1
|
Godinez-Macias KP, Chen D, Wallis JL, Siegel MG, Adam A, Bopp S, Carolino K, Coulson LB, Durst G, Thathy V, Esherick L, Farringer MA, Flannery EL, Forte B, Liu T, Godoy Magalhaes L, Gupta AK, Istvan ES, Jiang T, Kumpornsin K, Lobb K, McLean KJ, Moura IMR, Okombo J, Payne NC, Plater A, Rao SPS, Siqueira-Neto JL, Somsen BA, Summers RL, Zhang R, Gilson MK, Gamo FJ, Campo B, Baragaña B, Duffy J, Gilbert IH, Lukens AK, Dechering KJ, Niles JC, McNamara CW, Cheng X, Birkholtz LM, Bronkhorst AW, Fidock DA, Wirth DF, Goldberg DE, Lee MCS, Winzeler EA. Revisiting the Plasmodium falciparum druggable genome using predicted structures and data mining. NPJ DRUG DISCOVERY 2025; 2:3. [PMID: 40066064 PMCID: PMC11892419 DOI: 10.1038/s44386-025-00006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/22/2025] [Indexed: 03/19/2025]
Abstract
Identification of novel drug targets is a key component of modern drug discovery. While antimalarial targets are often identified through the mechanism of action studies on phenotypically derived inhibitors, this method tends to be time- and resource-consuming. The discoverable target space is also constrained by existing compound libraries and phenotypic assay conditions. Leveraging recent advances in protein structure prediction, we systematically assessed the Plasmodium falciparum genome and identified 867 candidate protein targets with evidence of small-molecule binding and blood-stage essentiality. Of these, 540 proteins showed strong essentiality evidence and lack inhibitors that have progressed to clinical trials. Expert review and rubric-based scoring of this subset based on additional criteria such as selectivity, structural information, and assay developability yielded 27 high-priority antimalarial target candidates. This study also provides a genome-wide data resource for P. falciparum and implements a generalizable framework for systematically evaluating and prioritizing novel pathogenic disease targets.
Collapse
Affiliation(s)
| | - Daisy Chen
- Department of Pediatrics, University of California, San Diego, La Jolla, CA USA
| | | | | | - Anna Adam
- MMV Medicines for Malaria Venture, 1215, Geneva, Switzerland
| | - Selina Bopp
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Krypton Carolino
- Department of Pediatrics, University of California, San Diego, La Jolla, CA USA
| | - Lauren B. Coulson
- Holistic Drug Discovery and Development (H3D) Centre, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Greg Durst
- Lgenia, Inc., 412 S Maple St, Fortville, IN USA
| | - Vandana Thathy
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY USA
| | - Lisl Esherick
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Madeline A. Farringer
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA USA
| | | | - Barbara Forte
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Science, University of Dundee, Dundee, UK
| | - Tiqing Liu
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA USA
| | - Luma Godoy Magalhaes
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Science, University of Dundee, Dundee, UK
| | - Anil K. Gupta
- Calibr-Skaggs Institute for Innovative Medicines, a division of The Scripps Research Institute, La Jolla, CA USA
| | - Eva S. Istvan
- Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, MO USA
| | - Tiantian Jiang
- Department of Pediatrics, University of California, San Diego, La Jolla, CA USA
| | - Krittikorn Kumpornsin
- Calibr-Skaggs Institute for Innovative Medicines, a division of The Scripps Research Institute, La Jolla, CA USA
| | - Karen Lobb
- Lgenia, Inc., 412 S Maple St, Fortville, IN USA
| | - Kyle J. McLean
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Igor M. R. Moura
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY USA
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY USA
| | - N. Connor Payne
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA USA
| | - Andrew Plater
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Science, University of Dundee, Dundee, UK
| | | | - Jair L. Siqueira-Neto
- Department of Pediatrics, University of California, San Diego, La Jolla, CA USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA USA
| | | | - Robert L. Summers
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA USA
| | - Rumin Zhang
- Global Health Drug Discovery Institute, Beijing, China
| | - Michael K. Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA USA
| | | | - Brice Campo
- MMV Medicines for Malaria Venture, 1215, Geneva, Switzerland
| | - Beatriz Baragaña
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Science, University of Dundee, Dundee, UK
| | - James Duffy
- MMV Medicines for Malaria Venture, 1215, Geneva, Switzerland
| | - Ian H. Gilbert
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Science, University of Dundee, Dundee, UK
| | - Amanda K. Lukens
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA USA
| | | | - Jacquin C. Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Case W. McNamara
- Calibr-Skaggs Institute for Innovative Medicines, a division of The Scripps Research Institute, La Jolla, CA USA
| | - Xiu Cheng
- Global Health Drug Discovery Institute, Beijing, China
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics & Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield, Pretoria, South Africa
| | | | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY USA
| | - Dyann F. Wirth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA USA
| | - Daniel E. Goldberg
- Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, MO USA
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO USA
| | - Marcus C. S. Lee
- Division of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Elizabeth A. Winzeler
- Department of Pediatrics, University of California, San Diego, La Jolla, CA USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA USA
| |
Collapse
|
2
|
Godinez-Macias KP, Chen D, Wallis JL, Siegel MG, Adam A, Bopp S, Carolino K, Coulson LB, Durst G, Thathy V, Esherick L, Farringer MA, Flannery EL, Forte B, Liu T, Magalhaes LG, Gupta AK, Istvan ES, Jiang T, Kumpornsin K, Lobb K, McLean K, Moura IMR, Okombo J, Payne NC, Plater A, Rao SPS, Siqueira-Neto JL, Somsen BA, Summers RL, Zhang R, Gilson MK, Gamo FJ, Campo B, Baragaña B, Duffy J, Gilbert IH, Lukens AK, Dechering KJ, Niles JC, McNamara CW, Cheng X, Birkholtz LM, Bronkhorst AW, Fidock DA, Wirth DF, Goldberg DE, Lee MCS, Winzeler EA. Revisiting the Plasmodium falciparum druggable genome using predicted structures and data mining. RESEARCH SQUARE 2024:rs.3.rs-5412515. [PMID: 39649165 PMCID: PMC11623766 DOI: 10.21203/rs.3.rs-5412515/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
The identification of novel drug targets for the purpose of designing small molecule inhibitors is key component to modern drug discovery. In malaria parasites, discoveries of antimalarial targets have primarily occurred retroactively by investigating the mode of action of compounds found through phenotypic screens. Although this method has yielded many promising candidates, it is time- and resource-consuming and misses targets not captured by existing antimalarial compound libraries and phenotypic assay conditions. Leveraging recent advances in protein structure prediction and data mining, we systematically assessed the Plasmodium falciparum genome for proteins amenable to target-based drug discovery, identifying 867 candidate targets with evidence of small molecule binding and blood stage essentiality. Of these, 540 proteins showed strong essentiality evidence and lack inhibitors that have progressed to clinical trials. Expert review and rubric-based scoring of this subset based on additional criteria such as selectivity, structural information, and assay developability yielded 67 high priority candidates. This study also provides a genome-wide data resource and implements a generalizable framework for systematically evaluating and prioritizing novel pathogenic disease targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Anil K Gupta
- Calibr-Skaggs Institute for Innovative Medicines
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Xiu Cheng
- Global Health Drug Discovery Institute
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Morales-Luna L, Vázquez-Bautista M, Martínez-Rosas V, Rojas-Alarcón MA, Ortega-Cuellar D, González-Valdez A, Pérez de la Cruz V, Arreguin-Espinosa R, Rodríguez-Bustamante E, Rodríguez-Flores E, Hernández-Ochoa B, Gómez-Manzo S. Fused Enzyme Glucose-6-Phosphate Dehydrogenase::6-Phosphogluconolactonase (G6PD::6PGL) as a Potential Drug Target in Giardia lamblia, Trichomonas vaginalis, and Plasmodium falciparum. Microorganisms 2024; 12:112. [PMID: 38257939 PMCID: PMC10819308 DOI: 10.3390/microorganisms12010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Several microaerophilic parasites such as Giardia lamblia, Trichomonas vaginalis, and Plasmodium falciparum are major disease-causing organisms and are responsible for spreading infections worldwide. Despite significant progress made in understanding the metabolism and molecular biology of microaerophilic parasites, chemotherapeutic treatment to control it has seen limited progress. A current proposed strategy for drug discovery against parasitic diseases is the identification of essential key enzymes of metabolic pathways associated with the parasite's survival. In these organisms, glucose-6-phosphate dehydrogenase::6-phosphogluconolactonase (G6PD:: 6PGL), the first enzyme of the pentose phosphate pathway (PPP), is essential for its metabolism. Since G6PD:: 6PGL provides substrates for nucleotides synthesis and NADPH as a source of reducing equivalents, it could be considered an anti-parasite drug target. This review analyzes the anaerobic energy metabolism of G. lamblia, T. vaginalis, and P. falciparum, with a focus on glucose metabolism through the pentose phosphate pathway and the significance of the fused G6PD:: 6PGL enzyme as a therapeutic target in the search for new drugs.
Collapse
Affiliation(s)
- Laura Morales-Luna
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (L.M.-L.); (M.V.-B.); (V.M.-R.); (M.A.R.-A.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Montserrat Vázquez-Bautista
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (L.M.-L.); (M.V.-B.); (V.M.-R.); (M.A.R.-A.)
- Programa de Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Víctor Martínez-Rosas
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (L.M.-L.); (M.V.-B.); (V.M.-R.); (M.A.R.-A.)
- Programa de Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Miriam Abigail Rojas-Alarcón
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (L.M.-L.); (M.V.-B.); (V.M.-R.); (M.A.R.-A.)
- Programa de Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Daniel Ortega-Cuellar
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico;
| | - Abigail González-Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Verónica Pérez de la Cruz
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico;
| | - Roberto Arreguin-Espinosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (R.A.-E.); (E.R.-B.); (E.R.-F.)
| | - Eduardo Rodríguez-Bustamante
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (R.A.-E.); (E.R.-B.); (E.R.-F.)
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | - Eden Rodríguez-Flores
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (R.A.-E.); (E.R.-B.); (E.R.-F.)
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City 06720, Mexico
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (L.M.-L.); (M.V.-B.); (V.M.-R.); (M.A.R.-A.)
| |
Collapse
|
4
|
Identifying inhibitors of β-haematin formation with activity against chloroquine-resistant Plasmodium falciparum malaria parasites via virtual screening approaches. Sci Rep 2023; 13:2648. [PMID: 36788274 PMCID: PMC9929333 DOI: 10.1038/s41598-023-29273-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
The biomineral haemozoin, or its synthetic analogue β-haematin (βH), has been the focus of several target-based screens for activity against Plasmodium falciparum parasites. Together with the known βH crystal structure, the availability of this screening data makes the target amenable to both structure-based and ligand-based virtual screening. In this study, molecular docking and machine learning techniques, including Bayesian and support vector machine classifiers, were used in sequence to screen the in silico ChemDiv 300k Representative Compounds library for inhibitors of βH with retained activity against P. falciparum. We commercially obtained and tested a prioritised set of inhibitors and identified the coumarin and iminodipyridinopyrimidine chemotypes as potent in vitro inhibitors of βH and whole cell parasite growth.
Collapse
|
5
|
Teng M, Young DW, Tan Z. The Pursuit of Enzyme Activation: A Snapshot of the Gold Rush. J Med Chem 2022; 65:14289-14304. [PMID: 36265019 DOI: 10.1021/acs.jmedchem.2c01291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A range of enzymes drive human physiology, and their activities are tightly regulated through numerous signaling pathways. Depending on the context, these pathways may activate or inhibit an enzyme as a way to ensure proper execution of cellular functions. From a drug discovery and development perspective, pharmacological inhibition of enzymes has been a focus of interest, as many diseases are associated with the upregulation of enzyme function. On the other hand, however, pharmacological activation of enzymes such as kinases and phosphatases has been of increasing interest. In this review, we discuss seven case studies that highlight pharmacological activation strategy, describe the binding modes and pharmacology of the activators, and comment on how this on-demand activation strategy complements the commonly pursued inhibition strategy, thus jointly enabling bidirectional modulation of specific target of interest. Going forward, we expect activators to play important roles as chemical probes and drug leads.
Collapse
Affiliation(s)
- Mingxing Teng
- Department of Pathology & Immunology, and Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Damian W Young
- Department of Pathology & Immunology, and Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Zhi Tan
- Department of Pathology & Immunology, and Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| |
Collapse
|
6
|
Dhumal TT, Kumar R, Paul A, Roy PK, Garg P, Singh S. Molecular explorations of the Leishmania donovani 6-phosphogluconolactonase enzyme, a key player in the pentose phosphate pathway. Biochimie 2022; 202:212-225. [PMID: 36037881 DOI: 10.1016/j.biochi.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/12/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022]
Abstract
The enzymes of the pentose phosphate pathway are vital to survival in kinetoplastids. The second step of the pentose phosphate pathway involves hydrolytic cleavage of 6-phosphogluconolactone to 6-phosphogluconic acid by 6- phosphogluconolactonase (6PGL). In the present study, Leishmania donovani 6PGL (Ld6PGL) was cloned and overexpressed in bacterial expression system. Comparative sequence analysis revealed the conserved sequence motifs, functionally and structurally important residues in 6PGL family. In silico amino acid substitution study and interacting partners of 6PGL were predicted. The Ld6PGL enzyme was found to be active in the assay and in the parasites. Specificity was confirmed by western blot analysis. The ∼30 kDa protein was found to be a dimer in MALDI, glutaraldehyde crosslinking and size exclusion chromatography studies. Kinetic analysis and structural stability studies of Ld6PGL were performed with denaturants and at varied temperature. Computational 3D Structural modelling of Ld6PGL elucidates that it has a similar α/β hydrolase fold structural topology as in other members of 6PGL family. The three loops are found in extended form when the structure is compared with the human 6PGL (Hs6PGL). Further, enzyme substrate binding mode and its mechanism were investigated using the molecular docking and molecular simulation studies. Interesting dynamics action of substrate 6-phosphogluconolactone was observed into active site during MD simulation. Interesting differences were observed between host and parasite enzyme which pointed towards its potential to be explored as an antileishmanial drug target. This study forms the basis for further analysis of the role of Ld6PGL in combating oxidative stress in Leishmania.
Collapse
Affiliation(s)
- Tushar Tukaram Dhumal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India
| | - Rajender Kumar
- Department of Clinical Microbiology, Umeå University, SE-90185, Umeå, Sweden
| | - Anindita Paul
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India
| | - Pradyot Kumar Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India
| | - Sushma Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India.
| |
Collapse
|
7
|
Berneburg I, Peddibhotla S, Heimsch KC, Haeussler K, Maloney P, Gosalia P, Preuss J, Rahbari M, Skorokhod O, Valente E, Ulliers D, Simula LF, Buchholz K, Hedrick MP, Hershberger P, Chung TDY, Jackson MR, Schwarzer E, Rahlfs S, Bode L, Becker K, Pinkerton AB. An Optimized Dihydrodibenzothiazepine Lead Compound (SBI-0797750) as a Potent and Selective Inhibitor of Plasmodium falciparum and P. vivax Glucose 6-Phosphate Dehydrogenase 6-Phosphogluconolactonase. Antimicrob Agents Chemother 2022; 66:e0210921. [PMID: 35266827 PMCID: PMC9017341 DOI: 10.1128/aac.02109-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/26/2022] [Indexed: 11/20/2022] Open
Abstract
In Plasmodium, the first two and rate-limiting enzymes of the pentose phosphate pathway, glucose 6-phosphate dehydrogenase (G6PD) and the 6-phosphogluconolactonase, are bifunctionally fused to a unique enzyme named GluPho, differing structurally and mechanistically from the respective human orthologs. Consistent with the enzyme's essentiality for malaria parasite proliferation and propagation, human G6PD deficiency has immense impact on protection against severe malaria, making PfGluPho an attractive antimalarial drug target. Herein we report on the optimized lead compound N-(((2R,4S)-1-cyclobutyl-4-hydroxypyrrolidin-2-yl)methyl)-6-fluoro-4-methyl-11-oxo-10,11-dihydrodibenzo[b,f][1,4]thiazepine-8-carboxamide (SBI-0797750), a potent and fully selective PfGluPho inhibitor with robust nanomolar activity against recombinant PfGluPho, PvG6PD, and P. falciparum blood-stage parasites. Mode-of-action studies have confirmed that SBI-0797750 disturbs the cytosolic glutathione-dependent redox potential, as well as the cytosolic and mitochondrial H2O2 homeostasis of P. falciparum blood stages, at low nanomolar concentrations. Moreover, SBI-0797750 does not harm red blood cell (RBC) integrity and phagocytosis and thus does not promote anemia. SBI-0797750 is therefore a very promising antimalarial lead compound.
Collapse
Affiliation(s)
- Isabell Berneburg
- Justus Liebig University Giessen, Biochemistry and Molecular Biology, Interdisciplinary Research Center, Giessen, Germany
| | - Satyamaheshwar Peddibhotla
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Kim C. Heimsch
- Justus Liebig University Giessen, Biochemistry and Molecular Biology, Interdisciplinary Research Center, Giessen, Germany
| | - Kristina Haeussler
- Justus Liebig University Giessen, Biochemistry and Molecular Biology, Interdisciplinary Research Center, Giessen, Germany
- University of California, San Diego, La Jolla, California, USA
| | - Patrick Maloney
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Palak Gosalia
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Janina Preuss
- Justus Liebig University Giessen, Biochemistry and Molecular Biology, Interdisciplinary Research Center, Giessen, Germany
- University of California, San Diego, La Jolla, California, USA
| | - Mahsa Rahbari
- Justus Liebig University Giessen, Biochemistry and Molecular Biology, Interdisciplinary Research Center, Giessen, Germany
| | - Oleksii Skorokhod
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| | - Elena Valente
- Department of Oncology, University of Torino, Turin, Italy
| | | | | | - Kathrin Buchholz
- Justus Liebig University Giessen, Biochemistry and Molecular Biology, Interdisciplinary Research Center, Giessen, Germany
| | - Michael P. Hedrick
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Paul Hershberger
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Thomas D. Y. Chung
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Michael R. Jackson
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | | | - Stefan Rahlfs
- Justus Liebig University Giessen, Biochemistry and Molecular Biology, Interdisciplinary Research Center, Giessen, Germany
| | - Lars Bode
- University of California, San Diego, La Jolla, California, USA
| | - Katja Becker
- Justus Liebig University Giessen, Biochemistry and Molecular Biology, Interdisciplinary Research Center, Giessen, Germany
| | - Anthony B. Pinkerton
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| |
Collapse
|
8
|
Koperniku A, Garcia AA, Mochly-Rosen D. Boosting the Discovery of Small Molecule Inhibitors of Glucose-6-Phosphate Dehydrogenase for the Treatment of Cancer, Infectious Diseases, and Inflammation. J Med Chem 2022; 65:4403-4423. [PMID: 35239352 PMCID: PMC9553131 DOI: 10.1021/acs.jmedchem.1c01577] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We present an overview of small molecule glucose-6-phosphate dehydrogenase (G6PD) inhibitors that have potential for use in the treatment of cancer, infectious diseases, and inflammation. Both steroidal and nonsteroidal inhibitors have been identified with steroidal inhibitors lacking target selectivity. The main scaffolds encountered in nonsteroidal inhibitors are quinazolinones and benzothiazinones/benzothiazepinones. Three molecules show promise for development as antiparasitic (25 and 29) and anti-inflammatory (32) agents. Regarding modality of inhibition (MOI), steroidal inhibitors have been shown to be uncompetitive and reversible. Nonsteroidal small molecules have exhibited all types of MOI. Strategies to boost the discovery of small molecule G6PD inhibitors include exploration of structure-activity relationships (SARs) for established inhibitors, employment of high-throughput screening (HTS), and fragment-based drug discovery (FBDD) for the identification of new hits. We discuss the challenges and gaps associated with drug discovery efforts of G6PD inhibitors from in silico, in vitro, and in cellulo to in vivo studies.
Collapse
Affiliation(s)
- Ana Koperniku
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, 269 Campus Dr, Stanford, CA 94305, USA
- Corresponding Author: Ana Koperniku,
| | - Adriana A. Garcia
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, 269 Campus Dr, Stanford, CA 94305, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, 269 Campus Dr, Stanford, CA 94305, USA
| |
Collapse
|
9
|
Zara R, Rasul A, Sultana T, Jabeen F, Selamoglu Z. Identification of Macrolepiota procera extract as a novel G6PD inhibitor for the treatment of lung cancer. Saudi J Biol Sci 2022; 29:3372-3379. [PMID: 35865797 PMCID: PMC9295138 DOI: 10.1016/j.sjbs.2022.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/17/2022] [Accepted: 02/13/2022] [Indexed: 01/23/2023] Open
Abstract
Tumor metabolism, an emerging hallmark of cancer, is characterized by aberrant expression of enzymes from various metabolic pathways including glycolysis and PPP (pentose phosphate pathway). Glucose 6 phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD), oxidative carboxylases of PPP, have been reported to accomplish different biosynthetic and energy requirements of cancer cells. G6PD and 6PGD have been proposed as potential therapeutic targets for cancer therapy during recent years due to their overexpression in various cancers. Here, we have employed enzymatic assay based screening using in-house G6PD and 6PGD assay protocols for the identification of mushroom extracts which could inhibit G6PD or 6PGD enzymatic activity for implications in cancer therapy. For the fulfillment of the objectives of present study, nine edible mushrooms were subjected to green extraction for preparation of ethanolic extracts. 6xhis-G6PD and pET-28a-h6PGD plasmids were expressed in BL21-DE3 E. coli cells for the expression and purification of protein of interests. Using purified proteins, in house enzymatic assay protocols were established. The preliminary screening identified two extracts (Macrolepiota procera and Terfezia boudieri) as potent and selective G6PD inhibitors, while no extract was found highly active against 6PGD. Further, evaluation of anticancer potential of mushroom extracts against lung cancer cells revealed Macrolepiota procera as potential inhibitor of cancer cell proliferation with IC50 value of 6.18 μg/ml. Finally, screening of M. procera-derived compounds against G6PD via molecular docking has identified paraben, quercetin and syringic acid as virtual hit compounds possessing good binding affinity with G6PD. The result of present study provides novel findings for possible mechanism of action of M. procera extract against A549 via G6PD inhibition suggesting that M. procera might be of therapeutic interest for lung cancer treatment.
Collapse
|
10
|
He ZL, Chen Y, Wang X, Ni M, Wang G. Access to thiomorpholin-3-one derivatives: [3 + 3]-cycloadditions of α-chlorohydroxamates and 1,4-dithiane-2,5-diol. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Haeussler K, Berneburg I, Jortzik E, Hahn J, Rahbari M, Schulz N, Preuss J, Zapol'skii VA, Bode L, Pinkerton AB, Kaufmann DE, Rahlfs S, Becker K. Glucose 6-phosphate dehydrogenase 6-phosphogluconolactonase: characterization of the Plasmodium vivax enzyme and inhibitor studies. Malar J 2019; 18:22. [PMID: 30683097 PMCID: PMC6346587 DOI: 10.1186/s12936-019-2651-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/16/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Since malaria parasites highly depend on ribose 5-phosphate for DNA and RNA synthesis and on NADPH as a source of reducing equivalents, the pentose phosphate pathway (PPP) is considered an excellent anti-malarial drug target. In Plasmodium, a bifunctional enzyme named glucose 6-phosphate dehydrogenase 6-phosphogluconolactonase (GluPho) catalyzes the first two steps of the PPP. PfGluPho has been shown to be essential for the growth of blood stage Plasmodium falciparum parasites. METHODS Plasmodium vivax glucose 6-phosphate dehydrogenase (PvG6PD) was cloned, recombinantly produced in Escherichia coli, purified, and characterized via enzyme kinetics and inhibitor studies. The effects of post-translational cysteine modifications were assessed via western blotting and enzyme activity assays. Genetically encoded probes were employed to study the effects of G6PD inhibitors on the cytosolic redox potential of Plasmodium. RESULTS Here the recombinant production and characterization of PvG6PD, the C-terminal and NADPH-producing part of PvGluPho, is described. A comparison with PfG6PD (the NADPH-producing part of PfGluPho) indicates that the P. vivax enzyme has higher KM values for the substrate and cofactor. Like the P. falciparum enzyme, PvG6PD is hardly affected by S-glutathionylation and moderately by S-nitrosation. Since there are several naturally occurring variants of PfGluPho, the impact of these mutations on the kinetic properties of the enzyme was analysed. Notably, in contrast to many human G6PD variants, the mutations resulted in only minor changes in enzyme activity. Moreover, nanomolar IC50 values of several compounds were determined on P. vivax G6PD (including ellagic acid, flavellagic acid, and coruleoellagic acid), inhibitors that had been previously characterized on PfGluPho. ML304, a recently developed PfGluPho inhibitor, was verified to also be active on PvG6PD. Using genetically encoded probes, ML304 was confirmed to disturb the cytosolic glutathione-dependent redox potential of P. falciparum blood stage parasites. Finally, a new series of novel small molecules with the potential to inhibit the falciparum and vivax enzymes were synthesized, resulting in two compounds with nanomolar activity. CONCLUSION The characterization of PvG6PD makes this enzyme accessible to further drug discovery activities. In contrast to naturally occurring G6PD variants in the human host that can alter the kinetic properties of the enzyme and thus the redox homeostasis of the cells, the naturally occurring PfGluPho variants studied here are unlikely to have a major impact on the parasites' redox homeostasis. Several classes of inhibitors have been successfully tested and are presently being followed up.
Collapse
Affiliation(s)
- Kristina Haeussler
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Isabell Berneburg
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Esther Jortzik
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Julia Hahn
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Mahsa Rahbari
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Norma Schulz
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Janina Preuss
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.,Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA.,Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
| | - Viktor A Zapol'skii
- Institute of Organic Chemistry, Clausthal University of Technology, 38678, Clausthal-Zellerfeld, Germany
| | - Lars Bode
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
| | - Anthony B Pinkerton
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Dieter E Kaufmann
- Institute of Organic Chemistry, Clausthal University of Technology, 38678, Clausthal-Zellerfeld, Germany
| | - Stefan Rahlfs
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| |
Collapse
|
12
|
Kumar S, Bhardwaj TR, Prasad DN, Singh RK. Drug targets for resistant malaria: Historic to future perspectives. Biomed Pharmacother 2018; 104:8-27. [PMID: 29758416 DOI: 10.1016/j.biopha.2018.05.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/22/2018] [Accepted: 05/07/2018] [Indexed: 01/05/2023] Open
Abstract
New antimalarial targets are the prime need for the discovery of potent drug candidates. In order to fulfill this objective, antimalarial drug researches are focusing on promising targets in order to develop new drug candidates. Basic metabolism and biochemical process in the malaria parasite, i.e. Plasmodium falciparum can play an indispensable role in the identification of these targets. But, the emergence of resistance to antimalarial drugs is an escalating comprehensive problem with the progress of antimalarial drug development. The development of resistance has highlighted the need for the search of novel antimalarial molecules. The pharmaceutical industries are committed to new drug development due to the global recognition of this life threatening resistance to the currently available antimalarial therapy. The recent developments in the understanding of parasite biology are exhilarating this resistance issue which is further being ignited by malaria genome project. With this background of information, this review was aimed to highlights and provides useful information on various present and promising treatment approaches for resistant malaria, new progresses, pursued by some innovative targets that have been explored till date. This review also discusses modern and futuristic multiple approaches to antimalarial drug discovery and development with pictorial presentations highlighting the various targets, that could be exploited for generating promising new drugs in the future for drug resistant malaria.
Collapse
Affiliation(s)
- Sahil Kumar
- School of Pharmacy and Emerging Sciences, Baddi University of Emerging Sciences & Technology, Baddi, Dist. Solan, 173205, Himachal Pradesh, India
| | - T R Bhardwaj
- School of Pharmacy and Emerging Sciences, Baddi University of Emerging Sciences & Technology, Baddi, Dist. Solan, 173205, Himachal Pradesh, India
| | - D N Prasad
- Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal, Dist. Rupnagar, 140126, Punjab, India
| | - Rajesh K Singh
- Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal, Dist. Rupnagar, 140126, Punjab, India.
| |
Collapse
|
13
|
Alencar N, Sola I, Linares M, Juárez-Jiménez J, Pont C, Viayna A, Vílchez D, Sampedro C, Abad P, Pérez-Benavente S, Lameira J, Bautista JM, Muñoz-Torrero D, Luque FJ. First homology model of Plasmodium falciparum glucose-6-phosphate dehydrogenase: Discovery of selective substrate analog-based inhibitors as novel antimalarial agents. Eur J Med Chem 2018; 146:108-122. [PMID: 29407943 DOI: 10.1016/j.ejmech.2018.01.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/27/2017] [Accepted: 01/15/2018] [Indexed: 01/07/2023]
Abstract
In Plasmodium falciparum the bifunctional enzyme glucose-6-phosphate dehydrogenase‒6-phosphogluconolactonase (PfG6PD‒6PGL) is involved in the catalysis of the first reaction of the pentose phosphate pathway. Since this enzyme has a key role in parasite development, its unique structure represents a potential target for the discovery of antimalarial drugs. Here we describe the first 3D structural model of the G6PD domain of PfG6PD‒6PGL. Compared to the human enzyme (hG6PD), the 3D model has enabled the identification of a key difference in the substrate-binding site, which involves the replacement of Arg365 in hG6PD by Asp750 in PfG6PD. In a prospective validation of the model, this critical change has been exploited to rationally design a novel family of substrate analog-based inhibitors that can display the necessary selectivity towards PfG6PD. A series of glucose derivatives featuring an α-methoxy group at the anomeric position and different side chains at position 6 bearing distinct basic functionalities has been synthesized, and their PfG6PD and hG6PD inhibitory activities and their toxicity against parasite and mammalian cells have been assessed. Several compounds displayed micromolar affinity (Ki up to 23 μM), favorable selectivity (up to > 26-fold), and low cytotoxicity. Phenotypic assays with P. falciparum cultures revealed high micromolar IC50 values, likely as a result of poor internalization of the compounds in the parasite cell. Overall, these results endorse confidence to the 3D model of PfG6PD, paving the way for the use of target-based drug design approaches in antimalarial drug discovery studies around this promising target.
Collapse
Affiliation(s)
- Nelson Alencar
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Prat de la Riba 171, E-08921 Santa Coloma de Gramenet, Spain
| | - Irene Sola
- Laboratory of Pharmaceutical Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences and IBUB, University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - María Linares
- Research Institute Hospital 12 de Octubre, Avda. de Cordoba s/n, 28041 Madrid, Spain
| | - Jordi Juárez-Jiménez
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Prat de la Riba 171, E-08921 Santa Coloma de Gramenet, Spain
| | - Caterina Pont
- Laboratory of Pharmaceutical Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences and IBUB, University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Antonio Viayna
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Prat de la Riba 171, E-08921 Santa Coloma de Gramenet, Spain
| | - David Vílchez
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Prat de la Riba 171, E-08921 Santa Coloma de Gramenet, Spain
| | - Cristina Sampedro
- Laboratory of Pharmaceutical Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences and IBUB, University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Paloma Abad
- Research Institute Hospital 12 de Octubre, Avda. de Cordoba s/n, 28041 Madrid, Spain; Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Facultad de Veterinaria, Ciudad Universitaria, 28040 Madrid, Spain
| | - Susana Pérez-Benavente
- Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Facultad de Veterinaria, Ciudad Universitaria, 28040 Madrid, Spain
| | - Jerónimo Lameira
- Laboratório de Planejamento e Desenvolvimento de Fármacos-LPDF, Instituto de Ciências Exatas e Naturais- ICEN, Universidade Federal do Pará - UFPA, Av. Augusto Correa, Nº 1- Bairro: Guamá, Cep: 66.075-900 Belém-Pará, Brazil
| | - José M Bautista
- Research Institute Hospital 12 de Octubre, Avda. de Cordoba s/n, 28041 Madrid, Spain; Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Facultad de Veterinaria, Ciudad Universitaria, 28040 Madrid, Spain
| | - Diego Muñoz-Torrero
- Laboratory of Pharmaceutical Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences and IBUB, University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain.
| | - F Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Prat de la Riba 171, E-08921 Santa Coloma de Gramenet, Spain.
| |
Collapse
|
14
|
Irwin JJ, Gaskins G, Sterling T, Mysinger MM, Keiser MJ. Predicted Biological Activity of Purchasable Chemical Space. J Chem Inf Model 2017; 58:148-164. [PMID: 29193970 PMCID: PMC5780839 DOI: 10.1021/acs.jcim.7b00316] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Whereas
400 million distinct compounds are now purchasable within
the span of a few weeks, the biological activities of most are unknown.
To facilitate access to new chemistry for biology, we have combined
the Similarity Ensemble Approach (SEA) with the maximum Tanimoto similarity
to the nearest bioactive to predict activity for every commercially
available molecule in ZINC. This method, which we label SEA+TC, outperforms
both SEA and a naïve-Bayesian classifier via predictive performance
on a 5-fold cross-validation of ChEMBL’s bioactivity data set
(version 21). Using this method, predictions for over 40% of compounds
(>160 million) have either high significance (pSEA ≥ 40),
high
similarity (ECFP4MaxTc ≥ 0.4), or both, for one or more of
1382 targets well described by ligands in the literature. Using a
further 1347 less-well-described targets, we predict activities for
an additional 11 million compounds. To gauge whether these predictions
are sensible, we investigate 75 predictions for 50 drugs lacking a
binding affinity annotation in ChEMBL. The 535 million predictions
for over 171 million compounds at 2629 targets are linked to purchasing
information and evidence to support each prediction and are freely
available via https://zinc15.docking.org and https://files.docking.org.
Collapse
Affiliation(s)
- John J Irwin
- Department of Pharmaceutical Chemistry, University of California, San Francisco , Byers Hall, 1700 4th Street, San Francisco, California 94158-2330, United States
| | - Garrett Gaskins
- Department of Pharmaceutical Chemistry, University of California, San Francisco , Byers Hall, 1700 4th Street, San Francisco, California 94158-2330, United States.,Institute for Neurodegenerative Diseases, University of California, San Francisco , 675 Nelson Rising Lane, San Francisco, California 94158, United States.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco , Byers Hall, 1700 4th Street, San Francisco, California 94158, United States.,Institute for Computational Health Sciences, University of California, San Francisco , 550 16th Street, San Francisco, California 94158, United States
| | - Teague Sterling
- Department of Pharmaceutical Chemistry, University of California, San Francisco , Byers Hall, 1700 4th Street, San Francisco, California 94158-2330, United States
| | - Michael M Mysinger
- Department of Pharmaceutical Chemistry, University of California, San Francisco , Byers Hall, 1700 4th Street, San Francisco, California 94158-2330, United States
| | - Michael J Keiser
- Department of Pharmaceutical Chemistry, University of California, San Francisco , Byers Hall, 1700 4th Street, San Francisco, California 94158-2330, United States.,Institute for Neurodegenerative Diseases, University of California, San Francisco , 675 Nelson Rising Lane, San Francisco, California 94158, United States.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco , Byers Hall, 1700 4th Street, San Francisco, California 94158, United States.,Institute for Computational Health Sciences, University of California, San Francisco , 550 16th Street, San Francisco, California 94158, United States
| |
Collapse
|
15
|
Siciliano G, Santha Kumar TR, Bona R, Camarda G, Calabretta MM, Cevenini L, Davioud-Charvet E, Becker K, Cara A, Fidock DA, Alano P. A high susceptibility to redox imbalance of the transmissible stages of Plasmodium falciparum revealed with a luciferase-based mature gametocyte assay. Mol Microbiol 2017; 104:306-318. [PMID: 28118506 DOI: 10.1111/mmi.13626] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2017] [Indexed: 12/18/2022]
Abstract
The goal to prevent Plasmodium falciparum transmission from humans to mosquitoes requires the identification of targetable metabolic processes in the mature (stage V) gametocytes, the sexual stages circulating in the bloodstream. This task is complicated by the apparently low metabolism of these cells, which renders them refractory to most antimalarial inhibitors and constrains the development of specific and sensitive cell-based assays. Here, we identify and functionally characterize the regulatory regions of the P. falciparum gene PF3D7_1234700, encoding a CPW-WPC protein and named here Upregulated in Late Gametocytes (ULG8), which we have leveraged to express reporter genes in mature male and female gametocytes. Using transgenic parasites containing a pfULG8-luciferase cassette, we investigated the susceptibility of stage V gametocytes to compounds specifically affecting redox metabolism. Our results reveal a high sensitivity of mature gametocytes to the glutathione reductase inhibitor and redox cycler drug methylene blue (MB). Using isobologram analysis, we find that a concomitant inhibition of the parasite enzyme glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase, a key component of NADPH synthesis, potently synergizes MB activity. These data suggest that redox metabolism and detoxification activity play an unsuspected yet vital role in stage V gametocytes, rendering these cells exquisitely sensitive to decreases in NADPH concentration.
Collapse
Affiliation(s)
- Giulia Siciliano
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, Rome, Italy
| | - T R Santha Kumar
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Roberta Bona
- Dipartimento Farmaco, Istituto Superiore di Sanità, Rome, Italy
| | - Grazia Camarda
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, Rome, Italy
| | | | - Luca Cevenini
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy
| | - Elisabeth Davioud-Charvet
- European School of Chemistry, Polymers and Materials (ECPM), UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Germany
| | - Andrea Cara
- Dipartimento Farmaco, Istituto Superiore di Sanità, Rome, Italy
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA.,Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
16
|
First description of an in vitro culture system for Eimeria ovinoidalis macromeront formation in primary host endothelial cells. Parasitol Int 2016; 65:516-519. [DOI: 10.1016/j.parint.2016.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/05/2016] [Accepted: 05/03/2016] [Indexed: 12/15/2022]
|
17
|
Sharifi A, Ansari M, Darabi HR, Abaee MS. Synergistic promoting effect of ball milling and KF–alumina support as a green tool for solvent-free synthesis of 2-arylidene-benzothiazinones. J Sulphur Chem 2016. [DOI: 10.1080/17415993.2016.1163699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ali Sharifi
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Mohammad Ansari
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Hossein Reza Darabi
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | - M. Saeed Abaee
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| |
Collapse
|
18
|
Benzothiazepinecarboxamides: Novel hepatitis C virus inhibitors that interfere with viral entry and the generation of infectious virions. Antiviral Res 2016; 129:39-46. [PMID: 26850830 DOI: 10.1016/j.antiviral.2016.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/23/2015] [Accepted: 01/18/2016] [Indexed: 11/20/2022]
Abstract
Upon screening synthetic small molecule libraries with the infectious hepatitis C virus (HCV) cell culture system, we identified a benzothiazepinecarboxamide (BTC) scaffold that inhibits HCV. A structure-activity relationship (SAR) study with BTCs was performed, and modifications that led to nanomolar antiviral activity and improved the selective index (CC50/EC50) by more than 1000-fold were identified. In addition, a pharmacophore modeling study determined that the tricyclic core and positive charge on the piperidine moiety were essential for antiviral activity. Furthermore, we demonstrated that BTC interferes with HCV glycoprotein E1/E2-mediated viral entry and the generation of infectious virions by using HCV pseudoparticle and cell culture supernatant transfer assays, respectively. BTC showed potent antiviral activity against HCV genotype 2 (EC50 = 0.01 ± 0.01 μM), but was less potent against a genotype 1/2 chimeric virus (EC50 = 2.71 ± 0.05 μM), which expressed the structural proteins of HCV genotype 1. In summary, we identified, optimized, and characterized novel BTC inhibitors that interfere with early and late steps of the HCV viral life cycle.
Collapse
|
19
|
Mikami D, Kurihara H, Ono M, Kim SM, Takahashi K. Inhibition of algal bromophenols and their related phenols against glucose 6-phosphate dehydrogenase. Fitoterapia 2015; 108:20-5. [PMID: 26586619 DOI: 10.1016/j.fitote.2015.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/09/2015] [Accepted: 11/11/2015] [Indexed: 11/18/2022]
Abstract
A novel bromophenol, n-butyl 2,3-dibromo-4,5-dihydroxybenzyl ether, and known bromophenols were isolated from Rhodomelaceae algae as glucose 6-phosphate dehydrogenase (G6PD) inhibitors. Among them, bromophenol dimers showed stronger inhibitory activity against Leuconostoc mesenteroides and Saccharomyces cerevisiae G6PDs than the corresponding monomers. The dibenzyl ether-type dimers had lower IC50 values than the diarylmethane-type dimers against L. mesenteroides G6PD among the bromophenols examined. In contrast, the inhibitory activities of diarylmethane-type dimers against S. cerevisiae G6PD were stronger than those of dibenzyl ether-type dimers. Especially, 3-bromo-2-(2,3-dibromo-4,5-dihydroxybenzyl)-4,5-dihydroxybenzyl methyl ether selectively inhibited S. cerevisiae G6PD compared to L. mesenteroides G6PD.
Collapse
Affiliation(s)
- Daisuke Mikami
- Graduate School of Life Science, Faculty of Advanced Life Science, Hokkaido University, Kita-ku, Sapporo 001-0021, Japan
| | - Hideyuki Kurihara
- Faculty and Graduate School of Fisheries Sciences, Hokkaido University, Minato, Hakodate, Hokkaido 041-8611, Japan.
| | - Momoka Ono
- Faculty and Graduate School of Fisheries Sciences, Hokkaido University, Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Sang Moo Kim
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon-do 210-702, Republic of Korea
| | - Koretaro Takahashi
- Faculty and Graduate School of Fisheries Sciences, Hokkaido University, Minato, Hakodate, Hokkaido 041-8611, Japan
| |
Collapse
|
20
|
Allen SM, Lim EE, Jortzik E, Preuss J, Chua HH, MacRae JI, Rahlfs S, Haeussler K, Downton MT, McConville MJ, Becker K, Ralph SA. Plasmodium falciparum glucose-6-phosphate dehydrogenase 6-phosphogluconolactonase is a potential drug target. FEBS J 2015. [PMID: 26198663 DOI: 10.1111/febs.13380] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The malarial parasite Plasmodium falciparum is exposed to substantial redox challenges during its complex life cycle. In intraerythrocytic parasites, haemoglobin breakdown is a major source of reactive oxygen species. Deficiencies in human glucose-6-phosphate dehydrogenase, the initial enzyme in the pentose phosphate pathway (PPP), lead to a disturbed redox equilibrium in infected erythrocytes and partial protection against severe malaria. In P. falciparum, the first two reactions of the PPP are catalysed by the bifunctional enzyme glucose-6-phosphate dehydrogenase 6-phosphogluconolactonase (PfGluPho). This enzyme differs structurally from its human counterparts and represents a potential target for drugs. In the present study we used epitope tagging of endogenous PfGluPho to verify that the enzyme localises to the parasite cytosol. Furthermore, attempted double crossover disruption of the PfGluPho gene indicates that the enzyme is essential for the growth of blood stage parasites. As a further step towards targeting PfGluPho pharmacologically, ellagic acid was characterised as a potent PfGluPho inhibitor with an IC50 of 76 nM. Interestingly, pro-oxidative drugs or treatment of the parasites with H2O2 only slightly altered PfGluPho expression or activity under the conditions tested. Furthermore, metabolic profiling suggested that pro-oxidative drugs do not significantly perturb the abundance of PPP intermediates. These data indicate that PfGluPho is essential in asexual parasites, but that the oxidative arm of the PPP is not strongly regulated in response to oxidative challenge.
Collapse
Affiliation(s)
- Stacey M Allen
- Department of Biochemistry and Molecular Biology, University of Melbourne, Australia
| | - Erin E Lim
- Department of Biochemistry and Molecular Biology, University of Melbourne, Australia
| | - Esther Jortzik
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Germany
| | - Janina Preuss
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Germany
| | - Hwa Huat Chua
- Department of Biochemistry and Molecular Biology, University of Melbourne, Australia
| | - James I MacRae
- Department of Biochemistry and Molecular Biology, University of Melbourne, Australia
| | - Stefan Rahlfs
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Germany
| | - Kristina Haeussler
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Germany
| | | | - Malcolm J McConville
- Department of Biochemistry and Molecular Biology, University of Melbourne, Australia
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Germany
| | - Stuart A Ralph
- Department of Biochemistry and Molecular Biology, University of Melbourne, Australia
| |
Collapse
|
21
|
Virtual screening approach of sirtuin inhibitors results in two new scaffolds. Eur J Pharm Sci 2015; 76:27-32. [DOI: 10.1016/j.ejps.2015.04.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/23/2015] [Accepted: 04/29/2015] [Indexed: 01/08/2023]
|
22
|
Lelliott PM, McMorran BJ, Foote SJ, Burgio G. The influence of host genetics on erythrocytes and malaria infection: is there therapeutic potential? Malar J 2015. [PMID: 26215182 PMCID: PMC4517643 DOI: 10.1186/s12936-015-0809-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
As parasites, Plasmodium species depend upon their host for survival. During the blood stage of their life-cycle parasites invade and reside within erythrocytes, commandeering host proteins and resources towards their own ends, and dramatically transforming the host cell. Parasites aptly avoid immune detection by minimizing the exposure of parasite proteins and removing themselves from circulation through cytoadherence. Erythrocytic disorders brought on by host genetic mutations can interfere with one or more of these processes, thereby providing a measure of protection against malaria to the host. This review summarizes recent findings regarding the mechanistic aspects of this protection, as mediated through the parasites interaction with abnormal erythrocytes. These novel findings include the reliance of the parasite on the host enzyme ferrochelatase, and the discovery of basigin and CD55 as obligate erythrocyte receptors for parasite invasion. The elucidation of these naturally occurring malaria resistance mechanisms is increasing the understanding of the host-parasite interaction, and as discussed below, is providing new insights into the development of therapies to prevent this disease.
Collapse
Affiliation(s)
- Patrick M Lelliott
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.
| | - Brendan J McMorran
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.
| | - Simon J Foote
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.
| | - Gaetan Burgio
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
23
|
Role and Regulation of Glutathione Metabolism in Plasmodium falciparum. Molecules 2015; 20:10511-34. [PMID: 26060916 PMCID: PMC6272303 DOI: 10.3390/molecules200610511] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/11/2015] [Accepted: 06/01/2015] [Indexed: 11/30/2022] Open
Abstract
Malaria in humans is caused by one of five species of obligate intracellular protozoan parasites of the genus Plasmodium. P. falciparum causes the most severe disease and is responsible for 600,000 deaths annually, primarily in Sub-Saharan Africa. It has long been suggested that during their development, malaria parasites are exposed to environmental and metabolic stresses. One strategy to drug discovery was to increase these stresses by interfering with the parasites’ antioxidant and redox systems, which may be a valuable approach to disease intervention. Plasmodium possesses two redox systems—the thioredoxin and the glutathione system—with overlapping but also distinct functions. Glutathione is the most abundant low molecular weight redox active thiol in the parasites existing primarily in its reduced form representing an excellent thiol redox buffer. This allows for an efficient maintenance of the intracellular reducing environment of the parasite cytoplasm and its organelles. This review will highlight the mechanisms that are responsible for sustaining an adequate concentration of glutathione and maintaining its redox state in Plasmodium. It will provide a summary of the functions of the tripeptide and will discuss the potential of glutathione metabolism for drug discovery against human malaria parasites.
Collapse
|
24
|
Bielitza M, Belorgey D, Ehrhardt K, Johann L, Lanfranchi DA, Gallo V, Schwarzer E, Mohring F, Jortzik E, Williams DL, Becker K, Arese P, Elhabiri M, Davioud-Charvet E. Antimalarial NADPH-Consuming Redox-Cyclers As Superior Glucose-6-Phosphate Dehydrogenase Deficiency Copycats. Antioxid Redox Signal 2015; 22:1337-51. [PMID: 25714942 PMCID: PMC4410756 DOI: 10.1089/ars.2014.6047] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 01/28/2015] [Accepted: 02/24/2015] [Indexed: 12/21/2022]
Abstract
AIMS Early phagocytosis of glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes parasitized by Plasmodium falciparum were shown to protect G6PD-deficient populations from severe malaria. Here, we investigated the mechanism of a novel antimalarial series, namely 3-[substituted-benzyl]-menadiones, to understand whether these NADPH-consuming redox-cyclers, which induce oxidative stress, mimic the natural protection of G6PD deficiency. RESULTS We demonstrated that the key benzoylmenadione metabolite of the lead compound acts as an efficient redox-cycler in NADPH-dependent methaemoglobin reduction, leading to the continuous formation of reactive oxygen species, ferrylhaemoglobin, and subsequent haemichrome precipitation. Structure-activity relationships evidenced that both drug metabolites and haemoglobin catabolites contribute to potentiate drug effects and inhibit parasite development. Disruption of redox homeostasis by the lead benzylmenadione was specifically induced in Plasmodium falciparum parasitized erythrocytes and not in non-infected cells, and was visualized via changes in the glutathione redox potential of living parasite cytosols. Furthermore, the redox-cycler shows additive and synergistic effects in combination with compounds affecting the NADPH flux in vivo. INNOVATION The lead benzylmenadione 1c is the first example of a novel redox-active agent that mimics the behavior of a falciparum parasite developing inside a G6PD-deficient red blood cell (RBC) giving rise to malaria protection, and it exerts specific additive effects that are inhibitory to parasite development, without harm for non-infected G6PD-sufficient or -deficient RBCs. CONCLUSION This strategy offers an innovative perspective for the development of future antimalarial drugs for G6PD-sufficient and -deficient populations.
Collapse
Affiliation(s)
- Max Bielitza
- UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), Strasbourg, France
| | - Didier Belorgey
- UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), Strasbourg, France
| | - Katharina Ehrhardt
- UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), Strasbourg, France
- Department of Infectiology, University of Heidelberg, Heidelberg, Germany
| | - Laure Johann
- UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), Strasbourg, France
| | - Don Antoine Lanfranchi
- UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), Strasbourg, France
| | - Valentina Gallo
- Department of Oncology, University of Torino Medical School, Torino, Italy
| | - Evelin Schwarzer
- Department of Oncology, University of Torino Medical School, Torino, Italy
| | - Franziska Mohring
- Biochemistry and Molecular Biology, Interdisciplinary Research Center (IFZ), Justus Liebig University of Giessen, Giessen, Germany
| | - Esther Jortzik
- Biochemistry and Molecular Biology, Interdisciplinary Research Center (IFZ), Justus Liebig University of Giessen, Giessen, Germany
| | - David L. Williams
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center (IFZ), Justus Liebig University of Giessen, Giessen, Germany
| | - Paolo Arese
- Department of Oncology, University of Torino Medical School, Torino, Italy
| | - Mourad Elhabiri
- UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), Strasbourg, France
| | - Elisabeth Davioud-Charvet
- UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), Strasbourg, France
| |
Collapse
|
25
|
Silva LMR, Vila-Viçosa MJM, Cortes HCE, Taubert A, Hermosilla C. Suitable in vitro Eimeria arloingi macromeront formation in host endothelial cells and modulation of adhesion molecule, cytokine and chemokine gene transcription. Parasitol Res 2014; 114:113-24. [DOI: 10.1007/s00436-014-4166-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 09/23/2014] [Indexed: 10/24/2022]
|
26
|
Mercaldi GF, Ranzani AT, Cordeiro AT. Discovery of new uncompetitive inhibitors of glucose-6-phosphate dehydrogenase. ACTA ACUST UNITED AC 2014; 19:1362-71. [PMID: 25121555 DOI: 10.1177/1087057114546896] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The enzyme glucose-6-phosphate dehydrogenase (G6PDH) catalyzes the first step of the oxidative branch of the pentose phosphate pathway, which provides cells with NADPH, an essential cofactor for many biosynthetic pathways and antioxidizing enzymes. In Trypanosoma cruzi, the G6PDH has being pursued as a relevant target for the development of new drugs against Chagas disease. At present, the best characterized inhibitors of T. cruzi G6PDH are steroidal halogenated compounds derivatives from the mammalian hormone precursor dehydroepiandrosterone, which indeed are also good inhibitors of the human homologue enzyme. The lack of target selectivity might result in hemolytic side effects due to partial inhibition of human G6PDH in red blood cells. Moreover, the treatment of Chagas patients with steroidal drugs might also cause undesired androgenic side effects. Aiming to identify of new chemical classes of T. cruzi G6PDH inhibitors, we performed a target-based high-throughput screen campaign against a commercial library of diverse compounds. Novel TcG6PDH inhibitors were identified among thienopyrimidine and quinazolinone derivatives. Preliminary structure activity relationships for the identified hits are presented, including structural features that contribute for selectivity toward the parasite enzyme. Our results indicate that quinazolinones are promising hits that should be considered for further optimization.
Collapse
Affiliation(s)
- Gustavo F Mercaldi
- Institute of Biology, University of Campinas, Campinas, SP, Brazil Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Americo T Ranzani
- Institute of Biology, University of Campinas, Campinas, SP, Brazil Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Artur T Cordeiro
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| |
Collapse
|
27
|
Nagaraju A, Shukla G, Srivastava A, Ramulu BJ, Verma GK, Raghuvanshi K, Singh MS. Easy access to α-hydroxyimino-β-oxodithioesters and application towards the synthesis of diverse 1,4-thiazine-3-ones via reduction/annulation cascade. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.03.097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
28
|
Liu L, Richard J, Kim S, Wojcik EJ. Small molecule screen for candidate antimalarials targeting Plasmodium Kinesin-5. J Biol Chem 2014; 289:16601-14. [PMID: 24737313 DOI: 10.1074/jbc.m114.551408] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasmodium falciparum and vivax are responsible for the majority of malaria infections worldwide, resulting in over a million deaths annually. Malaria parasites now show measured resistance to all currently utilized drugs. Novel antimalarial drugs are urgently needed. The Plasmodium Kinesin-5 mechanoenzyme is a suitable "next generation" target. Discovered via small molecule screen experiments, the human Kinesin-5 has multiple allosteric sites that are "druggable." One site in particular, unique in its sequence divergence across all homologs in the superfamily and even within the same family, exhibits exquisite drug specificity. We propose that Plasmodium Kinesin-5 shares this allosteric site and likewise can be targeted to uncover inhibitors with high specificity. To test this idea, we performed a screen for inhibitors selective for Plasmodium Kinesin-5 ATPase activity in parallel with human Kinesin-5. Our screen of nearly 2000 compounds successfully identified compounds that selectively inhibit both P. vivax and falciparum Kinesin-5 motor domains but, as anticipated, do not impact human Kinesin-5 activity. Of note is a candidate drug that did not biochemically compete with the ATP substrate for the conserved active site or disrupt the microtubule-binding site. Together, our experiments identified MMV666693 as a selective allosteric inhibitor of Plasmodium Kinesin-5; this is the first identified protein target for the Medicines of Malaria Venture validated collection of parasite proliferation inhibitors. This work demonstrates that chemical screens against human kinesins are adaptable to homologs in disease organisms and, as such, extendable to strategies to combat infectious disease.
Collapse
Affiliation(s)
- Liqiong Liu
- From the Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Jessica Richard
- From the Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Sunyoung Kim
- From the Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Edward J Wojcik
- From the Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| |
Collapse
|
29
|
Hou X, Yan A. Classification of Plasmodium falciparum glucose-6-phosphate dehydrogenase inhibitors by support vector machine. Mol Divers 2013; 17:489-97. [PMID: 23653283 DOI: 10.1007/s11030-013-9447-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 04/22/2013] [Indexed: 11/25/2022]
Abstract
Plasmodium falciparum glucose-6-phosphate dehydrogenase (PfG6PD) has been considered as a potential target for severe forms of anti-malaria therapy. In this study, several classification models were built to distinguish active and weakly active PfG6PD inhibitors by support vector machine method. Each molecule was initially represented by 1,044 molecular descriptors calculated by ADRIANA.Code. Correlation analysis and attribute selection methods in Weka were used to get the best reduced set of molecular descriptors, respectively. The best model (Model 2w) gave a prediction accuracy (Q) of 93.88 % and a Matthew's correlation coefficient (MCC) of 0.88 on the test set. Some properties such as [Formula: see text] atom charge, [Formula: see text] atom charge, and lone pair electronegativity-related descriptors are important for the interaction between the PfG6PD and the inhibitor.
Collapse
Affiliation(s)
- Xiaoli Hou
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, P.O. Box 53, Beijing, 100029, China
| | | |
Collapse
|