1
|
Chen T, Xiong Q, Xu H, Xiao L, Wang ZF, Chang X, Dang Y, Dong XQ, Wang CJ. Rational Design and Stereodivergent Construction of Enantioenriched Tetrahydro-β-Carbolines Containing Multistereogenic Centers. J Am Chem Soc 2024; 146:29928-29942. [PMID: 39418542 DOI: 10.1021/jacs.4c11731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Chiral tetrahydro-β-carbolines, as one of the most intriguing subtypes of indole alkaloids, have emerged as the privileged units in plenty of natural products and biologically active molecules with an impressive range of bioactive properties. However, the stereodivergent construction of these valuable skeletons containing multistereogenic centers from readily available starting materials remains very challenging, especially, in view of the introduction of an axial chirality. Herein, we developed an efficient method toward enantioenriched tetrahydro-β-carbolines with readily available tryptophan-derived aldimine esters and allylic carbonates under mild reaction conditions. The reaction proceeds in a sequential fashion involving synergistic Cu/Ir-catalyzed stereodivergent allylation and the Brønsted acid-promoted stereospecific Pictet-Spengler reaction, affording a wide range of chiral tetrahydro-β-carbolines bearing up to four stereogenic centers in good yields with excellent stereoselectivity control. When N-aryl-substituted tryptophan-derived aldimine esters were utilized, notably, a unique C-N heterobiaryl axis could be simultaneously constructed with the formation of the third point stereogenic center in the last cyclization step through dynamic kinetic resolution (DKR). Computational mechanistic studies established a plausible synergistic mechanism for dual Cu/Ir-catalyzed asymmetric allylation and the succeeding protonation-assisted Pictet-Spengler cyclization to complete the annulation. Structure-activity relationship analyses unveil the origins of stereochemistry for the building of one axis and three point stereogenic centers.
Collapse
Affiliation(s)
- Taotao Chen
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Qi Xiong
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Hui Xu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, China
| | - Lu Xiao
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Zuo-Fei Wang
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Chang
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, China
| | - Xiu-Qin Dong
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chun-Jiang Wang
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Thönnißen V, Westphäling J, Atodiresei IL, Patureau FW. Atroposelective Chan-Evans-Lam Amination. Chemistry 2024; 30:e202304378. [PMID: 38179829 DOI: 10.1002/chem.202304378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/06/2024]
Abstract
The synthetic control of atropoisomerism along C-N bonds is a major challenge, and methods that allow C-N atroposelective bond formation are rare. This is a problem because each atropoisomer can feature starkly differentiated biological properties. Yet, among the three most practical and applicable classical amination methods available: 1) the Cu-catalyzed Ullmann-Goldberg reaction, 2) the Pd-catalyzed Buchwald-Hartwig reaction, and 3) the Cu-catalyzed Chan-Evans-Lam reaction, none has truly been rendered atroposelective at the newly formed C-N bond. The first ever Chan-Evans-Lam atroposelective amination is herein described with a simple copper catalyst and newly designed PyrOx chiral ligand. This method should find important applications in asymmetric synthesis, in particular for medicinal chemistry.
Collapse
Affiliation(s)
- Vinzenz Thönnißen
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Johannes Westphäling
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Iuliana L Atodiresei
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Frederic W Patureau
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
3
|
Lewandowski M, Carmina M, Knümann L, Sai M, Willems S, Kasch T, Pollinger J, Knapp S, Marschner JA, Chaikuad A, Merk D. Structure-Guided Design of a Highly Potent Partial RXR Agonist with Superior Physicochemical Properties. J Med Chem 2024; 67:2152-2164. [PMID: 38237049 DOI: 10.1021/acs.jmedchem.3c02095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Retinoid X receptors (RXRs, NR2B1-3) hold therapeutic potential in oncology, neurodegeneration, and metabolic diseases, but traditional RXR agonists mimicking the natural ligand 9-cis retinoic acid exhibit poor physicochemical properties, pharmacokinetics, and safety profiles. Improved RXR ligands are needed to exploit RXR modulation as a promising therapeutic concept in various indications beyond its current role in second-line cancer treatment. Here, we report the co-crystal structure of RXR in complex with a novel pyrimidine-based ligand and the structure-informed optimization of this scaffold to highly potent and highly soluble RXR agonists. Focused structure-activity relationship elucidation and rigidization resulted in a substantially optimized partial RXR agonist with low nanomolar potency, no cytotoxic activity, and very favorable physicochemical properties highlighting this promising scaffold for the development of next-generation RXR targeting drugs.
Collapse
Affiliation(s)
- Max Lewandowski
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Melania Carmina
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
- Department of Pharmaceutical Sciences, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Loris Knümann
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Minh Sai
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Sabine Willems
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Till Kasch
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Julius Pollinger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Julian A Marschner
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Daniel Merk
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| |
Collapse
|
4
|
Lu CJ, Xu Q, Feng J, Liu RR. The Asymmetric Buchwald-Hartwig Amination Reaction. Angew Chem Int Ed Engl 2023; 62:e202216863. [PMID: 36535894 DOI: 10.1002/anie.202216863] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Over the past few decades, the Buchwald-Hartwig reaction has emerged as a powerful tool for forging C-N bonds, and has been vital to the pharmaceuticals, materials, and catalysis fields. However, asymmetric Buchwald-Hartwig amination reactions for constructing centered chirality, planar chirality, and axial chirality remain in their infancy owing to limited substrate scope and laggard ligand design. The recent surge in interest in the synthesis of C-N/N-N atropisomers, has witnessed a renaissance in asymmetric Buchwald-Hartwig amination chemistry as the first practical protocol for the preparation of C-N atropisomers. This review highlights reported asymmetric Buchwald-Hartwig amination protocols and provides a brief overview of their chemical practicality.
Collapse
Affiliation(s)
- Chuan-Jun Lu
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308, Qingdao, 266071, China
| | - Qi Xu
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308, Qingdao, 266071, China
| | - Jia Feng
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308, Qingdao, 266071, China
| | - Ren-Rong Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308, Qingdao, 266071, China
| |
Collapse
|
5
|
An Isochroman Analog of CD3254 and Allyl-, Isochroman-Analogs of NEt-TMN Prove to Be More Potent Retinoid-X-Receptor (RXR) Selective Agonists Than Bexarotene. Int J Mol Sci 2022; 23:ijms232416213. [PMID: 36555852 PMCID: PMC9782500 DOI: 10.3390/ijms232416213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Bexarotene is an FDA-approved drug for the treatment of cutaneous T-cell lymphoma (CTCL); however, its use provokes or disrupts other retinoid-X-receptor (RXR)-dependent nuclear receptor pathways and thereby incites side effects including hypothyroidism and raised triglycerides. Two novel bexarotene analogs, as well as three unique CD3254 analogs and thirteen novel NEt-TMN analogs, were synthesized and characterized for their ability to induce RXR agonism in comparison to bexarotene (1). Several analogs in all three groups possessed an isochroman ring substitution for the bexarotene aliphatic group. Analogs were modeled for RXR binding affinity, and EC50 as well as IC50 values were established for all analogs in a KMT2A-MLLT3 leukemia cell line. All analogs were assessed for liver-X-receptor (LXR) activity in an LXRE system to gauge the potential for the compounds to provoke raised triglycerides by increasing LXR activity, as well as to drive LXRE-mediated transcription of brain ApoE expression as a marker for potential therapeutic use in neurodegenerative disorders. Preliminary results suggest these compounds display a broad spectrum of off-target activities. However, many of the novel compounds were observed to be more potent than 1. While some RXR agonists cross-signal the retinoic acid receptor (RAR), many of the rexinoids in this work displayed reduced RAR activity. The isochroman group did not appear to substantially reduce RXR activity on its own. The results of this study reveal that modifying potent, selective rexinoids like bexarotene, CD3254, and NEt-TMN can provide rexinoids with increased RXR selectivity, decreased potential for cross-signaling, and improved anti-proliferative characteristics in leukemia models compared to 1.
Collapse
|
6
|
TfOH-catalyzed three-component synthesis of Dithiocarbamates from α-Diazoesters under continuous flow conditions. J Flow Chem 2022. [DOI: 10.1007/s41981-022-00249-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Wang Z, Meng L, Liu X, Zhang L, Yu Z, Wu G. Recent progress toward developing axial chirality bioactive compounds. Eur J Med Chem 2022; 243:114700. [DOI: 10.1016/j.ejmech.2022.114700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/03/2022]
|
8
|
Jurutka PW, di Martino O, Reshi S, Mallick S, Sabir ZL, Staniszewski LJP, Warda A, Maiorella EL, Minasian A, Davidson J, Ibrahim SJ, Raban S, Haddad D, Khamisi M, Suban SL, Dawson BJ, Candia R, Ziller JW, Lee MY, Liu C, Liu W, Marshall PA, Welch JS, Wagner CE. Modeling, Synthesis, and Biological Evaluation of Potential Retinoid-X-Receptor (RXR) Selective Agonists: Analogs of 4-[1-(3,5,5,8,8-Pentamethyl-5,6,7,8-tetrahyro-2-naphthyl)ethynyl]benzoic Acid (Bexarotene) and 6-(Ethyl(4-isobutoxy-3-isopropylphenyl)amino)nicotinic Acid (NEt-4IB). Int J Mol Sci 2021; 22:ijms222212371. [PMID: 34830251 PMCID: PMC8624485 DOI: 10.3390/ijms222212371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 12/05/2022] Open
Abstract
Five novel analogs of 6-(ethyl)(4-isobutoxy-3-isopropylphenyl)amino)nicotinic acid—or NEt-4IB—in addition to seven novel analogs of 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethynyl]benzoic acid (bexarotene) were prepared and evaluated for selective retinoid-X-receptor (RXR) agonism alongside bexarotene (1), a FDA-approved drug for cutaneous T-cell lymphoma (CTCL). Bexarotene treatment elicits side-effects by provoking or disrupting other RXR-dependent pathways. Analogs were assessed by the modeling of binding to RXR and then evaluated in a human cell-based RXR-RXR mammalian-2-hybrid (M2H) system as well as a RXRE-controlled transcriptional system. The analogs were also tested in KMT2A-MLLT3 leukemia cells and the EC50 and IC50 values were determined for these compounds. Moreover, the analogs were assessed for activation of LXR in an LXRE system as drivers of ApoE expression and subsequent use as potential therapeutics in neurodegenerative disorders, and the results revealed that these compounds exerted a range of differential LXR-RXR activation and selectivity. Furthermore, several of the novel analogs in this study exhibited reduced RARE cross-signaling, implying RXR selectivity. These results demonstrate that modification of partial agonists such as NEt-4IB and potent rexinoids such as bexarotene can lead to compounds with improved RXR selectivity, decreased cross-signaling of other RXR-dependent nuclear receptors, increased LXRE-heterodimer selectivity, and enhanced anti-proliferative potential in leukemia cell lines compared to therapeutics such as 1.
Collapse
Affiliation(s)
- Peter W. Jurutka
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
- Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Orsola di Martino
- Department of Internal Medicine, Washington University, St. Louis, MO 63110, USA; (O.d.M.); (J.S.W.)
| | - Sabeeha Reshi
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Sanchita Mallick
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Zhela L. Sabir
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Lech J. P. Staniszewski
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Ankedo Warda
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
- Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Emma L. Maiorella
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Ani Minasian
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Jesse Davidson
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Samir J. Ibrahim
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - San Raban
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Dena Haddad
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Madleen Khamisi
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Stephanie L. Suban
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Bradley J. Dawson
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Riley Candia
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Joseph W. Ziller
- Department of Chemistry, University of California, Irvine, CA 92697, USA;
| | - Ming-Yue Lee
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85201, USA; (M.-Y.L.); (C.L.); (W.L.)
| | - Chang Liu
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85201, USA; (M.-Y.L.); (C.L.); (W.L.)
| | - Wei Liu
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85201, USA; (M.-Y.L.); (C.L.); (W.L.)
| | - Pamela A. Marshall
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - John S. Welch
- Department of Internal Medicine, Washington University, St. Louis, MO 63110, USA; (O.d.M.); (J.S.W.)
| | - Carl E. Wagner
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
- Correspondence: ; Tel.: +1-602-543-6937
| |
Collapse
|
9
|
An QJ, Xia W, Ding WY, Liu HH, Xiang SH, Wang YB, Zhong G, Tan B. Nitrosobenzene-Enabled Chiral Phosphoric Acid Catalyzed Enantioselective Construction of Atropisomeric N-Arylbenzimidazoles. Angew Chem Int Ed Engl 2021; 60:24888-24893. [PMID: 34553823 DOI: 10.1002/anie.202111251] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/22/2021] [Indexed: 12/18/2022]
Abstract
Described herein is an imidazole ring formation strategy for the synthesis of axially chiral N-arylbenzimidazoles by means of chiral phosphoric acid catalysis. Two sets of conditions were developed to transform two classes of 2-naphthylamine derivatives into structurally diverse N-arylbenzimidazole atropisomers with excellent chemo- and regioselectivity as well as high levels of enantiocontrol. It is worth reflecting on the unique roles played by the nitroso group in this domino reaction. It functions as a linchpin by first offering an electrophilic site (N) for the initial C-N bond formation while the resulting amine performs the nucleophilic addition to form the second C-N bond. Additionally, it could facilitate the final oxidative aromatization as an oxidant. The atropisomeric products could be conveniently elaborated to a series of axially chiral derivatives, enabling the exploitation of N-arylbenzimidazoles for their potential utilities in asymmetric catalysis.
Collapse
Affiliation(s)
- Qian-Jin An
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wang Xia
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wei-Yi Ding
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huan-Huan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shao-Hua Xiang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yong-Bin Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guofu Zhong
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Bin Tan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
10
|
An Q, Xia W, Ding W, Liu H, Xiang S, Wang Y, Zhong G, Tan B. Nitrosobenzene‐Enabled Chiral Phosphoric Acid Catalyzed Enantioselective Construction of Atropisomeric
N
‐Arylbenzimidazoles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Qian‐Jin An
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Wang Xia
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Wei‐Yi Ding
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Huan‐Huan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Shao‐Hua Xiang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Yong‐Bin Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Guofu Zhong
- College of Materials, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 311121 China
| | - Bin Tan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
11
|
Zhang P, Wang XM, Xu Q, Guo CQ, Wang P, Lu CJ, Liu RR. Enantioselective Synthesis of Atropisomeric Biaryls by Pd-Catalyzed Asymmetric Buchwald-Hartwig Amination. Angew Chem Int Ed Engl 2021; 60:21718-21722. [PMID: 34374189 DOI: 10.1002/anie.202108747] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/02/2021] [Indexed: 12/15/2022]
Abstract
N-C Biaryl atropisomers are prevalent in natural products and bioactive drug molecules. However, the enantioselective synthesis of such molecules has not developed significantly. Particularly, the enantioselective synthesis of N-C biaryl atropisomers by stereoselective metal-catalyzed aryl amination remains unprecedented. Herein, a Pd-catalyzed cross-coupling strategy is presented for the synthesis of N-C axially chiral biaryl molecules. A broad spectrum of N-C axially chiral compounds was obtained with excellent enantioselectivities (up to 99 % ee) and good yields (up to 98 %). The practicality of this reaction was validated in the synthesis of useful biological molecules.
Collapse
Affiliation(s)
- Peng Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| | - Xiao-Mei Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| | - Qi Xu
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| | - Chang-Qiu Guo
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| | - Peng Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| | - Chuan-Jun Lu
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| | - Ren-Rong Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| |
Collapse
|
12
|
Zhang P, Wang X, Xu Q, Guo C, Wang P, Lu C, Liu R. Enantioselective Synthesis of Atropisomeric Biaryls by Pd‐Catalyzed Asymmetric Buchwald–Hartwig Amination. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Peng Zhang
- College of Chemistry and Chemical Engineering Qingdao University Ningxia Road 308# Qingdao 266071 China
| | - Xiao‐Mei Wang
- College of Chemistry and Chemical Engineering Qingdao University Ningxia Road 308# Qingdao 266071 China
| | - Qi Xu
- College of Chemistry and Chemical Engineering Qingdao University Ningxia Road 308# Qingdao 266071 China
| | - Chang‐Qiu Guo
- College of Chemistry and Chemical Engineering Qingdao University Ningxia Road 308# Qingdao 266071 China
| | - Peng Wang
- College of Chemistry and Chemical Engineering Qingdao University Ningxia Road 308# Qingdao 266071 China
| | - Chuan‐Jun Lu
- College of Chemistry and Chemical Engineering Qingdao University Ningxia Road 308# Qingdao 266071 China
| | - Ren‐Rong Liu
- College of Chemistry and Chemical Engineering Qingdao University Ningxia Road 308# Qingdao 266071 China
| |
Collapse
|
13
|
Takioku M, Takamura Y, Fujihara M, Watanabe M, Yamada S, Kawasaki M, Ito S, Nakano S, Kakuta H. Creation of Fluorescent RXR Antagonists Based on CBTF-EE and Application to a Fluorescence Polarization Binding Assay. ACS Med Chem Lett 2021; 12:1024-1029. [PMID: 34141088 DOI: 10.1021/acsmedchemlett.1c00201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/05/2021] [Indexed: 01/08/2023] Open
Abstract
Retinoid X receptor (RXR) ligands often bind in modes in which the carboxy group forms a hydrogen bond inside the ligand-binding pocket (LBP). However, our previously reported RXR antagonist, CBTF-EE (4a), binds with its carboxy group directed outside the LBP and its alkoxy side chain located inside the LBP. Here, we examined the binding modes of 4b and 4c bearing a nitrobenzoxadiazole (NBD) or boron-dipyrromethene (BODIPY) fluorophore, respectively, at the end of the alkoxy chain of 4a. Both compounds function as RXR antagonists. 4c, but not 4b, was available for a fluorescence polarization binding assay, indicating that rotation of BODIPY, but not NBD, is restricted in the bound state. The fluorescence findings, supported by docking simulations, suggest the fluorophores are located outside the LBP, so that the binding mode of 4b and 4c is different from that of 4a. The assay results were highly correlated with those of a [3H]9-cis-retinoic acid assay.
Collapse
Affiliation(s)
- Maho Takioku
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Yuta Takamura
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Michiko Fujihara
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
- AIBIOS Co. Ltd., Tri-Seven Roppongi 8F 7-7-7 Roppongi, Minato-ku, Tokyo 106-0032, Japan
| | - Masaki Watanabe
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Shoya Yamada
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
- Research Fellowship Division, Japan Society for the Promotion of Science, Sumitomo-Ichibancho FS Bldg., 8 Ichibancho, Chiyoda-ku, Tokyo 102-8472, Japan
| | - Mayu Kawasaki
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52- 1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Sohei Ito
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52- 1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Shogo Nakano
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52- 1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiroki Kakuta
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
14
|
Leal AS, Reich LA, Moerland JA, Zhang D, Liby KT. Potential therapeutic uses of rexinoids. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 91:141-183. [PMID: 34099107 DOI: 10.1016/bs.apha.2021.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The discovery of nuclear receptors, particularly retinoid X receptors (RXR), and their involvement in numerous pathways related to development sparked interest in their immunomodulatory properties. Genetic models using deletion or overexpression of RXR and the subsequent development of several small molecules that are agonists or antagonists of this receptor support a promising therapeutic role for these receptors in immunology. Bexarotene was approved in 1999 for the treatment of cutaneous T cell lymphoma. Several other small molecule RXR agonists have since been synthesized with limited preclinical development, but none have yet achieved FDA approval. Cancer treatment has recently been revolutionized with the introduction of immune checkpoint inhibitors, but their success has been restricted to a minority of patients. This review showcases the emerging immunomodulatory effects of RXR and the potential of small molecules that target this receptor as therapies for cancer and other diseases. Here we describe the essential roles that RXR and partner receptors play in T cells, dendritic cells, macrophages and epithelial cells, especially within the tumor microenvironment. Most of these effects are site and cancer type dependent but skew immune cells toward an anti-inflammatory and anti-tumor effect. This beneficial effect on immune cells supports the promise of combining rexinoids with approved checkpoint blockade therapies in order to enhance efficacy of the latter and to delay or potentially eliminate drug resistance. The data compiled in this review strongly suggest that targeting RXR nuclear receptors is a promising new avenue in immunomodulation for cancer and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Ana S Leal
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | - Lyndsey A Reich
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | - Jessica A Moerland
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | - Di Zhang
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | - Karen T Liby
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
15
|
Mallick S, Marshall PA, Wagner CE, Heck MC, Sabir ZL, Sabir MS, Dussik CM, Grozic A, Kaneko I, Jurutka PW. Evaluating Novel RXR Agonists That Induce ApoE and Tyrosine Hydroxylase in Cultured Human Glioblastoma Cells. ACS Chem Neurosci 2021; 12:857-871. [PMID: 33570383 DOI: 10.1021/acschemneuro.0c00707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
There is considerable interest in identifying effective and safe drugs for neurodegenerative disorders. Cell culture and animal model work have demonstrated that modulating gene expression through RXR-mediated pathways may mitigate or reverse cognitive decline. However, because RXR is a dimeric partner for several transcription factors, activating off-target transcription is a concern with RXR ligands (rexinoids). This off-target gene modulation leads to unwanted side effects that can include low thyroid function and significant hyperlipidemia. There is a need to develop rexinoids that have binding specificity for subsets of RXR heterodimers, to drive desired gene modulation, but that do not induce spurious effects. Herein, we describe experiments in which we analyze a series of novel and previously reported rexinoids for their ability to modulate specific gene pathways implicated in neurodegenerative disorders employing a U87 cell culture model. We demonstrate that, compared to the FDA-approved rexinoid bexarotene (1), several of these compounds are equally or more effective at stimulating gene expression via LXREs or Nurr1/NBREs and are superior at inducing ApoE and/or tyrosine hydroxylase (TH) gene and protein expression, including analogs 8, 9, 13, 14, 20, 23, and 24, suggesting a possible therapeutic role for these compounds in Alzheimer's or Parkinson's disease (PD). A subset of these potent RXR agonists can synergize with a presumed Nurr1 ligand and antimalarial drug (amodiaquine) to further enhance Nurr1/NBREs-directed transcription. This novel discovery has potential clinical implications for treatment of PD since it suggests that the combination of an RXR agonist and a Nurr1 ligand can significantly enhance RXR-Nurr1 heterodimer activity and drive enhanced therapeutic expression of the TH gene to increase endogenous synthesis of dopamine. These data indicate that is it possible and prudent to develop novel rexinoids for testing of gene expression and side effect profiles for use in potential treatment of neurodegenerative disorders, as individual rexinoids can have markedly different gene expression profiles but similar structures.
Collapse
Affiliation(s)
- Sanchita Mallick
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona 85306, United States
| | - Pamela A. Marshall
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona 85306, United States
| | - Carl E. Wagner
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona 85306, United States
| | - Michael C. Heck
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona 85306, United States
| | - Zhela L. Sabir
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona 85306, United States
| | - Marya S. Sabir
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona 85306, United States
| | - Christoper M. Dussik
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona 85306, United States
| | - Aleksandra Grozic
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona 85306, United States
| | - Ichiro Kaneko
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona 85306, United States
| | - Peter W. Jurutka
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona 85306, United States
| |
Collapse
|
16
|
Watanabe M, Fujihara M, Motoyama T, Kawasaki M, Yamada S, Takamura Y, Ito S, Makishima M, Nakano S, Kakuta H. Discovery of a "Gatekeeper" Antagonist that Blocks Entry Pathway to Retinoid X Receptors (RXRs) without Allosteric Ligand Inhibition in Permissive RXR Heterodimers. J Med Chem 2020; 64:430-439. [PMID: 33356247 DOI: 10.1021/acs.jmedchem.0c01354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Retinoid X receptor (RXR) heterodimers such as PPAR/RXR, LXR/RXR, and FXR/RXR can be activated by RXR agonists alone and are therefore designated as permissive. Similarly, existing RXR antagonists show allosteric antagonism toward partner receptor agonists in these permissive RXR heterodimers. Here, we show 1-(3-(2-ethoxyethoxy)-5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-2-(trifluoromethyl)-1H-benzo[d]imidazole-5-carboxylic acid (14, CBTF-EE) as the first RXR antagonist that does not show allosteric inhibition in permissive RXR heterodimers. This compound was designed based on the hypothesis that RXR antagonists that do not induce conformational changes of RXR would not exhibit such allosteric inhibition. CD spectra and X-ray co-crystallography of the complex of 14 and the RXR ligand binding domain (LBD) confirmed that 14 does not change the conformation of hRXR-LBD. The X-ray structure analysis revealed that 14 binds at the entrance of the ligand binding pocket (LBP), blocking access to the LBP and thus serving as a "gatekeeper".
Collapse
Affiliation(s)
- Masaki Watanabe
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Michiko Fujihara
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.,AIBIOS Company. Ltd., Tri-Seven Roppongi 8F 7-7-7 Roppongi, Minato-ku, Tokyo 106-0032, Japan
| | - Tomoharu Motoyama
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Mayu Kawasaki
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Shoya Yamada
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.,Research Fellowship Division, Japan Society for the Promotion of Science, Sumitomo-Ichibancho FS Bldg., 8 Ichibancho, Chiyoda-ku, Tokyo 102-8472, Japan
| | - Yuta Takamura
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Sohei Ito
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Shogo Nakano
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiroki Kakuta
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
17
|
Moerland JA, Zhang D, Reich LA, Carapellucci S, Lockwood B, Leal AS, Krieger-Burke T, Aleiwi B, Ellsworth E, Liby KT. The novel rexinoid MSU-42011 is effective for the treatment of preclinical Kras-driven lung cancer. Sci Rep 2020; 10:22244. [PMID: 33335263 PMCID: PMC7746742 DOI: 10.1038/s41598-020-79260-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Effective drugs are needed for lung cancer, as this disease remains the leading cause of cancer-related deaths. Rexinoids are promising drug candidates for cancer therapy because of their ability to modulate genes involved in inflammation, cell proliferation or differentiation, and apoptosis through activation of the retinoid X receptor (RXR). The only currently FDA-approved rexinoid, bexarotene, is ineffective as a single agent for treating epithelial cancers and induces hypertriglyceridemia. Here, we used a previously validated screening paradigm to evaluate 23 novel rexinoids for biomarkers related to efficacy and safety. These biomarkers include suppression of inducible nitric oxide synthase (iNOS) and induction of sterol regulatory element-binding protein (SREBP). Because of its potent iNOS suppression, low SREBP induction, and activation of RXR, MSU-42011 was selected as our lead compound. We next used MSU-42011 to treat established tumors in a clinically relevant Kras-driven mouse model of lung cancer. KRAS is one of the most common driver mutations in human lung cancer and correlates with aggressive disease progression and poor patient prognosis. Ultrasound imaging was used to detect and monitor tumor development and growth over time in the lungs of the A/J mice. MSU-42011 markedly decreased the tumor number, size, and histopathology of lung tumors compared to the control and bexarotene groups. Histological sections of lung tumors in mice treated with MSU-42011 exhibited reduced cell density and fewer actively proliferating cells compared to the control and bexarotene-treated tumors. Although bexarotene significantly (p < 0.01) elevated plasma triglycerides and cholesterol, treatment with MSU-42011 did not increase these biomarkers, demonstrating a more favorable toxicity profile in vivo. The combination of MSU-42011 and carboplatin and paclitaxel reduced macrophages in the lung and increased activation markers of CD8+T cells compared to the control groups. Our results validate our screening paradigm for in vitro testing of novel rexinoids and demonstrate the potential for MSU-42011 to be developed for the treatment of KRAS-driven lung cancer.
Collapse
Affiliation(s)
- Jessica A Moerland
- Department of Pharmacology and Toxicology, Michigan State University, B430 Life Science Building, 1355 Bogue Street, East Lansing, MI, 48824, USA
| | - Di Zhang
- Department of Pharmacology and Toxicology, Michigan State University, B430 Life Science Building, 1355 Bogue Street, East Lansing, MI, 48824, USA
| | - Lyndsey A Reich
- Department of Pharmacology and Toxicology, Michigan State University, B430 Life Science Building, 1355 Bogue Street, East Lansing, MI, 48824, USA
| | - Sarah Carapellucci
- Department of Pharmacology and Toxicology, Michigan State University, B430 Life Science Building, 1355 Bogue Street, East Lansing, MI, 48824, USA
| | - Beth Lockwood
- Department of Pharmacology and Toxicology, Michigan State University, B430 Life Science Building, 1355 Bogue Street, East Lansing, MI, 48824, USA
| | - Ana S Leal
- Department of Pharmacology and Toxicology, Michigan State University, B430 Life Science Building, 1355 Bogue Street, East Lansing, MI, 48824, USA
| | - Teresa Krieger-Burke
- Department of Pharmacology and Toxicology, Michigan State University, B430 Life Science Building, 1355 Bogue Street, East Lansing, MI, 48824, USA
- In Vivo Facility, Michigan State University, East Lansing, MI, USA
| | - Bilal Aleiwi
- Department of Pharmacology and Toxicology, Michigan State University, B430 Life Science Building, 1355 Bogue Street, East Lansing, MI, 48824, USA
- Medicial Chemistry Core, Michigan State University, East Lansing, MI, USA
| | - Edmund Ellsworth
- Department of Pharmacology and Toxicology, Michigan State University, B430 Life Science Building, 1355 Bogue Street, East Lansing, MI, 48824, USA
- Medicial Chemistry Core, Michigan State University, East Lansing, MI, USA
| | - Karen T Liby
- Department of Pharmacology and Toxicology, Michigan State University, B430 Life Science Building, 1355 Bogue Street, East Lansing, MI, 48824, USA.
| |
Collapse
|
18
|
Yang J, Duan J, Wang G, Zhou H, Ma B, Wu C, Xiao J. Visible-Light-Promoted Site-Selective N1-Alkylation of Benzotriazoles with α-Diazoacetates. Org Lett 2020; 22:7284-7289. [DOI: 10.1021/acs.orglett.0c02619] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jingya Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jiaokui Duan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ganggang Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Hongyan Zhou
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Ben Ma
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Chengqi Wu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| |
Collapse
|
19
|
Ren G, Kim T, Kim HS, Young ME, Muccio DD, Atigadda VR, Blum SI, Tse HM, Habegger KM, Bhatnagar S, Coric T, Bjornsti MA, Shalev A, Frank SJ, Kim JA. A Small Molecule, UAB126, Reverses Diet-Induced Obesity and its Associated Metabolic Disorders. Diabetes 2020; 69:2003-2016. [PMID: 32611548 PMCID: PMC7458036 DOI: 10.2337/db19-1001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
Abstract
Targeting retinoid X receptor (RXR) has been proposed as one of the therapeutic strategies to treat individuals with metabolic syndrome, as RXR heterodimerizes with multiple nuclear receptors that regulate genes involved in metabolism. Despite numerous efforts, RXR ligands (rexinoids) have not been approved for clinical trials to treat metabolic syndrome due to the serious side effects such as hypertriglyceridemia and altered thyroid hormone axis. In this study, we demonstrate a novel rexinoid-like small molecule, UAB126, which has positive effects on metabolic syndrome without the known side effects of potent rexinoids. Oral administration of UAB126 ameliorated obesity, insulin resistance, hepatic steatosis, and hyperlipidemia without changes in food intake, physical activity, and thyroid hormone levels. RNA-sequencing analysis revealed that UAB126 regulates the expression of genes in the liver that are modulated by several nuclear receptors, including peroxisome proliferator-activated receptor α and/or liver X receptor in conjunction with RXR. Furthermore, UAB126 not only prevented but also reversed obesity-associated metabolic disorders. The results suggest that optimized modulation of RXR may be a promising strategy to treat metabolic disorders without side effects. Thus, the current study reveals that UAB126 could be an attractive therapy to treat individuals with obesity and its comorbidities.
Collapse
Affiliation(s)
- Guang Ren
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
- UAB Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL
| | - Teayoun Kim
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
- UAB Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL
| | - Hae-Suk Kim
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
- UAB Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL
| | - Martin E Young
- UAB Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Donald D Muccio
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Venkatram R Atigadda
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL
| | - Samuel I Blum
- UAB Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| | - Hubert M Tse
- UAB Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| | - Kirk M Habegger
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
- UAB Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL
| | - Sushant Bhatnagar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
- UAB Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL
| | - Tatjana Coric
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL
| | - Mary-Ann Bjornsti
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL
| | - Anath Shalev
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
- UAB Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL
| | - Stuart J Frank
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
- UAB Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL
| | - Jeong-A Kim
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
- UAB Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
20
|
Takamura Y, Shibahara O, Watanabe M, Fujihara M, Yamada S, Akehi M, Sasaki T, Hirano H, Kakuta H. Fluorine-18 ( 18F)-labeled retinoid x receptor (RXR) partial agonist whose tissue transferability is affected by other RXR ligands. Bioorg Med Chem 2019; 27:3128-3134. [PMID: 31176570 DOI: 10.1016/j.bmc.2019.05.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 11/19/2022]
Abstract
Bexarotene (1), a retinoid X receptor (RXR) agonist approved for the treatment of cutaneous T cell lymphoma (CTCL), was reported to migrate into baboon brain based on findings obtained by positron emission tomography (PET) with a 11C-labeled tracer. However, co-administration of non-radioactive 1 had no effect on the distribution of [11C]1, probably due to non-specific binding of 1 as a result of its high lipophilicity. Here, we report a fluorine-18 (18F)-labeled PET tracer [18F]6 derived from RXR partial agonist CBt-PMN (2), which has lower lipophilicity and weaker RXR-binding ability than [11C]1. The concomitant administration of 1 or 2 with [18F]6 with resulted in decreased accumulation of [18F]6 in liver, together with increased brain uptake and increased accumulation in kidney and muscle, as visualized by PET. A plausible explanation of these findings is the inhibition of [18F]6 uptake into the liver by concomitantly administered 1 or 2, leading to an increase in blood concentration of [18F]6 followed by increased accumulation in other tissues.
Collapse
Affiliation(s)
- Yuta Takamura
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama 700-8530, Japan
| | - Osamu Shibahara
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama 700-8530, Japan
| | - Masaki Watanabe
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama 700-8530, Japan
| | - Michiko Fujihara
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama 700-8530, Japan; AIBIOS Co. Ltd. Tri-Seven Roppongi, 8F 7-7-7 Roppongi, Minato-ku, Tokyo 106-0032 Japan
| | - Shoya Yamada
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama 700-8530, Japan
| | - Masaru Akehi
- Collaborative Research Center for OMIC, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama 700-8558, Japan
| | - Takanori Sasaki
- Collaborative Research Center for OMIC, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama 700-8558, Japan
| | - Hiroyuki Hirano
- SHI Accelerator Service Ltd., 1-17-6 Osaki Shinagawa-Ku, Tokyo 141-0032, Japan
| | - Hiroki Kakuta
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama 700-8530, Japan.
| |
Collapse
|
21
|
Krężel W, Rühl R, de Lera AR. Alternative retinoid X receptor (RXR) ligands. Mol Cell Endocrinol 2019; 491:110436. [PMID: 31026478 DOI: 10.1016/j.mce.2019.04.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/06/2019] [Accepted: 04/22/2019] [Indexed: 12/15/2022]
Abstract
Retinoid X receptors (RXRs) control a wide variety of functions by virtue of their dimerization with other nuclear hormone receptors (NRs), contributing thereby to activities of different signaling pathways. We review known RXR ligands as transcriptional modulators of specific RXR-dimers and the associated biological processes. We also discuss the physiological relevance of such ligands, which remains frequently a matter of debate and which at present is best met by member(s) of a novel family of retinoids, postulated as Vitamin A5. Through comparison with other natural, but also with synthetic ligands, we discuss high diversity in the modes of ligand binding to RXRs resulting in agonistic or antagonistic profiles and selectivity towards specific subtypes of permissive heterodimers. Despite such diversity, direct ligand binding to the ligand binding pocket resulting in agonistic activity was preferentially preserved in the course of animal evolution pointing to its functional relevance, and potential for existence of other, species-specific endogenous RXR ligands sharing the same mode of function.
Collapse
Affiliation(s)
- Wojciech Krężel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U 1258, Illkirch, France; Université de Strasbourg, Illkirch, France.
| | - Ralph Rühl
- Paprika Bioanalytics BT, Debrecen, Hungary
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultade de Química, Lagoas-Marcosende, 36310, Vigo, Spain
| |
Collapse
|
22
|
3H-Imidazo[4,5-b]pyridine-6-carboxylic acid derivatives as rexinoids with reduced teratogenicity. Bioorg Med Chem Lett 2019; 29:1891-1894. [PMID: 31160175 DOI: 10.1016/j.bmcl.2019.05.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 01/08/2023]
Abstract
Several retinoid X receptor (RXR) ligands (rexinoids), such as bexarotene (1), exhibit teratogenicity, which is a serious impediment to their clinical application. We considered that rexinoids with a lower level of maximal RXR transcription activation (i.e., partial agonists) and lower lipid solubility might show weaker adverse side effects. Based on this idea, we modified our previously reported pentamethyltetralin-type RXR partial agonists 5 and 6 to reduce their lipophilicity. Here, we report a new RXR partial agonist, 3-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-2-(trifluoromethyl)-3H-imidazo[4,5-b]pyridine-6-carboxylic acid (8, CATF-PMN), which showed greatly reduced teratogenicity in zebrafish embryos.
Collapse
|
23
|
Heitel P, Gellrich L, Kalinowsky L, Heering J, Kaiser A, Ohrndorf J, Proschak E, Merk D. Computer-Assisted Discovery and Structural Optimization of a Novel Retinoid X Receptor Agonist Chemotype. ACS Med Chem Lett 2019; 10:203-208. [PMID: 30783504 PMCID: PMC6378677 DOI: 10.1021/acsmedchemlett.8b00551] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/27/2018] [Indexed: 12/21/2022] Open
Abstract
As universal heterodimer partners of many nuclear receptors, the retinoid X receptors (RXRs) constitute key transcription factors. They regulate cell proliferation, differentiation, inflammation, and metabolic homeostasis and have recently been proposed as potential drug targets for neurodegenerative and inflammatory diseases. Owing to the hydrophobic nature of RXR ligand binding sites, available synthetic RXR ligands are lipophilic, and their structural diversity is limited. Here, we disclose the computer-assisted discovery of a novel RXR agonist chemotype and its systematic optimization toward potent RXR modulators. We have developed a nanomolar RXR agonist with high selectivity among nuclear receptors and superior physicochemical properties compared to classical rexinoids that appears suitable for in vivo applications and as lead for future RXR-targeting medicinal chemistry.
Collapse
Affiliation(s)
- Pascal Heitel
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Leonie Gellrich
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Lena Kalinowsky
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Jan Heering
- Project
Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Astrid Kaiser
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Julia Ohrndorf
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Ewgenij Proschak
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Daniel Merk
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
24
|
Abstract
Retinoid X receptors (RXRs) are promiscuous partners of heterodimeric associations with other members of the Nuclear Receptor (NR) superfamily. RXR ligands ("rexinoids") either transcriptionally activate the "permissive" subclass of heterodimers or synergize with partner ligands in the "nonpermissive" subclass of heterodimers. The rationale for rexinoid design with a wide structural diversity going from the structures of existing complexes with RXR determined by X-Ray, to natural products and other ligands discovered by high-throughput screening (HTS), mere serendipity, and rationally designed based on Molecular Modeling, will be described. Included is the new generation of ligands that modulate the structure of specific receptor surfaces that serve to communicate with other regulators. The panel of the known RXR agonists, partial (ant)agonists, and/or heterodimer-selective rexinoids require the exploration of their therapeutic potential in order to overcome some of the current limitations of rexinoids in therapy.
Collapse
Affiliation(s)
- Claudio Martínez
- Departamento de Química Orgánica, Facultade de Química, CINBIO and IBIV, Universidade de Vigo, Vigo, Spain
| | - José A Souto
- Departamento de Química Orgánica, Facultade de Química, CINBIO and IBIV, Universidade de Vigo, Vigo, Spain
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultade de Química, CINBIO and IBIV, Universidade de Vigo, Vigo, Spain.
| |
Collapse
|
25
|
Wagner CE, Jurutka PW. Methods to Generate an Array of Novel Rexinoids by SAR on a Potent Retinoid X Receptor Agonist: A Case Study with NEt-TMN. Methods Mol Biol 2019; 2019:109-121. [PMID: 31359392 DOI: 10.1007/978-1-4939-9585-1_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The methods described in this chapter concern procedures for the design, synthesis, and in vitro biological evaluation of an array of potent retinoid-X-receptor (RXR) agonists employing 6-(ethyl(5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)amino)nicotinic acid (NEt-TMN), and recently reported NEt-TMN analogs, as a case study. These methods have been extensively applied beyond the present case study to generate several analogs of other potent RXR agonists (rexinoids), particularly the RXR agonist known as bexarotene (Bex), a Food and Drug Administration (FDA) approved drug for cutaneous T-cell lymphoma that is also often prescribed, off-label, for breast, lung, and other human cancers. Common side effects with Bex treatment include hypertriglyceridemia and hypothyroidism, because of off-target activation or inhibition of other nuclear receptor pathways impacted by RXR. Because rexinoids are often selective for RXR, versus the retinoic-acid-receptor (RAR), cutaneous toxicity is often avoided as a side effect for rexinoid treatment. Several other potent RXR agonists, and their analogs, have been reported in the literature and rigorously evaluated (often in comparison to Bex) as potential cancer therapeutics with unique activity and side-effect profiles. Some of the more prominent examples include LGD100268, CD3254, and 9-cis-UAB30, to name only a few. Hence, the methods described herein are more widely applicable to a diverse array of RXR agonists.In terms of design, the structure-activity relationship (SAR) study is usually performed by modifying three distinct areas of the rexinoid base structure, either of the nonpolar or polar sides of the rexinoid and/or the linkage that joins them. For the synthesis of the modified base-structure analogs, often identical synthetic strategies used to access the base-structure are applied; however, reasonable alternative synthetic routes may need to be explored if the modified analog intermediates encounter bottlenecks where yields are negligible for a given step in the base-structure route. In fact, this particular problem was encountered and successfully resolved in our case study for generating an array of NEt-TMN analogs.
Collapse
Affiliation(s)
- Carl E Wagner
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, Glendale, AZ, USA.
| | - Peter W Jurutka
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, Glendale, AZ, USA
| |
Collapse
|
26
|
Miyashita Y, Numoto N, Arulmozhiraja S, Nakano S, Matsuo N, Shimizu K, Shibahara O, Fujihara M, Kakuta H, Ito S, Ikura T, Ito N, Tokiwa H. Dual conformation of the ligand induces the partial agonistic activity of retinoid X receptor α (RXRα). FEBS Lett 2018; 593:242-250. [DOI: 10.1002/1873-3468.13301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/01/2018] [Accepted: 11/14/2018] [Indexed: 01/29/2023]
Affiliation(s)
- Yurina Miyashita
- Department of Chemistry; Rikkyo University; Tokyo Japan
- AMED-CREST; Japan Agency for Medical Research and Development (AMED); Tokyo Japan
- Department of Structural Biology; Medical Research Institute; Tokyo Medical and Dental University (TMDU); Japan
| | - Nobutaka Numoto
- Department of Structural Biology; Medical Research Institute; Tokyo Medical and Dental University (TMDU); Japan
| | - Sundaram Arulmozhiraja
- Department of Chemistry; Rikkyo University; Tokyo Japan
- AMED; Japan Agency for Medical Research and Development (AMED); Tokyo Japan
| | - Shogo Nakano
- School of Food and Nutritional Sciences; University of Shizuoka; Japan
| | - Naoya Matsuo
- Department of Chemistry; Rikkyo University; Tokyo Japan
| | | | - Osamu Shibahara
- Division of Pharmaceutical Sciences; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Japan
| | - Michiko Fujihara
- Division of Pharmaceutical Sciences; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Japan
| | - Hiroki Kakuta
- Division of Pharmaceutical Sciences; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Japan
| | - Sohei Ito
- School of Food and Nutritional Sciences; University of Shizuoka; Japan
| | - Teikichi Ikura
- Department of Structural Biology; Medical Research Institute; Tokyo Medical and Dental University (TMDU); Japan
| | - Nobutoshi Ito
- Department of Structural Biology; Medical Research Institute; Tokyo Medical and Dental University (TMDU); Japan
| | - Hiroaki Tokiwa
- Department of Chemistry; Rikkyo University; Tokyo Japan
- AMED-CREST; Japan Agency for Medical Research and Development (AMED); Tokyo Japan
- AMED; Japan Agency for Medical Research and Development (AMED); Tokyo Japan
- Research Center for Smart Molecules; Rikkyo University; Tokyo Japan
| |
Collapse
|
27
|
Andrzejewska MR, Vuram PK, Pottabathini N, Gurram V, Relangi SS, Korvinson KA, Doddipalla R, Stahl L, Neary MC, Pradhan P, Sharma S, Lakshman MK. The Disappearing Director: The Case of Directed N-Arylation via a Removable Hydroxyl Group. Adv Synth Catal 2018; 360:2503-2510. [PMID: 30559638 PMCID: PMC6294448 DOI: 10.1002/adsc.201701611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Indexed: 12/23/2022]
Abstract
A facile and broadly applicable method for the regiospecific N-arylation of benzotriazoles is reported. Copper-mediated reactions of diverse 1-hydroxy-1H-benzotriazoles with aryl boronic acids lead to 1-aryl-1H-benzotriazole 3-oxides. A N1-OH → N3 prototropy in the 1-hydroxy-1H-benzotriazoles is plausibly the underlying basis, where the tautomer is captured by the boronic acid, leading to C-N (not C-O) bond formation. Because the N-O bond in amine N-oxides and 1-hydroxy-1H-benzotriazoles can be easily reduced by diboron reagents such as (pinB)2 and B2(OH)4, exposure of the 1-aryl-1H-benzotriazole 3-oxides to B2(OH)4 then leads to facile reduction of the N-O bond resulting in diverse, regiospecifically-arylated benzotriazoles. Thus, the N-hydroxyl group in 1-hydroxy-1H-benzotriazoles acts as a disposable arylation director.
Collapse
Affiliation(s)
- Magdalena R. Andrzejewska
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, New York 10031, USA
| | - Prasanna K. Vuram
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, New York 10031, USA
| | - Narender Pottabathini
- Discovery Services, GVK Biosciences, Pvt. Ltd., 28A IDA Nacharam, Hyderabad 500076, Telangana, India
| | - Venkateshwarlu Gurram
- Discovery Services, GVK Biosciences, Pvt. Ltd., 28A IDA Nacharam, Hyderabad 500076, Telangana, India
| | - Siva Subrahmanyam Relangi
- Discovery Services, GVK Biosciences, Pvt. Ltd., 28A IDA Nacharam, Hyderabad 500076, Telangana, India
| | - Kirill A. Korvinson
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, New York 10031, USA
- The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA
| | - Raju Doddipalla
- Discovery Services, GVK Biosciences, Pvt. Ltd., 28A IDA Nacharam, Hyderabad 500076, Telangana, India
| | - Lothar Stahl
- Department of Chemistry, University of North Dakota, 151 Cornell Street Stop 9024, Grand Forks, North Dakota 58202, USA
| | - Michelle C. Neary
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, New York 10065, USA
| | - Padmanava Pradhan
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, New York 10031, USA
| | - Somesh Sharma
- Discovery Services, GVK Biosciences, Pvt. Ltd., 28A IDA Nacharam, Hyderabad 500076, Telangana, India
| | - Mahesh K. Lakshman
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, New York 10031, USA
- The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA
| |
Collapse
|
28
|
Scheepstra M, Andrei SA, Unver MY, Hirsch AKH, Leysen S, Ottmann C, Brunsveld L, Milroy LG. Designed Spiroketal Protein Modulation. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Marcel Scheepstra
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS); Department of Biomedical Engineering; Technische Universiteit Eindhoven; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Sebastian A. Andrei
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS); Department of Biomedical Engineering; Technische Universiteit Eindhoven; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - M. Yagiz Unver
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 7 9747AG Groningen The Netherlands
| | - Anna K. H. Hirsch
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 7 9747AG Groningen The Netherlands
| | - Seppe Leysen
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS); Department of Biomedical Engineering; Technische Universiteit Eindhoven; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS); Department of Biomedical Engineering; Technische Universiteit Eindhoven; Den Dolech 2 5612 AZ Eindhoven The Netherlands
- Department of Chemistry; University of Duisburg-Essen; Universitätstr. 7 45141 Essen Germany
| | - Luc Brunsveld
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS); Department of Biomedical Engineering; Technische Universiteit Eindhoven; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Lech-Gustav Milroy
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS); Department of Biomedical Engineering; Technische Universiteit Eindhoven; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| |
Collapse
|
29
|
Scheepstra M, Andrei SA, Unver MY, Hirsch AKH, Leysen S, Ottmann C, Brunsveld L, Milroy LG. Designed Spiroketal Protein Modulation. Angew Chem Int Ed Engl 2017; 56:5480-5484. [PMID: 28407400 PMCID: PMC5435924 DOI: 10.1002/anie.201612504] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/17/2017] [Indexed: 02/03/2023]
Abstract
Spiroketals are structural motifs found in many biologically active natural products, which has stimulated considerable efforts toward their synthesis and interest in their use as drug lead compounds. Despite this, the use of spiroketals, and especially bisbenzanulated spiroketals, in a structure-based drug discovery setting has not been convincingly demonstrated. Herein, we report the rational design of a bisbenzannulated spiroketal that potently binds to the retinoid X receptor (RXR) thereby inducing partial co-activator recruitment. We solved the crystal structure of the spiroketal-hRXRα-TIF2 ternary complex, and identified a canonical allosteric mechanism as a possible explanation for the partial agonist behavior of our spiroketal. Our co-crystal structure, the first of a designed spiroketal-protein complex, suggests that spiroketals can be designed to selectively target other nuclear receptor subtypes.
Collapse
Affiliation(s)
- Marcel Scheepstra
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
| | - Sebastian A Andrei
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
| | - M Yagiz Unver
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| | - Anna K H Hirsch
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| | - Seppe Leysen
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands.,Department of Chemistry, University of Duisburg-Essen, Universitätstr. 7, 45141, Essen, Germany
| | - Luc Brunsveld
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
| | - Lech-Gustav Milroy
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
| |
Collapse
|
30
|
Heck MC, Wagner CE, Shahani PH, MacNeill M, Grozic A, Darwaiz T, Shimabuku M, Deans DG, Robinson NM, Salama SH, Ziller JW, Ma N, van der Vaart A, Marshall PA, Jurutka PW. Modeling, Synthesis, and Biological Evaluation of Potential Retinoid X Receptor (RXR)-Selective Agonists: Analogues of 4-[1-(3,5,5,8,8-Pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethynyl]benzoic Acid (Bexarotene) and 6-(Ethyl(5,5,8,8-tetrahydronaphthalen-2-yl)amino)nicotinic Acid (NEt-TMN). J Med Chem 2016; 59:8924-8940. [DOI: 10.1021/acs.jmedchem.6b00812] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Michael C. Heck
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - Carl E. Wagner
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - Pritika H. Shahani
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - Mairi MacNeill
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - Aleksandra Grozic
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - Tamana Darwaiz
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - Micah Shimabuku
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - David G. Deans
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - Nathan M. Robinson
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - Samer H. Salama
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - Joseph W. Ziller
- Department
of Chemistry, University of California, Irvine, 576 Rowland Hall, Irvine, California 92697, United States
| | - Ning Ma
- Department
of Chemistry, University of South Florida, 4202 East Fowler Avenue, CHE 205, Tampa, Florida 33620, United States
| | - Arjan van der Vaart
- Department
of Chemistry, University of South Florida, 4202 East Fowler Avenue, CHE 205, Tampa, Florida 33620, United States
| | - Pamela A. Marshall
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - Peter W. Jurutka
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| |
Collapse
|
31
|
Anami Y, Sakamaki Y, Itoh T, Inaba Y, Nakabayashi M, Ikura T, Ito N, Yamamoto K. Fine tuning of agonistic/antagonistic activity for vitamin D receptor by 22-alkyl chain length of ligands: 22S-Hexyl compound unexpectedly restored agonistic activity. Bioorg Med Chem 2015; 23:7274-81. [DOI: 10.1016/j.bmc.2015.10.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/18/2015] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
|
32
|
Kawata K, Morishita KI, Nakayama M, Yamada S, Kobayashi T, Furusawa Y, Arimoto-Kobayashi S, Oohashi T, Makishima M, Naitou H, Ishitsubo E, Tokiwa H, Tai A, Kakuta H. RXR partial agonist produced by side chain repositioning of alkoxy RXR full agonist retains antitype 2 diabetes activity without the adverse effects. J Med Chem 2014; 58:912-26. [PMID: 25486327 DOI: 10.1021/jm501863r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We previously reported RXR partial agonist CBt-PMN (1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)-1H-benzotriazole-5-carboxylic acid: 5, EC50 = 143 nM, Emax = 75%), which showed a potent glucose-lowering effect without causing serious adverse effects. However, it remains important to elucidate the structural requirements for RXR efficacy and the glucose-lowering effect because RXR-permissive heterodimers such as PPAR/RXR or LXR/RXR are reported to be activated differently depending upon the chemical structure of RXR agonists. In this work, we show that an RXR partial agonist, NEt-4IB (6-[ethyl-(4-isobutoxy-3-isopropylphenyl)amino]pyridine-3-carboxylic acid: 8b, EC50 = 169 nM, Emax = 55%), can be obtained simply by repositioning the side chains (interchanging the isobutoxy and isopropoxy groups) at the hydrophobic moiety of the RXR full agonist NEt-3IB (6-[ethyl-(3-isobutoxy-4-isopropylphenyl)amino]pyridine-3-carboxylic acid: 7b, EC50 = 19 nM). NEt-4IB (8b) showed antitype 2 diabetes activity without the above side effects upon repeated oral administration to mice at 10 mg/kg/day, similarly to 5.
Collapse
Affiliation(s)
- Kohei Kawata
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , 1-1-1, Tsushima-naka, Kita-ku Okayama 700-8530, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
INTRODUCTION Retinoid X receptors (RXRs) are nuclear receptors that act as ligand-dependent transcription factors. RXRs function as homodimers or as heterodimers with other nuclear receptors, such as retinoic acid receptors, PPARs, liver X receptors, farnesoid X receptor, vitamin D receptor or thyroid hormone receptors. RXR ligands (agonists or antagonists) show various physiological effects, depending on their partner receptors. RXR agonist bexarotene (Targretin®) is used for the treatment of cutaneous T-cell lymphoma in clinical practice. RXR agonists were also reported to be useful for treatment of type 2 diabetes, autoimmune disease and Alzheimer's disease. RXR antagonists were also reported to be effective in type 2 diabetes treatment. AREAS COVERED Here patent applications (2007 - 2013) concerning RXR ligands are summarized, and the usefulness of RXR ligands as pharmaceutical agents is discussed. EXPERT OPINION RXR agonists show a wide variety of biological effects. However, they cause serious side effects, such as blood triglyceride elevation, hypothyroidism and others. Thus, for clinical application of RXR agonists, abrogation of these side effects is required. RXR heterodimer-selective agonists and RXR partial agonists exhibiting desired effects without side effects are expected to find clinical application.
Collapse
Affiliation(s)
- Shoya Yamada
- Okayama University Graduate School of Medicine, Division of Pharmaceutical Sciences, Dentistry and Pharmaceutical Sciences , 1-1-1, Tsushima-Naka, Kita-Ku, Okayama 700-8530 , Japan +81 086 251 7963 ; +81 086 251 7963 ;
| | | |
Collapse
|