization of large unilamellar vesicles, zeta potential measurements, dynamic light scattering measurement of LPS aggregation, and Limulus amebocyte lysate assays for measuring LPS neutralization. In vitro and in vivo LPS neutralizing activities were further confirmed by LPS-induced inflammation inhibition in an endotoxemia mouse model. FINDINGS Bip-P-113 and Dip-P-113 had the longest and widest non-nature amino acids, respectively. Bip-P-113 enhanced salt resistance, serum proteolytic stability, peptide-induced permeabilization, zeta potential measurements, LPS aggregation, and in vitro and in vivo LPS neutralizing activities. These results could help design novel antimicrobial peptides that have enhanced stability in vivo and that can have potential therapeutic applications.
Collapse
Affiliation(s)
- Ya-Han Chih
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Siou-Ying Wang
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Bak-Sau Yip
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan; Department of Neurology, National Taiwan University Hospital Hsinchu Branch, Hsinchu 300, Taiwan
| | - Kuang-Ting Cheng
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Su-Ya Hsu
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chih-Lung Wu
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Hui-Yuan Yu
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Jya-Wei Cheng
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan.
| |
Collapse
|
18
|
Labrière C, Kondori N, Caous JS, Boomgaren M, Sandholm K, Ekdahl KN, Hansen JH, Svenson J. Development and evaluation of cationic amphiphilic antimicrobial 2,5-diketopiperazines. J Pept Sci 2018; 24:e3090. [PMID: 29845683 DOI: 10.1002/psc.3090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/19/2018] [Accepted: 04/30/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Christophe Labrière
- Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway
| | - Nahid Kondori
- Department of Infectious diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Josefin Seth Caous
- Department of Chemistry and Materials, RISE Research Institutes of Sweden, Borås, Sweden
| | - Marc Boomgaren
- Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway
| | - Kerstin Sandholm
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Kristina N Ekdahl
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden.,Department of Immunology, Genetics and Pathology, Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - Jørn H Hansen
- Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway
| | - Johan Svenson
- Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Chemistry and Materials, RISE Research Institutes of Sweden, Borås, Sweden
| |
Collapse
|
19
|
Improving the Activity of Trp-Rich Antimicrobial Peptides by Arg/Lys Substitutions and Changing the Length of Cationic Residues. Biomolecules 2018; 8:biom8020019. [PMID: 29671805 PMCID: PMC6023086 DOI: 10.3390/biom8020019] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/14/2018] [Accepted: 04/17/2018] [Indexed: 01/13/2023] Open
Abstract
Antimicrobial peptides (AMPs) constitute a promising alternative for the development of new antibiotics that could potentially counteract the growing number of antibiotic-resistant bacteria. However, the AMP structure⁻function relationships remain unclear and detailed studies are still necessary. The positively charged amino acid residues (Arg and Lys) play a crucial role in the activity of most AMPs due to the promotion of electrostatic interactions between the peptides and bacterial membranes. In this work we have analyzed the antimicrobial and structural properties of several Trp-rich AMPs containing exclusively either Arg or Lys as the positively charged residues. Their antimicrobial activity and mechanism of action were investigated, showing that Lys residues give rise to a reduced antimicrobial potency for most peptides, which was correlated, in turn, with a decrease in their ability to permeabilize the cytoplasmic membrane of Escherichia coli. Additionally, the presence of Arg and Lys renders the peptides susceptible to degradation by proteases, such as trypsin, limiting their therapeutic use. Therefore, modifications of the side chain length of Arg and Lys were investigated in an attempt to improve the protease resistance of AMPs. This approach resulted in enhanced stability to trypsin digestion, and in several cases, shorter sidechains conserved or even improved the antimicrobial activity. All together, these results suggest that Arg-to-Lys substitutions, coupled with side chain length modifications, can be extremely useful for improving the activity and stability of AMPs.
Collapse
|
20
|
Wadhwani P, Heidenreich N, Podeyn B, Bürck J, Ulrich AS. Antibiotic gold: tethering of antimicrobial peptides to gold nanoparticles maintains conformational flexibility of peptides and improves trypsin susceptibility. Biomater Sci 2018; 5:817-827. [PMID: 28275774 DOI: 10.1039/c7bm00069c] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Peptide-coated nanoparticles are valuable tools for diverse biological applications, such as drug delivery, molecular recognition, and antimicrobial action. The functionalization of pre-fabricated nanoparticles with free peptides in solution is inefficient either due to aggregation of the particles or due to the poor ligand exchange reaction. Here, we present a one-pot synthesis for preparing gold nanoparticles with a homogeneous distribution that are covered in situ with cationic peptides in a site-selective manner via Cys-residue at the N-terminus. Five representative peptides were selected, which are known to perturb cellular membranes and exert their antimicrobial and/or cell penetrating activity by folding into amphiphilic α-helical structures. When tethered to the nanoparticles at a single site, all peptides were found to switch their conformation from unordered state (in aqueous buffers) to their functionally relevant α-helical conformation in the presence of model membranes, as shown by circular dichroism spectroscopy. The conjugated peptides also maintained the same antibacterial activity as in the free form. Most importantly, when tethered to the gold nanoparticles the peptides showed an enormous increase in stability against trypsin digestion compared to the free forms, leading to a dramatic improvement of their lifetimes and activities. These findings suggest that site-selective surface tethering of peptides to gold nanoparticles has several advantages: (i) it does not prevent the peptides from folding into their biologically active conformation, (ii) such conjugation protects the peptides against protease digestion, and (iii) this way it is possible to prepare stable, water soluble antimicrobial nanoparticles as promising antibacterial agents.
Collapse
Affiliation(s)
- Parvesh Wadhwani
- Karlsruhe Institute of Technology (KIT), 1Institute of Biological Interfaces (IBG-2) P.O.B. 3640, D 76021 Karlsruhe, Germany.
| | - Nico Heidenreich
- KIT, 2Institute of Organic Chemistry & CFN, Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Benjamin Podeyn
- KIT, 2Institute of Organic Chemistry & CFN, Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Jochen Bürck
- Karlsruhe Institute of Technology (KIT), 1Institute of Biological Interfaces (IBG-2) P.O.B. 3640, D 76021 Karlsruhe, Germany.
| | - Anne S Ulrich
- Karlsruhe Institute of Technology (KIT), 1Institute of Biological Interfaces (IBG-2) P.O.B. 3640, D 76021 Karlsruhe, Germany. and KIT, 2Institute of Organic Chemistry & CFN, Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| |
Collapse
|
21
|
The Road from Host-Defense Peptides to a New Generation of Antimicrobial Drugs. Molecules 2018; 23:molecules23020311. [PMID: 29389911 PMCID: PMC6017364 DOI: 10.3390/molecules23020311] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/23/2018] [Accepted: 01/30/2018] [Indexed: 01/28/2023] Open
Abstract
Host-defense peptides, also called antimicrobial peptides (AMPs), whose protective action has been used by animals for millions of years, fulfill many requirements of the pharmaceutical industry, such as: (1) broad spectrum of activity; (2) unlike classic antibiotics, they induce very little resistance; (3) they act synergically with conventional antibiotics; (4) they neutralize endotoxins and are active in animal models. However, it is considered that many natural peptides are not suitable for drug development due to stability and biodisponibility problems, or high production costs. This review describes the efforts to overcome these problems and develop new antimicrobial drugs from these peptides or inspired by them. The discovery process of natural AMPs is discussed, as well as the development of synthetic analogs with improved pharmacological properties. The production of these compounds at acceptable costs, using different chemical and biotechnological methods, is also commented. Once these challenges are overcome, a new generation of versatile, potent and long-lasting antimicrobial drugs is expected.
Collapse
|
22
|
Differential stability of therapeutic peptides with different proteolytic cleavage sites in blood, plasma and serum. PLoS One 2017; 12:e0178943. [PMID: 28575099 PMCID: PMC5456363 DOI: 10.1371/journal.pone.0178943] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/22/2017] [Indexed: 01/18/2023] Open
Abstract
Proteolytic degradation of peptide-based drugs is often considered as major weakness limiting systemic therapeutic applications. Therefore, huge efforts are typically devoted to stabilize sequences against proteases present in serum or plasma, obtained as supernatants after complete blood coagulation or centrifugation of blood supplemented with anticoagulants, respectively. Plasma and serum are reproducibly obtained from animals and humans allowing consistent for clinical analyses and research applications. However, the spectrum of active or activated proteases appears to vary depending on the activation of proteases and cofactors during coagulation (serum) or inhibition of such enzymes by anticoagulants (plasma), such as EDTA (metallo- and Ca2+-dependent proteases) and heparin (e.g. thrombin, factor Xa). Here, we studied the presumed effects on peptide degradation by taking blood via cardiac puncture of CD-1 mice using a syringe containing a peptide solution. Due to absence of coagulation activators (e.g. glass surfaces and damaged cells), visible blood clotting was prevented allowing to study peptide degradation for one hour. The remaining peptide was quantified and the degradation products were identified using mass spectrometry. When the degradation rates (half-life times) were compared to serum derived freshly from the same animal and commercial serum and plasma samples, peptides of three different families showed indeed considerably different stabilities. Generally, peptides were faster degraded in serum than in plasma, but surprisingly all peptides were more stable in fresh blood and the order of degradation rates among the peptides varied among the six different incubation experiments. This indicates, that proteolytic degradation of peptide-based therapeutics may often be misleading stimulating efforts to stabilize peptides at degradation sites relevant only in vitro, i.e., for serum or plasma stability assays, but of lower importance in vivo.
Collapse
|
23
|
Cathelicidin-trypsin inhibitor loop conjugate represents a promising antibiotic candidate with protease stability. Sci Rep 2017; 7:2600. [PMID: 28572668 PMCID: PMC5453931 DOI: 10.1038/s41598-017-02050-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 04/05/2017] [Indexed: 12/15/2022] Open
Abstract
Cathelicidins are regarded as promising antibiotics due to their capability against antibiotic-resistant bacteria without cytotoxicity. However, some concerns about the balance of cytotoxicity and antimicrobial activity, weak stability and enzymatic susceptibility sually restrict their therapeutic use. Here, we designed a series of shortened variants, Hc1~15, based on our previously characterized Hc-CATH. Hc3, the one with the best activity, after point mutation was engineered with a trypsin inhibitor loop, ORB-C, to obtain four hybrid peptides: H3TI, TIH3, H3TIF and TIH3F. All four except TIH3 were found possessing an appreciable profile of proteases inhibitory and antimicrobial characteristics without increase in cytotoxicity. Among them, TIH3F exhibited the most potent and broad-spectrum antimicrobial and anti-inflammatory activities. Fluorescence spectroscopy has demonstrated a quick induction of bacterial membrane permeability by TIH3F leading to the cell death, which also accounts for its fast anti-biofilm activity. Such mode of antimicrobial action was mainly attributed to peptides’ amphiphilic and helical structures determined by CD and homology modeling. Besides, TIH3F exhibited good tolerance to salt, serum, pH, and temperature, indicating a much better physiological stability in vitro than Hc3, Most importantly, in the case of resistance against proteases hydrolysis, current hybrid peptides displayed a remarkable enhancement than their original templates.
Collapse
|
24
|
Moodie LWK, Trepos R, Cervin G, Larsen L, Larsen DS, Pavia H, Hellio C, Cahill P, Svenson J. Probing the Structure-Activity Relationship of the Natural Antifouling Agent Polygodial against both Micro- and Macrofoulers by Semisynthetic Modification. JOURNAL OF NATURAL PRODUCTS 2017; 80:515-525. [PMID: 28170258 DOI: 10.1021/acs.jnatprod.6b01056] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The current study represents the first comprehensive investigation into the general antifouling activities of the natural drimane sesquiterpene polygodial. Previous studies have highlighted a high antifouling effect toward macrofoulers, such as ascidians, tubeworms, and mussels, but no reports about the general antifouling effect of polygodial have been communicated before. To probe the structural and chemical basis for antifouling activity, a library of 11 polygodial analogues was prepared by semisynthesis. The library was designed to yield derivatives with ranging polarities and the ability to engage in both covalent and noncovalent interactions, while still remaining within the drimane sesquiterpene scaffold. The prepared compounds were screened against 14 relevant marine micro- and macrofouling species. Several of the polygodial analogues displayed inhibitory activities at sub-microgram/mL concentrations. These antifouling effects were most pronounced against the macrofouling ascidian Ciona savignyi and the barnacle Balanus improvisus, with inhibitory activities observed for selected compounds comparable or superior to several commercial antifouling products. The inhibitory activity against the microfouling bacteria and microalgae was reversible and significantly less pronounced than for the macrofoulers. This study illustrates that the macro- and microfoulers are targeted by the compounds via different mechanisms.
Collapse
Affiliation(s)
- Lindon W K Moodie
- Department of Chemistry, UiT The Arctic University of Norway , Breivika, N-9037, Tromsø, Norway
| | - Rozenn Trepos
- Biodimar LEMAR UMR 6539, Université de Bretagne Occidentale , 6 Avenue le Gorgeu, 29200 Brest, France
| | - Gunnar Cervin
- Department of Marine Sciences - Tjärnö, University of Gothenburg , SE-452 96 Strömstad, Sweden
| | - Lesley Larsen
- Department of Chemistry, University of Otago , P.O. Box 56, Dunedin, New Zealand
| | - David S Larsen
- Department of Chemistry, University of Otago , P.O. Box 56, Dunedin, New Zealand
| | - Henrik Pavia
- Department of Marine Sciences - Tjärnö, University of Gothenburg , SE-452 96 Strömstad, Sweden
| | - Claire Hellio
- Biodimar LEMAR UMR 6539, Université de Bretagne Occidentale , 6 Avenue le Gorgeu, 29200 Brest, France
| | - Patrick Cahill
- Cawthron Institute , 98 Halifax Street East, Nelson 7010, New Zealand
| | - Johan Svenson
- Department of Chemistry, UiT The Arctic University of Norway , Breivika, N-9037, Tromsø, Norway
- Department of Chemistry, Material and Surfaces, SP Technical Research Institute of Sweden , Box 857, SE-501 15 Borås, Sweden
| |
Collapse
|
25
|
Baumann T, Nickling JH, Bartholomae M, Buivydas A, Kuipers OP, Budisa N. Prospects of In vivo Incorporation of Non-canonical Amino Acids for the Chemical Diversification of Antimicrobial Peptides. Front Microbiol 2017; 8:124. [PMID: 28210246 PMCID: PMC5288337 DOI: 10.3389/fmicb.2017.00124] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/18/2017] [Indexed: 12/14/2022] Open
Abstract
The incorporation of non-canonical amino acids (ncAA) is an elegant way for the chemical diversification of recombinantly produced antimicrobial peptides (AMPs). Residue- and site-specific installation methods in several bacterial production hosts hold great promise for the generation of new-to-nature AMPs, and can contribute to tackle the ongoing emergence of antibiotic resistance in pathogens. Especially from a pharmacological point of view, desirable improvements span pH and protease resistance, solubility, oral availability and circulation half-life. Although the primary focus of this report is on ribosomally synthesized and post-translationally modified peptides (RiPPs), we have included selected cases of peptides produced by solid phase peptide synthesis to comparatively show the potential and impact of ncAA introduction. Generally speaking, the introduction of ncAAs in recombinant AMPs delivers novel levels of chemical diversification. Cotranslationally incorporated, they can take part in AMP biogenesis either through direction interaction with elements of the post-translational modification (PTM) machinery or as untargeted sites with unique physicochemical properties and chemical handles for further modification. Together with genetic libraries, genome mining and processing by PTM machineries, ncAAs present not a mere addition to this process, but a highly diverse pool of building blocks to significantly broaden the chemical space of this valuable class of molecules. This perspective summarizes new developments of ncAA containing peptides. Challenges to be resolved in order to reach large-scale pharmaceutical production of these promising compounds and prospects for future developments are discussed.
Collapse
Affiliation(s)
- Tobias Baumann
- Biocatalysis Group, Department of Chemistry, Technische Universität Berlin (Berlin Institute of Technology) Berlin, Germany
| | - Jessica H Nickling
- Biocatalysis Group, Department of Chemistry, Technische Universität Berlin (Berlin Institute of Technology) Berlin, Germany
| | - Maike Bartholomae
- Molecular Genetics Group, Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Rijksuniversiteit Groningen (University of Groningen) Groningen, Netherlands
| | - Andrius Buivydas
- Molecular Genetics Group, Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Rijksuniversiteit Groningen (University of Groningen) Groningen, Netherlands
| | - Oscar P Kuipers
- Molecular Genetics Group, Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Rijksuniversiteit Groningen (University of Groningen) Groningen, Netherlands
| | - Nediljko Budisa
- Biocatalysis Group, Department of Chemistry, Technische Universität Berlin (Berlin Institute of Technology) Berlin, Germany
| |
Collapse
|
26
|
Stensen W, Turner R, Brown M, Kondori N, Svendsen JS, Svenson J. Short Cationic Antimicrobial Peptides Display Superior Antifungal Activities toward Candidiasis and Onychomycosis in Comparison with Terbinafine and Amorolfine. Mol Pharm 2016; 13:3595-3600. [PMID: 27576445 DOI: 10.1021/acs.molpharmaceut.6b00654] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Novel antifungals are in high demand due to the challenges associated with resistant, persistent, and systemic fungal infections. Synthetic mimics of antimicrobial peptides are emerging as a promising class of compounds for antifungal treatment. In the current study, five synthetic cationic antimicrobial tripeptides were evaluated as antifungal therapeutics against 24 pathogenic strains of fungi. Three of the peptides displayed strong general antifungal properties at low micromolar inhibitory concentrations. The most promising peptide, compound 5, was selected and evaluated as an antifungal remedy for Candida albicans candidiasis in a human skin model and for the treatment of Trichophyton rubrum induced onychomycosis in an infected human nail model. Compound 5 was shown to display antifungal properties and a rapid mode of action superior to those of both the commercial comparators Loceryl and Lamisil. Compound 5 was also active against a clinical isolate of Candida albicans with acquired fluconazole resistance.
Collapse
Affiliation(s)
- Wenche Stensen
- Department of Chemistry, UiT The Arctic University of Norway , Tromsø, Norway.,Lytix Biopharma AS , Tromsø, Norway
| | | | - Marc Brown
- MedPharm Ltd , Guildford, U.K.,TDDT, University of Hertfordshire , Hatfield, Hertfordshire, U.K
| | - Nahid Kondori
- Department of Clinical Microbiology, Sahlgrenska University Hospital , Gothenburg, Sweden
| | - John Sigurd Svendsen
- Department of Chemistry, UiT The Arctic University of Norway , Tromsø, Norway.,Lytix Biopharma AS , Tromsø, Norway
| | - Johan Svenson
- Department of Chemistry, Materials and Surfaces, SP Technical Research Institute of Sweden , Borås, Sweden
| |
Collapse
|
27
|
Zats GM, Kovaliov M, Albeck A, Shatzmiller S. Antimicrobial benzodiazepine-based short cationic peptidomimetics. J Pept Sci 2015; 21:512-9. [PMID: 25807936 DOI: 10.1002/psc.2771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 02/11/2015] [Accepted: 02/18/2015] [Indexed: 11/11/2022]
Abstract
Antimicrobial peptides (AMPs) appear to be good candidates for the development of new antibiotic drugs. We describe here the synthesis of peptidomimetic compounds that are based on a benzodiazepine scaffold flanked with positively charged and hydrophobic amino acids. These compounds mimic the essential properties of cationic AMPs. The new design possesses the benzodiazepine scaffold that is comprised of two glycine amino acids and which confers flexibility and aromatic hydrophobic 'back', and two arms used for further synthesis on solid phase for incorporation of charged and hydrophobic amino acids. This approach allowed us a better understanding of the influence of these features on the antimicrobial activity and selectivity. A novel compound was discovered which has MICs of 12.5 µg/ml against Staphylococcus aureus and 25 µg/ml against Escherichia coli, similar to the well-known antimicrobial peptide MSI-78. In contrast to MSI-78, the above mentioned compound has lower lytic effect against mammalian red blood cells. These peptidomimetic compounds will pave the way for future design of potent synthetic mimics of AMPs for therapeutic and biomedical applications.
Collapse
Affiliation(s)
- Galina M Zats
- Department of Chemistry, Bar-Ilan University, Ramat Gan, 52900, Israel.,Department of Biological Chemistry, Ariel University, Ariel, 40700, Israel
| | - Marina Kovaliov
- Department of Chemistry, Bar-Ilan University, Ramat Gan, 52900, Israel.,Department of Biological Chemistry, Ariel University, Ariel, 40700, Israel
| | - Amnon Albeck
- Department of Chemistry, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - Shimon Shatzmiller
- Department of Biological Chemistry, Ariel University, Ariel, 40700, Israel
| |
Collapse
|
28
|
Trepos R, Cervin G, Pile C, Pavia H, Hellio C, Svenson J. Evaluation of cationic micropeptides derived from the innate immune system as inhibitors of marine biofouling. BIOFOULING 2015; 31:393-403. [PMID: 26057499 DOI: 10.1080/08927014.2015.1048238] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/30/2015] [Indexed: 06/04/2023]
Abstract
A series of 13 short synthetic amphiphilic cationic micropeptides, derived from the antimicrobial iron-binding innate defence protein lactoferrin, have been evaluated for their capacity to inhibit the marine fouling process. The whole biofouling process was studied and microfouling organisms such as marine bacteria and microalgae were included as well as the macrofouling barnacle Balanus improvisus. In total 19 different marine fouling organisms (18 microfoulers and one macrofouler) were included and both the adhesion and growth of the microfoulers were investigated. It was shown that the majority of the peptides inhibited barnacle cyprid settlement via a reversible nontoxic mechanism, with IC50 values as low as 0.5 μg ml(-1). Six peptides inhibited adhesion and growth of microorganisms. Two of these were particularly active against the microfoulers with MIC-values ranging between 0.01 and 1 μg ml(-1), which is comparable with the commercial reference antifoulant SeaNine.
Collapse
Affiliation(s)
- Rozenn Trepos
- a School of Biological Sciences , University of Portsmouth , Portsmouth , UK
| | | | | | | | | | | |
Collapse
|
29
|
Ong ZY, Wiradharma N, Yang YY. Strategies employed in the design and optimization of synthetic antimicrobial peptide amphiphiles with enhanced therapeutic potentials. Adv Drug Deliv Rev 2014; 78:28-45. [PMID: 25453271 DOI: 10.1016/j.addr.2014.10.013] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 12/30/2022]
Abstract
Antimicrobial peptides (AMPs) which predominantly act via membrane active mechanisms have emerged as an exciting class of antimicrobial agents with tremendous potential to overcome the global epidemic of antibiotics-resistant infections. The first generation of AMPs derived from natural sources as diverse as plants, insects and humans has provided a wealth of compositional and structural information to design novel synthetic AMPs with enhanced antimicrobial potencies and selectivities, reduced cost of production due to shorter sequences and improved stabilities under physiological conditions. In this review, we will first discuss the common strategies employed in the design and optimization of synthetic AMPs, followed by highlighting the various approaches utilized to enhance the therapeutic potentials of designed AMPs under physiological conditions. Lastly, future perspectives on the development of improved AMPs for therapeutic applications will be presented.
Collapse
|
30
|
Midura-Nowaczek K, Markowska A. Antimicrobial peptides and their analogs: searching for new potential therapeutics. PERSPECTIVES IN MEDICINAL CHEMISTRY 2014; 6:73-80. [PMID: 25374459 PMCID: PMC4213192 DOI: 10.4137/pmc.s13215] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/28/2014] [Accepted: 09/05/2014] [Indexed: 12/14/2022]
Abstract
Antimicrobial peptides (AMPs) are an essential part of innate immunity. These compounds have been considered as potential therapeutics because of their broad-spectrum activities and proven ability to avoid antimicrobial resistance, but their clinical and commercial developments have some limitations, such as susceptibility to proteases and a high cost of peptide production. To overcome these problems, many researchers have tried to develop short active peptides, their modifications and mimics with better properties while retaining their basic features of natural AMPs such as cationic charge and the amphipathic structure.
Collapse
Affiliation(s)
| | - Agnieszka Markowska
- Department of Organic Chemistry, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
31
|
Sivertsen A, Isaksson J, Leiros HKS, Svenson J, Svendsen JS, Brandsdal BO. Synthetic cationic antimicrobial peptides bind with their hydrophobic parts to drug site II of human serum albumin. BMC STRUCTURAL BIOLOGY 2014; 14:4. [PMID: 24456893 PMCID: PMC3907362 DOI: 10.1186/1472-6807-14-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 01/17/2014] [Indexed: 11/17/2022]
Abstract
Background Many biologically active compounds bind to plasma transport proteins, and this binding can be either advantageous or disadvantageous from a drug design perspective. Human serum albumin (HSA) is one of the most important transport proteins in the cardiovascular system due to its great binding capacity and high physiological concentration. HSA has a preference for accommodating neutral lipophilic and acidic drug-like ligands, but is also surprisingly able to bind positively charged peptides. Understanding of how short cationic antimicrobial peptides interact with human serum albumin is of importance for developing such compounds into the clinics. Results The binding of a selection of short synthetic cationic antimicrobial peptides (CAPs) to human albumin with binding affinities in the μM range is described. Competitive isothermal titration calorimetry (ITC) and NMR WaterLOGSY experiments mapped the binding site of the CAPs to the well-known drug site II within subdomain IIIA of HSA. Thermodynamic and structural analysis revealed that the binding is exclusively driven by interactions with the hydrophobic moieties of the peptides, and is independent of the cationic residues that are vital for antimicrobial activity. Both of the hydrophobic moieties comprising the peptides were detected to interact with drug site II by NMR saturation transfer difference (STD) group epitope mapping (GEM) and INPHARMA experiments. Molecular models of the complexes between the peptides and albumin were constructed using docking experiments, and support the binding hypothesis and confirm the overall binding affinities of the CAPs. Conclusions The biophysical and structural characterizations of albumin-peptide complexes reported here provide detailed insight into how albumin can bind short cationic peptides. The hydrophobic elements of the peptides studied here are responsible for the main interaction with HSA. We suggest that albumin binding should be taken into careful consideration in antimicrobial peptide studies, as the systemic distribution can be significantly affected by HSA interactions.
Collapse
Affiliation(s)
| | | | | | | | | | - Bjørn Olav Brandsdal
- The Norwegian Structural Biology Centre, Department of Chemistry, Faculty of Science and Technology, University of Tromsø, NO-9037 Tromsø, Norway.
| |
Collapse
|
32
|
Sivertsen A, Brandsdal BO, Svendsen JS, Andersen JH, Svenson J. Short cationic antimicrobial peptides bind to human alpha-1 acid glycoprotein with no implications for thein vitrobioactivity. J Mol Recognit 2013; 26:461-9. [DOI: 10.1002/jmr.2288] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/14/2013] [Accepted: 05/23/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Annfrid Sivertsen
- The Norwegian Structural Biology Centre, Department of Chemistry, Faculty of Science and Technology; University of Tromsø; NO-9037; Tromsø; Norway
| | | | - John Sigurd Svendsen
- Department of Chemistry, Faculty of Science and Technology; University of Tromsø; NO-9037; Tromsø; Norway
| | - Jeanette Hammer Andersen
- Centre for Research-based Innovation on Marine Bioactivities and Drug Discovery (MABCENT); University of Tromsø; NO-9037; Tromsø; Norway
| | - Johan Svenson
- Department of Chemistry, Faculty of Science and Technology; University of Tromsø; NO-9037; Tromsø; Norway
| |
Collapse
|