1
|
Covelli V, Buonocore M, Grimaldi M, Scrima M, Santoro A, Marino C, De Simone V, van Baarle L, Biscu F, Scala MC, Sala M, Matteoli G, D'Ursi AM, Rodriquez M. Peptides as modulators of FPPS enzyme: A multifaceted evaluation from the design to the mechanism of action. Eur J Med Chem 2024; 279:116871. [PMID: 39303514 DOI: 10.1016/j.ejmech.2024.116871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Bone diseases are medical conditions caused by the loss of bone homeostasis consecutive to increased osteoclast activity and diminished osteoblast activity. The mevalonate pathway (MVA) is crucial for maintaining this balance since it drives the post-translational prenylation of small guanosine triphosphatases (GTPases) proteins. Farnesyl pyrophosphate synthase (FPPS) plays a crucial role in the MVA pathway. Consequently, in the treatment of bone-related diseases, FPPS is the target of FDA-approved nitrogen-containing bisphosphonates (N-BPs), which have tropism mainly for bone tissue due to their poor penetration in soft tissues. The development of inhibitors targeting the FPPS enzyme has garnered significant interest in recent decades due to FPPS's role in the biosynthesis of cholesterol and other isoprenoids, which are implicated in cancer, bone diseases, and other conditions. In this study, we describe a multidisciplinary approach to designing novel FPPS inhibitors, combining computational modeling, biochemical assays, and biophysical techniques. A series of peptides and phosphopeptides were designed, synthesized, and evaluated for their ability to inhibit FPPS activity. Molecular docking was employed to predict the binding modes of these compounds to FPPS, while Surface Plasmon Resonance (SPR) and Nuclear Magnetic Resonance (NMR) spectroscopy experiments - based on Saturation Transfer Difference (STD) and an enzymatic NMR assay - were used to measure their binding affinities and kinetics. The biological activity of the most promising compounds was further assessed in cellular assays using murine colorectal cancer (CRC) cells. Additionally, genomics and metabolomics profiling allowed to unravel the possible mechanisms underlying the activity of the peptides, confirming their involvement in the modulation of the MVA pathway. Our findings demonstrate that the designed peptides and phosphopeptides exhibit significant inhibitory activity against FPPS and possess antiproliferative effects on CRC cells, suggesting their potential as therapeutic agents for cancer.
Collapse
Affiliation(s)
- Verdiana Covelli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131, Naples, Italy.
| | - Michela Buonocore
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy; Department of Chemical Sciences and Research Centre on Bioactive Peptides (CIRPEB), University of Naples Federico II, Strada Comunale Cintia, 80126, Naples, Italy.
| | - Manuela Grimaldi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy.
| | - Mario Scrima
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy.
| | - Angelo Santoro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy; Department of Pharmacy, Scuola di Specializzazione in Farmacia Ospedaliera, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy.
| | - Carmen Marino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy.
| | - Veronica De Simone
- Department of Chronic Diseases, Metabolism and Ageing (CHROMETA)-Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat, 49, 3000, Leuven, Belgium.
| | - Lies van Baarle
- Department of Chronic Diseases, Metabolism and Ageing (CHROMETA)-Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat, 49, 3000, Leuven, Belgium.
| | - Francesca Biscu
- Department of Chronic Diseases, Metabolism and Ageing (CHROMETA)-Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat, 49, 3000, Leuven, Belgium.
| | - Maria Carmina Scala
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy.
| | - Marina Sala
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy.
| | - Gianluca Matteoli
- Department of Chronic Diseases, Metabolism and Ageing (CHROMETA)-Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat, 49, 3000, Leuven, Belgium.
| | - Anna Maria D'Ursi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy.
| | - Manuela Rodriquez
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131, Naples, Italy.
| |
Collapse
|
2
|
Salari S, Lee H, Tsantrizos YS, Park J. Inhibition of human mevalonate kinase by allosteric inhibitors of farnesyl pyrophosphate synthase. FEBS Open Bio 2024; 14:1320-1339. [PMID: 38923323 PMCID: PMC11301271 DOI: 10.1002/2211-5463.13853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/07/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Mevalonate kinase is a key regulator of the mevalonate pathway, subject to feedback inhibition by the downstream metabolite farnesyl pyrophosphate. In this study, we validated the hypothesis that monophosphonate compounds mimicking farnesyl pyrophosphate can inhibit mevalonate kinase. Exploring compounds originally synthesized as allosteric inhibitors of farnesyl pyrophosphate synthase, we discovered mevalonate kinase inhibitors with nanomolar activity. Kinetic characterization of the two most potent inhibitors demonstrated Ki values of 3.1 and 22 nm. Structural comparison suggested features of these inhibitors likely responsible for their potency. Our findings introduce the first class of nanomolar inhibitors of human mevalonate kinase, opening avenues for future research. These compounds might prove useful as molecular tools to study mevalonate pathway regulation and evaluate mevalonate kinase as a potential therapeutic target.
Collapse
Affiliation(s)
- Saman Salari
- Department of BiochemistryMemorial University of NewfoundlandSt. John'sCanada
| | - Hiu‐Fung Lee
- Department of ChemistryMcGill UniversityMontrealCanada
| | | | - Jaeok Park
- Department of BiochemistryMemorial University of NewfoundlandSt. John'sCanada
| |
Collapse
|
3
|
Rastogi SK, Khanka S, Kumar S, Lakra A, Rathur R, Sharma K, Bisen AC, Bhatta RS, Kumar R, Singh D, Sinha AK. Design, synthesis and biological evaluation of novel pyrimidine derivatives as bone anabolic agents promoting osteogenesis via the BMP2/SMAD1 signaling pathway. RSC Med Chem 2024; 15:677-694. [PMID: 38389884 PMCID: PMC10880903 DOI: 10.1039/d3md00500c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/16/2023] [Indexed: 02/24/2024] Open
Abstract
Anti-resorptive inhibitors such as bisphosphonates are widely used but they have limited efficacy and serious side effects. Though subcutaneous injection of teriparatide [PTH (1-34)] is an effective anabolic therapy, long-term repeated subcutaneous administration is not recommended. Henceforth, orally bio-available small-molecule-based novel therapeutics are unmet medical needs to improve the treatment. In this study, we designed, synthesized, and carried out a biological evaluation of 31 pyrimidine derivatives as potent bone anabolic agents. A series of in vitro experiments confirmed N-(5-bromo-4-(4-bromophenyl)-6-(2,4,5-trimethoxyphenyl)pyrimidin-2-yl)hexanamide (18a) as the most efficacious anabolic agent at 1 pM. It promoted osteogenesis by upregulating the expression of osteogenic genes (RUNX2 and type 1 col) via activation of the BMP2/SMAD1 signaling pathway. In vitro osteogenic potential was further validated using an in vivo fracture defect model where compound 18a promoted the bone formation rate at 5 mg kg-1. We also established the structure-activity relationship and pharmacokinetic studies of 18a.
Collapse
Affiliation(s)
- Sumit K Rastogi
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002. U.P. India
| | - Sonu Khanka
- Division of Endocrinology, CSIR-Central Drug Research Institute Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002. U.P. India
| | - Santosh Kumar
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002. U.P. India
| | - Amardeep Lakra
- Division of Endocrinology, CSIR-Central Drug Research Institute Lucknow 226031 India
| | - Rajat Rathur
- Division of Endocrinology, CSIR-Central Drug Research Institute Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002. U.P. India
| | - Kriti Sharma
- Division of Endocrinology, CSIR-Central Drug Research Institute Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002. U.P. India
| | - Amol Chhatrapati Bisen
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002. U.P. India
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute Lucknow 226031 India
| | - Rabi Sankar Bhatta
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002. U.P. India
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute Lucknow 226031 India
| | - Ravindra Kumar
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002. U.P. India
| | - Divya Singh
- Division of Endocrinology, CSIR-Central Drug Research Institute Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002. U.P. India
| | - Arun K Sinha
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002. U.P. India
| |
Collapse
|
4
|
Boutin R, Lee HF, Guan TL, Nguyen TT, Huang XF, Waller DD, Lu J, Christine Chio II, Michel RP, Sebag M, Tsantrizos YS. Discovery and Evaluation of C6-Substituted Pyrazolopyrimidine-Based Bisphosphonate Inhibitors of the Human Geranylgeranyl Pyrophosphate Synthase and Evaluation of Their Antitumor Efficacy in Multiple Myeloma, Pancreatic Ductal Adenocarcinoma, and Colorectal Cancer. J Med Chem 2023; 66:15776-15800. [PMID: 37982711 PMCID: PMC10832233 DOI: 10.1021/acs.jmedchem.3c01271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Novel C6-substituted pyrazolo[3,4-d]pyrimidine- and C2-substituted purine-based bisphosphonate (C6-PyraP-BP and C2-Pur-BP, respectively) inhibitors of the human geranylgeranyl pyrophosphate synthase (hGGPPS) were designed and evaluated for their ability to block the proliferation of multiple myeloma (MM), pancreatic ductal adenocarcinoma (PDAC), and colorectal cancer (CRC) cells. Pyrazolo[3,4-d]pyrimidine analogs were identified that induce selective intracellular target engagement leading to apoptosis and downregulate the prenylation of Rap-1A in MM, PDAC, and CRC cells. The C6-PyraP-BP inhibitor RB-07-16 was found to exhibit antitumor efficacy in xenograft mouse models of MM and PDAC, significantly reducing tumor growth without substantially increasing liver enzymes or causing significant histopathologic damage, usually associated with hepatotoxicity. RB-07-16 is a metabolically stable compound in cross-species liver microsomes, does not inhibit key CYP 450 enzymes, and exhibits good systemic circulation in rat. Collectively, the current studies provide encouraging support for further optimization of the pyrazolo[3,4-d]pyrimidine-based GGPPS inhibitors as potential human therapeutics for various cancers.
Collapse
Affiliation(s)
- Rebecca Boutin
- Department of Chemistry, McGill University, Montreal, Québec H3A 0B8, Canada
| | - Hiu-Fung Lee
- Department of Chemistry, McGill University, Montreal, Québec H3A 0B8, Canada
| | - Tian Lai Guan
- Department of Chemistry, McGill University, Montreal, Québec H3A 0B8, Canada
- Department of Biochemistry, McGill University, Montreal, Québec H3G 1Y6, Canada
| | - Tan Trieu Nguyen
- Department of Medicine, McGill University, Montreal, Québec H3A 1A1, Canada
| | - Xian Fang Huang
- Department of Medicine, McGill University, Montreal, Québec H3A 1A1, Canada
| | - Daniel D Waller
- Terry Fox Laboratory, BC Cancer Research Institute, Vancouver, British Columbia V5Z 1L3, Canada
| | - Jordan Lu
- Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Iok In Christine Chio
- Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York 10032, United States
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - René P Michel
- Department of Pathology, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Michael Sebag
- Department of Medicine, McGill University, Montreal, Québec H3A 1A1, Canada
- Division of Hematology, McGill University Health Center, Montreal, Québec H4A 3J1, Canada
| | - Youla S Tsantrizos
- Department of Chemistry, McGill University, Montreal, Québec H3A 0B8, Canada
- Department of Biochemistry, McGill University, Montreal, Québec H3G 1Y6, Canada
| |
Collapse
|
5
|
Ebetino FH, Sun S, Cherian P, Roshandel S, Neighbors JD, Hu E, Dunford JE, Sedghizadeh PP, McKenna CE, Srinivasan V, Boeckman RK, Russell RGG. Bisphosphonates: The role of chemistry in understanding their biological actions and structure-activity relationships, and new directions for their therapeutic use. Bone 2022; 156:116289. [PMID: 34896359 PMCID: PMC11023620 DOI: 10.1016/j.bone.2021.116289] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/16/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022]
Abstract
The bisphosphonates ((HO)2P(O)CR1R2P(O)(OH)2, BPs) were first shown to inhibit bone resorption in the 1960s, but it was not until 30 years later that a detailed molecular understanding of the relationship between their varied chemical structures and biological activity was elucidated. In the 1990s and 2000s, several potent bisphosphonates containing nitrogen in their R2 side chains (N-BPs) were approved for clinical use including alendronate, risedronate, ibandronate, and zoledronate. These are now mostly generic drugs and remain the leading therapies for several major bone-related diseases, including osteoporosis and skeletal-related events associated with bone metastases. The early development of chemistry in this area was largely empirical and only a few common structural features related to strong binding to calcium phosphate were clear. Attempts to further develop structure-activity relationships to explain more dramatic pharmacological differences in vivo at first appeared inconclusive, and evidence for mechanisms underlying cellular effects on osteoclasts and macrophages only emerged after many years of research. The breakthrough came when the intracellular actions on the osteoclast were first shown for the simpler bisphosphonates, via the in vivo formation of P-C-P derivatives of ATP. The synthesis and biological evaluation of a large number of nitrogen-containing bisphosphonates in the 1980s and 1990s led to the key discovery that the antiresorptive effects of these more complex analogs on osteoclasts result mostly from their potency as inhibitors of the enzyme farnesyl diphosphate synthase (FDPS/FPPS). This key branch-point enzyme in the mevalonate pathway of cholesterol biosynthesis is important for the generation of isoprenoid lipids that are utilized for the post-translational modification of small GTP-binding proteins essential for osteoclast function. Since then, it has become even more clear that the overall pharmacological effects of individual bisphosphonates on bone depend upon two key properties: the affinity for bone mineral and inhibitory effects on biochemical targets within bone cells, in particular FDPS. Detailed enzyme-ligand crystal structure analysis began in the early 2000s and advances in our understanding of the structure-activity relationships, based on interactions with this target within the mevalonate pathway and related enzymes in osteoclasts and other cells have continued to be the focus of research efforts to this day. In addition, while many members of the bisphosphonate drug class share common properties, now it is more clear that chemical modifications to create variations in these properties may allow customization of BPs for different uses. Thus, as the appreciation for new potential opportunities with this drug class grows, new chemistry to allow ready access to an ever-widening variety of bisphosphonates continues to be developed. Potential new uses of the calcium phosphate binding mechanism of bisphosphonates for the targeting of other drugs to the skeleton, and effects discovered on other cellular targets, even at non-skeletal sites, continue to intrigue scientists in this research field.
Collapse
Affiliation(s)
- Frank H Ebetino
- BioVinc LLC, 2265 E. Foothill Blvd, Pasadena, CA 91107, USA; Department of Chemistry, University of Rochester, Rochester, NY 14617, USA; Department of Oncology & Metabolism, University of Sheffield, Sheffield, UK.
| | - Shuting Sun
- BioVinc LLC, 2265 E. Foothill Blvd, Pasadena, CA 91107, USA.
| | - Philip Cherian
- BioVinc LLC, 2265 E. Foothill Blvd, Pasadena, CA 91107, USA
| | | | | | - Eric Hu
- BioVinc LLC, 2265 E. Foothill Blvd, Pasadena, CA 91107, USA
| | - James E Dunford
- Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, The Oxford University Institute of Musculoskeletal Sciences, The Botnar Research Centre, Nuffield Orthopaedic Centre, Headington, Oxford OX3 7LD, UK
| | - Parish P Sedghizadeh
- Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Charles E McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Venkat Srinivasan
- Department of Chemistry, University of Rochester, Rochester, NY 14617, USA
| | - Robert K Boeckman
- Department of Chemistry, University of Rochester, Rochester, NY 14617, USA
| | - R Graham G Russell
- Department of Oncology & Metabolism, University of Sheffield, Sheffield, UK; Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, The Oxford University Institute of Musculoskeletal Sciences, The Botnar Research Centre, Nuffield Orthopaedic Centre, Headington, Oxford OX3 7LD, UK; Mellanby Centre for Musculoskeletal Research, University of Sheffield, Sheffield, UK
| |
Collapse
|
6
|
Gafurov ZN, Kagilev AA, Kantyukov AO, Sinyashin OG, Yakhvarov DG. The role of organonickel reagents in organophosphorus chemistry. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Park J, Pandya VR, Ezekiel SJ, Berghuis AM. Phosphonate and Bisphosphonate Inhibitors of Farnesyl Pyrophosphate Synthases: A Structure-Guided Perspective. Front Chem 2021; 8:612728. [PMID: 33490038 PMCID: PMC7815940 DOI: 10.3389/fchem.2020.612728] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Phosphonates and bisphosphonates have proven their pharmacological utility as inhibitors of enzymes that metabolize phosphate and pyrophosphate substrates. The blockbuster class of drugs nitrogen-containing bisphosphonates represent one of the best-known examples. Widely used to treat bone-resorption disorders, these drugs work by inhibiting the enzyme farnesyl pyrophosphate synthase. Playing a key role in the isoprenoid biosynthetic pathway, this enzyme is also a potential anticancer target. Here, we provide a comprehensive overview of the research efforts to identify new inhibitors of farnesyl pyrophosphate synthase for various therapeutic applications. While the majority of these efforts have been directed against the human enzyme, some have been targeted on its homologs from other organisms, such as protozoan parasites and insects. Our particular focus is on the structures of the target enzymes and how the structural information has guided the drug discovery efforts.
Collapse
Affiliation(s)
- Jaeok Park
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Vishal R Pandya
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Sean J Ezekiel
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | | |
Collapse
|
8
|
Zhang G, Wang J, Guan C, Zhao Y, Ding C. Nickel‐ and Palladium‐Catalyzed Cross‐Coupling of Aryl Fluorosulfonates and Phosphites: Synthesis of Aryl Phosphonates. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Guofu Zhang
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Jing Wang
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Chenfei Guan
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Yiyong Zhao
- Zhejiang Ecological Environment Low Carbon Development Center Hangzhou 310012 P. R. China
| | - Chengrong Ding
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
9
|
Saber AF, Sayed M, Tolba MS, Kamal El-Dean AM, Hassanien R, Ahmed M. A facile method for preparation and evaluation of the antimicrobial efficiency of various heterocycles containing thieno[2,3-d]pyrimidine. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1829645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ahmed F. Saber
- Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Mostafa Sayed
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja, Egypt
| | - Mahmoud S. Tolba
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja, Egypt
| | | | - Reda Hassanien
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja, Egypt
| | - Mostafa Ahmed
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja, Egypt
| |
Collapse
|
10
|
Manaswiyoungkul P, de Araujo ED, Gunning PT. Targeting prenylation inhibition through the mevalonate pathway. RSC Med Chem 2020; 11:51-71. [PMID: 33479604 PMCID: PMC7485146 DOI: 10.1039/c9md00442d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/10/2019] [Indexed: 12/13/2022] Open
Abstract
Protein prenylation is a critical mediator in several diseases including cancer and acquired immunodeficiency syndrome (AIDS). Therapeutic intervention has focused primarily on directly targeting the prenyltransferase enzymes, FTase and GGTase I and II. To date, several drugs have advanced to clinical trials and while promising, they have yet to gain approval in a medical setting due to off-target effects and compensatory mechanisms activated by the body which results in drug resistance. While the development of dual inhibitors has mitigated undesirable side effects, potency remains sub-optimal for clinical development. An alternative approach involves antagonizing the upstream mevalonate pathway enzymes, FPPS and GGPPS, which mediate prenylation as well as cholesterol synthesis. The development of these inhibitors presents novel opportunities for dual inhibition of cancer-driven prenylation as well as cholesterol accumulation. Herein, we highlight progress towards the development of inhibitors against the prenylation machinery.
Collapse
Affiliation(s)
- Pimyupa Manaswiyoungkul
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Elvin D de Araujo
- Department of Chemical and Physical Sciences , University of Toronto Mississauga , 3359 Mississauga Rd N. , Mississauga , Ontario L5L 1C6 , Canada .
| | - Patrick T Gunning
- Department of Chemical and Physical Sciences , University of Toronto Mississauga , 3359 Mississauga Rd N. , Mississauga , Ontario L5L 1C6 , Canada .
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada
| |
Collapse
|
11
|
Grimaldi M, Randino R, Ciaglia E, Scrima M, Buonocore M, Stillitano I, Abate M, Covelli V, Tosco A, Gazzerro P, Bifulco M, Rodriquez M, D'Ursi AM. NMR for screening and a biochemical assay: Identification of new FPPS inhibitors exerting anticancer activity. Bioorg Chem 2019; 98:103449. [PMID: 32057422 DOI: 10.1016/j.bioorg.2019.103449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/01/2019] [Accepted: 11/14/2019] [Indexed: 01/14/2023]
Abstract
Farnesyl pyrophosphate synthase (FPPS) is a crucial enzyme for the synthesis of isoprenoids and the key target of nitrogen-containing bisphosphonates (N-BPs). N-BPs are potent and selective FPPS inhibitors that are used in the treatment of bone-related diseases, but have poor pharmacokinetic properties. Given the key role played by FPPS in many cancer-related pathways and the pharmacokinetic limits of N-BPs, hundreds of molecules have been screened to identify new FPPS inhibitors characterized by improved drug-like properties that are useful for broader therapeutic applications in solid, non-skeletal tumours. We have previously shown that N6-isopentenyladenosine (i6A) and its related compound N6-benzyladenosine (2) exert anti-glioma activity by interfering with the mevalonate pathway and inhibiting FPPS. Here, we report the design and synthesis of a panel of N6-benzyladenosine derivatives (compounds 2a-m) incorporating different chemical moieties on the benzyl ring. Compounds 2a-m show in vitro antiproliferative activity in U87MG glioma cells and, analogous to the bisphosphonate FPPS inhibitors, exhibit immunogenic properties in ex vivo γδ T cells from stimulated peripheral blood mononuclear cells (PBMCs). Using saturation transfer difference (STD) and quantitative 1H nuclear magnetic resonance (NMR) experiments, we found that 2f, the N6-benzyladenosine analogue that includes a tertbutyl moiety in the para position of the benzyl ring, is endowed with increased FPPS binding and inhibition compared to the parent compounds i6A and 2. N6-benzyladenosine derivatives, characterized by structural features that are significantly different from those of N-BPs, have been confirmed to be promising chemical scaffolds for the development of non N-BP FPPS inhibitors, exerting combined cytotoxic and immunostimulatory activities.
Collapse
Affiliation(s)
- Manuela Grimaldi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy; Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V.le J.F. Kennedy 54 - Pad. 20 Mostra d'Oltremare, 80125 Naples, Italy
| | - Rosario Randino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvatore Allende, 84081 Baronissi, Salerno, Italy
| | - Mario Scrima
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Michela Buonocore
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Ilaria Stillitano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Mario Abate
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvatore Allende, 84081 Baronissi, Salerno, Italy
| | - Verdiana Covelli
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Alessandra Tosco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini, 80131 Naples, Italy; Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvatore Allende, 84081 Baronissi, Salerno, Italy
| | - Manuela Rodriquez
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Anna Maria D'Ursi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy.
| |
Collapse
|
12
|
Han S, Li X, Xia Y, Yu Z, Cai N, Malwal SR, Han X, Oldfield E, Zhang Y. Farnesyl Pyrophosphate Synthase as a Target for Drug Development: Discovery of Natural-Product-Derived Inhibitors and Their Activity in Pancreatic Cancer Cells. J Med Chem 2019; 62:10867-10896. [DOI: 10.1021/acs.jmedchem.9b01405] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shuai Han
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, 100084 Beijing, China
| | - Xin Li
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, 100084 Beijing, China
- Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Yun Xia
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, 100084 Beijing, China
- Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Zhengsen Yu
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, 100084 Beijing, China
| | - Ningning Cai
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, 100084 Beijing, China
- Collaborative Innovation Center for Biotherapy, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Satish R. Malwal
- Department of Chemistry, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Xu Han
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308 Tianjin, China
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Yonghui Zhang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, 100084 Beijing, China
- Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, 100084 Beijing, China
- Collaborative Innovation Center for Biotherapy, Sichuan University, 610041 Chengdu, Sichuan, China
| |
Collapse
|
13
|
Kaboudin B, Esfandiari H, Moradi A, Kazemi F, Aoyama H. ZnCl2-Mediated Double Addition of Dialkylphosphite to Nitriles for the Synthesis of 1-Aminobisphosphonates. J Org Chem 2019; 84:14943-14948. [DOI: 10.1021/acs.joc.9b02298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Babak Kaboudin
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Gava Zang, Zanjan 45137-66731, Iran
| | - Hesam Esfandiari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Gava Zang, Zanjan 45137-66731, Iran
| | - Atieh Moradi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Gava Zang, Zanjan 45137-66731, Iran
| | - Foad Kazemi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Gava Zang, Zanjan 45137-66731, Iran
| | - Hiroshi Aoyama
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
14
|
Romanenko VD. α-Heteroatom-substituted gem-Bisphosphonates: Advances in the Synthesis and Prospects for Biomedical Application. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190401141844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Functionalized gem-bisphosphonic acid derivatives being pyrophosphate isosteres are of great synthetic and biological interest since they are currently the most important class of drugs developed for the treatment of diseases associated with the disorder of calcium metabolism, including osteoporosis, Paget’s disease, and hypercalcemia. In this article, we will try to give an in-depth overview of the methods for obtaining α- heteroatom-substituted methylenebisphosphonates and acquaint the reader with the synthetic strategies that are used to develop biologically important compounds of this type.
Collapse
Affiliation(s)
- Vadim D. Romanenko
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 1-Murmanska Street, Kyiv-94, 02660, Ukraine
| |
Collapse
|
15
|
Inoue MH, Nunes FS. Redox- and thermally-induced linkage isomerization of thieno[2,3-d]pyrimidin-4-one pentacyanoferrate(II/III) complexes. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Waller DD, Park J, Tsantrizos YS. Inhibition of farnesyl pyrophosphate (FPP) and/or geranylgeranyl pyrophosphate (GGPP) biosynthesis and its implication in the treatment of cancers. Crit Rev Biochem Mol Biol 2019; 54:41-60. [DOI: 10.1080/10409238.2019.1568964] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Jaeok Park
- Department of Chemistry, McGill University, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
| | - Youla S. Tsantrizos
- Department of Chemistry, McGill University, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
| |
Collapse
|
17
|
Lacbay CM, Waller DD, Park J, Gómez Palou M, Vincent F, Huang XF, Ta V, Berghuis AM, Sebag M, Tsantrizos YS. Unraveling the Prenylation-Cancer Paradox in Multiple Myeloma with Novel Geranylgeranyl Pyrophosphate Synthase (GGPPS) Inhibitors. J Med Chem 2018; 61:6904-6917. [PMID: 30016091 DOI: 10.1021/acs.jmedchem.8b00886] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Post-translational prenylation of the small GTP-binding proteins (GTPases) is vital to a plethora of biological processes, including cellular proliferation. We have identified a new class of thienopyrimidine-based bisphosphonate (ThP-BP) inhibitors of the human geranylgeranyl pyrophosphate synthase (hGGPPS) that block protein prenylation in multiple myeloma (MM) cells leading to cellular apoptosis. These inhibitors are also effective in blocking the proliferation of other types of cancer cells. We confirmed intracellular target engagement, demonstrated the mechanism of action leading to apoptosis, and determined a direct correlation between apoptosis and intracellular inhibition of hGGPPS. Administration of a ThP-BP inhibitor to a MM mouse model confirmed in vivo downregulation of Rap1A geranylgeranylation and reduction of monoclonal immunoglobulins (M-protein, a biomarker of disease burden) in the serum. These results provide the first proof-of-principle that hGGPPS is a valuable therapeutic target in oncology and more specifically for the treatment of multiple myeloma.
Collapse
Affiliation(s)
- Cyrus M Lacbay
- Department of Chemistry , McGill University , Montreal , QC H3A 0B8 , Canada
| | - Daniel D Waller
- Department of Medicine , McGill University , Montreal , QC H3A 1A1 , Canada
| | - Jaeok Park
- Department of Biochemistry , McGill University , Montreal , QC H3G 1Y6 , Canada
| | - Mònica Gómez Palou
- Department of Medicine , McGill University , Montreal , QC H3A 1A1 , Canada
| | - Félix Vincent
- Department of Chemistry , McGill University , Montreal , QC H3A 0B8 , Canada
| | - Xian Fang Huang
- Department of Medicine , McGill University , Montreal , QC H3A 1A1 , Canada
| | - Viviane Ta
- Department of Chemistry , McGill University , Montreal , QC H3A 0B8 , Canada
| | - Albert M Berghuis
- Department of Biochemistry , McGill University , Montreal , QC H3G 1Y6 , Canada
| | - Michael Sebag
- Department of Medicine , McGill University , Montreal , QC H3A 1A1 , Canada.,Division of Hematology , McGill University Health Center , Montreal , QC H4A 3J1 , Canada
| | - Youla S Tsantrizos
- Department of Chemistry , McGill University , Montreal , QC H3A 0B8 , Canada.,Department of Biochemistry , McGill University , Montreal , QC H3G 1Y6 , Canada
| |
Collapse
|
18
|
Lacbay CM, Menni M, Bernatchez JA, Götte M, Tsantrizos YS. Pharmacophore requirements for HIV-1 reverse transcriptase inhibitors that selectively "Freeze" the pre-translocated complex during the polymerization catalytic cycle. Bioorg Med Chem 2018; 26:1713-1726. [PMID: 29478802 DOI: 10.1016/j.bmc.2018.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/06/2018] [Accepted: 02/13/2018] [Indexed: 12/20/2022]
Abstract
Reverse transcriptase (RT) is responsible for replicating the HIV-1 genome and is a validated therapeutic target for the treatment of HIV infections. During each cycle of the RT-catalyzed DNA polymerization process, inorganic pyrophosphate is released as the by-product of nucleotide incorporation. Small molecules were identified that act as bioisosteres of pyrophosphate and can selectively freeze the catalytic cycle of HIV-1 RT at the pre-translocated stage of the DNA- or RNA-template-primer-enzyme complex.
Collapse
Affiliation(s)
- Cyrus M Lacbay
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Michael Menni
- Department of Biochemistry, McGill University, 3655 Sir William Osler Promenade, Montreal, Quebec H3G1Y6, Canada
| | - Jean A Bernatchez
- Department of Biochemistry, McGill University, 3655 Sir William Osler Promenade, Montreal, Quebec H3G1Y6, Canada
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, 6-020 Katz Group Centre, Edmonton, Alberta T6G 2E1, Canada; Department of Microbiology and Immunology, McGill University, 3775 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Youla S Tsantrizos
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada; Department of Biochemistry, McGill University, 3655 Sir William Osler Promenade, Montreal, Quebec H3G1Y6, Canada.
| |
Collapse
|
19
|
Picard MÈ, Nisole A, Béliveau C, Sen S, Barbar A, Shi R, Cusson M. Structural characterization of a lepidopteran type-II farnesyl diphosphate synthase from the spruce budworm, Choristoneura fumiferana: Implications for inhibitor design. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 92:84-92. [PMID: 29183817 DOI: 10.1016/j.ibmb.2017.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
Farnesyl diphosphate synthase (FPPS) is an enzyme from the class of short chain (E)-prenyltransferases that catalyzes the condensation of two molecules of isopentenyl diphosphate (IPP, C5) with dimethylallyl diphosphate (DMAPP, C5) to generate the C15 product FPP. In insects, FPPS plays a key role in the biosynthesis of the morphogenetic and gonadotropic "juvenile hormone" (JH). Lepidopteran genomes encode two very distinct FPPS paralogs, one of which ("type-II") is expressed almost exclusively in the JH-producing glands, the corpora allata. This paralog has been hypothesized to display structural features that enable the binding of the bulkier precursors required for the biosynthesis of lepidopteran ethyl-branched JHs. Here, we report on the first crystal structures of an insect FPPS solved to date. Apo, ligand-bound, and inhibitor-bound structures of type-II FPPS (FPPS2) from the spruce budworm, Choristoneura fumiferana (Order: Lepidoptera), were obtained. Comparison of apo and inhibitor-bound enzymes revealed differences in both inhibitor binding and structural plasticity of CfFPPS2 compared to other FPPSs. Our data showed that IPP is not essential to the closure of the C-terminal tail. Ortho-substituted pyridinium bisphosphonates, previously shown to inhibit CfFPPS2, bound to the allylic site, as predicted; however, their alkyl groups were oriented towards the homoallylic binding site, with the bulkier propyl-substituted inhibitor penetrating deeply into the IPP binding pocket. The current study sheds light on the structural basis of substrate specificity of type-II FPPS of the spruce budworm. Through a comparison with other inhibitor-bound FPPSs, we propose several approaches to improve inhibitor selectivity and potency.
Collapse
Affiliation(s)
- Marie-Ève Picard
- Département de biochimie, de microbiologie et de bio-informatique, Institut de Biologie Intégrative et des Systèmes, PROTEO, Université Laval, Quebec City, QC, G1V 0A6, Canada.
| | - Audrey Nisole
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., C.P. 10380, Station Sainte-Foy, Quebec City, QC, G1V 4C7, Canada.
| | - Catherine Béliveau
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., C.P. 10380, Station Sainte-Foy, Quebec City, QC, G1V 4C7, Canada.
| | - Stephanie Sen
- Department of Chemistry, The College of New Jersey, P.O. Box 7718, Ewing, NJ, 08628, USA.
| | - Aline Barbar
- Département de biochimie, de microbiologie et de bio-informatique, Institut de Biologie Intégrative et des Systèmes, PROTEO, Université Laval, Quebec City, QC, G1V 0A6, Canada; Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., C.P. 10380, Station Sainte-Foy, Quebec City, QC, G1V 4C7, Canada.
| | - Rong Shi
- Département de biochimie, de microbiologie et de bio-informatique, Institut de Biologie Intégrative et des Systèmes, PROTEO, Université Laval, Quebec City, QC, G1V 0A6, Canada.
| | - Michel Cusson
- Département de biochimie, de microbiologie et de bio-informatique, Institut de Biologie Intégrative et des Systèmes, PROTEO, Université Laval, Quebec City, QC, G1V 0A6, Canada; Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., C.P. 10380, Station Sainte-Foy, Quebec City, QC, G1V 4C7, Canada.
| |
Collapse
|
20
|
Liu QZ, Wang SS, Li X, Zhao XY, Li K, Lv GC, Qiu L, Lin JG. 3D-QSAR, molecular docking, and ONIOM studies on the structure-activity relationships and action mechanism of nitrogen-containing bisphosphonates. Chem Biol Drug Des 2017; 91:735-746. [DOI: 10.1111/cbdd.13134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/15/2017] [Accepted: 10/14/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Qing-Zhu Liu
- Key Laboratory of Nuclear Medicine; Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi China
| | - Shan-Shan Wang
- Key Laboratory of Nuclear Medicine; Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi China
- School of Chemical and Material Engineering; Jiangnan University; Wuxi China
| | - Xi Li
- Key Laboratory of Nuclear Medicine; Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi China
- School of Chemical and Material Engineering; Jiangnan University; Wuxi China
| | - Xue-Yu Zhao
- Key Laboratory of Nuclear Medicine; Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi China
- School of Chemical and Material Engineering; Jiangnan University; Wuxi China
| | - Ke Li
- Key Laboratory of Nuclear Medicine; Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi China
| | - Gao-Chao Lv
- Key Laboratory of Nuclear Medicine; Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi China
| | - Ling Qiu
- Key Laboratory of Nuclear Medicine; Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi China
| | - Jian-Guo Lin
- Key Laboratory of Nuclear Medicine; Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi China
| |
Collapse
|
21
|
Abstract
AbstractThe development of practical, efficient and atom-economical methods of formation of carbon-phosphorus bonds remains a topic of considerable interest for the current synthetic organic chemistry and electrochemistry. This review summarizes selected topics from the recent publications with particular emphasis on phosphine and phosphine oxides formation from white phosphorus, chlorophosphines in electrocatalytic processes using aryl, hetaryl or perfluoroalkyl halides as reagents. This review includes selected highlights concerning recent progress in modification of catalytic systems for aromatic C–H bonds phosphonation involving metal-catalyzed ligand directed or metal-induced oxidative processes. Furthermore, a part of this review is devoted to phosphorylation of olefins with white phosphorus under reductive conditions in water-organic media. Finally, we have also documented recent advances in ferrocene C–H activation and phosphorylation.
Collapse
|
22
|
Park J, Leung CY, Matralis AN, Lacbay CM, Tsakos M, Fernandez De Troconiz G, Berghuis AM, Tsantrizos YS. Pharmacophore Mapping of Thienopyrimidine-Based Monophosphonate (ThP-MP) Inhibitors of the Human Farnesyl Pyrophosphate Synthase. J Med Chem 2017; 60:2119-2134. [PMID: 28208018 DOI: 10.1021/acs.jmedchem.6b01888] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The human farnesyl pyrophosphate synthase (hFPPS), a key regulatory enzyme in the mevalonate pathway, catalyzes the biosynthesis of the C-15 isoprenoid farnesyl pyrophosphate (FPP). FPP plays a crucial role in the post-translational prenylation of small GTPases that perform a plethora of cellular functions. Although hFPPS is a well-established therapeutic target for lytic bone diseases, the currently available bisphosphonate drugs exhibit poor cellular uptake and distribution into nonskeletal tissues. Recent drug discovery efforts have focused primarily on allosteric inhibition of hFPPS and the discovery of non-bisphosphonate drugs for potentially treating nonskeletal diseases. Hit-to-lead optimization of a new series of thienopyrimidine-based monosphosphonates (ThP-MPs) led to the identification of analogs with nanomolar potency in inhibiting hFPPS. Their interactions with the allosteric pocket of the enzyme were characterized by crystallography, and the results provide further insight into the pharmacophore requirements for allosteric inhibition.
Collapse
Affiliation(s)
- Jaeok Park
- Department of Biochemistry, McGill University , 3649 Promenade Sir William Osler, Montreal, QC H3G 0B1, Canada
| | - Chun Yuen Leung
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Alexios N Matralis
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Cyrus M Lacbay
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Michail Tsakos
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | | | - Albert M Berghuis
- Department of Biochemistry, McGill University , 3649 Promenade Sir William Osler, Montreal, QC H3G 0B1, Canada.,Groupe de Recherche Axé sur la Structure des Protéines, McGill University , 3649 Promenade Sir William Osler, Montreal, QC H3G 0B1, Canada
| | - Youla S Tsantrizos
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada.,Department of Biochemistry, McGill University , 3649 Promenade Sir William Osler, Montreal, QC H3G 0B1, Canada.,Groupe de Recherche Axé sur la Structure des Protéines, McGill University , 3649 Promenade Sir William Osler, Montreal, QC H3G 0B1, Canada
| |
Collapse
|
23
|
Park J, Zielinski M, Magder A, Tsantrizos YS, Berghuis AM. Human farnesyl pyrophosphate synthase is allosterically inhibited by its own product. Nat Commun 2017; 8:14132. [PMID: 28098152 PMCID: PMC5253651 DOI: 10.1038/ncomms14132] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/02/2016] [Indexed: 12/13/2022] Open
Abstract
Farnesyl pyrophosphate synthase (FPPS) is an enzyme of the mevalonate pathway and a well-established therapeutic target. Recent research has focused around a newly identified druggable pocket near the enzyme's active site. Pharmacological exploitation of this pocket is deemed promising; however, its natural biological function, if any, is yet unknown. Here we report that the product of FPPS, farnesyl pyrophosphate (FPP), can bind to this pocket and lock the enzyme in an inactive state. The Kd for this binding is 5–6 μM, within a catalytically relevant range. These results indicate that FPPS activity is sensitive to the product concentration. Kinetic analysis shows that the enzyme is inhibited through FPP accumulation. Having a specific physiological effector, FPPS is a bona fide allosteric enzyme. This allostery offers an exquisite mechanism for controlling prenyl pyrophosphate levels in vivo and thus contributes an additional layer of regulation to the mevalonate pathway. Farnesyl pyrophosphate (FPP) is a key building block for the synthesis of many lipids. Here the authors determine the crystal structure of farnesyl pyrophosphate synthase (FPPS) with its bound product and use kinetic measurements to show that FPP is an allosteric effector of the enzyme.
Collapse
Affiliation(s)
- Jaeok Park
- Department of Biochemistry, McGill University, 3649 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 0B1
| | - Michal Zielinski
- Department of Biochemistry, McGill University, 3649 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 0B1
| | - Alexandr Magder
- Department of Biochemistry, McGill University, 3649 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 0B1
| | - Youla S Tsantrizos
- Department of Biochemistry, McGill University, 3649 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 0B1.,Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| | - Albert M Berghuis
- Department of Biochemistry, McGill University, 3649 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 0B1
| |
Collapse
|
24
|
Chmielewska E, Kafarski P. Synthetic Procedures Leading towards Aminobisphosphonates. Molecules 2016; 21:molecules21111474. [PMID: 27827924 PMCID: PMC6273145 DOI: 10.3390/molecules21111474] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/28/2016] [Accepted: 11/02/2016] [Indexed: 11/21/2022] Open
Abstract
Growing interest in the biological activity of aminobisphosphonates has stimulated the development of methods for their synthesis. Although several general procedures were previously elaborated to reach this goal, aminobisphosphonate chemistry is still developing quite substantially. Thus, innovative modifications of the existing commonly used reactions, as well as development of new procedures, are presented in this review, concentrating on recent achievements. Additionally, selected examples of aminobisphosphonate derivatization illustrate their usefulness for obtaining new diagnostic and therapeutic agents.
Collapse
Affiliation(s)
- Ewa Chmielewska
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław 50-370, Poland.
| | - Paweł Kafarski
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław 50-370, Poland.
| |
Collapse
|
25
|
Ramakrishna K, Thomas JM, Sivasankar C. A Green Approach to the Synthesis of α-Amino Phosphonate in Water Medium: Carbene Insertion into the N–H Bond by Cu(I) Catalyst. J Org Chem 2016; 81:9826-9835. [DOI: 10.1021/acs.joc.6b01940] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Kankanala Ramakrishna
- Catalysis and Energy Laboratory
(A Central University), Department of Chemistry Pondicherry University, Puducherry 605014, India
| | - Jisha Mary Thomas
- Catalysis and Energy Laboratory
(A Central University), Department of Chemistry Pondicherry University, Puducherry 605014, India
| | - Chinnappan Sivasankar
- Catalysis and Energy Laboratory
(A Central University), Department of Chemistry Pondicherry University, Puducherry 605014, India
| |
Collapse
|
26
|
Cerqueira NMFSA, Oliveira EF, Gesto DS, Santos-Martins D, Moreira C, Moorthy HN, Ramos MJ, Fernandes PA. Cholesterol Biosynthesis: A Mechanistic Overview. Biochemistry 2016; 55:5483-5506. [PMID: 27604037 DOI: 10.1021/acs.biochem.6b00342] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cholesterol is an essential component of cell membranes and the precursor for the synthesis of steroid hormones and bile acids. The synthesis of this molecule occurs partially in a membranous world (especially the last steps), where the enzymes, substrates, and products involved tend to be extremely hydrophobic. The importance of cholesterol has increased in the past half-century because of its association with cardiovascular diseases, which are considered one of the leading causes of death worldwide. In light of the current need for new drugs capable of controlling the levels of cholesterol in the bloodstream, it is important to understand how cholesterol is synthesized in the organism and identify the main enzymes involved in this process. Taking this into account, this review presents a detailed description of several enzymes involved in the biosynthesis of cholesterol. In this regard, the structure and catalytic mechanism of the enzymes involved in cholesterol biosynthesis, from the initial two-carbon acetyl-CoA building block, will be reviewed and their current pharmacological importance discussed. We believe that this review may contribute to a deeper level of understanding of cholesterol metabolism and that it will serve as a useful resource for future studies of the cholesterol biosynthesis pathway.
Collapse
Affiliation(s)
- Nuno M F S A Cerqueira
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Eduardo F Oliveira
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Diana S Gesto
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Diogo Santos-Martins
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Cátia Moreira
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Hari N Moorthy
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Maria J Ramos
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - P A Fernandes
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| |
Collapse
|
27
|
Matralis AN, Tsantrizos YS. Synthesis of Benzothiophene-Containing 10- and 11-Membered Cyclic Phostones. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Alexios N. Matralis
- Department of Chemistry; McGill University; 801 Sherbrooke Street West H3A 0B8 Montreal QC Canada
| | - Youla S. Tsantrizos
- Department of Chemistry; McGill University; 801 Sherbrooke Street West H3A 0B8 Montreal QC Canada
- Department of Biochemistry; McGill University; 3649 Promenade Sir William Osler H3G 0B1 Montreal QC Canada
| |
Collapse
|
28
|
Abstract
Background:
Bisphosphonates are drugs commonly used for the medication and prevention of diseases caused by decreased mineral density. Despite such important medicinal use, they display a variety of physiologic activities, which make them promising anti-cancer, anti-protozoal, antibacterial and antiviral agents.
Objective:
To review physiological activity of bisphosphonates with special emphasis on their ongoing and potential applications in medicine and agriculture.
Method:
Critical review of recent literature data.
Results:
Comprehensive review of activities revealed by bisphosphonates.
Conclusion:
although bisphosphonates are mostly recognized by their profound effects on bone physiology their medicinal potential has not been fully evaluated yet. Literature data considering enzyme inhibition suggest possibilities of far more wide application of these compounds. These applications are, however, limited by their low bioavailability and therefore intensive search for new chemical entities overcoming this shortage are carried out.
Collapse
|
29
|
Liu Q, Qiu L, Wang Y, Lv G, Liu G, Wang S, Lin J. Solvent effect on molecular structure, IR spectra, thermodynamic properties and chemical stability of zoledronic acid: DFT study. J Mol Model 2016; 22:84. [DOI: 10.1007/s00894-016-2953-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/29/2016] [Indexed: 02/04/2023]
|
30
|
Blondel S, Egesipe AL, Picardi P, Jaskowiak AL, Notarnicola M, Ragot J, Tournois J, Le Corf A, Brinon B, Poydenot P, Georges P, Navarro C, Pitrez PR, Ferreira L, Bollot G, Bauvais C, Laustriat D, Mejat A, De Sandre-Giovannoli A, Levy N, Bifulco M, Peschanski M, Nissan X. Drug screening on Hutchinson Gilford progeria pluripotent stem cells reveals aminopyrimidines as new modulators of farnesylation. Cell Death Dis 2016; 7:e2105. [PMID: 26890144 PMCID: PMC5399184 DOI: 10.1038/cddis.2015.374] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 11/09/2022]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder characterized by a dramatic appearance of premature aging. HGPS is due to a single-base substitution in exon 11 of the LMNA gene (c.1824C>T) leading to the production of a toxic form of the prelamin A protein called progerin. Because farnesylation process had been shown to control progerin toxicity, in this study we have developed a screening method permitting to identify new pharmacological inhibitors of farnesylation. For this, we have used the unique potential of pluripotent stem cells to have access to an unlimited and relevant biological resource and test 21,608 small molecules. This study identified several compounds, called monoaminopyrimidines, which target two key enzymes of the farnesylation process, farnesyl pyrophosphate synthase and farnesyl transferase, and rescue in vitro phenotypes associated with HGPS. Our results opens up new therapeutic possibilities for the treatment of HGPS by identifying a new family of protein farnesylation inhibitors, and which may also be applicable to cancers and diseases associated with mutations that involve farnesylated proteins.
Collapse
Affiliation(s)
- S Blondel
- INSERM U861, I-STEM, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 5 rue Henri Desbruères, Evry Cedex 91030, France.,UEVE, I-STEM, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 5 rue Henri Desbruères, Evry Cedex 91030, France
| | - A-L Egesipe
- CECS, I-STEM, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 5 rue Henri Desbruères, Evry Cedex 91030, France
| | - P Picardi
- Department of Medicine and Surgery, University of Salerno, Via Allende, Baronissi Salerno 84081, Italy
| | - A-L Jaskowiak
- CECS, I-STEM, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 5 rue Henri Desbruères, Evry Cedex 91030, France
| | - M Notarnicola
- Laboratory of Nutritional Biochemistry, National Institute for Digestive Diseases "S. de Bellis", Castellana Grotte, Bari 70013, Italy
| | - J Ragot
- INSERM U861, I-STEM, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 5 rue Henri Desbruères, Evry Cedex 91030, France.,UEVE, I-STEM, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 5 rue Henri Desbruères, Evry Cedex 91030, France
| | - J Tournois
- CECS, I-STEM, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 5 rue Henri Desbruères, Evry Cedex 91030, France
| | - A Le Corf
- INSERM U861, I-STEM, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 5 rue Henri Desbruères, Evry Cedex 91030, France.,UEVE, I-STEM, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 5 rue Henri Desbruères, Evry Cedex 91030, France
| | - B Brinon
- CECS, I-STEM, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 5 rue Henri Desbruères, Evry Cedex 91030, France
| | - P Poydenot
- CECS, I-STEM, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 5 rue Henri Desbruères, Evry Cedex 91030, France
| | - P Georges
- CECS, I-STEM, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 5 rue Henri Desbruères, Evry Cedex 91030, France
| | - C Navarro
- Aix Marseille Université, UMR S 910: Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine Timone, Marseille, France.,INSERM, UMR S 910: Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, Marseille, France
| | - P R Pitrez
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, Largo Marques de Pombal, Coimbra 3004-517, Portugal
| | - L Ferreira
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, Largo Marques de Pombal, Coimbra 3004-517, Portugal
| | - G Bollot
- SYNSIGHT, a/s IncubAlliance 86 rue de Paris Orsay 91400, France
| | - C Bauvais
- SYNSIGHT, a/s IncubAlliance 86 rue de Paris Orsay 91400, France
| | - D Laustriat
- CECS, I-STEM, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 5 rue Henri Desbruères, Evry Cedex 91030, France
| | - A Mejat
- Ecole Normale Supérieure de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, UMR 5239 CNRS/ENS Lyon/UCBL, 46 Allée d'Italie, Lyon, France
| | - A De Sandre-Giovannoli
- Aix Marseille Université, UMR S 910: Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine Timone, Marseille, France.,INSERM, UMR S 910: Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, Marseille, France
| | - N Levy
- Aix Marseille Université, UMR S 910: Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine Timone, Marseille, France.,INSERM, UMR S 910: Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, Marseille, France
| | - M Bifulco
- Department of Medicine and Surgery, University of Salerno, Via Allende, Baronissi Salerno 84081, Italy
| | - M Peschanski
- INSERM U861, I-STEM, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 5 rue Henri Desbruères, Evry Cedex 91030, France.,UEVE, I-STEM, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 5 rue Henri Desbruères, Evry Cedex 91030, France.,CECS, I-STEM, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 5 rue Henri Desbruères, Evry Cedex 91030, France
| | - X Nissan
- INSERM U861, I-STEM, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 5 rue Henri Desbruères, Evry Cedex 91030, France.,UEVE, I-STEM, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 5 rue Henri Desbruères, Evry Cedex 91030, France.,CECS, I-STEM, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 5 rue Henri Desbruères, Evry Cedex 91030, France
| |
Collapse
|
31
|
Rodriguez JB, Falcone BN, Szajnman SH. Approaches for Designing new Potent Inhibitors of Farnesyl Pyrophosphate Synthase. Expert Opin Drug Discov 2016; 11:307-20. [DOI: 10.1517/17460441.2016.1143814] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
Bozorov K, Zhao JY, Elmuradov B, Pataer A, Aisa HA. Recent developments regarding the use of thieno[2,3-d]pyrimidin-4-one derivatives in medicinal chemistry, with a focus on their synthesis and anticancer properties. Eur J Med Chem 2015; 102:552-73. [PMID: 26312434 DOI: 10.1016/j.ejmech.2015.08.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/04/2015] [Accepted: 08/07/2015] [Indexed: 12/19/2022]
Abstract
It is generally understood that the antitumor properties of synthetic heterocyclic compounds are among the most powerful properties that can be made use in medicinal chemistry. More specifically, their substantial cytotoxic effects against different types of human tumor cells, in addition to their roles as enzymes or receptors for various kinase inhibitors, make them critically important. In recent years, thieno[2,3-d]pyrimidin-4-one derivatives (TPs), which are analogs of quinazoline alkaloids, have frequently attracted the interest of medicinal chemistry researchers due to their promising anticancer properties. The present study is a review of the latest advances (i.e., since 2006) in TP derivative-related research, with a focus on how such derivatives are synthesized and on their anticancer activities.
Collapse
Affiliation(s)
- Khurshed Bozorov
- Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi, Xinjiang 830011, PR China; Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, 77, Mirzo Ulugbek Str., 100170 Tashkent, Uzbekistan.
| | - Jiang-Yu Zhao
- Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi, Xinjiang 830011, PR China
| | - Burkhon Elmuradov
- Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, 77, Mirzo Ulugbek Str., 100170 Tashkent, Uzbekistan
| | - Apar Pataer
- Departments of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Haji A Aisa
- Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi, Xinjiang 830011, PR China.
| |
Collapse
|
33
|
Adib M, Janatian Ghazvini H, Soheilizad M, Saeedi S, Tajbakhsh M, Amanlou M. One-Pot Four-Component Synthesis of Thieno[2,3-d]pyrimidin-4-aminesviaSequentialGewald/Cyclocondensation Reactions. Helv Chim Acta 2015. [DOI: 10.1002/hlca.201500008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Ramamoorthy G, Pugh ML, Tian BX, Phan RM, Perez LB, Jacobson MP, Poulter CD. Synthesis and Enzymatic Studies of Bisubstrate Analogues for Farnesyl Diphosphate Synthase. J Org Chem 2015; 80:3902-13. [DOI: 10.1021/acs.joc.5b00202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Mark L. Pugh
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Bo-Xue Tian
- Department
of Pharmaceutical Chemistry, School of Pharmacy, University of California, San
Francisco, California 94158, United States
- California
Institute for Quantitative Biomedical Research, University of California, San
Francisco, California 94158, United States
| | - Richard M. Phan
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Lawrence B. Perez
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Matthew P. Jacobson
- Department
of Pharmaceutical Chemistry, School of Pharmacy, University of California, San
Francisco, California 94158, United States
- California
Institute for Quantitative Biomedical Research, University of California, San
Francisco, California 94158, United States
| | - C. Dale Poulter
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
35
|
Gelat F, Lacomme C, Berger O, Gavara L, Montchamp JL. Synthesis of (phosphonomethyl)phosphinate pyrophosphate analogues via the phospha-Claisen condensation. Org Biomol Chem 2015; 13:825-33. [DOI: 10.1039/c4ob02007c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pyrophosphate analogues are of great importance especially for the design of biologically active molecules.
Collapse
Affiliation(s)
- Fabien Gelat
- Department of Chemistry
- Box 298860
- Texas Christian University
- Texas 76133
- USA
| | - Claire Lacomme
- Department of Chemistry
- Box 298860
- Texas Christian University
- Texas 76133
- USA
| | - Olivier Berger
- Department of Chemistry
- Box 298860
- Texas Christian University
- Texas 76133
- USA
| | - Laurent Gavara
- Department of Chemistry
- Box 298860
- Texas Christian University
- Texas 76133
- USA
| | - J.-L. Montchamp
- Department of Chemistry
- Box 298860
- Texas Christian University
- Texas 76133
- USA
| |
Collapse
|
36
|
Improved and Scalable Preparation of 6-Bromo-4-Chlorothieno[2,3-d]Pyrimidine. Chem Heterocycl Compd (N Y) 2014. [DOI: 10.1007/s10593-014-1579-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Lacbay CM, Mancuso J, Lin YS, Bennett N, Götte M, Tsantrizos YS. Modular Assembly of Purine-like Bisphosphonates as Inhibitors of HIV-1 Reverse Transcriptase. J Med Chem 2014; 57:7435-49. [DOI: 10.1021/jm501010f] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Cyrus M. Lacbay
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - John Mancuso
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Yih-Shyan Lin
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Nicholas Bennett
- Department
of Microbiology and Immunology, McGill University, 3775 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Matthias Götte
- Department
of Microbiology and Immunology, McGill University, 3775 University Street, Montreal, Quebec H3A 2B4, Canada
- Department
of Biochemistry, McGill University, 3655 Sir William Osler Promenade, Montreal, Quebec H3G1Y6, Canada
- Department
of Medicine, Division of Experimental Medicine, McGill University, 1110
Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
| | - Youla S. Tsantrizos
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- Department
of Biochemistry, McGill University, 3655 Sir William Osler Promenade, Montreal, Quebec H3G1Y6, Canada
| |
Collapse
|
38
|
Park J, Matralis AN, Berghuis AM, Tsantrizos YS. Human isoprenoid synthase enzymes as therapeutic targets. Front Chem 2014; 2:50. [PMID: 25101260 PMCID: PMC4106277 DOI: 10.3389/fchem.2014.00050] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 06/25/2014] [Indexed: 12/14/2022] Open
Abstract
In the human body, the complex biochemical network known as the mevalonate pathway is responsible for the biosynthesis of all isoprenoids, which consists of a vast array of metabolites that are vital for proper cellular functions. Two key isoprenoids, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are responsible for the post-translational prenylation of small GTP-binding proteins, and serve as the biosynthetic precursors to numerous other biomolecules. The down-stream metabolite of FPP and GGPP is squalene, the precursor to steroids, bile acids, lipoproteins, and vitamin D. In the past, interest in prenyl synthase inhibitors focused mainly on the role of the FPP in lytic bone diseases. More recently pre-clinical and clinical studies have strongly implicated high levels of protein prenylation in a plethora of human diseases, including non-skeletal cancers, the progression of neurodegenerative diseases and cardiovascular diseases. In this review, we focus mainly on the potential therapeutic value of down-regulating the biosynthesis of FPP, GGPP, and squalene. We summarize the most recent drug discovery efforts and the structural data available that support the current on-going studies.
Collapse
Affiliation(s)
- Jaeok Park
- Department of Biochemistry, McGill University Montreal, QC, Canada
| | | | - Albert M Berghuis
- Department of Biochemistry, McGill University Montreal, QC, Canada ; Department of Microbiology and Immunology, McGill University Montreal, QC, Canada
| | - Youla S Tsantrizos
- Department of Biochemistry, McGill University Montreal, QC, Canada ; Department of Chemistry, McGill University Montreal, QC, Canada
| |
Collapse
|
39
|
Liu LL, Wu Y, Wang Z, Zhu J, Zhao Y. Mechanistic Insight into the Copper-Catalyzed Phosphorylation of Terminal Alkynes: A Combined Theoretical and Experimental Study. J Org Chem 2014; 79:6816-22. [DOI: 10.1021/jo5007174] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Liu Leo Liu
- Key Laboratory for Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0343, United States
| | - Yile Wu
- Key Laboratory for Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Zeshu Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yufen Zhao
- Key Laboratory for Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
40
|
De Schutter JW, Park J, Leung CY, Gormley P, Lin YS, Hu Z, Berghuis AM, Poirier J, Tsantrizos YS. Multistage Screening Reveals Chameleon Ligands of the Human Farnesyl Pyrophosphate Synthase: Implications to Drug Discovery for Neurodegenerative Diseases. J Med Chem 2014; 57:5764-76. [DOI: 10.1021/jm500629e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Joris W. De Schutter
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Jaeok Park
- Department
of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Chun Yuen Leung
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Patrick Gormley
- Douglas Mental Health University Institute, 6825 Lasalle, Verdun, Quebec, H4H 1R3, Canada
| | - Yih-Shyan Lin
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Zheping Hu
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Albert M. Berghuis
- Department
of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
- Department
of Microbiology and Immunology, McGill University, 3775 Rue University, Montreal, Quebec H3A 2B4, Canada
- Groupe
de Recherche Axé sur la Structure des Protéines, McGill University, 3649 Promenade Sir William Osler, Montreal, Quebec H3G 0B1, Canada
| | - Judes Poirier
- Douglas Mental Health University Institute, 6825 Lasalle, Verdun, Quebec, H4H 1R3, Canada
| | - Youla S. Tsantrizos
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- Department
of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
- Groupe
de Recherche Axé sur la Structure des Protéines, McGill University, 3649 Promenade Sir William Osler, Montreal, Quebec H3G 0B1, Canada
| |
Collapse
|
41
|
Wang T, Sang S, Liu LL, Qiao H, Gao Y, Zhao Y. Experimental and Theoretical Study on Palladium-Catalyzed C–P Bond Formation via Direct Coupling of Triarylbismuths with P(O)–H Compounds. J Org Chem 2013; 79:608-17. [DOI: 10.1021/jo402392t] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Tao Wang
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, Fujian, China
| | - Shuai Sang
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, Fujian, China
| | - Liu Leo Liu
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, Fujian, China
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0343, United States
| | - Hongwei Qiao
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, Fujian, China
| | - Yuxing Gao
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, Fujian, China
| | - Yufen Zhao
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, Fujian, China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|