1
|
Kooshan Z, Cárdenas-Piedra L, Clements J, Batra J. Glycolysis, the sweet appetite of the tumor microenvironment. Cancer Lett 2024; 600:217156. [PMID: 39127341 DOI: 10.1016/j.canlet.2024.217156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Cancer cells display an altered metabolic phenotype, characterised by increased glycolysis and lactate production, even in the presence of sufficient oxygen - a phenomenon known as the Warburg effect. This metabolic reprogramming is a crucial adaptation that enables cancer cells to meet their elevated energy and biosynthetic demands. Importantly, the tumor microenvironment plays a pivotal role in shaping and sustaining this metabolic shift in cancer cells. This review explores the intricate relationship between the tumor microenvironment and the Warburg effect, highlighting how communication within this niche regulates cancer cell metabolism and impacts tumor progression and therapeutic resistance. We discuss the potential of targeting the Warburg effect as a promising therapeutic strategy, with the aim of disrupting the metabolic advantage of cancer cells and enhancing our understanding of this complex interplay within the tumor microenvironment.
Collapse
Affiliation(s)
- Zeinab Kooshan
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Lilibeth Cárdenas-Piedra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell & Tissue Engineering Technologies, Brisbane, Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell & Tissue Engineering Technologies, Brisbane, Australia.
| |
Collapse
|
2
|
Liang X, Chen R, Wang C, Wang Y, Zhang J. Targeting HSP90 for Cancer Therapy: Current Progress and Emerging Prospects. J Med Chem 2024; 67:15968-15995. [PMID: 39256986 DOI: 10.1021/acs.jmedchem.4c00966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Heat shock protein 90 (HSP90), a highly conserved member of the heat shock protein family, regulates various proteins and signaling pathways involved in cancer, making it a promising target for cancer therapy. Traditional HSP90 inhibitors have demonstrated significant antitumor potential in preclinical trials, with over 20 compounds advancing to clinical trials and showing promising results. However, the limited clinical efficacy and shared toxicity of these inhibitors restrict their further clinical use. Encouragingly, developing novel inhibitors using conventional medicinal chemistry approaches─such as selective inhibitors, dual inhibitors, protein-protein interaction inhibitors, and proteolysis-targeting chimeras─is expected to address these challenges. Notably, the selective inhibitor TAS-116 has already been successfully marketed. In this Perspective, we summarize the structure, biological functions, and roles of HSP90 in cancer, analyze the clinical status of HSP90 inhibitors, and highlight the latest advancements in novel strategies, offering insights into their future development.
Collapse
Affiliation(s)
- Xinqi Liang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and Targeted Tracer Research and Development Laboratory and Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Ruixian Chen
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and Targeted Tracer Research and Development Laboratory and Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Chengdi Wang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and Targeted Tracer Research and Development Laboratory and Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Yuxi Wang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and Targeted Tracer Research and Development Laboratory and Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212 Sichuan, China
| | - Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and Targeted Tracer Research and Development Laboratory and Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212 Sichuan, China
| |
Collapse
|
3
|
Li Y, Xie Z, Lei X, Yang X, Huang S, Yuan W, Deng X, Wang Z, Tang G. Recent advances in pyruvate dehydrogenase kinase inhibitors: Structures, inhibitory mechanisms and biological activities. Bioorg Chem 2024; 144:107160. [PMID: 38301426 DOI: 10.1016/j.bioorg.2024.107160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/03/2024]
Abstract
Metabolism is reprogrammed in a variety of cancer cells to ensure their rapid proliferation. Cancer cells prefer to utilize glycolysis to produce energy as well as to provide large amounts of precursors for their division. In this process, cancer cells inhibit the activity of pyruvate dehydrogenase complex (PDC) by upregulating the expression of pyruvate dehydrogenase kinases (PDKs). Inhibiting the activity of PDKs in cancer cells can effectively block this metabolic transition in cancer cells, while also activating mitochondrial oxidative metabolism and promoting apoptosis of cancer cells. To this day, the study of PDKs inhibitors has become one of the research hotspots in the field of medicinal chemistry. Novel structures targeting PDKs are constantly being discovered, and some inhibitors have entered the clinical research stage. Here, we reviewed the research progress of PDKs inhibitors in recent years and classified them according to the PDKs binding sites they acted on, aiming to summarize the structural characteristics of inhibitors acting on different binding sites and explore their clinical application value. Finally, the shortcomings of some PDKs inhibitors and the further development direction of PDKs inhibitors are discussed.
Collapse
Affiliation(s)
- Yiyang Li
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyan Yang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Sheng Huang
- Jiuzhitang Co., Ltd, Changsha, Hunan 410007, China
| | - Weixi Yuan
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiangping Deng
- The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Zhe Wang
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
4
|
Pal R, Hui D, Menchen H, Zhao H, Mozziconacci O, Wilkins H, Blagg BSJ, Schöneich C, Swerdlow RH, Michaelis ML, Michaelis EK. Protection against Aβ-induced neuronal damage by KU-32: PDHK1 inhibition as important target. Front Aging Neurosci 2023; 15:1282855. [PMID: 38035268 PMCID: PMC10682733 DOI: 10.3389/fnagi.2023.1282855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
A feature of most neurodegenerative diseases is the presence of "mis-folded proteins" that form aggregates, suggesting suboptimal activity of neuronal molecular chaperones. Heat shock protein 90 (Hsp90) is the master regulator of cell responses to "proteotoxic" stresses. Some Hsp90 modulators activate cascades leading to upregulation of additional chaperones. Novobiocin is a modulator at the C-terminal ATP-binding site of Hsp90. Of several novobiocin analogs synthesized and tested for protection against amyloid beta (Aβ)-induced neuronal death, "KU-32" was the most potent in protecting primary neurons, but did not increase expression of other chaperones believed to help clear misfolded proteins. However, KU-32 reversed Aβ-induced superoxide formation, activated Complex I of the electron transfer chain in mitochondria, and blocked the Aβ-induced inhibition of Complex I in neuroblastoma cells. A mechanism for these effects of KU-32 on mitochondrial metabolism appeared to be the inhibition of pyruvate dehydrogenase kinase (PDHK), both in isolated brain mitochondria and in SH-SY5Y cells. PDHK inhibition by the classic enzyme inhibitor, dichloroacetate, led to neuroprotection from Aβ25-35-induced cell injury similarly to KU-32. Inhibition of PDHK in neurons would lead to activation of the PDH complex, increased acetyl-CoA generation, stimulation of the tricarboxylic acid cycle and Complex I in the electron transfer chain, and enhanced oxidative phosphorylation. A focus of future studies may be on the potential value of PDHK as a target in AD therapy.
Collapse
Affiliation(s)
- Ranu Pal
- Higuchi Biosciences Center, University of Kansas, Lawrence, KS, United States
| | - Dongwei Hui
- Higuchi Biosciences Center, University of Kansas, Lawrence, KS, United States
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Heather Menchen
- Higuchi Biosciences Center, University of Kansas, Lawrence, KS, United States
| | - Huiping Zhao
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, United States
| | - Olivier Mozziconacci
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Heather Wilkins
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Brian S. J. Blagg
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, IN, United States
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Russell H. Swerdlow
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Mary L. Michaelis
- Higuchi Biosciences Center, University of Kansas, Lawrence, KS, United States
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Elias K. Michaelis
- Higuchi Biosciences Center, University of Kansas, Lawrence, KS, United States
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
5
|
Xie X, Zhang N, Li X, Huang H, Peng C, Huang W, Foster LJ, He G, Han B. Small-molecule dual inhibitors targeting heat shock protein 90 for cancer targeted therapy. Bioorg Chem 2023; 139:106721. [PMID: 37467620 DOI: 10.1016/j.bioorg.2023.106721] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Heat shock protein 90, also known as Hsp90, is an extensively preserved molecular chaperone that performs a critical function in organizing various biological pathways and cellular operations. As a potential drug target, Hsp90 is closely linked to cancer. Hsp90 inhibitors are a class of drugs that have been extensively studied in preclinical models and have shown promise in a variety of diseases, especially cancer. However, Hsp90 inhibitors have encountered several challenges in clinical development, such as low efficacy, toxicity, or drug resistance, few Hsp90 small molecule inhibitors have been approved worldwide. Nonetheless, combining Hsp90 inhibitors with other tumor inhibitors, such as HDAC inhibitors, tubulin inhibitors, and Topo II inhibitors, has been shown to have synergistic antitumor effects. Consequently, the development of Hsp90 dual-target inhibitors is an effective strategy in cancer treatment, as it enhances potency while reducing drug resistance. This article provides an overview of Hsp90's domain structure and biological functions, as well as a discussion of the design, discovery, and structure-activity relationships of Hsp90 dual inhibitors, aiming to provide insights into clinical drug research from a medicinal chemistry perspective and discover novel Hsp90 dual inhibitors.
Collapse
Affiliation(s)
- Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Dermatology & Venereology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - He Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada.
| | - Gu He
- Department of Dermatology & Venereology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
6
|
Pinzi L, Foschi F, Christodoulou MS, Passarella D, Rastelli G. Design and Synthesis of Hsp90 Inhibitors with B-Raf and PDHK1 Multi-Target Activity. ChemistryOpen 2021; 10:1177-1185. [PMID: 34633754 PMCID: PMC8634768 DOI: 10.1002/open.202100131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/06/2021] [Indexed: 01/20/2023] Open
Abstract
The design of multi-target ligands has become an innovative approach for the identification of effective therapeutic treatments against complex diseases, such as cancer. Recent studies have demonstrated that the combined inhibition of Hsp90 and B-Raf provides synergistic effects against several types of cancers. Moreover, it has been reported that PDHK1, which presents an ATP-binding pocket similar to that of Hsp90, plays an important role in tumor initiation, maintenance and progression, participating also to the senescence process induced by B-Raf oncogenic proteins. Based on these premises, the simultaneous inhibition of these targets may provide several benefits for the treatment of cancer. In this work, we set up a design strategy including the assembly and integration of molecular fragments known to be important for binding to the Hsp90, PDHK1 and B-Raf targets, aided by molecular docking for the selection of a set of compounds potentially able to exert Hsp90-B-Raf-PDHK1 multi-target activities. The designed compounds were synthesized and experimentally validated in vitro. According to the in vitro assays, compounds 4 a, 4 d and 4 e potently inhibited Hsp90 and moderately inhibited the PDHK1 kinase. Finally, molecular dynamics simulations were performed to provide further insights into the structural basis of their multi-target activity.
Collapse
Affiliation(s)
- Luca Pinzi
- Department of Life SciencesUniversity of Modena and Reggio EmiliaVia G. Campi 10341125ModenaItaly
| | - Francesca Foschi
- Department of ChemistryUniversity of MilanoVia Golgi 1920133MilanoItaly
| | | | | | - Giulio Rastelli
- Department of Life SciencesUniversity of Modena and Reggio EmiliaVia G. Campi 10341125ModenaItaly
| |
Collapse
|
7
|
Cheremnykh KP, Savelyev VA, Shults EE. An Efficient Access to 3,5‐Disubstituted Isoxazoles with Anthranilate Ester Moiety: Alkaloid Lappaconitine – Aryl Conjugates with an Isoxazole Linker. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kirill P. Cheremnykh
- Laboratory of Medicinal Chemistry Novosibirsk institute of Organic Chemistry Lavrentyev Ave 9 630090 Novosibirsk Russian Federation
| | - Victor A. Savelyev
- Laboratory of Medicinal Chemistry Novosibirsk institute of Organic Chemistry Lavrentyev Ave 9 630090 Novosibirsk Russian Federation
| | - Elvira E. Shults
- Laboratory of Medicinal Chemistry Novosibirsk institute of Organic Chemistry Lavrentyev Ave 9 630090 Novosibirsk Russian Federation
| |
Collapse
|
8
|
Anwar S, Shamsi A, Mohammad T, Islam A, Hassan MI. Targeting pyruvate dehydrogenase kinase signaling in the development of effective cancer therapy. Biochim Biophys Acta Rev Cancer 2021; 1876:188568. [PMID: 34023419 DOI: 10.1016/j.bbcan.2021.188568] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
Pyruvate is irreversibly decarboxylated to acetyl coenzyme A by mitochondrial pyruvate dehydrogenase complex (PDC). Decarboxylation of pyruvate is considered a crucial step in cell metabolism and energetics. The cancer cells prefer aerobic glycolysis rather than mitochondrial oxidation of pyruvate. This attribute of cancer cells allows them to sustain under indefinite proliferation and growth. Pyruvate dehydrogenase kinases (PDKs) play critical roles in many diseases because they regulate PDC activity. Recent findings suggest an altered metabolism of cancer cells is associated with impaired mitochondrial function due to PDC inhibition. PDKs inhibit the PDC activity via phosphorylation of the E1a subunit and subsequently cause a glycolytic shift. Thus, inhibition of PDK is an attractive strategy in anticancer therapy. This review highlights that PDC/PDK axis could be implicated in cancer's therapeutic management by developing potential small-molecule PDK inhibitors. In recent years, a dramatic increase in the targeting of the PDC/PDK axis for cancer treatment gained an attention from the scientific community. We further discuss breakthrough findings in the PDC-PDK axis. In addition, structural features, functional significance, mechanism of activation, involvement in various human pathologies, and expression of different forms of PDKs (PDK1-4) in different types of cancers are discussed in detail. We further emphasized the gene expression profiling of PDKs in cancer patients to prognosis and therapeutic manifestations. Additionally, inhibition of the PDK/PDC axis by small molecule inhibitors and natural compounds at different clinical evaluation stages has also been discussed comprehensively.
Collapse
Affiliation(s)
- Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
9
|
Synthesis, biological evaluation and structure-activity relationship of novel dichloroacetophenones targeting pyruvate dehydrogenase kinases with potent anticancer activity. Eur J Med Chem 2021; 214:113225. [PMID: 33550182 DOI: 10.1016/j.ejmech.2021.113225] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 01/25/2023]
Abstract
Pyruvate dehydrogenase kinases (PDKs) are promising therapeutic targets that have received increasing attentions in cancer metabolism. In this paper, we report the synthesis and biological evaluation of a series of novel dichloroacetophenones as potent PDKs inhibitors. Structure-activity relationship analysis enabled us to identify a potent compound 6u, which inhibited PDKs with an EC50 value of 0.09 μM, and reduced various cancer cells proliferation with IC50 values ranging from 1.1 to 3.8 μM, while show weak effect against non-cancerous L02 cell (IC50 > 10 μM). In the A375 xenograft model, 6u displayed an obvious antitumor activity at a dose of 5 mg/kg, but with no negative effect to the mice weight. Molecular docking suggested that 6u formed direct hydrogen bond interactions with Ser75 and Gln61 in PDK1, and meanwhile the aniline skeleton in 6u was sandwiched by the conserved hydrophobic residues Phe78 and Phe65, which contribute to the biochemical activity improvement. Moreover, 6u induced A375 cell apoptosis and cell arrest in G1 phase, and inhibited cancer cell migration. In addition, 6u altered glucose metabolic pathway in A375 cell by decreasing lactate formation and increasing ROS production and OCR consumption, which could serve as a potential modulator to reprogram the glycolysis pathway in cancer cell.
Collapse
|
10
|
Kang J, Pagire HS, Kang D, Song YH, Lee IK, Lee KT, Park CJ, Ahn JH, Kim J. Structural basis for the inhibition of PDK2 by novel ATP- and lipoyl-binding site targeting compounds. Biochem Biophys Res Commun 2020; 527:778-784. [PMID: 32444142 DOI: 10.1016/j.bbrc.2020.04.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 11/19/2022]
Abstract
Pyruvate dehydrogenase kinase (PDK) controls the activity of pyruvate decarboxylase complex (PDC) by phosphorylating key serine residues on the E1 subunit, which leads to a decreased oxidative phosphorylation in mitochondria. Inhibition of PDK activity by natural/synthetic compounds has been shown to reverse the Warburg effect, a characteristic metabolism in cancer cells. PDK-PDC axis also has been associated with diabetes and heart disease. Therefore, regulation of PDK activity has been considered as a promising strategy to treat related diseases. Here we present the X-ray crystal structure of PDK2 complexed with a recently identified PDK4 inhibitor, compound 8c, which has been predicted to bind at the lipoyl-binding site and interrupt intermolecular interactions with the E2-E3bp subunits of PDC. The co-crystal structure confirmed the specific binding location of compound 8c and revealed the remote conformational change in the ATP-binding pocket. In addition, two novel 4,5-diarylisoxazole derivatives, GM10030 and GM67520, were synthesized and used for structural studies, which target the ATP-binding site of PDK2. These compounds bind to PDK2 with a sub-100nM affinity as determined by isothermal titration calorimetry experiments. Notably, the crystal structure of the PDK2-GM10030 complex displays unprecedented asymmetric conformation of human PDK2 dimer, especially in the ATP-lids and C-terminal tails.
Collapse
Affiliation(s)
- Jihoon Kang
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Haushabhau S Pagire
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Donguk Kang
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Yo Han Song
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - In Kyu Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Kang Taek Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Chin-Ju Park
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jin Hee Ahn
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jungwook Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
11
|
Singh H, Kinarivala N, Sharma S. Multi-Targeting Anticancer Agents: Rational Approaches, Synthetic Routes and Structure Activity Relationship. Anticancer Agents Med Chem 2020; 19:842-874. [PMID: 30657048 DOI: 10.2174/1871520619666190118120708] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 12/21/2022]
Abstract
We live in a world with complex diseases such as cancer which cannot be cured with one-compound one-target based therapeutic paradigm. This could be due to the involvement of multiple pathogenic mechanisms. One-compound-various-targets stratagem has become a prevailing research topic in anti-cancer drug discovery. The simultaneous interruption of two or more targets has improved the therapeutic efficacy as compared to the specific targeted based therapy. In this review, six types of dual targeting agents along with some interesting strategies used for their design and synthesis are discussed. Their pharmacology with various types of the molecular interactions within their specific targets has also been described. This assemblage will reveal the recent trends and insights in front of the scientific community working in dual inhibitors and help them in designing the next generation of multi-targeted anti-cancer agents.
Collapse
Affiliation(s)
- Harbinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab-143005, India
| | - Nihar Kinarivala
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, United States
| | - Sahil Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab-143005, India.,Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, United States
| |
Collapse
|
12
|
Hu S, Ferraro M, Thomas AP, Chung JM, Yoon NG, Seol JH, Kim S, Kim HU, An MY, Ok H, Jung HS, Ryu JH, Colombo G, Kang BH. Dual Binding to Orthosteric and Allosteric Sites Enhances the Anticancer Activity of a TRAP1-Targeting Drug. J Med Chem 2020; 63:2930-2940. [DOI: 10.1021/acs.jmedchem.9b01420] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sung Hu
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Mariarosaria Ferraro
- Istituto di Chimica del Riconoscimento Molecolare (ICRM), Consiglio Nazionale delle Ricerche (CNR), Milan 20131, Italy
| | - Ajesh P. Thomas
- Department of Chemistry, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jeong Min Chung
- Division of Chemistry and Biochemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Nam Gu Yoon
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ji-Hoon Seol
- Department of Chemistry, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sangpil Kim
- Department of Chemistry, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Han-ul Kim
- Division of Chemistry and Biochemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Mi Young An
- Division of Chemistry and Biochemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Haewon Ok
- Department of Chemistry, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyun Suk Jung
- Division of Chemistry and Biochemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Giorgio Colombo
- University of Pavia, Department of Chemistry, Pavia 27100, Italy
| | - Byoung Heon Kang
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
13
|
Cho H, Shin I, Cho K, Yoon H, Yoo EK, Kim MJ, Park S, Lee IK, Kim ND, Sim T. Identification of Novel Resorcinol Amide Derivatives as Potent and Specific Pyruvate Dehydrogenase Kinase (PDHK) Inhibitors. J Med Chem 2019; 62:8461-8479. [DOI: 10.1021/acs.jmedchem.9b00565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hanna Cho
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Injae Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Kyungseon Cho
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hojong Yoon
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Eun Kyung Yoo
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Republic of Korea
| | - Mi-Jin Kim
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Republic of Korea
| | - Sungmi Park
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Republic of Korea
| | - In-Kyu Lee
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Nam Doo Kim
- Daegu-Gyeongbuk Medical Innovation Foundation, 2387 Dalgubeol-daero, Suseong-gu, Daegu 42019, Republic of Korea
- NDBio Therapeutics Inc., 32 Songdogwahak-ro, Yeonsu-gu, Incheon 21984, Republic of Korea
| | - Taebo Sim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
14
|
Wu DM, Wang YJ, Fan SH, Zhang ZF, Shan Q, Lu J, Chen GQ, Zheng YL. High-throughput screening of novel pyruvate dehydrogenase kinases inhibitors and biological evaluation of their in vitro and in vivo antiproliferative activity. Eur J Med Chem 2019; 164:252-262. [PMID: 30597326 DOI: 10.1016/j.ejmech.2018.12.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 12/09/2018] [Accepted: 12/20/2018] [Indexed: 12/27/2022]
Abstract
Overexpression of pyruvate dehydrogenase kinases (PDKs) has been widely noticed in a variety of human solid tumors, which could be regarded as an attractive therapeutic target for cancer therapy. In this paper, we present an enzymatic screening assay and multiple biological evaluations for the identification of potential PDKs, especially PDK1 inhibitors. We identified 9 potential PDKs inhibitors from the screening of an in-house small molecule library, all of the identified inhibitors reduced pyruvate dehydrogenase (PDH) complex phosphorylation. Among which, 4, 5, and 9 displayed the most potent PDKs inhibitory activities, with EC50 values of 0.34, 1.4, and 1.6 μM in an enzymatic assay, respectively. A kinase inhibition assay suggested that 4, 5, and 9 were pan-isoform PDK inhibitors, but more sensitive to PDK1. Meanwhile, the three compounds inhibited HSP90, with IC50 values of 0.78, 3.58, and 2.70 μM, respectively. The cell viability assay indicated that 4 inhibited all of the tested cancer cells proliferation, with a GC50 value of 2.3 μM against NCIH1975 cell, but has little effect on human normal lung cell BEAS-2B cell. In the NCIH1975 xenograft models, 4 displayed strong antitumor activities at a dose of 10 and 20 mg/kg, but with no negative effect on the mice weight. In addition, 4 decreased the ECAR and lactate formation, increased OCR and ROS level in NCIH1975 cancer cell, which could be used as a promising modulator to reprogram the glucose metabolic pathways in NCIH1975 cancer cells.
Collapse
Affiliation(s)
- Dong-Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China; College of Health Sciences, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Yong-Jian Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China; College of Health Sciences, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Shao-Hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China; College of Health Sciences, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Zi-Feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China; College of Health Sciences, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China; College of Health Sciences, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China; College of Health Sciences, Jiangsu Normal University, Xuzhou, 221116, PR China.
| | - Gui-Quan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, 210061, PR China.
| | - Yuan-Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China; College of Health Sciences, Jiangsu Normal University, Xuzhou, 221116, PR China.
| |
Collapse
|
15
|
Guo F, Zhao S, Li X. Discovery of novel pyruvate dehydrogenase kinases inhibitors by screening of an in-house small molecule library for anti-lung cancer therapeutics. Bioorg Med Chem Lett 2019; 29:291-296. [PMID: 30470491 DOI: 10.1016/j.bmcl.2018.11.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 10/27/2022]
Abstract
Pyruvate dehydrogenase kinases (PDKs) are widely over-expressed in various human solid cancers, making them attractive therapeutic targets for cancer treatment. Herein, we report the identification of structurally novel PDKs inhibitors by screening of an in-house small molecule library. Biochemical assay indicated that the identified compounds 1-4 inhibited PDK1 activity with EC50 values of 0.50, 1.99, 4.64, and 0.42 µM, respectively. The ITC analysis suggested that the identified compounds 1-4 were pan-isoform PDK inhibitors, which bound to and inhibited the four PDK isoforms. Moreover, 1-4 dose-dependently reduced pyruvate dehydrogenase complex phosphorylation in NCI-H1975 cell. Molecular docking suggested that the most potent compound 4 docked well in the ATP binding pocket of the four PDK isoforms, forming direct hydrogen bond interactions with the conserved amino acids Thr and Asp in ATP binding pocket of PDKs. The cell viability assay demonstrated that 4 potently blocked NCI-H1975 cell proliferation (IC50 = 3.32 µM), but had little effect on human normal lung cell MRC-5 even with the tested concentration up to 40 µM. All the data demonstrated that 4 was a promising lead for the development of structurally novel PDKs inhibitor for the cancer treatment.
Collapse
Affiliation(s)
- Fuyun Guo
- The 7th Department of Medicine, Shaanxi Province Tuberculosis Prevention and Treatment Institute, Xi'an, Shaanxi 710100, China; The 7th Department of Medicine, Shaanxi Province Fifth People's Hospital, Xi'an, Shaanxi 710100, China
| | - Shufen Zhao
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - Xiao'e Li
- Department of Pharmacy, Ankang Central Hospital, Ankang, Shaanxi 725000, China.
| |
Collapse
|
16
|
Lee D, Pagire HS, Pagire SH, Bae EJ, Dighe M, Kim M, Lee KM, Jang YK, Jaladi AK, Jung KY, Yoo EK, Gim HE, Lee S, Choi WI, Chi YI, Song JS, Bae MA, Jeon YH, Lee GH, Liu KH, Lee T, Park S, Jeon JH, Lee IK, Ahn JH. Discovery of Novel Pyruvate Dehydrogenase Kinase 4 Inhibitors for Potential Oral Treatment of Metabolic Diseases. J Med Chem 2019; 62:575-588. [DOI: 10.1021/acs.jmedchem.8b01168] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Dahye Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Haushabhau S. Pagire
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Suvarna H. Pagire
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Eun Jung Bae
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Mahesh Dighe
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Minhee Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Kyu Myung Lee
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Yoon Kyung Jang
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Ashok Kumar Jaladi
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Kwan-Young Jung
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Eun Kyung Yoo
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Republic of Korea
| | - Hee Eon Gim
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Republic of Korea
| | - Seungmi Lee
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Republic of Korea
| | - Won-Il Choi
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Republic of Korea
| | - Young-In Chi
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Republic of Korea
| | - Jin Sook Song
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Myung Ae Bae
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Yong Hyun Jeon
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Republic of Korea
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Ga-Hyun Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kwang-Hyeon Liu
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Taeho Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sungmi Park
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Republic of Korea
| | - Jae-Han Jeon
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - In-Kyu Lee
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Jin Hee Ahn
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
17
|
Zhang SL, Yang Z, Hu X, Tam KY. Dichloroacetophenones targeting at pyruvate dehydrogenase kinase 1 with improved selectivity and antiproliferative activity: Synthesis and structure-activity relationships. Bioorg Med Chem Lett 2018; 28:3441-3445. [DOI: 10.1016/j.bmcl.2018.09.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 01/25/2023]
|
18
|
Zhang SL, Yang Z, Hu X, Chakravarty H, Tam KY. Anticancer effects of some novel dichloroacetophenones through the inhibition of pyruvate dehydrogenase kinase 1. Eur J Pharm Sci 2018; 123:43-55. [DOI: 10.1016/j.ejps.2018.07.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/05/2018] [Accepted: 07/11/2018] [Indexed: 12/27/2022]
|
19
|
Yang R, Guo C. Discovery of potent pyruvate dehydrogenase kinase inhibitors and evaluation of their anti-lung cancer activity under hypoxia. MEDCHEMCOMM 2018; 9:1843-1849. [PMID: 30568752 DOI: 10.1039/c8md00453f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/23/2018] [Indexed: 01/09/2023]
Abstract
Targeting pyruvate dehydrogenase kinases (PDKs) reverses the Warburg effect, which could be a potential therapeutic target for anti-cancer drug discovery. In this paper, we identified 12 potential PDK inhibitors by virtual ligand screening of a chemical library, and then further verified them by an enzymatic assay, in which 6, 7, and 11 strongly inhibited the function of PDKs, with IC50 values of 1.26, 0.62, and 0.41 μM against PDK1, respectively, and showed a similar inhibitory effect on PDK2, PDK3, and PDK4. However, we failed to correlate the observed inhibitory activity against PDKs with cellular activity under normal conditions. In contrast, 7 and 11 inhibited NCI-H1975 cell proliferation under hypoxia, with EC50 values of 4.66 and 3.88 μM, respectively, suggesting that 7 and 11 could be promising leads for further development of PDK inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Ronghua Yang
- Department of Thoracic Surgery , The Affiliated Hospital of Qingdao University , Qingdao , Shandong , China
| | - Caihong Guo
- Department of Respiratory Medicine , The Affiliated Hospital of Qingdao University , Qingdao , Shandong , China . ; Tel: +0532 82919671
| |
Collapse
|
20
|
Xu B, Yu Z, Xiang S, Li Y, Zhang SL, He Y. Rational design of mitochondria-targeted pyruvate dehydrogenase kinase 1 inhibitors with improved selectivity and antiproliferative activity. Eur J Med Chem 2018; 155:275-284. [DOI: 10.1016/j.ejmech.2018.06.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 12/26/2022]
|
21
|
Neckers L, Blagg B, Haystead T, Trepel JB, Whitesell L, Picard D. Methods to validate Hsp90 inhibitor specificity, to identify off-target effects, and to rethink approaches for further clinical development. Cell Stress Chaperones 2018; 23:467-482. [PMID: 29392504 PMCID: PMC6045531 DOI: 10.1007/s12192-018-0877-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/12/2022] Open
Abstract
The molecular chaperone Hsp90 is one component of a highly complex and interactive cellular proteostasis network (PN) that participates in protein folding, directs misfolded and damaged proteins for destruction, and participates in regulating cellular transcriptional responses to environmental stress, thus promoting cell and organismal survival. Over the last 20 years, it has become clear that various disease states, including cancer, neurodegeneration, metabolic disorders, and infection by diverse microbes, impact the PN. Among PN components, Hsp90 was among the first to be pharmacologically targeted with small molecules. While the number of Hsp90 inhibitors described in the literature has dramatically increased since the first such small molecule was described in 1994, it has become increasingly apparent that not all of these agents have been sufficiently validated for specificity, mechanism of action, and lack of off-target effects. Given the less than expected activity of Hsp90 inhibitors in cancer-related human clinical trials, a re-evaluation of potentially confounding off-target effects, as well as confidence in target specificity and mechanism of action, is warranted. In this commentary, we provide feasible approaches to achieve these goals and we discuss additional considerations to improve the clinical efficacy of Hsp90 inhibitors in treating cancer and other diseases.
Collapse
Affiliation(s)
- Len Neckers
- Urologic Oncology Branch, National Cancer Institute, Bethesda, MD, 20892, USA.
| | - Brian Blagg
- Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Timothy Haystead
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Jane B Trepel
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Luke Whitesell
- Whitehead Institute, Cambridge, MA, 02142, USA
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Didier Picard
- Département de Biologie Cellulaire, Université de Genève, 1211, Geneva 4, Switzerland.
| |
Collapse
|
22
|
Xiong X, Yeung YY. Ammonium Salt-Catalyzed Highly Practical Ortho-Selective Monohalogenation and Phenylselenation of Phenols: Scope and Applications. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00327] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xiaodong Xiong
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China)
| | - Ying-Yeung Yeung
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China)
| |
Collapse
|
23
|
Stacpoole PW. Therapeutic Targeting of the Pyruvate Dehydrogenase Complex/Pyruvate Dehydrogenase Kinase (PDC/PDK) Axis in Cancer. J Natl Cancer Inst 2017; 109:3871192. [PMID: 29059435 DOI: 10.1093/jnci/djx071] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/27/2017] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial pyruvate dehydrogenase complex (PDC) irreversibly decarboxylates pyruvate to acetyl coenzyme A, thereby linking glycolysis to the tricarboxylic acid cycle and defining a critical step in cellular bioenergetics. Inhibition of PDC activity by pyruvate dehydrogenase kinase (PDK)-mediated phosphorylation has been associated with the pathobiology of many disorders of metabolic integration, including cancer. Consequently, the PDC/PDK axis has long been a therapeutic target. The most common underlying mechanism accounting for PDC inhibition in these conditions is post-transcriptional upregulation of one or more PDK isoforms, leading to phosphorylation of the E1α subunit of PDC. Such perturbations of the PDC/PDK axis induce a "glycolytic shift," whereby affected cells favor adenosine triphosphate production by glycolysis over mitochondrial oxidative phosphorylation and cellular proliferation over cellular quiescence. Dichloroacetate is the prototypic xenobiotic inhibitor of PDK, thereby maintaining PDC in its unphosphorylated, catalytically active form. However, recent interest in the therapeutic targeting of the PDC/PDK axis for the treatment of cancer has yielded a new generation of small molecule PDK inhibitors. Ongoing investigations of the central role of PDC in cellular energy metabolism and its regulation by pharmacological effectors of PDKs promise to open multiple exciting vistas into the biochemical understanding and treatment of cancer and other diseases.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, and Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL
| |
Collapse
|
24
|
Fang A, Luo H, Liu L, Fan H, Zhou Y, Yao Y, Zhang Y. Identification of pyruvate dehydrogenase kinase 1 inhibitors with anti-osteosarcoma activity. Bioorg Med Chem Lett 2017; 27:5450-5453. [PMID: 29150396 DOI: 10.1016/j.bmcl.2017.10.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 10/25/2017] [Accepted: 10/28/2017] [Indexed: 02/05/2023]
Abstract
Overexpression of pyruvate dehydrogenase kinases (PDKs), especially PDK1 has been observed in a variety of cancers. Thus, targeting PDK1 offers an attractive opportunity for the development of cancer therapies. In this letter, we reported the identification of two novel PDK1 inhibitors as anti-osteosarcoma agents. We found that TM-1 and TM-2 inhibited PDK1 with the IC50 values of 2.97 and 3.41 μM, respectively. Furthermore, TM-1 and TM-2 dose-dependently reduced phosphorylation of pyruvate dehydrogenase complex in MG-63 osteosarcoma cells. Finally, TM-1 and TM-2 were found to inhibit the proliferation of MG-63 cells with the EC50 values of 14.5, and 11.0 μM, respectively, meaning TM-1 and TM-2 could be promising leads for the discovery of potent PDK1 inhibitors.
Collapse
Affiliation(s)
- Aiping Fang
- West China School of Public Health/No. 4 West China Teaching Hospital, Sichuan University, Chengdu 610041, PR China; State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Huiqiang Luo
- West China School of Public Health/No. 4 West China Teaching Hospital, Sichuan University, Chengdu 610041, PR China
| | - Liping Liu
- Department of Hepatobiliary and Pancreas Surgery, The Second Clinical Medical College of Jinan University, (Shenzhen People's Hospital), Shenzhen 518020, Guangdong Province, PR China
| | - Haibo Fan
- Department of Hepatobiliary and Pancreas Surgery, The Second Clinical Medical College of Jinan University, (Shenzhen People's Hospital), Shenzhen 518020, Guangdong Province, PR China
| | - Yaying Zhou
- Department of Hepatobiliary and Pancreas Surgery, The Second Clinical Medical College of Jinan University, (Shenzhen People's Hospital), Shenzhen 518020, Guangdong Province, PR China
| | - Yuqin Yao
- West China School of Public Health/No. 4 West China Teaching Hospital, Sichuan University, Chengdu 610041, PR China; State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yue Zhang
- Department of Hepatobiliary and Pancreas Surgery, The Second Clinical Medical College of Jinan University, (Shenzhen People's Hospital), Shenzhen 518020, Guangdong Province, PR China.
| |
Collapse
|
25
|
Liu Y, Xie Z, Zhao D, Zhu J, Mao F, Tang S, Xu H, Luo C, Geng M, Huang M, Li J. Development of the First Generation of Disulfide-Based Subtype-Selective and Potent Covalent Pyruvate Dehydrogenase Kinase 1 (PDK1) Inhibitors. J Med Chem 2017; 60:2227-2244. [PMID: 28230989 DOI: 10.1021/acs.jmedchem.6b01245] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pyruvate dehydrogenase kinases (PDKs) are overexpressed in most cancer cells and are responsible for aberrant glucose metabolism. We previously described bis(4-morpholinyl thiocarbonyl)-disulfide (JX06, 16) as the first covalent inhibitor of PDK1. Here, on the basis of the scaffold of 16, we identify two novel types of disulfide-based PDK1 inhibitors. The most potent analogue, 3a, effectively inhibits PDK1 both at the molecular (kinact/Ki = 4.17 × 103 M-1 s-1) and the cellular level (down to 0.1 μM). In contrast to 16, 3a is a potent and subtype-selective inhibitor of PDK1 with >40-fold selectivity for PDK2-4. 3a also significantly alters glucose metabolic pathways in A549 cells by decreasing ECAR and increasing ROS. Moreover, in the xenograft models, 3a shows significant antitumor activity with no negative effect to the mice weight. Collectively, these data demonstrate that 3a may be an excellent lead compound for the treatment of cancer as a first-generation subtype-selective and covalent PDK1 inhibitor.
Collapse
Affiliation(s)
- Yifu Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Zuoquan Xie
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | - Dan Zhao
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | - Jin Zhu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Fei Mao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Shuai Tang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | - Hui Xu
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | - Cheng Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | - Meiyu Geng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | - Min Huang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | - Jian Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| |
Collapse
|
26
|
Brough PA, Baker L, Bedford S, Brown K, Chavda S, Chell V, D'Alessandro J, Davies NGM, Davis B, Le Strat L, Macias AT, Maddox D, Mahon PC, Massey AJ, Matassova N, McKenna S, Meissner JWG, Moore JD, Murray JB, Northfield CJ, Parry C, Parsons R, Roughley SD, Shaw T, Simmonite H, Stokes S, Surgenor A, Stefaniak E, Robertson A, Wang Y, Webb P, Whitehead N, Wood M. Application of Off-Rate Screening in the Identification of Novel Pan-Isoform Inhibitors of Pyruvate Dehydrogenase Kinase. J Med Chem 2017; 60:2271-2286. [PMID: 28199108 DOI: 10.1021/acs.jmedchem.6b01478] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Libraries of nonpurified resorcinol amide derivatives were screened by surface plasmon resonance (SPR) to determine the binding dissociation constant (off-rate, kd) for compounds binding to the pyruvate dehydrogenase kinase (PDHK) enzyme. Parallel off-rate measurements against HSP90 and application of structure-based drug design enabled rapid hit to lead progression in a program to identify pan-isoform ATP-competitive inhibitors of PDHK. Lead optimization identified selective sub-100-nM inhibitors of the enzyme which significantly reduced phosphorylation of the E1α subunit in the PC3 cancer cell line in vitro.
Collapse
Affiliation(s)
- Paul A Brough
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | - Lisa Baker
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | - Simon Bedford
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | - Kirsten Brown
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | - Seema Chavda
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | - Victoria Chell
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | | | | | - Ben Davis
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | - Loic Le Strat
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | - Alba T Macias
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | - Daniel Maddox
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | - Patrick C Mahon
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | - Andrew J Massey
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | - Natalia Matassova
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | - Sean McKenna
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | | | - Jonathan D Moore
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | - James B Murray
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | | | - Charles Parry
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | - Rachel Parsons
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | - Stephen D Roughley
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | - Terry Shaw
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | - Heather Simmonite
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | - Stephen Stokes
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | - Allan Surgenor
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | - Emma Stefaniak
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | - Alan Robertson
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | - Yikang Wang
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | - Paul Webb
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | - Neil Whitehead
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| | - Mike Wood
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge CB21 6GB, U.K
| |
Collapse
|
27
|
Baglieri A, Meschisi L, De Sarlo F, Machetti F. Competitive Copper Catalysis in the Condensation of Primary Nitro Compounds with Terminal Alkynes: Synthesis of Isoxazoles. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600897] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Ausilia Baglieri
- Istituto di chimica dei composti organometallici, c/o Dipartimento di chimica Ugo Schiff; Consiglio nazionale delle ricerche (CNR); Via della Lastruccia 13 50019 Sesto Fiorentino, Firenze Italy
| | - Luca Meschisi
- Dipartimento di chimica Ugo Schiff; Università degli studi di Firenze; Via della Lastruccia 13 50019 Sesto Fiorentino Firenze Italy
| | - Francesco De Sarlo
- Dipartimento di chimica Ugo Schiff; Università degli studi di Firenze; Via della Lastruccia 13 50019 Sesto Fiorentino Firenze Italy
| | - Fabrizio Machetti
- Istituto di chimica dei composti organometallici, c/o Dipartimento di chimica Ugo Schiff; Consiglio nazionale delle ricerche (CNR); Via della Lastruccia 13 50019 Sesto Fiorentino, Firenze Italy
| |
Collapse
|
28
|
Bell H, Parkin E. Pyruvate dehydrogenase kinase inhibition: Reversing the Warburg effect in cancer therapy. INTERNATIONAL JOURNAL OF CANCER THERAPY AND ONCOLOGY 2016. [DOI: 10.14319/ijcto.42.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
29
|
Zhang SL, Hu X, Zhang W, Tam KY. Unexpected Discovery of Dichloroacetate Derived Adenosine Triphosphate Competitors Targeting Pyruvate Dehydrogenase Kinase To Inhibit Cancer Proliferation. J Med Chem 2016; 59:3562-8. [PMID: 27006991 DOI: 10.1021/acs.jmedchem.5b01828] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pyruvate dehydrogenase kinases (PDKs) have recently emerged as an attractive target for cancer therapy. Herein, we prepared a series of compounds derived from dichloroacetate (DCA) which inhibited cancer cells proliferation. For the first time, we have successfully developed DCA derived inhibitors that preferentially bind to the adenosine triphosphate (ATP) pocket of PDK isoform 1 (PDK1).
Collapse
Affiliation(s)
- Shao-Lin Zhang
- Drug Development Core, Faculty of Health Sciences, University of Macau , Taipa, Macau, China
| | - Xiaohui Hu
- Drug Development Core, Faculty of Health Sciences, University of Macau , Taipa, Macau, China
| | - Wen Zhang
- Drug Development Core, Faculty of Health Sciences, University of Macau , Taipa, Macau, China
| | - Kin Yip Tam
- Drug Development Core, Faculty of Health Sciences, University of Macau , Taipa, Macau, China
| |
Collapse
|
30
|
Antolin AA, Workman P, Mestres J, Al-Lazikani B. Polypharmacology in Precision Oncology: Current Applications and Future Prospects. Curr Pharm Des 2016; 22:6935-6945. [PMID: 27669965 PMCID: PMC5403974 DOI: 10.2174/1381612822666160923115828] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/19/2016] [Indexed: 02/08/2023]
Abstract
Over the past decade, a more comprehensive, large-scale approach to studying cancer genetics and biology has revealed the challenges of tumor heterogeneity, adaption, evolution and drug resistance, while systems-based pharmacology and chemical biology strategies have uncovered a much more complex interaction between drugs and the human proteome than was previously anticipated. In this mini-review we assess the progress and potential of drug polypharmacology in biomarker-driven precision oncology. Polypharmacology not only provides great opportunities for drug repurposing to exploit off-target effects in a new single-target indication but through simultaneous blockade of multiple targets or pathways offers exciting opportunities to slow, overcome or even prevent inherent or adaptive drug resistance. We highlight the many challenges associated with exploiting known or desired polypharmacology in drug design and development, and assess computational and experimental methods to uncover unknown polypharmacology. A comprehensive understanding of the intricate links between polypharmacology, efficacy and safety is urgently needed if we are to tackle the enduring challenge of cancer drug resistance and to fully exploit polypharmacology for the ultimate benefit of cancer patients.
Collapse
Affiliation(s)
- Albert A. Antolin
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
- Systems Pharmacology, Research Program on Biomedical Informatics (GRIB), IMIM Hospital del Mar Medical Research Institute and University Pompeu Fabra, Parc de Recerca Biomèdica, Barcelona, Catalonia, Spain
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Jordi Mestres
- Systems Pharmacology, Research Program on Biomedical Informatics (GRIB), IMIM Hospital del Mar Medical Research Institute and University Pompeu Fabra, Parc de Recerca Biomèdica, Barcelona, Catalonia, Spain
| | - Bissan Al-Lazikani
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| |
Collapse
|
31
|
Dighe SU, Mukhopadhyay S, Kolle S, Kanojiya S, Batra S. Synthesis of 3,4,5-Trisubstituted Isoxazoles from Morita-Baylis-Hillman Acetates by an NaNO2 /I2 -Mediated Domino Reaction. Angew Chem Int Ed Engl 2015. [PMID: 26215456 DOI: 10.1002/anie.201504529] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An efficient NaNO2 /I2 -mediated one-pot transformation of Morita-Baylis-Hillman (MBH) acetates into alkyl 3-nitro-5-(aryl/alkyl)isoxazole-4-carboxylates is described. In a cascade event, initial Michael addition of NaNO2 to the MBH acetate furnishes the allylnitro intermediate which undergoes I2 -catalyzed oxidative α-CH nitration of the nitromethyl subunit followed by [3+2] cycloaddition to afford the title compounds. Structural elaborations of these highly substituted isoxazoles by SN Ar reactions and hydrogenolysis allows access to useful products.
Collapse
Affiliation(s)
- Shashikant U Dighe
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031 (India)
| | - Sushobhan Mukhopadhyay
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031 (India)
| | - Shivalinga Kolle
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031 (India)
| | - Sanjeev Kanojiya
- Sophisticated Analytical Instrumentation Facility, CSIR, Central Drug Research Institute (India).,Academy of Scientific and Innovative Research, New Delhi (India)
| | - Sanjay Batra
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031 (India). , .,Academy of Scientific and Innovative Research, New Delhi (India). ,
| |
Collapse
|
32
|
Sun J, Lin C, Qin X, Dong X, Tu Z, Tang F, Chen C, Zhang J. Synthesis and biological evaluation of 3,5-disubstituted-4-alkynylisoxozales as a novel class of HSP90 inhibitors. Bioorg Med Chem Lett 2015; 25:3129-34. [DOI: 10.1016/j.bmcl.2015.06.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/21/2015] [Accepted: 06/01/2015] [Indexed: 12/23/2022]
|
33
|
Dighe SU, Mukhopadhyay S, Kolle S, Kanojiya S, Batra S. Synthesis of 3,4,5-Trisubstituted Isoxazoles from Morita-Baylis-Hillman Acetates by an NaNO2/I2-Mediated Domino Reaction. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Saunier E, Benelli C, Bortoli S. The pyruvate dehydrogenase complex in cancer: An old metabolic gatekeeper regulated by new pathways and pharmacological agents. Int J Cancer 2015; 138:809-17. [PMID: 25868605 DOI: 10.1002/ijc.29564] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/16/2015] [Accepted: 04/07/2015] [Indexed: 01/02/2023]
Abstract
Cancer cells exhibit an altered metabolism which is characterized by a preference for aerobic glycolysis more than mitochondrial oxidation of pyruvate. This provides anabolic support and selective growth advantage for cancer cells. Recently, a new concept has arisen suggesting that these metabolic changes may be due, in part, to an attenuated mitochondrial function which results from the inhibition of the pyruvate dehydrogenase complex (PDC). This mitochondrial complex links glycolysis to the Krebs cycle and the current understanding of its regulation involves the cyclic phosphorylation and dephosphorylation by specific pyruvate dehydrogenase kinases (PDKs) and pyruvate dehydrogenase phosphatases (PDPs).
Collapse
Affiliation(s)
- Elise Saunier
- INSERM UMR-S 1124, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Chantal Benelli
- INSERM UMR-S 1124, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Sylvie Bortoli
- INSERM UMR-S 1124, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
35
|
Zhang SL, Hu X, Zhang W, Yao H, Tam KY. Development of pyruvate dehydrogenase kinase inhibitors in medicinal chemistry with particular emphasis as anticancer agents. Drug Discov Today 2015; 20:1112-9. [PMID: 25842042 DOI: 10.1016/j.drudis.2015.03.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/10/2015] [Accepted: 03/25/2015] [Indexed: 12/25/2022]
Abstract
Many cancer cells demonstrate a high rate of glucose consumption via glycolysis to provide intermediates for macromolecule biosynthesis. To accomplish this metabolic change, the expression of pyruvate dehydrogenase kinases (PDKs) is rapidly increased in cancer cells. Inhibition of PDKs could promote the function of mitochondria by increasing the oxidative metabolism of pyruvate, resulting in the death of cancer cells. In this review, we provide an overview of the structural information available for PDKs and their connections to known therapeutic effects. We then describe the development of small molecule PDK inhibitors in medicinal chemistry with particular emphasis as anticancer agents. Finally, directions for further development of PDK inhibitors as potential anticancer agents are discussed.
Collapse
Affiliation(s)
- Shao-Lin Zhang
- Drug Development Core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Xiaohui Hu
- Drug Development Core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Wen Zhang
- Drug Development Core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Huankai Yao
- Drug Development Core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Kin Yip Tam
- Drug Development Core, Faculty of Health Sciences, University of Macau, Macau, China.
| |
Collapse
|