1
|
Ye J, Kan CH, Yang X, Ma C. Inhibition of bacterial RNA polymerase function and protein-protein interactions: a promising approach for next-generation antibacterial therapeutics. RSC Med Chem 2024; 15:1471-1487. [PMID: 38784472 PMCID: PMC11110800 DOI: 10.1039/d3md00690e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/25/2024] [Indexed: 05/25/2024] Open
Abstract
The increasing prevalence of multidrug-resistant pathogens necessitates the urgent development of new antimicrobial agents with innovative modes of action for the next generation of antimicrobial therapy. Bacterial transcription has been identified and widely studied as a viable target for antimicrobial development. The main focus of these studies has been the discovery of inhibitors that bind directly to the core enzyme of RNA polymerase (RNAP). Over the past two decades, substantial advancements have been made in understanding the properties of protein-protein interactions (PPIs) and gaining structural insights into bacterial RNAP and its associated factors. This has led to the crucial role of computational methods in aiding the identification of new PPI inhibitors to affect the RNAP function. In this context, bacterial transcriptional PPIs present promising, albeit challenging, targets for the creation of new antimicrobials. This review will succinctly outline the structural foundation of bacterial transcription networks and provide a summary of the known small molecules that target transcription PPIs.
Collapse
Affiliation(s)
- Jiqing Ye
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Kowloon Hong Kong SAR China
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University Hefei 230032 China
| | - Cheuk Hei Kan
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital Shatin Hong Kong SAR China
| | - Xiao Yang
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital Shatin Hong Kong SAR China
| | - Cong Ma
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Kowloon Hong Kong SAR China
| |
Collapse
|
2
|
Wu C, Gao Y, Huo Y, Li X, Chen Q, Hu XQ. Ag-Catalyzed Practical Synthesis of N-Acyl Anthranilic Acids from Anthranils and Carboxylic Acids. J Org Chem 2024; 89:3150-3160. [PMID: 38335273 DOI: 10.1021/acs.joc.3c02586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
A practical synthesis of valuable N-acyl anthranilic acids has been achieved via a silver-catalyzed imino-ketene generation from readily available anthranils and carboxylic acids. A wide range of carboxylic acids including sterically demanding aliphatic carboxylic acids, aromatic carboxylic acids, acrylic acids, and amino acids are compatible in this reaction. Moreover, this method can be used to modify drug molecules and natural products, such as ibuprofen, probenecid, and acetylglycine.
Collapse
Affiliation(s)
- Changshu Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xianwei Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
3
|
Ye J, Kan CH, Zheng Y, Tsang TF, Chu AJ, Chan KH, Yang X, Ma C. Sulfonamidyl derivatives of sigmacidin: Protein-protein interaction inhibitors targeting bacterial RNA polymerase and sigma factor interaction exhibiting antimicrobial activity against antibiotic-resistant bacteria. Bioorg Chem 2024; 143:106983. [PMID: 38016396 DOI: 10.1016/j.bioorg.2023.106983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023]
Abstract
RNA polymerase is an essential enzyme involved in bacterial transcription, playing a crucial role in RNA synthesis. However, it requires the association with sigma factors to initiate this process. In our previous work, we utilized a structure-based drug discovery approach to create benzoyl and benzyl benzoic acid compounds. These compounds were designed based on the amino acid residues within the key binding site of sigma factors, which are crucial for their interaction with RNA polymerase. By inhibiting bacterial transcription, these compounds exhibited notable antimicrobial activity, and we coined them as sigmacidins to highlight their resemblance to sigma factors and the benzoic acid structure. In this study, we further modified the compound scaffolds and developed a series of sulfonamidyl benzoic acid derivatives. These derivatives displayed potent antimicrobial activity, with minimum inhibitory concentrations (MICs) as low as 1 µg/mL, demonstrating their efficacy against bacteria. Furthermore, these compounds demonstrated low cytotoxicity, indicating their potential as safe antimicrobial agents. To ascertain their mechanism of action in interfering with bacterial transcription, we conducted biochemical and cellular assays. Overall, this study showcases the effectiveness of sulfonamidyl benzoic acid derivatives as antimicrobial agents by targeting protein-protein interactions involving RNA polymerase and sigma factors. Their strong antimicrobial activity and low cytotoxicity implicate their potential in combating antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Jiqing Ye
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region; School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Cheuk Hei Kan
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region
| | - Yingbo Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region
| | - Tsz Fung Tsang
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region
| | - Adrian Jun Chu
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region
| | - King Hong Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region
| | - Xiao Yang
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region.
| | - Cong Ma
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
4
|
Yahya Alqahtani F, Sfouq Aleanizy F, Alkahtani HM, El Tahir E, Akber Ansari S, Alharbi A, Al-Bdrawy A, Shakeel F, Haq N, Al-Rasheed LS, Alfaraj R, Alshememry AK, Alsarra IA. Chitosan loaded RNA polymerase inhibitor nanoparticles increased attenuation in toxin release from Streptococcus pneumonia. Saudi Pharm J 2023; 31:170-179. [PMID: 36685302 PMCID: PMC9845126 DOI: 10.1016/j.jsps.2022.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022] Open
Abstract
Background Multidrug-resistant (MDR) bacterial infections have become an emerging health concern around the world. Antibiotics resistance among S. pneumoniae strains increased recently contributing to increase in incidence of pneumococcal infection. This necessitates the discovery of novel antipnemococcal such as compound C3-005 which target the interaction between RNA polymerase and σ factors. Chitosan nanoparticles (CNPs) exhibited antibacterial activity including S. pneumonia. Therefore, the aims of the current investigation were to formulate CNPs loaded with C3-005 and characteristic their antimicrobial properties against S. pneumonia. Methods The CNPs and C3-005 loaded CNPs were produced utilizing ionic gelation method, and their physicochemical characteristics including particle size, zeta potential, polydispersity index (PDI), encapsulation efficiency (EE%), and in vitro release profile were studied. Both differential scanning calorimetry (DSC) and fourier transform infrared spectroscopy (FTIR) were used for chemical characterization. The synthesized NPs' minimum inhibitory concentration (MIC) was determined using killing assay and broth dilution method, and their impact on bacteria induced hemolysis were also studied. Results The NPs encapsulating C3-005 were successfully prepared with particle size of 343.5 nm ± 1.3, zeta potential of 29.8 ± 0.37, and PDI of 0.20 ± 0.03. 70 % of C3-005 were encapsulated in CNPs and sustained release pattern of C3-005 from CNPs was revealed by an in vitro release study. CNPs containing C3-005 exhibited higher antipnomcoccal activity with MIC50 of 30 µg/ml when compared with C3-005 and empty CNPs alone. The prepared C3-CNPs showed a reduction of bacterial hemolysis in a concentration-related (dependent) manner and was higher than C3-005 alone. Conclusions The findings of this study showed the potential for using C3-005 loaded CNPs to treat pneumococcal infection.
Collapse
Affiliation(s)
- Fulwah Yahya Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
- Corresponding author.
| | - Fadilah Sfouq Aleanizy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Eram El Tahir
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Atheer Alharbi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Asmaa Al-Bdrawy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Nazrul Haq
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Lamees S. Al-Rasheed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rihaf Alfaraj
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Abdullah K. Alshememry
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Ibrahim A. Alsarra
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| |
Collapse
|
5
|
Dahlem C, Abuhaliema A, Kessler SM, Kröhler T, Zoller BGE, Chanda S, Wu Y, Both S, Müller F, Lepikhov K, Kirsch SH, Laggai S, Müller R, Empting M, Kiemer AK. First Small-Molecule Inhibitors Targeting the RNA-Binding Protein IGF2BP2/IMP2 for Cancer Therapy. ACS Chem Biol 2022; 17:361-375. [PMID: 35023719 DOI: 10.1021/acschembio.1c00833] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The RNA-binding protein IGF2BP2/IMP2/VICKZ2/p62 is overexpressed in several tumor entities, promotes tumorigenesis and tumor progression, and has been suggested to worsen the disease outcome. The aim of this study is to (I) validate IMP2 as a potential target for colorectal cancer, (II) set up a screening assay for small-molecule inhibitors of IMP2, and (III) test the biological activity of the obtained hit compounds. Analyses of colorectal and liver cancer gene expression data showed reduced survival in patients with a high IMP2 expression and in patients with a higher IMP2 expression in advanced tumors. In vitro target validation in 2D and 3D cell cultures demonstrated a reduction in cell viability, migration, and proliferation in IMP2 knockout cells. Also, xenotransplant tumor cell growth in vivo was significantly reduced in IMP2 knockouts. Different compound libraries were screened for IMP2 inhibitors using a fluorescence polarization assay, and the results were confirmed by the thermal shift assay and saturation-transfer difference NMR. Ten compounds, which belong to two classes, that is, benzamidobenzoic acid class and ureidothiophene class, were validated in vitro and showed a biological target specificity. The three most active compounds were also tested in vivo and exhibited reduced tumor xenograft growth in zebrafish embryos. In conclusion, our findings support that IMP2 represents a druggable target to reduce tumor cell proliferation.
Collapse
Affiliation(s)
- Charlotte Dahlem
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken 66123, Germany
| | - Ali Abuhaliema
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken 66123, Germany
| | - Sonja M. Kessler
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken 66123, Germany
- Institute of Pharmacy, Experimental Pharmacology for Natural Sciences, Martin Luther University Halle-Wittenberg, Halle 06108, Germany
| | - Tarek Kröhler
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken 66123, Germany
| | - Ben G. E. Zoller
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken 66123, Germany
| | - Shilpee Chanda
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken 66123, Germany
| | - Yingwen Wu
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken 66123, Germany
| | - Simon Both
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken 66123, Germany
| | - Fabian Müller
- Center for Bioinformatics, Saarland University, Saarbrücken 66123, Germany
| | | | - Susanne H. Kirsch
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University, Saarbrücken 66123, Germany
| | - Stephan Laggai
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken 66123, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University, Saarbrücken 66123, Germany
- Department of Pharmacy, Saarland University, Saarbrücken 66123, Germany
| | - Martin Empting
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken 66123, Germany
- Department of Pharmacy, Saarland University, Saarbrücken 66123, Germany
| | - Alexandra K. Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken 66123, Germany
| |
Collapse
|
6
|
Saeed A, Shabir G, Channar PA, Flörke U, Hökelek T, Erben MF. COMPUTATIONAL INVESTIGATIONS, HIRSHFELD SURFACE ANALYSIS, INTERACTION ENERGY CALCULATIONS, AND ENERGY FRAMEWORK CRYSTAL STRUCTURE OF METHYL 2-AMINO-5-HYDROXYBENZOATE. J STRUCT CHEM+ 2021. [DOI: 10.1134/s0022476621110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Wenholz DS, Miller M, Dawson C, Bhadbhade M, Black DS, Griffith R, Dinh H, Cain A, Lewis P, Kumar N. Inhibitors of bacterial RNA polymerase transcription complex. Bioorg Chem 2021; 118:105481. [PMID: 34801947 DOI: 10.1016/j.bioorg.2021.105481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 01/28/2023]
Abstract
A series of hybrid compounds that incorporated anthranilic acid with activated 1H-indoles through a glyoxylamide linker were designed to target bacterial RNA polymerase holoenzyme formation using computational docking. Synthesis, in vitro transcription inhibition assays, and biological testing of the hybrids identified a range of potent anti-transcription inhibitors with activity against a range of pathogenic bacteria with MICs as low as 3.1 μM. A structure activity relationship study identified the key structural components necessary for inhibition of both bacterial growth and transcription. Correlation of in vitro transcription inhibition activity with in vivo mechanism of action was established using fluorescence microscopy and resistance passaging using Gram-positive bacteria showed no resistance development over 30 days. Furthermore, no toxicity was observed from the compounds in a wax moth larvae model, establishing a platform for the development of a series of new antibacterial drugs with an established mode of action.
Collapse
Affiliation(s)
- Daniel S Wenholz
- School of Chemistry, UNSW Sydney, Kensington, NSW 2502, Australia
| | - Michael Miller
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Catherine Dawson
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mohan Bhadbhade
- Mark Wainwright Analytical Centre, UNSW Sydney, NSW 2052, Australia
| | - David StC Black
- School of Chemistry, UNSW Sydney, Kensington, NSW 2502, Australia
| | - Renate Griffith
- School of Chemistry, UNSW Sydney, Kensington, NSW 2502, Australia
| | - Hue Dinh
- Department of Biological Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Amy Cain
- Department of Biological Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Peter Lewis
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; School of Chemistry and Molecular Bioscience, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Naresh Kumar
- School of Chemistry, UNSW Sydney, Kensington, NSW 2502, Australia.
| |
Collapse
|
8
|
Lian X, Xia Z, Li X, Karpov P, Jin H, Tetko IV, Xia J, Wu S. Anti-MRSA drug discovery by ligand-based virtual screening and biological evaluation. Bioorg Chem 2021; 114:105042. [PMID: 34120024 DOI: 10.1016/j.bioorg.2021.105042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
S. aureus resistant to methicillin (MRSA) is one of the most-concerned multidrug resistant bacteria, due to its role in life-threatening infections. There is an urgent need to develop new antibiotics against MRSA. In this study, we firstly compiled a data set of 2,3-diaminoquinoxalines by chemical synthesis and antibacterial screening against S. aureus, and then performed cheminformatics modeling and virtual screening. The compound with the Specs ID of AG-205/33156020 was discovered as a new antibacterial agent, and was further identified as a Gyrase B (GyrB) inhibitor. In light of the common features, we hypothesized that the 6c as the representative of 2,3-diaminoquinoxalines also inhibited GyrB and eventually proved it. Via molecular docking and molecular dynamics simulations, we identified binding modes of AG-205/33156020 and 6c to the ATPase domain of GyrB. Importantly, these GyrB inhibitors inhibited the MRSA strains and showed selectivity to HepG2 and HUVEC. Taken together, this research work provides an effective ligand-based computational workflow for scaffold hopping in anti-MRSA drug discovery, and discovers two new GyrB inhibitors that are worthy of further development.
Collapse
Affiliation(s)
- Xu Lian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonghua Xia
- Institute of Structural Biology, Helmholtz Zentrum München-Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Xueyao Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Pavel Karpov
- Institute of Structural Biology, Helmholtz Zentrum München-Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; BIGCHEM GmbH, Valerystr. 49, 85716 Unterschleißheim, Germany
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Igor V Tetko
- Institute of Structural Biology, Helmholtz Zentrum München-Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; BIGCHEM GmbH, Valerystr. 49, 85716 Unterschleißheim, Germany
| | - Jie Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
9
|
Kahan R, Worm DJ, de Castro GV, Ng S, Barnard A. Modulators of protein-protein interactions as antimicrobial agents. RSC Chem Biol 2021; 2:387-409. [PMID: 34458791 PMCID: PMC8341153 DOI: 10.1039/d0cb00205d] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Protein-Protein interactions (PPIs) are involved in a myriad of cellular processes in all living organisms and the modulation of PPIs is already under investigation for the development of new drugs targeting cancers, autoimmune diseases and viruses. PPIs are also involved in the regulation of vital functions in bacteria and, therefore, targeting bacterial PPIs offers an attractive strategy for the development of antibiotics with novel modes of action. The latter are urgently needed to tackle multidrug-resistant and multidrug-tolerant bacteria. In this review, we describe recent developments in the modulation of PPIs in pathogenic bacteria for antibiotic development, including advanced small molecule and peptide inhibitors acting on bacterial PPIs involved in division, replication and transcription, outer membrane protein biogenesis, with an additional focus on toxin-antitoxin systems as upcoming drug targets.
Collapse
Affiliation(s)
- Rashi Kahan
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Dennis J Worm
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Guilherme V de Castro
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Simon Ng
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Anna Barnard
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| |
Collapse
|
10
|
Ye J, Chu AJ, Lin L, Chan ST, Harper R, Xiao M, Artsimovitch I, Zuo Z, Ma C, Yang X. Benzyl and benzoyl benzoic acid inhibitors of bacterial RNA polymerase-sigma factor interaction. Eur J Med Chem 2020; 208:112671. [PMID: 32920341 PMCID: PMC7680358 DOI: 10.1016/j.ejmech.2020.112671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/26/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023]
Abstract
Transcription is an essential biological process in bacteria requiring a core enzyme, RNA polymerase (RNAP). Bacterial RNAP is catalytically active but requires sigma (σ) factors for transcription of natural DNA templates. σ factor binds to RNAP to form a holoenzyme which specifically recognizes a promoter, melts the DNA duplex, and commences RNA synthesis. Inhibiting the binding of σ to RNAP is expected to inhibit bacterial transcription and growth. We previously identified a triaryl hit compound that mimics σ at its major binding site of RNAP, thereby inhibiting the RNAP holoenzyme formation. In this study, we modified this scaffold to provide a series of benzyl and benzoyl benzoic acid derivatives possessing improved antimicrobial activity. A representative compound demonstrated excellent activity against Staphylococcus epidermidis with minimum inhibitory concentrations reduced to 0.5 μg/mL, matching that of vancomycin. The molecular mechanism of inhibition was confirmed using biochemical and cellular assays. Low cytotoxicity and metabolic stability of compounds demonstrated the potential for further studies.
Collapse
Affiliation(s)
- Jiqing Ye
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Adrian Jun Chu
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Lin Lin
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Shu Ting Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Rachel Harper
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Min Xiao
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Irina Artsimovitch
- Department of Microbiology and the Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Zhong Zuo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Cong Ma
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Xiao Yang
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China.
| |
Collapse
|
11
|
Haupenthal J, Kautz Y, Elgaher WAM, Pätzold L, Röhrig T, Laschke MW, Tschernig T, Hirsch AKH, Molodtsov V, Murakami KS, Hartmann RW, Bischoff M. Evaluation of Bacterial RNA Polymerase Inhibitors in a Staphylococcus aureus-Based Wound Infection Model in SKH1 Mice. ACS Infect Dis 2020; 6:2573-2581. [PMID: 32886885 DOI: 10.1021/acsinfecdis.0c00034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic wounds infected with pathogens such as Staphylococcus aureus represent a worldwide health concern, especially in patients with a compromised immune system. As antimicrobial resistance has become an immense global problem, novel antibiotics are urgently needed. One strategy to overcome this threatening situation is the search for drugs targeting novel binding sites on essential and validated enzymes such as the bacterial RNA polymerase (RNAP). In this work, we describe the establishment of an in vivo wound infection model based on the pathogen S. aureus and hairless Crl:SKH1-Hrhr (SKH1) mice. The model proved to be a valuable preclinical tool to study selected RNAP inhibitors after topical application. While rifampicin showed a reduction in the loss of body weight induced by the bacteria, an acceleration of wound healing kinetics, and a reduced number of colony forming units in the wound, the ureidothiophene-2-carboxylic acid 1 was inactive under in vivo conditions, probably due to strong plasma protein binding. The cocrystal structure of compound 1 with RNAP, that we hereby also present, will be of great value for applying appropriate structural modifications to further optimize the compound, especially in terms of plasma protein binding.
Collapse
Affiliation(s)
- Jörg Haupenthal
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)−Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Saarland, Germany
| | - Yannik Kautz
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg, Saarland, Germany
| | - Walid A. M. Elgaher
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)−Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Saarland, Germany
| | - Linda Pätzold
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg, Saarland, Germany
| | - Teresa Röhrig
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)−Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Saarland, Germany
| | - Matthias W. Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Saarland, Germany
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Saarland, Germany
| | - Anna K. H. Hirsch
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)−Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Saarland, Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Saarland, Germany
| | - Vadim Molodtsov
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Katsuhiko S. Murakami
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Rolf W. Hartmann
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)−Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Saarland, Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Saarland, Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg, Saarland, Germany
| |
Collapse
|
12
|
Chen T, Xiong H, Yang JF, Zhu XL, Qu RY, Yang GF. Diaryl Ether: A Privileged Scaffold for Drug and Agrochemical Discovery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9839-9877. [PMID: 32786826 DOI: 10.1021/acs.jafc.0c03369] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Diaryl ether (DE) is a functional scaffold existing widely both in natural products (NPs) and synthetic organic compounds. Statistically, DE is the second most popular and enduring scaffold within the numerous medicinal chemistry and agrochemical reports. Given its unique physicochemical properties and potential biological activities, DE nucleus is recognized as a fundamental element of medicinal and agrochemical agents aimed at different biological targets. Its drug-like derivatives have been extensively synthesized with interesting biological features including anticancer, anti-inflammatory, antiviral, antibacterial, antimalarial, herbicidal, fungicidal, insecticidal, and so on. In this review, we highlight the medicinal and agrochemical versatility of the DE motif according to the published information in the past decade and comprehensively give a summary of the target recognition, structure-activity relationship (SAR), and mechanism of action of its analogues. It is expected that this profile may provide valuable guidance for the discovery of new active ingredients both in drug and pesticide research.
Collapse
Affiliation(s)
- Tao Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hao Xiong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xiao-Lei Zhu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ren-Yu Qu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
13
|
Ye J, Chu AJ, Harper R, Chan ST, Shek TL, Zhang Y, Ip M, Sambir M, Artsimovitch I, Zuo Z, Yang X, Ma C. Discovery of Antibacterials That Inhibit Bacterial RNA Polymerase Interactions with Sigma Factors. J Med Chem 2020; 63:7695-7720. [PMID: 32633513 PMCID: PMC8091929 DOI: 10.1021/acs.jmedchem.0c00520] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Formation of a bacterial RNA polymerase (RNAP) holoenzyme by a catalytic core RNAP and a sigma (σ) initiation factor is essential for bacterial viability. As the primary binding site for the housekeeping σ factors, the RNAP clamp helix domain represents an attractive target for novel antimicrobial agent discovery. Previously, we designed a pharmacophore model based on the essential amino acids of the clamp helix, such as R278, R281, and I291 (Escherichia coli numbering), and identified hit compounds with antimicrobial activity that interfered with the core-σ interactions. In this work, we rationally designed and synthesized a class of triaryl derivatives of one hit compound and succeeded in drastically improving the antimicrobial activity against Streptococcus pneumoniae, with the minimum inhibitory concentration reduced from 256 to 1 μg/mL. Additional characterization of antimicrobial activity, inhibition of transcription, in vitro pharmacological properties, and cytotoxicity of the optimized compounds demonstrated their potential for further development.
Collapse
Affiliation(s)
- Jiqing Ye
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, People's Republic of China
| | - Adrian Jun Chu
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, People's Republic of China
| | - Rachel Harper
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, People's Republic of China
| | - Shu Ting Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, People's Republic of China
| | - Tsun Lam Shek
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, People's Republic of China
| | - Yufeng Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, People's Republic of China
| | - Margaret Ip
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, People's Republic of China
| | - Mariya Sambir
- Department of Microbiology and the Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Irina Artsimovitch
- Department of Microbiology and the Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Zhong Zuo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, People's Republic of China
| | - Xiao Yang
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, People's Republic of China
| | - Cong Ma
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, People's Republic of China
| |
Collapse
|
14
|
Chong SMS, Manimekalai MSS, Sarathy JP, Williams ZC, Harold LK, Cook GM, Dick T, Pethe K, Bates RW, Grüber G. Antituberculosis Activity of the Antimalaria Cytochrome bcc Oxidase Inhibitor SCR0911. ACS Infect Dis 2020; 6:725-737. [PMID: 32092260 DOI: 10.1021/acsinfecdis.9b00408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ability to respire and generate adenosine triphosphate (ATP) is essential for the physiology, persistence, and pathogenicity of Mycobacterium tuberculosis, which causes tuberculosis. By employing a lead repurposing strategy, the malarial cytochrome bc1 inhibitor SCR0911 was tested against mycobacteria. Docking studies were carried out to reveal potential binding and to understand the binding interactions with the target, cytochrome bcc. Whole-cell-based and in vitro assays demonstrated the potency of SCR0911 by inhibiting cell growth and ATP synthesis in both the fast- and slow-growing M. smegmatis and M. bovis bacillus Calmette-Guérin, respectively. The variety of biochemical assays and the use of a cytochrome bcc deficient mutant strain validated the cytochrome bcc oxidase as the direct target of the drug. The data demonstrate the broad-spectrum activity of SCR0911 and open the door for structure-activity relationship studies to improve the potency of new mycobacteria specific SCR0911 analogues.
Collapse
Affiliation(s)
- Shi Min Sherilyn Chong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Republic of Singapore
- Nanyang Institute of Technology in Health and Medicine, Interdisciplinary Graduate School, Nanyang Technological University, Singapore 637551, Republic of Singapore
| | | | - Jickky Palmae Sarathy
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Republic of Singapore
| | - Zoe C. Williams
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Liam K. Harold
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Gregory M. Cook
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Thomas Dick
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Republic of Singapore
- Center for Discovery and Innovation, Hackensack Meridian Health, 340 Kingsland Street Building 102, Nutley, New Jersey 07110, United States
| | - Kevin Pethe
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| | - Roderick W. Bates
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Republic of Singapore
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| |
Collapse
|
15
|
Kirsch P, Jakob V, Elgaher WAM, Walt C, Oberhausen K, Schulz TF, Empting M. Discovery of Novel Latency-Associated Nuclear Antigen Inhibitors as Antiviral Agents Against Kaposi's Sarcoma-Associated Herpesvirus. ACS Chem Biol 2020; 15:388-395. [PMID: 31944659 DOI: 10.1021/acschembio.9b00845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
With the aim to develop novel antiviral agents against Kaposi's Sarcoma Herpesvirus (KSHV), we are targeting the latency-associated nuclear antigen (LANA). This protein plays an important role in viral genome maintenance during latent infection. LANA has the ability to tether the viral genome to the host nucleosomes and, thus, ensures latent persistence of the viral genome in the host cells. By inhibition of the LANA-DNA interaction, we seek to eliminate or reduce the load of the viral DNA in the host. To achieve this goal, we screened our in-house library using a dedicated fluorescence polarization (FP)-based competition assay, which allows for the quantification of LANA-DNA-interaction inhibition by small organic molecules. We successfully identified three different compound classes capable of disrupting this protein-nucleic acid interaction. We characterized these compounds by IC50 dose-response evaluation and confirmed the compound-LANA interaction using surface plasmon resonance (SPR) spectroscopy. Furthermore, two of the three hit scaffolds showed only marginal cytotoxicity in two human cell lines. Finally, we conducted STD-NMR competition experiments with our new hit compounds and a previously described fragment-sized inhibitor. Based on these results, future compound linking approaches could serve as a promising strategy for further optimization studies in order to generate highly potent KSHV inhibitors.
Collapse
Affiliation(s)
- Philine Kirsch
- Department of Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123 Saarbrücken, Germany
| | - Valentin Jakob
- Department of Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123 Saarbrücken, Germany
| | - Walid A. M. Elgaher
- Department of Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Christine Walt
- Department of Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Kevin Oberhausen
- Department of Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Thomas F. Schulz
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123 Saarbrücken, Germany
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Martin Empting
- Department of Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123 Saarbrücken, Germany
| |
Collapse
|
16
|
Madzhidov TI, Rakhimbekova A, Kutlushuna A, Polishchuk P. Probabilistic Approach for Virtual Screening Based on Multiple Pharmacophores. Molecules 2020; 25:molecules25020385. [PMID: 31963467 PMCID: PMC7024325 DOI: 10.3390/molecules25020385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 12/02/2022] Open
Abstract
Pharmacophore modeling is usually considered as a special type of virtual screening without probabilistic nature. Correspondence of at least one conformation of a molecule to pharmacophore is considered as evidence of its bioactivity. We show that pharmacophores can be treated as one-class machine learning models, and the probability the reflecting model’s confidence can be assigned to a pharmacophore on the basis of their precision of active compounds identification on a calibration set. Two schemes (Max and Mean) of probability calculation for consensus prediction based on individual pharmacophore models were proposed. Both approaches to some extent correspond to commonly used consensus approaches like the common hit approach or the one based on a logical OR operation uniting hit lists of individual models. Unlike some known approaches, the proposed ones can rank compounds retrieved by multiple models. These approaches were benchmarked on multiple ChEMBL datasets used for ligand-based pharmacophore modeling and externally validated on corresponding DUD-E datasets. The influence of complexity of pharmacophores and their performance on a calibration set on results of virtual screening was analyzed. It was shown that Max and Mean approaches have superior early enrichment to the commonly used approaches. Thus, a well-performing, easy-to-implement, and probabilistic alternative to existing approaches for pharmacophore-based virtual screening was proposed.
Collapse
Affiliation(s)
- Timur I. Madzhidov
- A.M. Butlerov Institute of Chemistry, Kazan Federal University, 420008 Kazan, Russia; (T.I.M.); (A.R.); (A.K.)
| | - Assima Rakhimbekova
- A.M. Butlerov Institute of Chemistry, Kazan Federal University, 420008 Kazan, Russia; (T.I.M.); (A.R.); (A.K.)
| | - Alina Kutlushuna
- A.M. Butlerov Institute of Chemistry, Kazan Federal University, 420008 Kazan, Russia; (T.I.M.); (A.R.); (A.K.)
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, 77900 Olomouc, Czech Republic
| | - Pavel Polishchuk
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, 77900 Olomouc, Czech Republic
- Correspondence: ; Tel.: +420-585632298
| |
Collapse
|
17
|
First-In-Class Inhibitors Targeting the Interaction between Bacterial RNA Polymerase and Sigma Initiation Factor Affect the Viability and Toxin Release of Streptococcus pneumoniae. Molecules 2019; 24:molecules24162902. [PMID: 31405060 PMCID: PMC6719014 DOI: 10.3390/molecules24162902] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 11/16/2022] Open
Abstract
Novel antimicrobial classes are in desperate need for clinical management of infections caused by increasingly prevalent multi-drug resistant pathogens. The protein-protein interaction between bacterial RNA polymerase (RNAP) and the housekeeping sigma initiation factor is essential to transcription and bacterial viability. It also presents a potential target for antimicrobial discovery, for which a hit compound (C3) was previously identified from a pharmacophore model-based in silico screen. In this study, the hit compound was experimentally assessed with some rationally designed derivatives for the antimicrobial activities, in particular against Streptococcus pneumoniae and other pathogens. One compound, C3-005, shows dramatically improved activity against pneumococci compared to C3. C3-005 also attenuates S. pneumoniae toxin production more strongly than existing classes of antibiotics tested. Here we demonstrate a newly validated antimicrobial agent to address an overlooked target in the hit-to-lead process, which may pave the way for further antimicrobial development.
Collapse
|
18
|
Zheng C, Hou W, Liu J, Xu X, Lin J, Sun P, Chen W. Design and synthesis of 2‐hydroxyl‐4‐methoxyl‐3‐(3‐methylbut‐2‐en‐1‐yl)‐6‐(4‐phenylbenzoylamino)benzoic acid derivatives as antibacterial agents based on cajaninstilbene acid scaffold hopping. Drug Dev Res 2019; 80:750-757. [DOI: 10.1002/ddr.21556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/25/2019] [Accepted: 05/19/2019] [Indexed: 01/25/2023]
Affiliation(s)
- Chang Zheng
- College of PharmacyJinan University Guangzhou People's Republic of China
| | - Wen Hou
- College of PharmacyJinan University Guangzhou People's Republic of China
| | - Jun Liu
- College of PharmacyJinan University Guangzhou People's Republic of China
| | - Xiao‐Fang Xu
- College of PharmacyJinan University Guangzhou People's Republic of China
| | - Jing Lin
- College of PharmacyJinan University Guangzhou People's Republic of China
| | - Ping‐Hua Sun
- College of PharmacyJinan University Guangzhou People's Republic of China
| | - Wei‐Min Chen
- College of PharmacyJinan University Guangzhou People's Republic of China
| |
Collapse
|
19
|
Wang YW, Zheng L, Jia FC, Chen YF, Wu AX. Oxidative ring-opening of isatins for the synthesis of 2-aminobenzamides and 2-aminobenzoates. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.01.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Patel OPS, Dhiman S, Khan S, Shinde VN, Jaspal S, Srivathsa MR, Jha PN, Kumar A. A straightforward TBHP-mediated synthesis of 2-amidobenzoic acids from 2-arylindoles and their antimicrobial activity. Org Biomol Chem 2019; 17:5962-5970. [DOI: 10.1039/c9ob00797k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of 2-amidobenzoic acids has been achieved through TBHP-mediated oxidative ring opening of 2-arylindoles. The synthesized compounds have been evaluated for their antimicrobial activity.
Collapse
Affiliation(s)
| | - Shiv Dhiman
- Department of Chemistry
- BITS Pilani
- Pilani Campus
- India
| | - Shahid Khan
- Department of Biological Sciences
- BITS Pilani
- Pilani Campus
- India
| | | | - Sonam Jaspal
- Department of Chemistry
- BITS Pilani
- Pilani Campus
- India
| | | | - Prabhat N. Jha
- Department of Biological Sciences
- BITS Pilani
- Pilani Campus
- India
| | - Anil Kumar
- Department of Chemistry
- BITS Pilani
- Pilani Campus
- India
| |
Collapse
|
21
|
Ligand-Based Pharmacophore Modeling Using Novel 3D Pharmacophore Signatures. Molecules 2018; 23:molecules23123094. [PMID: 30486389 PMCID: PMC6321403 DOI: 10.3390/molecules23123094] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/23/2018] [Accepted: 11/23/2018] [Indexed: 11/16/2022] Open
Abstract
Pharmacophore modeling is a widely used strategy for finding new hit molecules. Since not all protein targets have available 3D structures, ligand-based approaches are still useful. Currently, there are just a few free ligand-based pharmacophore modeling tools, and these have a lot of restrictions, e.g., using a template molecule for alignment. We developed a new approach to 3D pharmacophore representation and matching which does not require pharmacophore alignment. This representation can be used to quickly find identical pharmacophores in a given set. Based on this representation, a 3D pharmacophore ligand-based modeling approach to search for pharmacophores which preferably match active compounds and do not match inactive ones was developed. The approach searches for 3D pharmacophore models starting from 2D structures of available active and inactive compounds. The implemented approach was successfully applied for several retrospective studies. The results were compared to a 2D similarity search, demonstrating some of the advantages of the developed 3D pharmacophore models. Also, the generated 3D pharmacophore models were able to match the 3D poses of known ligands from their protein-ligand complexes, confirming the validity of the models. The developed approach is available as an open-source software tool: http://www.qsar4u.com/pages/pmapper.php and https://github.com/meddwl/psearch.
Collapse
|
22
|
Schütz C, Empting M. Targeting the Pseudomonas quinolone signal quorum sensing system for the discovery of novel anti-infective pathoblockers. Beilstein J Org Chem 2018; 14:2627-2645. [PMID: 30410625 PMCID: PMC6204780 DOI: 10.3762/bjoc.14.241] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/28/2018] [Indexed: 12/12/2022] Open
Abstract
The Gram-negative opportunistic pathogen Pseudomonas aeruginosa causes severe nosocomial infections. It uses quorum sensing (QS) to regulate and coordinate population-wide group behaviours in the infection process like concerted secretion of virulence factors. One very important signalling network is the Pseudomonas quinolone signal (PQS) QS. With the aim to devise novel and innovative anti-infectives, inhibitors have been designed to address the various potential drug targets present within pqs QS. These range from enzymes within the biosynthesis cascade of the signal molecules PqsABCDE to the receptor of these autoinducers PqsR (MvfR). This review shortly introduces P. aeruginosa and its pathogenicity traits regulated by the pqs system and highlights the published drug discovery efforts providing insights into the compound binding modes if available. Furthermore, suitability of the individual targets for pathoblocker design is discussed.
Collapse
Affiliation(s)
- Christian Schütz
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization (DDOP), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Martin Empting
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization (DDOP), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Saarbrücken, Germany
| |
Collapse
|
23
|
Martinez AA, Espinosa BA, Adamek RN, Thomas BA, Chau J, Gonzalez E, Keppetipola N, Salzameda NT. Breathing new life into West Nile virus therapeutics; discovery and study of zafirlukast as an NS2B-NS3 protease inhibitor. Eur J Med Chem 2018; 157:1202-1213. [PMID: 30193218 DOI: 10.1016/j.ejmech.2018.08.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/06/2018] [Accepted: 08/27/2018] [Indexed: 10/28/2022]
Abstract
The West Nile virus (WNV) has spread throughout the world causing neuroinvasive diseases with no treatments available. The viral NS2B-NS3 protease is essential for WNV survival and replication in host cells and is a promising drug target. Through an enzymatic screen of the National Institute of Health clinical compound library, we report the discovery of zafirlukast, an FDA approved treatment for asthma, as an inhibitor for the WNV NS2B-NS3 protease. Zafirlukast was determined to inhibit the protease through a mixed mode mechanism with an IC50 value of 32 μM. A structure activity relationship study of zafirlukast revealed the cyclopentyl carbamate and N-aryl sulfonamide as structural elements crucial for NS2B-NS3 protease inhibition. Replacing the cyclopentyl with a phenyl improved inhibition, resulting in an IC50 of 22 μM. Experimental and computational docking analysis support the inhibition model of zafirlukast and analogs binding at an allosteric site on the NS3 protein, thereby disrupting the NS2B cofactor from binding, resulting in protease inhibition.
Collapse
Affiliation(s)
- Anastasia A Martinez
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA, 92831, USA
| | - Bianca A Espinosa
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA, 92831, USA
| | - Rebecca N Adamek
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA, 92831, USA
| | - Brent A Thomas
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA, 92831, USA
| | - Jennifer Chau
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA, 92831, USA
| | - Edwardo Gonzalez
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA, 92831, USA
| | - Niroshika Keppetipola
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA, 92831, USA
| | - Nicholas T Salzameda
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA, 92831, USA.
| |
Collapse
|
24
|
Soukarieh F, Williams P, Stocks MJ, Cámara M. Pseudomonas aeruginosa Quorum Sensing Systems as Drug Discovery Targets: Current Position and Future Perspectives. J Med Chem 2018; 61:10385-10402. [PMID: 29999316 DOI: 10.1021/acs.jmedchem.8b00540] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antimicrobial resistance (AMR) is a serious threat to public health globally, manifested by the frequent emergence of multidrug resistant pathogens that render current chemotherapy inadequate. Health organizations worldwide have recognized the severity of this crisis and implemented action plans to contain its adverse consequences and prolong the utility of conventional antibiotics. Hence, there is a pressing need for new classes of antibacterial agents with novel modes of action. Quorum sensing (QS), a communication system employed by bacterial populations to coordinate virulence gene expression, is a potential target that has been intensively investigated over the past decade. This Perspective will focus on recent advances in targeting the three main quorum sensing systems ( las, rhl, and pqs) of a major opportunistic human pathogen, Pseudomonas aeruginosa, and will specifically evaluate the medicinal chemistry strategies devised to develop QS inhibitors from a drug discovery perspective.
Collapse
Affiliation(s)
- Fadi Soukarieh
- School of Life Sciences, Centre for Biomolecular Sciences , University of Nottingham , Nottingham , NG7 2RD , U.K
| | - Paul Williams
- School of Life Sciences, Centre for Biomolecular Sciences , University of Nottingham , Nottingham , NG7 2RD , U.K
| | - Michael J Stocks
- School of Pharmacy, Centre for Biomolecular Sciences , University of Nottingham , Nottingham , NG7 2RD , U.K
| | - Miguel Cámara
- School of Life Sciences, Centre for Biomolecular Sciences , University of Nottingham , Nottingham , NG7 2RD , U.K
| |
Collapse
|
25
|
Protein‐protein interactions as antibiotic targets: A medicinal chemistry perspective. Med Res Rev 2018; 40:469-494. [DOI: 10.1002/med.21519] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 05/28/2018] [Accepted: 06/03/2018] [Indexed: 12/27/2022]
|
26
|
Design, synthesis & structure-activity relationships of a new class of antihuman enterovirus D68 & A71 agents. Future Med Chem 2018; 10:1333-1347. [PMID: 29745776 DOI: 10.4155/fmc-2017-0268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIM No antiviral medications are currently approved to treat enterovirus (EV)-associated disease or prevent EV infection. METHODS In this study, a series of probenecid derivatives were designed via a rational strategy and synthesized to obtain more potent anti-EV agents. RESULTS Compounds 8 and 24 exhibited the most potent activity against EV D68 and A71, with half maximal effective concentration (EC50) values of 2.49/2.09 and 2.59/2.41 μM, respectively, and revealed a broad inhibition spectrum toward other EV strains, with high selectivity indices. Additionally, compounds 8 and 24 showed good stability in rat serum, with half-lives of 48.39 and 60.26 min, respectively. CONCLUSION Compounds 8 and 24 are the promising candidates for the development of new agents against EV D68 and A71 viruses.
Collapse
|
27
|
Kumar P, Gupta M, Bahadur V, Parmar VS, Singh BK. Radical-Induced, Palladium-Catalyzed C-H Activation: An Approach to Functionalize 4H
-Benzo[d
][1,3]oxazin-4-one Derivatives by Using Toluenes, Aldehydes, and Benzyl Alcohols. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800263] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Prashant Kumar
- Bioorganic Laboratory; Department of Chemistry; University of Delhi; Delhi 110 007 India
| | - Mohit Gupta
- Bioorganic Laboratory; Department of Chemistry; University of Delhi; Delhi 110 007 India
| | - Vijay Bahadur
- Bioorganic Laboratory; Department of Chemistry; University of Delhi; Delhi 110 007 India
- SRM University Delhi-NCR; 131 029 Sonepat Haryana India
| | - Virinder S. Parmar
- Bioorganic Laboratory; Department of Chemistry; University of Delhi; Delhi 110 007 India
- Department of Chemistry; Central University of Haryana; 123 031 Mahendragarh Haryana India
| | - Brajendra K. Singh
- Bioorganic Laboratory; Department of Chemistry; University of Delhi; Delhi 110 007 India
| |
Collapse
|
28
|
Zhou Z, Ma S. Recent Advances in the Discovery of PqsD Inhibitors as Antimicrobial Agents. ChemMedChem 2017; 12:420-425. [PMID: 28195681 DOI: 10.1002/cmdc.201700015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/14/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Ziteng Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences; Shandong University; 44, West Culture Road Jinan 250012 PR China)
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences; Shandong University; 44, West Culture Road Jinan 250012 PR China)
| |
Collapse
|
29
|
Kamal AAM, Maurer CK, Allegretta G, Haupenthal J, Empting M, Hartmann RW. Quorum Sensing Inhibitors as Pathoblockers for Pseudomonas aeruginosa Infections: A New Concept in Anti-Infective Drug Discovery. TOPICS IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1007/7355_2017_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Ma C, Yang X, Lewis PJ. Bacterial Transcription Inhibitor of RNA Polymerase Holoenzyme Formation by Structure-Based Drug Design: From in Silico Screening to Validation. ACS Infect Dis 2016; 2:39-46. [PMID: 27622946 DOI: 10.1021/acsinfecdis.5b00058] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacterial transcription is a proven target for antibacterial research. However, most of the known inhibitors targeting transcription are from natural extracts or are hits from screens where the binding site remains unidentified. Using an RNA polymerase holoenzyme homology structure from the model Gram-positive organism Bacillus subtilis, we created a pharmacophore model and used it for in silico screening of a publicly available library for compounds able to inhibit holoenzyme formation. The hits demonstrated specific affinity to bacterial RNA polymerase and excellent activity using in vitro assays and showed no binding to the equivalent structure from human RNA polymerase II. The target specificity in live cells and antibacterial activity was demonstrated in microscopy and growth inhibition experiments. This is the first example of targeted inhibitor development for a bacterial RNA polymerase, outlining a complete discovery process from virtual screening to biochemical validation. This approach could serve as an appropriate platform for the future identification of inhibitors of bacterial transcription.
Collapse
Affiliation(s)
- Cong Ma
- School of Environmental and Life
Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Xiao Yang
- School of Environmental and Life
Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Peter J. Lewis
- School of Environmental and Life
Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
31
|
Synthesis and biological activity of novel mono-indole and mono-benzofuran inhibitors of bacterial transcription initiation complex formation. Bioorg Med Chem 2015; 23:1763-75. [DOI: 10.1016/j.bmc.2015.02.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/12/2015] [Accepted: 02/17/2015] [Indexed: 11/23/2022]
|
32
|
Molodtsov V, Fleming PR, Eyermann CJ, Ferguson AD, Foulk MA, McKinney DC, Masse CE, Buurman ET, Murakami KS. X-ray crystal structures of Escherichia coli RNA polymerase with switch region binding inhibitors enable rational design of squaramides with an improved fraction unbound to human plasma protein. J Med Chem 2015; 58:3156-71. [PMID: 25798859 DOI: 10.1021/acs.jmedchem.5b00050] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Squaramides constitute a novel class of RNA polymerase inhibitors of which genetic evidence and computational modeling previously have suggested an inhibitory mechanism mediated by binding to the RNA polymerase switch region. An iterative chemistry program increased the fraction unbound to human plasma protein from below minimum detection levels, i.e., <1% to 4-6%, while retaining biochemical potency. Since in vitro antimicrobial activity against an efflux-negative strain of Haemophilus influenzae was 4- to 8-fold higher, the combined improvement was at least 20- to 60-fold. Cocrystal structures of Escherichia coli RNA polymerase with two key squaramides showed displacement of the switch 2, predicted to interfere with the conformational change of the clamp domain and/or with binding of template DNA, a mechanism akin to that of natural product myxopyronin. Furthermore, the structures confirmed the chemical features required for biochemical potency. The terminal isoxazole and benzyl rings bind into distinct relatively narrow, hydrophobic pockets, and both are required for biochemical potency. In contrast, the linker composed of squarate and piperidine accesses different conformations in their respective cocrystal structures with RNA polymerase, reflecting its main role of proper orientation of the aforementioned terminal rings. These observations further explain the tolerance of hydrophilic substitutions in the linker region that was exploited to improve the fraction unbound to human plasma protein while retaining biochemical potency.
Collapse
Affiliation(s)
- Vadim Molodtsov
- †Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | | | | | | | | | | | - Craig E Masse
- ⊥Nimbus Therapeutics, Inc., Cambridge, Massachusetts 02141, United States
| | | | - Katsuhiko S Murakami
- †Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
33
|
Kumar A, Zhang KYJ. Hierarchical virtual screening approaches in small molecule drug discovery. Methods 2015; 71:26-37. [PMID: 25072167 PMCID: PMC7129923 DOI: 10.1016/j.ymeth.2014.07.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 02/06/2023] Open
Abstract
Virtual screening has played a significant role in the discovery of small molecule inhibitors of therapeutic targets in last two decades. Various ligand and structure-based virtual screening approaches are employed to identify small molecule ligands for proteins of interest. These approaches are often combined in either hierarchical or parallel manner to take advantage of the strength and avoid the limitations associated with individual methods. Hierarchical combination of ligand and structure-based virtual screening approaches has received noteworthy success in numerous drug discovery campaigns. In hierarchical virtual screening, several filters using ligand and structure-based approaches are sequentially applied to reduce a large screening library to a number small enough for experimental testing. In this review, we focus on different hierarchical virtual screening strategies and their application in the discovery of small molecule modulators of important drug targets. Several virtual screening studies are discussed to demonstrate the successful application of hierarchical virtual screening in small molecule drug discovery.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Structural Bioinformatics Team, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Kam Y J Zhang
- Structural Bioinformatics Team, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
34
|
Miltojević AB, Radulović NS. Structural elucidation of thermolysis products of methyl N-methyl-N-nitrosoanthranilate. RSC Adv 2015. [DOI: 10.1039/c5ra07612a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
MethylN-methyl-N-nitrosoanthranilate thermolysis in the vapor and condensed phases gave different coupling products, dimethyl 2,2′-(1,2-dimethylhydrazine-1,2-diyl)dibenzoate and methyl 5-methyl-6-oxo-(5H)-phenanthridine-4-carboxylate, respectively.
Collapse
Affiliation(s)
- Ana B. Miltojević
- Department of Chemistry
- Faculty of Science and Mathematics
- University of Niš
- 18000 Niš
- Serbia
| | - Niko S. Radulović
- Department of Chemistry
- Faculty of Science and Mathematics
- University of Niš
- 18000 Niš
- Serbia
| |
Collapse
|
35
|
Fruth M, Plaza A, Hinsberger S, Sahner JH, Haupenthal J, Bischoff M, Jansen R, Müller R, Hartmann RW. Binding mode characterization of novel RNA polymerase inhibitors using a combined biochemical and NMR approach. ACS Chem Biol 2014; 9:2656-63. [PMID: 25207839 DOI: 10.1021/cb5005433] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacterial RNA polymerase (RNAP) represents a validated target for the development of broad-spectrum antibiotics. However, the medical value of RNAP inhibitors in clinical use is limited by the prevalence of resistant strains. To overcome this problem, we focused on the exploration of alternative target sites within the RNAP. Previously, we described the discovery of a novel RNAP inhibitor class containing an ureidothiophene-2-carboxylic acid core structure. Herein, we demonstrate that these compounds are potent against a set of methicillin-resistant Staphylococcus aureus (MRSA) strains (MIC 2-16 μg mL(-1)) and rifampicin-resistant Escherichia coli TolC strains (MIC 12.5-50 μg mL(-1)). Additionally, an abortive transcription assay revealed that these compounds inhibit the bacterial transcription process during the initiation phase. Furthermore, the binding mode of the ureidothiophene-2-carboxylic acids was characterized by mutagenesis studies and ligand-based NMR spectroscopy. Competition saturation transfer difference (STD) NMR experiments with the described RNAP inhibitor myxopyronin A (Myx) suggest that the ureidothiophene-2-carboxylic acids compete with Myx for the same binding site in the RNAP switch region. INPHARMA (interligand NOE for pharmacophore mapping) experiments and molecular docking simulations provided a binding model in which the ureidothiophene-2-carboxylic acids occupy the region of the Myx western chain binding site and slightly occlude that of the eastern chain. These results demonstrate that the ureidothiophene-2-carboxylic acids are a highly attractive new class of RNAP inhibitors that can avoid the problem of resistance.
Collapse
Affiliation(s)
| | | | | | | | | | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, University of Saarland Hospital, 66421 Homburg/Saar, Germany
| | - Rolf Jansen
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | | | - Rolf W. Hartmann
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, 66123 Saarbrücken, Germany
| |
Collapse
|
36
|
Vuorinen A, Schuster D. Methods for generating and applying pharmacophore models as virtual screening filters and for bioactivity profiling. Methods 2014; 71:113-34. [PMID: 25461773 DOI: 10.1016/j.ymeth.2014.10.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 09/29/2014] [Accepted: 10/14/2014] [Indexed: 01/03/2023] Open
Abstract
Biological effects of small molecules in an organism result from favorable interactions between the molecules and their target proteins. These interactions depend on chemical functionalities, bonds, and their 3D-orientations towards each other. These 3D-arrangements of chemical functionalities that make a small molecule active towards its target can be described by pharmacophore models. In these models, chemical functionalities are represented as so-called features. Commonly, they are obtained either from a set of active compounds or directly from the observed protein-ligand interactions as present in X-ray crystal structures, NMR structures, or docking poses. In this review, we explain the basics of pharmacophore modeling including dataset generation, 3D-representations and conformational analysis of small molecules, pharmacophore model construction, model validation, and its benefits to virtual screening and other applications.
Collapse
Affiliation(s)
- Anna Vuorinen
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck - CMBI, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Daniela Schuster
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck - CMBI, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
37
|
Surface plasmon resonance – more than a screening technology: insights in the binding mode of σ70:core RNAP inhibitors. Future Med Chem 2014; 6:1551-65. [DOI: 10.4155/fmc.14.105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: Antibiotic resistance has become a major health problem. The σ70:core interface of bacterial RNA polymerase is a promising drug target. Recently, the coiled-coil and lid-rudder-system of the β’ subunit has been identified as an inhibition hot spot. Materials & methods & Results: By using surface plasmon resonance-based assays, inhibitors of the protein–protein interaction were identified and competition with σ70 was shown. Effective inhibition was verified in an in vitro transcription and a σ70:core assembly assay. For one hit series, we found a correlation between activity and affinity. Mutant interaction studies suggest the inhibitors’ binding site. Conclusion: Surface plasmon resonance is a valuable technology in drug design, that has been used in this study to identify and evaluate σ70:core RNA polymerase inhibitors.
Collapse
|
38
|
New insights into the bacterial RNA polymerase inhibitor CBR703 as a starting point for optimization as an anti-infective agent. Antimicrob Agents Chemother 2014; 58:4242-5. [PMID: 24820077 DOI: 10.1128/aac.02600-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CBR703 was reported to inhibit bacterial RNA polymerase (RNAP) and biofilm formation, considering it to be a good candidate for further optimization. While synthesized derivatives of CBR703 did not result in more-active RNAP inhibitors, we observed promising antibacterial activities. These again correlated with a significant cytotoxicity toward mammalian cells. Furthermore, we suspect the promising effects on biofilm formation to be artifacts. Consequently, this class of compounds can be considered unattractive as antibacterial agents.
Collapse
|
39
|
Hinsberger S, de Jong JC, Groh M, Haupenthal J, Hartmann RW. Benzamidobenzoic acids as potent PqsD inhibitors for the treatment of Pseudomonas aeruginosa infections. Eur J Med Chem 2014; 76:343-51. [PMID: 24589489 DOI: 10.1016/j.ejmech.2014.02.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/18/2013] [Accepted: 02/08/2014] [Indexed: 10/25/2022]
Abstract
Targeting PqsD is a promising novel approach to disrupt bacterial cell-to-cell-communication in Pseudomonas aeruginosa. In search of selective PqsD inhibitors, two series of benzamidobenzoic acids - one published as RNAP inhibitors and the other as PqsD inhibitors - were investigated for inhibitory activity toward the respective other enzyme. Additionally, novel derivatives were synthesized and biologically evaluated. By this means, the structural features needed for benzamidobenzoic acids to be potent and, most notably, selective PqsD inhibitors were identified. The most interesting compound of this study was the 3-Cl substituted compound 5 which strongly inhibits PqsD (IC₅₀ 6.2 μM) while exhibiting no inhibition of RNAP.
Collapse
Affiliation(s)
- Stefan Hinsberger
- Helmholtz-Institute for Pharmaceutical Research Saarland, Department of Drug Design and Optimization, Saarland University, Campus C2.3, 66123 Saarbrücken, Germany
| | - Johannes C de Jong
- Helmholtz-Institute for Pharmaceutical Research Saarland, Department of Drug Design and Optimization, Saarland University, Campus C2.3, 66123 Saarbrücken, Germany
| | - Matthias Groh
- Helmholtz-Institute for Pharmaceutical Research Saarland, Department of Drug Design and Optimization, Saarland University, Campus C2.3, 66123 Saarbrücken, Germany
| | - Jörg Haupenthal
- Helmholtz-Institute for Pharmaceutical Research Saarland, Department of Drug Design and Optimization, Saarland University, Campus C2.3, 66123 Saarbrücken, Germany
| | - Rolf W Hartmann
- Helmholtz-Institute for Pharmaceutical Research Saarland, Department of Drug Design and Optimization, Saarland University, Campus C2.3, 66123 Saarbrücken, Germany; Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, 66123 Saarbrücken, Germany.
| |
Collapse
|
40
|
Ghosh SK, Nagarajan R. Total synthesis of cruciferane via epoxidation/tandem cyclization sequence. RSC Adv 2014. [DOI: 10.1039/c4ra10309b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The total synthesis of alkaloid cruciferane is performed in three steps with an overall yield of 60.3%.
Collapse
Affiliation(s)
- Suman Kr Ghosh
- School of Chemistry
- University of Hyderabad
- Hyderabad-500046, India
| | | |
Collapse
|