1
|
Walker MA, Tian R. NAD metabolism and heart failure: Mechanisms and therapeutic potentials. J Mol Cell Cardiol 2024; 195:45-54. [PMID: 39096536 PMCID: PMC11390314 DOI: 10.1016/j.yjmcc.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
Nicotinamide adenine dinucleotide provides the critical redox pair, NAD+ and NADH, for cellular energy metabolism. In addition, NAD+ is the precursor for de novo NADP+ synthesis as well as the co-substrates for CD38, poly(ADP-ribose) polymerase and sirtuins, thus, playing a central role in the regulation of oxidative stress and cell signaling. Declines of the NAD+ level and altered NAD+/NADH redox states have been observed in cardiometabolic diseases of various etiologies. NAD based therapies have emerged as a promising strategy to treat cardiovascular disease. Strategies that reduce NAD+ consumption or promote NAD+ production have repleted intracellular NAD+ or normalized NAD+/NADH redox in preclinical studies. These interventions have shown cardioprotective effects in multiple models suggesting a great promise of the NAD+ elevating therapy. Mechanisms for the benefit of boosting NAD+ level, however, remain incompletely understood. Moreover, despite the robust pre-clinical studies there are still challenges to translate the therapy to clinic. Here, we review the most up to date literature on mechanisms underlying the NAD+ elevating interventions and discuss the progress of human studies. We also aim to provide a better understanding of how NAD metabolism is changed in failing hearts with a particular emphasis on types of strategies employed and methods to target these pathways. Finally, we conclude with a comprehensive assessment of the challenges in developing NAD-based therapies for heart diseases, and to provide a perspective on the future of the targeting strategies.
Collapse
Affiliation(s)
- Matthew A Walker
- Mitochondria and Metabolism Center, Department of Anesthesiology & Pain Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anesthesiology & Pain Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
2
|
Song Q, Song C, Chen X, Xiong Y, He Z, Su X, Zhou J, Ke H, Dong C, Liao W, Yang S. Oxalate regulates crystal-cell adhesion and macrophage metabolism via JPT2/PI3K/AKT signaling to promote the progression of kidney stones. J Pharm Anal 2024; 14:100956. [PMID: 39035219 PMCID: PMC11259813 DOI: 10.1016/j.jpha.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 07/23/2024] Open
Abstract
Oxalate is an organic dicarboxylic acid that is a common component of plant foods. The kidneys are essential organs for oxalate excretion, but excessive oxalates may induce kidney stones. Jupiter microtubule associated homolog 2 (JPT2) is a critical molecule in Ca2+ mobilization, and its intrinsic mechanism in oxalate exposure and kidney stones remains unclear. This study aimed to reveal the mechanism of JPT2 in oxalate exposure and kidney stones. Genetic approaches were used to control JPT2 expression in cells and mice, and the JPT2 mechanism of action was analyzed using transcriptomics and untargeted metabolomics. The results showed that oxalate exposure triggered the upregulation of JPT2, which is involved in nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated Ca2+ mobilization. Transcriptomic analysis revealed that cell adhesion and macrophage inflammatory polarization were inhibited by JPT2 knockdown, and these were dominated by phosphatidylinositol 3-kinase (PI3K)/AKT signaling, respectively. Untargeted metabolomics indicated that JPT2 knockdown inhibited the production of succinic acid semialdehyde (SSA) in macrophages. Furthermore, JPT2 deficiency in mice inhibited kidney stones mineralization. In conclusion, this study demonstrates that oxalate exposure facilitates kidney stones by promoting crystal-cell adhesion, and modulating macrophage metabolism and inflammatory polarization via JPT2/PI3K/AKT signaling.
Collapse
Affiliation(s)
- Qianlin Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chao Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xin Chen
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yunhe Xiong
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ziqi He
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaozhe Su
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jiawei Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hu Ke
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Caitao Dong
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wenbiao Liao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Sixing Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| |
Collapse
|
3
|
Bhatt V, Tiwari AK. Sirtuins, a key regulator of ageing and age-related neurodegenerative diseases. Int J Neurosci 2023; 133:1167-1192. [PMID: 35549800 DOI: 10.1080/00207454.2022.2057849] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
Sirtuins are Nicotinamide Adenine Dinucleotide (NAD+) dependent class ІΙΙ histone deacetylases enzymes (HDACs) present from lower to higher organisms such as bacteria (Sulfolobus solfataricus L. major), yeasts (Saccharomyces cerevisiae), nematodes (Caenorhabditis elegans), fruit flies (Drosophila melanogaster), humans (Homo sapiens sapiens), even in plants such as rice (Oryza sativa), thale cress (Arabidopsis thaliana), vine (Vitis vinifera L.) tomato (Solanum lycopersicum). Sirtuins play an important role in the regulation of various vital cellular functions during metabolism and ageing. It also plays a neuroprotective role by modulating several biological pathways such as apoptosis, DNA repair, protein aggregation, and inflammatory processes associated with ageing and neurodegenerative diseases. In this review, we have presented an updated Sirtuins and its role in ageing and age-related neurodegenerative diseases (NDDs). Further, this review also describes the therapeutic potential of Sirtuins and the use of Sirtuins inhibitor/activator for altering the NDDs disease pathology.
Collapse
Affiliation(s)
- Vidhi Bhatt
- Department of Biological Sciences & Biotechnology, Institute of Advanced Research, Koba, Gandhinagar, Gujarat, India
| | - Anand Krishna Tiwari
- Department of Biological Sciences & Biotechnology, Institute of Advanced Research, Koba, Gandhinagar, Gujarat, India
| |
Collapse
|
4
|
Yaku K, Nakagawa T. NAD + Precursors in Human Health and Disease: Current Status and Future Prospects. Antioxid Redox Signal 2023; 39:1133-1149. [PMID: 37335049 DOI: 10.1089/ars.2023.0354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Significance: Nicotinamide adenine dinucleotide (NAD+) acts as a cofactor in many important biological processes. The administration of NAD+ precursors increases the intracellular NAD+ pool and has beneficial effects on physiological changes and diseases associated with aging in various organisms, including rodents and humans. Recent Advances: Evidence from preclinical studies demonstrating the beneficial effects of NAD+ precursors has rapidly increased in the last decade. The results of these studies have prompted the development of clinical trials using NAD+ precursors, particularly nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN). In addition, in vivo studies of NAD+ metabolism have rapidly progressed. Critical Issues: Several studies have demonstrated that the oral administration of NAD+ precursors, such as NR and NMN, is safe and significantly increases NAD+ levels in humans. However, the efficacy of these NAD+ precursors is lower than expected from the results of preclinical studies. In addition, the identification of the contribution of the host-gut microbiota interactions to NR and NMN metabolism has added to the complexity of NAD+ metabolism. Future Directions: Further studies are required to determine the efficacy of NAD+ precursors in humans. Further in vivo studies of NAD+ metabolism are required to optimize the effects of NAD+ supplementation. There is also a need for methods of delivering NAD+ precursors to target organs or tissues to increase the outcomes of clinical trials. Antioxid. Redox Signal. 39, 1133-1149.
Collapse
Affiliation(s)
- Keisuke Yaku
- Department of Molecular and Medical Pharmacology, Faculty of Medicine; Toyama, Japan
| | - Takashi Nakagawa
- Department of Molecular and Medical Pharmacology, Faculty of Medicine; Toyama, Japan
- Research Center for Pre-Disease Science; University of Toyama, Toyama, Japan
| |
Collapse
|
5
|
Li Y, Liu Y, Zhang Y, Wu Y, Xing Z, Wang J, Fan GH. Discovery of a First-in-Class CD38 Inhibitor for the Treatment of Mitochondrial Myopathy. J Med Chem 2023; 66:12762-12775. [PMID: 37696000 DOI: 10.1021/acs.jmedchem.3c00391] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
CD38 is a crucial NADase in mammalian tissues that degrades NAD+ and thus regulates cellular NAD+ levels. Abnormal CD38 expression is linked to mitochondrial dysfunction under several pathological conditions. We present a novel CD38 inhibitor, compound 1, with high potency for CD38 (IC50 of 11 nM) and minimal activity against other targets. In a Pus1 knockout (Pus1-/-) mouse model of mitochondrial myopathy, compound 1 treatment rescued the decline in running endurance in a dose-dependent manner, associated with an elevated NAD+ level in muscle tissue, increased expression of Nrf2, which is known to promote mitochondrial biogenesis, and reduced lactate production. RNA sequencing data indicated that compound 1 has a great effect on mitochondrial function, metabolic processes, muscle contraction/development, and actin filament organization via regulating the expression of relevant genes. Compound 1 is a promising candidate for its excellent in vivo efficacy, favorable pharmacokinetics, and attractive safety profile.
Collapse
Affiliation(s)
- Yue Li
- Department of Medicinal Chemistry, Immunophage Biotech Co., Ltd, No. 10 Lv Zhou Huan Road, Shanghai 201112, P. R. China
| | - Yuanyuan Liu
- Department of Neurosciences, Immunophage Biotech Co., Ltd, No. 10 Lv Zhou Huan Road, Shanghai 201112, P. R. China
- Guangxi Key Laboratory of Regenerative Medicine, and Guangxi Key Laboratory of Brain Science, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, Guangxi , China
| | - Yong Zhang
- Department of Integrated Biological Platform Sciences, Immunophage Biotech Co., Ltd, No. 10 Lv Zhou Huan Road, Shanghai 201112, P. R. China
| | - Yong Wu
- Department of Medicinal Chemistry, Immunophage Biotech Co., Ltd, No. 10 Lv Zhou Huan Road, Shanghai 201112, P. R. China
| | - Zili Xing
- Department of Neurosciences, Immunophage Biotech Co., Ltd, No. 10 Lv Zhou Huan Road, Shanghai 201112, P. R. China
| | - JianFei Wang
- Executive Office, Immunophage Biotech Co., Ltd, No. 10 Lv Zhou Huan Road, Shanghai 201112, P. R. China
- Shanghai Laboratory Animal Research Center, Shanghai 200031, China
| | - Guo-Huang Fan
- Executive Office, Immunophage Biotech Co., Ltd, No. 10 Lv Zhou Huan Road, Shanghai 201112, P. R. China
| |
Collapse
|
6
|
Jain A, Casanova D, Padilla AV, Paniagua Bojorges A, Kotla S, Ko KA, Samanthapudi VSK, Chau K, Nguyen MTH, Wen J, Hernandez Gonzalez SL, Rodgers SP, Olmsted-Davis EA, Hamilton DJ, Reyes-Gibby C, Yeung SCJ, Cooke JP, Herrmann J, Chini EN, Xu X, Yusuf SW, Yoshimoto M, Lorenzi PL, Hobbs B, Krishnan S, Koutroumpakis E, Palaskas NL, Wang G, Deswal A, Lin SH, Abe JI, Le NT. Premature senescence and cardiovascular disease following cancer treatments: mechanistic insights. Front Cardiovasc Med 2023; 10:1212174. [PMID: 37781317 PMCID: PMC10540075 DOI: 10.3389/fcvm.2023.1212174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/03/2023] [Indexed: 10/03/2023] Open
Abstract
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality, especially among the aging population. The "response-to-injury" model proposed by Dr. Russell Ross in 1999 emphasizes inflammation as a critical factor in atherosclerosis development, with atherosclerotic plaques forming due to endothelial cell (EC) injury, followed by myeloid cell adhesion and invasion into the blood vessel walls. Recent evidence indicates that cancer and its treatments can lead to long-term complications, including CVD. Cellular senescence, a hallmark of aging, is implicated in CVD pathogenesis, particularly in cancer survivors. However, the precise mechanisms linking premature senescence to CVD in cancer survivors remain poorly understood. This article aims to provide mechanistic insights into this association and propose future directions to better comprehend this complex interplay.
Collapse
Affiliation(s)
- Ashita Jain
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Diego Casanova
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | | | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kyung Ae Ko
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - Khanh Chau
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Minh T. H. Nguyen
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Jake Wen
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - Shaefali P. Rodgers
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | | | - Dale J. Hamilton
- Department of Medicine, Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX, United States
| | - Cielito Reyes-Gibby
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sai-Ching J. Yeung
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - John P. Cooke
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Joerg Herrmann
- Cardio Oncology Clinic, Division of Preventive Cardiology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Eduardo N. Chini
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Xiaolei Xu
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Syed Wamique Yusuf
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Momoko Yoshimoto
- Center for Stem Cell & Regenerative Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Philip L. Lorenzi
- Department of Bioinformatics and Computational Biology, Division of VP Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Brain Hobbs
- Department of Population Health, The University of Texas at Austin, Austin, TX, United States
| | - Sunil Krishnan
- Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Efstratios Koutroumpakis
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nicolas L. Palaskas
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Guangyu Wang
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Steven H. Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jun-ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nhat-Tu Le
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
7
|
Mills CM, Benton TZ, Piña I, Francis MJ, Reyes L, Dolloff NG, Peterson YK, Woster PM. Stimulation of natural killer cells with small molecule inhibitors of CD38 for the treatment of neuroblastoma. Chem Sci 2023; 14:2168-2182. [PMID: 36845935 PMCID: PMC9945084 DOI: 10.1039/d2sc05749b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/28/2023] [Indexed: 02/02/2023] Open
Abstract
High-risk neuroblastoma (NB) accounts for 15% of all pediatric cancer deaths. Refractory disease for high-risk NB patients is attributed to chemotherapy resistance and immunotherapy failure. The poor prognosis for high-risk NB patients demonstrates an unmet medical need for the development of new, more efficacious therapeutics. CD38 is an immunomodulating protein that is expressed constitutively on natural killer (NK) cells and other immune cells in the tumor microenvironment (TME). Furthermore, CD38 over expression is implicated in propagating an immunosuppressive milieu within the TME. Through virtual and physical screening, we have identified drug-like small molecule inhibitors of CD38 with low micromolar IC50 values. We have begun to explore structure activity relationships for CD38 inhibition through derivatization of our most effective hit molecule to develop a new compound with lead-like physicochemical properties and improved potency. We have demonstrated that our derivatized inhibitor, compound 2, elicits immunomodulatory effects in NK cells by increasing cell viability by 190 ± 36% in multiple donors and by significantly increasing interferon gamma. Additionally, we have illustrated that NK cells exhibited enhanced cytotoxicity toward NB cells (14% reduction of NB cells over 90 minutes) when given a combination treatment of our inhibitor and the immunocytokine ch14.18-IL2. Herein we describe the synthesis and biological evaluation of small molecule CD38 inhibitors and demonstrate their potential utility as a novel approach to NB immunotherapy. These compounds represent the first examples of small molecules that stimulate immune function for the treatment of cancer.
Collapse
Affiliation(s)
- Catherine M Mills
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina 70 President St Charleston SC 29425 USA
| | - Thomas Z Benton
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina 70 President St Charleston SC 29425 USA
| | - Ivett Piña
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina 70 President St Charleston SC 29425 USA
| | - Megan J Francis
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina 70 President St Charleston SC 29425 USA
| | - Leticia Reyes
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina 70 President St Charleston SC 29425 USA
| | - Nathan G Dolloff
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina 70 President St Charleston SC 29425 USA
| | - Yuri K Peterson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina 70 President St Charleston SC 29425 USA
| | - Patrick M Woster
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina 70 President St Charleston SC 29425 USA
| |
Collapse
|
8
|
Poljšak B, Kovač V, Špalj S, Milisav I. The Central Role of the NAD+ Molecule in the Development of Aging and the Prevention of Chronic Age-Related Diseases: Strategies for NAD+ Modulation. Int J Mol Sci 2023; 24:2959. [PMID: 36769283 PMCID: PMC9917998 DOI: 10.3390/ijms24032959] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/16/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The molecule NAD+ is a coenzyme for enzymes catalyzing cellular redox reactions in several metabolic pathways, encompassing glycolysis, TCA cycle, and oxidative phosphorylation, and is a substrate for NAD+-dependent enzymes. In addition to a hydride and electron transfer in redox reactions, NAD+ is a substrate for sirtuins and poly(adenosine diphosphate-ribose) polymerases and even moderate decreases in its cellular concentrations modify signaling of NAD+-consuming enzymes. Age-related reduction in cellular NAD+ concentrations results in metabolic and aging-associated disorders, while the consequences of increased NAD+ production or decreased degradation seem beneficial. This article reviews the NAD+ molecule in the development of aging and the prevention of chronic age-related diseases and discusses the strategies of NAD+ modulation for healthy aging and longevity.
Collapse
Affiliation(s)
- Borut Poljšak
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Vito Kovač
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Stjepan Špalj
- Department of Orthodontics, Faculty of Dental Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Irina Milisav
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
9
|
Gao L, Du X, Li J, Qin FXF. Evolving roles of CD38 metabolism in solid tumour microenvironment. Br J Cancer 2023; 128:492-504. [PMID: 36396822 PMCID: PMC9938187 DOI: 10.1038/s41416-022-02052-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022] Open
Abstract
Given that plenty of clinical findings and reviews have already explained in detail on the progression of CD38 in multiple myeloma and haematological system tumours, here we no longer give unnecessary discussion on the above progression. Though therapeutic antibodies have been regarded as a greatest breakthrough in multiple myeloma immunotherapies due to the durable anti-tumour responses in the clinic, but the role of CD38 in the immunologic regulation and evasion of non-hematopoietic solid tumours are just initiated and controversial. Therefore, we will focus on the bio-function of CD38 enzymatic substrates or metabolites in the variety of non-hematopoietic malignancies and the potential therapeutic value of targeting the CD38-NAD+ or CD38-cADPR/ADPR signal axis. Though limited, we review some ongoing researches and clinical trials on therapeutic approaches in solid tumour as well.
Collapse
Affiliation(s)
- Long Gao
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
| | - Xiaohong Du
- Institute of Clinical Medicine Research, Suzhou Science and Technology Town Hospital, Suzhou, China
| | - Jiabin Li
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China.
| | - F Xiao-Feng Qin
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 100005, Beijing, China.
- Suzhou Institute of Systems Medicine, 215123, Suzhou, China.
| |
Collapse
|
10
|
Wang Y, Song H, Wang S, Cai Q, Zhang Y, Zou Y, Liu X, Chen J. Discovery of quinazoline compound as a novel nematicidal scaffold. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 189:105310. [PMID: 36549817 DOI: 10.1016/j.pestbp.2022.105310] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/14/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
With the aim of discovering novel nematicidal scaffolds, the nematicidal activities of a series of quinazoline compounds were tested, with some compounds showing excellent results. Among them, the LC50 values of compound K11 against Bursaphelenchus xylophilus, Aphelenchoides besseyi, and Ditylenchus destructor were 7.33, 6.09, and 10.95 mg/L, respectively. In addition, the nematicidal activity of compound K11 against Meloidogyne incognita was 98.77% at 100 mg/L. Compound K11 not only increased the production of reactive oxygen species and the accumulation of lipofuscin and lipids in nematodes, but it also attenuated nematode pathogenicity by reducing the nematodes' antioxidant capacity. Transcriptomic analysis showed that compound K11 had significant effects on fatty acid degradation, metabolic pathways, and the differentially expressed genes related to redox processes in nematodes. Furthermore, the expression levels of the corresponding differentially expressed genes were verified using real-time quantitative polymerase chain reaction. Quinazoline can be used as a new nematicidal scaffold, and it is expected that more work will be done on the discovery of novel nematicides based on the lead compound K11 in the future.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Hongyi Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Sheng Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Qingfeng Cai
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yong Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yue Zou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xing Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jixiang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.
| |
Collapse
|
11
|
Bratkowski M, Burdett TC, Danao J, Wang X, Mathur P, Gu W, Beckstead JA, Talreja S, Yang YS, Danko G, Park JH, Walton M, Brown SP, Tegley CM, Joseph PRB, Reynolds CH, Sambashivan S. Uncompetitive, adduct-forming SARM1 inhibitors are neuroprotective in preclinical models of nerve injury and disease. Neuron 2022; 110:3711-3726.e16. [PMID: 36087583 DOI: 10.1016/j.neuron.2022.08.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/06/2022] [Accepted: 08/10/2022] [Indexed: 12/15/2022]
Abstract
Axon degeneration is an early pathological event in many neurological diseases. The identification of the nicotinamide adenine dinucleotide (NAD) hydrolase SARM1 as a central metabolic sensor and axon executioner presents an exciting opportunity to develop novel neuroprotective therapies that can prevent or halt the degenerative process, yet limited progress has been made on advancing efficacious inhibitors. We describe a class of NAD-dependent active-site SARM1 inhibitors that function by intercepting NAD hydrolysis and undergoing covalent conjugation with the reaction product adenosine diphosphate ribose (ADPR). The resulting small-molecule ADPR adducts are highly potent and confer compelling neuroprotection in preclinical models of neurological injury and disease, validating this mode of inhibition as a viable therapeutic strategy. Additionally, we show that the most potent inhibitor of CD38, a related NAD hydrolase, also functions by the same mechanism, further underscoring the broader applicability of this mechanism in developing therapies against this class of enzymes.
Collapse
Affiliation(s)
| | - Thomas C Burdett
- Biology Department, Nura Bio Inc., South San Francisco, CA 94080, USA
| | - Jean Danao
- Biology Department, Nura Bio Inc., South San Francisco, CA 94080, USA
| | - Xidao Wang
- Biology Department, Nura Bio Inc., South San Francisco, CA 94080, USA
| | - Prakhyat Mathur
- Biology Department, Nura Bio Inc., South San Francisco, CA 94080, USA
| | - Weijing Gu
- Biology Department, Nura Bio Inc., South San Francisco, CA 94080, USA
| | | | - Santosh Talreja
- Biology Department, Nura Bio Inc., South San Francisco, CA 94080, USA
| | - Yu-San Yang
- Biology Department, Nura Bio Inc., South San Francisco, CA 94080, USA
| | - Gregory Danko
- Biology Department, Nura Bio Inc., South San Francisco, CA 94080, USA
| | - Jae Hong Park
- Biology Department, Nura Bio Inc., South San Francisco, CA 94080, USA
| | - Mary Walton
- Chemistry Department, Nura Bio Inc., South San Francisco, CA 94080, USA
| | - Sean P Brown
- Chemistry Department, Nura Bio Inc., South San Francisco, CA 94080, USA
| | | | - Prem Raj B Joseph
- WuXi AppTec, Research Services Division, 6 Cedarbrook Drive, Cranbury, NJ 08512, USA
| | | | | |
Collapse
|
12
|
Poljšak B, Kovač V, Milisav I. Current Uncertainties and Future Challenges Regarding NAD+ Boosting Strategies. Antioxidants (Basel) 2022; 11:1637. [PMID: 36139711 PMCID: PMC9495723 DOI: 10.3390/antiox11091637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Precursors of nicotinamide adenine dinucleotide (NAD+), modulators of enzymes of the NAD+ biosynthesis pathways and inhibitors of NAD+ consuming enzymes, are the main boosters of NAD+. Increasing public awareness and interest in anti-ageing strategies and health-promoting lifestyles have grown the interest in the use of NAD+ boosters as dietary supplements, both in scientific circles and among the general population. Here, we discuss the current trends in NAD+ precursor usage as well as the uncertainties in dosage, timing, safety, and side effects. There are many unknowns regarding pharmacokinetics and pharmacodynamics, particularly bioavailability, metabolism, and tissue specificity of NAD+ boosters. Given the lack of long-term safety studies, there is a need for more clinical trials to determine the proper dose of NAD+ boosters and treatment duration for aging prevention and as disease therapy. Further research will also need to address the long-term consequences of increased NAD+ and the best approaches and combinations to increase NAD+ levels. The answers to the above questions will contribute to the more efficient and safer use of NAD+ boosters.
Collapse
Affiliation(s)
- Borut Poljšak
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia
| | - Vito Kovač
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia
| | - Irina Milisav
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Zaloska 4, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
13
|
Cui H, Xie N, Banerjee S, Dey T, Liu RM, Antony VB, Sanders YY, Adams TS, Gomez JL, Thannickal VJ, Kaminski N, Liu G. CD38 Mediates Lung Fibrosis by Promoting Alveolar Epithelial Cell Aging. Am J Respir Crit Care Med 2022; 206:459-475. [PMID: 35687485 DOI: 10.1164/rccm.202109-2151oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 06/06/2022] [Indexed: 01/10/2023] Open
Abstract
Rationale: A prevailing paradigm recognizes idiopathic pulmonary fibrosis (IPF) originating from various alveolar epithelial cell (AEC) injuries, and there is a growing appreciation of AEC aging as a key driver of the pathogenesis. Despite this progress, it is incompletely understood what main factor(s) contribute to the worsened alveolar epithelial aging in lung fibrosis. It remains a challenge how to dampen AEC aging and thereby mitigate the disease progression. Objectives: To determine the role of AEC CD38 (cluster of differentiation 38) in promoting cellular aging and lung fibrosis. Methods: We used single-cell RNA sequencing, real-time PCR, flow cytometry, and Western blotting. Measurements and Main Results: We discovered a pivotal role of CD38, a cardinal nicotinamide adenine dinucleotide (NAD) hydrolase, in AEC aging and its promotion of lung fibrosis. We found increased CD38 expression in IPF lungs that inversely correlated with the lung functions of patients. CD38 was primarily located in the AECs of human lung parenchyma and was markedly induced in IPF AECs. Similarly, CD38 expression was elevated in the AECs of fibrotic lungs of young mice and further augmented in those of old mice, which was in accordance with a worsened AEC aging phenotype and an aggravated lung fibrosis in the old animals. Mechanistically, we found that CD38 elevation downregulated intracellular NAD, which likely led to the aging promoting impairment of the NAD-dependent cellular and molecular activities. Furthermore, we demonstrated that genetic and pharmacological inactivation of CD38 improved these NAD dependent events and ameliorated bleomycin-induced lung fibrosis. Conclusions: Our study suggests targeting alveolar CD38 as a novel and effective therapeutic strategy to treat this pathology.
Collapse
Affiliation(s)
- Huachun Cui
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Na Xie
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sami Banerjee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tapan Dey
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rui-Ming Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Veena B Antony
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yan Y Sanders
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Taylor S Adams
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut; and
| | - Jose L Gomez
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut; and
| | - Victor J Thannickal
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut; and
| | - Gang Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
14
|
Lagu B, Wu X, Kulkarni S, Paul R, Becherer JD, Olson L, Ravani S, Chatzianastasiou A, Papapetropoulos A, Andrzejewski S. Orally Bioavailable Enzymatic Inhibitor of CD38, MK-0159, Protects against Ischemia/Reperfusion Injury in the Murine Heart. J Med Chem 2022; 65:9418-9446. [PMID: 35762533 DOI: 10.1021/acs.jmedchem.2c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CD38 is one of the major nicotinamide adenine dinucleotide (NAD+)- and nicotinamide adenine dinucleotide phosphate (NADP+)-consuming enzymes in mammals. NAD+, NADP+, and their reduced counterparts are essential coenzymes for numerous enzymatic reactions, including the maintenance of cellular and mitochondrial redox balance. CD38 expression is upregulated in age-associated inflammation as well as numerous metabolic diseases, resulting in cellular and mitochondrial dysfunction. Recent literature studies demonstrate that CD38 is activated upon ischemia/reperfusion (I/R), leading to a depletion of NADP+, which results in endothelial damage and myocardial infarction in the heart. Despite increasing evidence of CD38 involvement in various disease states, relatively few CD38 enzymatic inhibitors have been reported to date. Herein, we describe a CD38 enzymatic inhibitor (MK-0159, IC50 = 3 nM against murine CD38) that inhibits CD38 in in vitro assay. Mice treated with MK-0159 show strong protection from myocardial damage upon cardiac I/R injury compared to those treated with NAD+ precursors (nicotinamide riboside) or the known CD38 inhibitor, 78c.
Collapse
Affiliation(s)
- Bharat Lagu
- Mitobridge (An Astellas Company), Cambridge, Massachusetts 02138, United States
| | - Xinyuan Wu
- Mitobridge (An Astellas Company), Cambridge, Massachusetts 02138, United States
| | - Santosh Kulkarni
- Syngene International Limited, Bangalore, Karnataka 560099, India
| | - Rakesh Paul
- Syngene International Limited, Bangalore, Karnataka 560099, India
| | - J David Becherer
- Mitobridge (An Astellas Company), Cambridge, Massachusetts 02138, United States
| | - Lyndsay Olson
- Mitobridge (An Astellas Company), Cambridge, Massachusetts 02138, United States
| | - Stella Ravani
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Athanasia Chatzianastasiou
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece.,Laboratory of Pharmacology, Department of Pharmacy, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Andreas Papapetropoulos
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece.,Laboratory of Pharmacology, Department of Pharmacy, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Sylvia Andrzejewski
- Mitobridge (An Astellas Company), Cambridge, Massachusetts 02138, United States
| |
Collapse
|
15
|
Chen PM, Katsuyama E, Satyam A, Li H, Rubio J, Jung S, Andrzejewski S, Becherer JD, Tsokos MG, Abdi R, Tsokos GC. CD38 reduces mitochondrial fitness and cytotoxic T cell response against viral infection in lupus patients by suppressing mitophagy. SCIENCE ADVANCES 2022; 8:eabo4271. [PMID: 35704572 PMCID: PMC9200274 DOI: 10.1126/sciadv.abo4271] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Infection is one of the major causes of mortality in patients with systemic lupus erythematosus (SLE). We previously found that CD38, an ectoenzyme that regulates the production of NAD+, is up-regulated in CD8+ T cells of SLE patients and correlates with the risk of infection. Here, we report that CD38 reduces CD8+ T cell function by negatively affecting mitochondrial fitness through the inhibition of multiple steps of mitophagy, a process that is critical for mitochondria quality control. Using a murine lupus model, we found that administration of a CD38 inhibitor in a CD8+ T cell-targeted manner reinvigorated their effector function, reversed the defects in autophagy and mitochondria, and improved viral clearance. We conclude that CD38 represents a target to mitigate infection rates in people with SLE.
Collapse
Affiliation(s)
- Ping-Min Chen
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Eri Katsuyama
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Abhigyan Satyam
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hao Li
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jose Rubio
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sungwook Jung
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Maria G. Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - George C. Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Martucci LL, Cancela JM. Neurophysiological functions and pharmacological tools of acidic and non-acidic Ca2+ stores. Cell Calcium 2022; 104:102582. [DOI: 10.1016/j.ceca.2022.102582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 02/08/2023]
|
17
|
Zheng M, Schultz MB, Sinclair DA. NAD + in COVID-19 and viral infections. Trends Immunol 2022; 43:283-295. [PMID: 35221228 PMCID: PMC8831132 DOI: 10.1016/j.it.2022.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 11/24/2022]
Abstract
NAD+, as an emerging regulator of immune responses during viral infections, may be a promising therapeutic target for coronavirus disease 2019 (COVID-19). In this Opinion, we suggest that interventions that boost NAD+ levels might promote antiviral defense and suppress uncontrolled inflammation. We discuss the association between low NAD+ concentrations and risk factors for poor COVID-19 outcomes, including aging and common comorbidities. Mechanistically, we outline how viral infections can further deplete NAD+ and its roles in antiviral defense and inflammation. We also describe how coronaviruses can subvert NAD+-mediated actions via genes that remove NAD+ modifications and activate the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome. Finally, we explore ongoing approaches to boost NAD+ concentrations in the clinic to putatively increase antiviral responses while curtailing hyperinflammation.
Collapse
Affiliation(s)
- Minyan Zheng
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA
| | - Michael B Schultz
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA
| | - David A Sinclair
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Ugamraj HS, Dang K, Ouisse LH, Buelow B, Chini EN, Castello G, Allison J, Clarke SC, Davison LM, Buelow R, Deng R, Iyer S, Schellenberger U, Manika SN, Bijpuria S, Musnier A, Poupon A, Cuturi MC, van Schooten W, Dalvi P. TNB-738, a biparatopic antibody, boosts intracellular NAD+ by inhibiting CD38 ecto-enzyme activity. MAbs 2022; 14:2095949. [PMID: 35867844 PMCID: PMC9311320 DOI: 10.1080/19420862.2022.2095949] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cluster of differentiation 38 (CD38) is an ecto-enzyme expressed primarily on immune cells that metabolize nicotinamide adenine dinucleotide (NAD+) to adenosine diphosphate ribose or cyclic ADP-ribose and nicotinamide. Other substrates of CD38 include nicotinamide adenine dinucleotide phosphate and nicotinamide mononucleotide, a critical NAD+ precursor in the salvage pathway. NAD+ is an important coenzyme involved in several metabolic pathways and is a required cofactor for the function of sirtuins (SIRTs) and poly (adenosine diphosphate-ribose) polymerases. Declines in NAD+ levels are associated with metabolic and inflammatory diseases, aging, and neurodegenerative disorders. To inhibit CD38 enzyme activity and boost NAD+ levels, we developed TNB-738, an anti-CD38 biparatopic antibody that pairs two non-competing heavy chain-only antibodies in a bispecific format. By simultaneously binding two distinct epitopes on CD38, TNB-738 potently inhibited its enzymatic activity, which in turn boosted intracellular NAD+ levels and SIRT activities. Due to its silenced IgG4 Fc, TNB-738 did not deplete CD38-expressing cells, in contrast to the clinically available anti-CD38 antibodies, daratumumab, and isatuximab. TNB-738 offers numerous advantages compared to other NAD-boosting therapeutics, including small molecules, and supplements, due to its long half-life, specificity, safety profile, and activity. Overall, TNB-738 represents a novel treatment with broad therapeutic potential for metabolic and inflammatory diseases associated with NAD+ deficiencies.Abbreviations: 7-AAD: 7-aminoactinomycin D; ADCC: antibody dependent cell-mediated cytotoxicity; ADCP: antibody dependent cell-mediated phagocytosis; ADPR: adenosine diphosphate ribose; APC: allophycocyanin; cADPR: cyclic ADP-ribose; cDNA: complementary DNA; BSA: bovine serum albumin; CD38: cluster of differentiation 38; CDC: complement dependent cytotoxicity; CFA: Freund's complete adjuvant; CHO: Chinese hamster ovary; CCP4: collaborative computational project, number 4; COOT: crystallographic object-oriented toolkit; DAPI: 4',6-diamidino-2-phenylindole; DNA: deoxyribonucleic acid; DSC: differential scanning calorimetry; 3D: three dimensional; εNAD+: nicotinamide 1,N6-ethenoadenine dinucleotide; ECD: extracellular domain; EGF: epidermal growth factor; FACS: fluorescence activated cell sorting; FcγR: Fc gamma receptors; FITC: fluorescein isothiocyanate; HEK: human embryonic kidney; HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; IgG: immunoglobulin; IFA: incomplete Freund's adjuvant; IFNγ: Interferon gamma; KB: kinetic buffer; kDa: kilodalton; KEGG: kyoto encyclopedia of genes and genomes; LDH: lactate dehydrogenase; M: molar; mM: millimolar; MFI: mean fluorescent intensity; NA: nicotinic acid; NAD: nicotinamide adenine dinucleotide; NADP: nicotinamide adenine dinucleotide phosphate; NAM: nicotinamide; NGS: next-generation sequencing; NHS/EDC: N-Hydroxysuccinimide/ ethyl (dimethylamino propyl) carbodiimide; Ni-NTA: nickel-nitrilotriacetic acid; nL: nanoliter; NK: natural killer; NMN: nicotinamide mononucleotide; OD: optical density; PARP: poly (adenosine diphosphate-ribose) polymerase; PBS: phosphate-buffered saline; PBMC: peripheral blood mononuclear cell; PDB: protein data bank; PE: phycoerythrin; PISA: protein interfaces, surfaces, and assemblies: PK: pharmacokinetics; mol: picomolar; RNA: ribonucleic acid; RLU: relative luminescence units; rpm: rotations per minute; RU: resonance unit; SEC: size exclusion chromatography; SEM: standard error of the mean; SIRT: sirtuins; SPR: surface plasmon resonance; µg: microgram; µM: micromolar; µL: microliter.
Collapse
Affiliation(s)
| | | | - Laure-Hélène Ouisse
- INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Université, Nantes, France
| | | | - Eduardo N Chini
- Department of Anesthesiology and Perioperative Medicine, Kogod Center on Aging, Mitochondrial Care Center, Mayo Clinic, Jacksonville, Florida, USA
| | | | | | | | | | | | - Rong Deng
- R&D Q-Pharm consulting LLC, Pleasanton, California, USA
| | | | | | | | | | | | | | - Maria Cristina Cuturi
- INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Université, Nantes, France
| | | | | |
Collapse
|
19
|
Critical Role of Astrocyte NAD + Glycohydrolase in Myelin Injury and Regeneration. J Neurosci 2021; 41:8644-8667. [PMID: 34493542 DOI: 10.1523/jneurosci.2264-20.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 08/12/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
Western-style diets cause disruptions in myelinating cells and astrocytes within the mouse CNS. Increased CD38 expression is present in the cuprizone and experimental autoimmune encephalomyelitis models of demyelination and CD38 is the main nicotinamide adenine dinucleotide (NAD+)-depleting enzyme in the CNS. Altered NAD+ metabolism is linked to both high fat consumption and multiple sclerosis (MS). Here, we identify increased CD38 expression in the male mouse spinal cord following chronic high fat consumption, after focal toxin [lysolecithin (LL)]-mediated demyelinating injury, and in reactive astrocytes within active MS lesions. We demonstrate that CD38 catalytically inactive mice are substantially protected from high fat-induced NAD+ depletion, oligodendrocyte loss, oxidative damage, and astrogliosis. A CD38 inhibitor, 78c, increased NAD+ and attenuated neuroinflammatory changes induced by saturated fat applied to astrocyte cultures. Conditioned media from saturated fat-exposed astrocytes applied to oligodendrocyte cultures impaired myelin protein production, suggesting astrocyte-driven indirect mechanisms of oligodendrogliopathy. In cerebellar organotypic slice cultures subject to LL-demyelination, saturated fat impaired signs of remyelination effects that were mitigated by concomitant 78c treatment. Significantly, oral 78c increased counts of oligodendrocytes and remyelinated axons after focal LL-induced spinal cord demyelination. Using a RiboTag approach, we identified a unique in vivo brain astrocyte translatome profile induced by 78c-mediated CD38 inhibition in mice, including decreased expression of proinflammatory astrocyte markers and increased growth factors. Our findings suggest that a high-fat diet impairs oligodendrocyte survival and differentiation through astrocyte-linked mechanisms mediated by the NAD+ase CD38 and highlights CD38 inhibitors as potential therapeutic candidates to improve myelin regeneration.SIGNIFICANCE STATEMENT Myelin disturbances and oligodendrocyte loss can leave axons vulnerable, leading to permanent neurologic deficits. The results of this study suggest that metabolic disturbances, triggered by consumption of a diet high in fat, promote oligodendrogliopathy and impair myelin regeneration through astrocyte-linked indirect nicotinamide adenine dinucleotide (NAD+)-dependent mechanisms. We demonstrate that restoring NAD+ levels via genetic inactivation of CD38 can overcome these effects. Moreover, we show that therapeutic inactivation of CD38 can enhance myelin regeneration. Together, these findings point to a new metabolic targeting strategy positioned to improve disease course in multiple sclerosis and other conditions in which the integrity of myelin is a key concern.
Collapse
|
20
|
Benton TZ, Mills CM, Turner JM, Francis MJ, Solomon DJ, Burger PB, Peterson YK, Dolloff NG, Bachmann AS, Woster PM. Selective targeting of CD38 hydrolase and cyclase activity as an approach to immunostimulation. RSC Adv 2021; 11:33260-33270. [PMID: 35497564 PMCID: PMC9042253 DOI: 10.1039/d1ra06266b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/03/2021] [Indexed: 11/21/2022] Open
Abstract
The ectoenzyme CD38 is highly expressed on the surface of mature immune cells, where they are a marker for cell activation, and also on the surface of multiple tumor cells such as multiple myeloma (MM). CD38-targeted monoclonal antibodies (MABs) such as daratumumab and isatuximab bind to CD38 and promote cancer cell death by stimulating the antitumor immune response. Although MABs are achieving unprecedented success in a percentage of cases, high rates of resistance limit their efficacy. Formation of the immunosuppressive intermediate adenosine is a major route by which this resistance is mediated. Thus there is an urgent need for small molecule agents that boost the immune response in T-cells. Importantly, CD38 is a dual-function enzyme, serving as a hydrolase and a nicotinamide adenine dinucleotide (NAD+) cyclase, and both of these activities promote immunosuppression. We have employed virtual and physical screening to identify novel compounds that are selective for either the hydrolase or the cyclase activity of CD38, and have demonstrated that these compounds activate T cells in vitro. We are currently optimizing these inhibitors for use in immunotherapy. These small molecule inhibitors of the CD38-hydrolase or cyclase activity can serve as chemical probes to determine the mechanism by which CD38 promotes resistance to MAB therapy, and could become novel and effective therapeutic agents that produce immunostimulatory effects. Our studies have identified the first small molecule inhibitors of CD38 specifically for use as immunostimulants.
Collapse
Affiliation(s)
- Thomas Z Benton
- Dept. of Drug Discovery and Biomedical Sciences, Medical University of South Carolina 70 President St Charleston SC 29425 USA
| | - Catherine M Mills
- Dept. of Drug Discovery and Biomedical Sciences, Medical University of South Carolina 70 President St Charleston SC 29425 USA
| | - Jonathan M Turner
- Dept. of Drug Discovery and Biomedical Sciences, Medical University of South Carolina 70 President St Charleston SC 29425 USA
| | - Megan J Francis
- Dept. of Drug Discovery and Biomedical Sciences, Medical University of South Carolina 70 President St Charleston SC 29425 USA
| | - Dalan J Solomon
- Dept. of Drug Discovery and Biomedical Sciences, Medical University of South Carolina 70 President St Charleston SC 29425 USA
| | - Pieter B Burger
- Dept. of Drug Discovery and Biomedical Sciences, Medical University of South Carolina 70 President St Charleston SC 29425 USA
| | - Yuri K Peterson
- Dept. of Drug Discovery and Biomedical Sciences, Medical University of South Carolina 70 President St Charleston SC 29425 USA
| | - Nathan G Dolloff
- Dept of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina 173 Ashley Ave. Charleston SC 29425 USA
| | - André S Bachmann
- Dept of Pediatrics and Human Development, College of Human Medicine, Michigan State University 400 Monroe Ave. NW Grand Rapids MI 49503 USA
| | - Patrick M Woster
- Dept. of Drug Discovery and Biomedical Sciences, Medical University of South Carolina 70 President St Charleston SC 29425 USA
| |
Collapse
|
21
|
78495111110.1152/physrev.00046.2020" />
Abstract
This medical review addresses the hypothesis that CD38/NADase is at the center of a functional axis (i.e., intracellular Ca2+ mobilization/IFNγ response/reactive oxygen species burst) driven by severe acute respiratory syndrome coronavirus 2 infection, as already verified in respiratory syncytial virus pathology and CD38 activity in other cellular settings. Key features of the hypothesis are that 1) the substrates of CD38 (e.g., NAD+ and NADP+) are depleted by viral-induced metabolic changes; 2) the products of the enzymatic activity of CD38 [e.g., cyclic adenosine diphosphate-ribose (ADPR)/ADPR/nicotinic acid adenine dinucleotide phosphate] and related enzymes [e.g., poly(ADP-ribose)polymerase, Sirtuins, and ADP-ribosyl hydrolase] are involved in the anti‐viral and proinflammatory response that favors the onset of lung immunopathology (e.g., cytokine storm and organ fibrosis); and 3) the pathological changes induced by this kinetic mechanism may be reduced by distinct modulators of the CD38/NAD+ axis (e.g., CD38 blockers, NAD+ suppliers, among others). This view is supported by arrays of associative basic and applied research data that are herein discussed and integrated with conclusions reported by others in the field of inflammatory, immune, tumor, and viral diseases.
Collapse
Affiliation(s)
- Alberto L. Horenstein
- Department of Medical Science, University of Turin, Turin, Italy; and Centro Ricerca Medicina, Sperimentale (CeRMS) and Fondazione Ricerca Molinette Onlus, Turin, Italy
| | - Angelo C. Faini
- Department of Medical Science, University of Turin, Turin, Italy; and Centro Ricerca Medicina, Sperimentale (CeRMS) and Fondazione Ricerca Molinette Onlus, Turin, Italy
| | - Fabio Malavasi
- Department of Medical Science, University of Turin, Turin, Italy; and Centro Ricerca Medicina, Sperimentale (CeRMS) and Fondazione Ricerca Molinette Onlus, Turin, Italy
| |
Collapse
|
22
|
Strømland Ø, Diab J, Ferrario E, Sverkeli LJ, Ziegler M. The balance between NAD + biosynthesis and consumption in ageing. Mech Ageing Dev 2021; 199:111569. [PMID: 34509469 DOI: 10.1016/j.mad.2021.111569] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 01/07/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a vital coenzyme in redox reactions. NAD+ is also important in cellular signalling as it is consumed by PARPs, SARM1, sirtuins and CD38. Cellular NAD+ levels regulate several essential processes including DNA repair, immune cell function, senescence, and chromatin remodelling. Maintenance of these cellular processes is important for healthy ageing and lifespan. Interestingly, the levels of NAD+ decline during ageing in several organisms, including humans. Declining NAD+ levels have been linked to several age-related diseases including various metabolic diseases and cognitive decline. Decreasing tissue NAD+ concentrations have been ascribed to an imbalance between biosynthesis and consumption of the dinucleotide, resulting from, for instance, reduced levels of the rate limiting enzyme NAMPT along with an increased activation state of the NAD+-consuming enzymes PARPs and CD38. The progression of some age-related diseases can be halted or reversed by therapeutic augmentation of NAD+ levels. NAD+ metabolism has therefore emerged as a potential target to ameliorate age-related diseases. The present review explores how ageing affects NAD+ metabolism and current approaches to reverse the age-dependent decline of NAD+.
Collapse
Affiliation(s)
- Øyvind Strømland
- Department of Biomedicine, University of Bergen, Bergen, 5009, Norway
| | - Joseph Diab
- Department of Biomedicine, University of Bergen, Bergen, 5009, Norway
| | - Eugenio Ferrario
- Department of Biomedicine, University of Bergen, Bergen, 5009, Norway
| | - Lars J Sverkeli
- Department of Biomedicine, University of Bergen, Bergen, 5009, Norway; Department of Biological Sciences, University of Bergen, Bergen, 5020, Norway
| | - Mathias Ziegler
- Department of Biomedicine, University of Bergen, Bergen, 5009, Norway.
| |
Collapse
|
23
|
Xia WJ, Fan TG, Zhao ZW, Chen X, Wang XX, Li YM. Radical Annulation of 2-Cyanoaryl Acrylamides via C═C Double Bond Cleavage: Access to Amino-Substituted 2-Quinolones. Org Lett 2021; 23:6158-6163. [PMID: 34313448 DOI: 10.1021/acs.orglett.1c02281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel annulation of 2-cyanoaryl acrylamides via C═C double bond cleavage has been developed for facile and efficient access to a broad spectrum of functionalized 4-amino-2-quinolones, which are important N-heterocycles. In this transformation, the solvent THF is demonstrated to play a crucial role, and the addition of alkyl radicals to nitrile, 1,5-hydride shift, and cleavage of the C-C bond are involved in the mechanism.
Collapse
Affiliation(s)
- Wen-Jin Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Tai-Gang Fan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Zhi-Wei Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Xin Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Xiang-Xiang Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Ya-Min Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| |
Collapse
|
24
|
Li C, Wu LE. Risks and rewards of targeting NAD + homeostasis in the brain. Mech Ageing Dev 2021; 198:111545. [PMID: 34302821 DOI: 10.1016/j.mad.2021.111545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 01/29/2023]
Abstract
Strategies to correct declining nicotinamide adenine dinucleotide (NAD+) levels in neurological disease and biological ageing are promising therapeutic candidates. These strategies include supplementing with NAD+ precursors, small molecule activation of NAD+ biosynthetic enzymes, and treatment with small molecule inhibitors of NAD+ consuming enzymes such as CD38, SARM1 or members of the PARP family. While these strategies have shown efficacy in animal models of neurological disease, each of these has the mechanistic potential for adverse events that could preclude their preclinical use. Here, we discuss the implications of these strategies for treating neurological diseases, including potential off-target effects that may be unique to the brain.
Collapse
Affiliation(s)
- Catherine Li
- School of Medical Sciences, UNSW Sydney, NSW, 2052, Australia
| | - Lindsay E Wu
- School of Medical Sciences, UNSW Sydney, NSW, 2052, Australia.
| |
Collapse
|
25
|
Zapata‐Pérez R, Wanders RJA, van Karnebeek CDM, Houtkooper RH. NAD + homeostasis in human health and disease. EMBO Mol Med 2021; 13:e13943. [PMID: 34041853 PMCID: PMC8261484 DOI: 10.15252/emmm.202113943] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Depletion of nicotinamide adenine dinucleotide (NAD+ ), a central redox cofactor and the substrate of key metabolic enzymes, is the causative factor of a number of inherited and acquired diseases in humans. Primary deficiencies of NAD+ homeostasis are the result of impaired biosynthesis, while secondary deficiencies can arise due to other factors affecting NAD+ homeostasis, such as increased NAD+ consumption or dietary deficiency of its vitamin B3 precursors. NAD+ depletion can manifest in a wide variety of pathological phenotypes, ranging from rare inherited defects, characterized by congenital malformations, retinal degeneration, and/or encephalopathy, to more common multifactorial, often age-related, diseases. Here, we discuss NAD+ biochemistry and metabolism and provide an overview of the etiology and pathological consequences of alterations of the NAD+ metabolism in humans. Finally, we discuss the state of the art of the potential therapeutic implications of NAD+ repletion for boosting health as well as treating rare and common diseases, and the possibilities to achieve this by means of the different NAD+ -enhancing agents.
Collapse
Affiliation(s)
- Rubén Zapata‐Pérez
- Laboratory Genetic Metabolic DiseasesAmsterdam Gastroenterology, Endocrinology, and Metabolism (AGEM)Amsterdam Cardiovascular Sciences (ACS)Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic DiseasesAmsterdam Gastroenterology, Endocrinology, and Metabolism (AGEM)Amsterdam Cardiovascular Sciences (ACS)Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Clara D M van Karnebeek
- Department of PediatricsAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Pediatrics (Metabolic Diseases)Radboud Centre for Mitochondrial MedicineAmalia Children’s HospitalRadboud University Medical CenterNijmegenThe Netherlands
- On behalf of ‘United for Metabolic Diseases’AmsterdamThe Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic DiseasesAmsterdam Gastroenterology, Endocrinology, and Metabolism (AGEM)Amsterdam Cardiovascular Sciences (ACS)Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
26
|
Targeting CD38 is lethal to Breg-like chronic lymphocytic leukemia cells and Tregs, but restores CD8+ T-cell responses. Blood Adv 2021; 4:2143-2157. [PMID: 32421811 DOI: 10.1182/bloodadvances.2019001091] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/09/2020] [Indexed: 01/03/2023] Open
Abstract
Patients with chronic lymphocytic leukemia (CLL) are characterized by monoclonal expansion of CD5+CD23+CD27+CD19+κ/λ+ B lymphocytes and are clinically noted to have profound immune suppression. In these patients, it has been recently shown that a subset of B cells possesses regulatory functions and secretes high levels of interleukin 10 (IL-10). Our investigation identified that CLL cells with a CD19+CD24+CD38hi immunophenotype (B regulatory cell [Breg]-like CLL cells) produce high amounts of IL-10 and transforming growth factor β (TGF-β) and are capable of transforming naive T helper cells into CD4+CD25+FoxP3+ T regulatory cells (Tregs) in an IL-10/TGF-β-dependent manner. A strong correlation between the percentage of CD38+ CLL cells and Tregs was observed. CD38hi Tregs comprised more than 50% of Tregs in peripheral blood mononuclear cells (PBMCs) in patients with CLL. Anti-CD38 targeting agents resulted in lethality of both Breg-like CLL and Treg cells via apoptosis. Ex vivo, use of anti-CD38 monoclonal antibody (mAb) therapy was associated with a reduction in IL-10 and CLL patient-derived Tregs, but an increase in interferon-γ and proliferation of cytotoxic CD8+ T cells with an activated phenotype, which showed an improved ability to lyse patient-autologous CLL cells. Finally, effects of anti-CD38 mAb therapy were validated in a CLL-patient-derived xenograft model in vivo, which showed decreased percentage of Bregs, Tregs, and PD1+CD38hiCD8+ T cells, but increased Th17 and CD8+ T cells (vs vehicle). Altogether, our results demonstrate that targeting CD38 in CLL can modulate the tumor microenvironment; skewing T-cell populations from an immunosuppressive to immune-reactive milieu, thus promoting immune reconstitution for enhanced anti-CLL response.
Collapse
|
27
|
Peng JW, Yin XD, Li H, Ma KY, Zhang ZJ, Zhou R, Wang YL, Hu GF, Liu YQ. Design, Synthesis, and Structure-Activity Relationship of Quinazolinone Derivatives as Potential Fungicides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4604-4614. [PMID: 33872004 DOI: 10.1021/acs.jafc.0c05475] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plant diseases caused by phytopathogenic fungi reduce the yield and quality of crops. To develop novel antifungal agents, we designed and synthesized eight series of quinazolinone derivatives and evaluated their anti-phytopathogenic fungal activity. The bioassay results revealed that compounds KZL-15, KZL-22, 5b, 6b, 6c, 8e, and 8f exhibited remarkable antifungal activity in vitro. Especially, compound 6c displayed the highest bioactivity against Sclerotinia sclerotiorum, Pellicularia sasakii, Fusarium graminearum, and Fusarium oxysporum, displaying appreciable IC50 values (50% inhibitory concentration) of 2.46, 2.94, 6.03, and 11.9 μg/mL, respectively. A further mechanism interrogation revealed abnormal mycelia, damaged organelles, and changed permeability of cell membranes in S. sclerotiorum treated with compound 6c. In addition, the in vivo bioassay indicated that compound 6c possessed comparable curative and protective effects (87.3 and 90.7%, respectively) to the positive control azoxystrobin (89.5 and 91.2%, respectively) at 100 μg/mL concentration against S. sclerotiorum. This work validated the potential of compound 6c as a new and promising fungicide candidate, contributing to the exploration of potent antifungal agents.
Collapse
Affiliation(s)
- Jing-Wen Peng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xiao-Dan Yin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Hu Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Kun-Yuan Ma
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Rui Zhou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yu-Ling Wang
- Gansu Academy of Agricultural Sciences, Lanzhou 730000, People's Republic of China
| | - Guan-Fang Hu
- Gansu Academy of Agricultural Sciences, Lanzhou 730000, People's Republic of China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
28
|
Abstract
This medical review addresses the hypothesis that CD38/NADase is at the center of a functional axis (i.e., intracellular Ca2+ mobilization/IFNγ response/reactive oxygen species burst) driven by severe acute respiratory syndrome coronavirus 2 infection, as already verified in respiratory syncytial virus pathology and CD38 activity in other cellular settings. Key features of the hypothesis are that 1) the substrates of CD38 (e.g., NAD+ and NADP+) are depleted by viral-induced metabolic changes; 2) the products of the enzymatic activity of CD38 [e.g., cyclic adenosine diphosphate-ribose (ADPR)/ADPR/nicotinic acid adenine dinucleotide phosphate] and related enzymes [e.g., poly(ADP-ribose)polymerase, Sirtuins, and ADP-ribosyl hydrolase] are involved in the anti‐viral and proinflammatory response that favors the onset of lung immunopathology (e.g., cytokine storm and organ fibrosis); and 3) the pathological changes induced by this kinetic mechanism may be reduced by distinct modulators of the CD38/NAD+ axis (e.g., CD38 blockers, NAD+ suppliers, among others). This view is supported by arrays of associative basic and applied research data that are herein discussed and integrated with conclusions reported by others in the field of inflammatory, immune, tumor, and viral diseases.
Collapse
Affiliation(s)
- Alberto L Horenstein
- Department of Medical Science, University of Turin, Turin, Italy; and Centro Ricerca Medicina, Sperimentale (CeRMS) and Fondazione Ricerca Molinette Onlus, Turin, Italy
| | - Angelo C Faini
- Department of Medical Science, University of Turin, Turin, Italy; and Centro Ricerca Medicina, Sperimentale (CeRMS) and Fondazione Ricerca Molinette Onlus, Turin, Italy
| | - Fabio Malavasi
- Department of Medical Science, University of Turin, Turin, Italy; and Centro Ricerca Medicina, Sperimentale (CeRMS) and Fondazione Ricerca Molinette Onlus, Turin, Italy
| |
Collapse
|
29
|
Yu M, Zhang H, Wang B, Zhang Y, Zheng X, Shao B, Zhuge Q, Jin K. Key Signaling Pathways in Aging and Potential Interventions for Healthy Aging. Cells 2021; 10:cells10030660. [PMID: 33809718 PMCID: PMC8002281 DOI: 10.3390/cells10030660] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Aging is a fundamental biological process accompanied by a general decline in tissue function. Indeed, as the lifespan increases, age-related dysfunction, such as cognitive impairment or dementia, will become a growing public health issue. Aging is also a great risk factor for many age-related diseases. Nowadays, people want not only to live longer but also healthier. Therefore, there is a critical need in understanding the underlying cellular and molecular mechanisms regulating aging that will allow us to modify the aging process for healthy aging and alleviate age-related disease. Here, we reviewed the recent breakthroughs in the mechanistic understanding of biological aging, focusing on the adenosine monophosphate-activated kinase (AMPK), Sirtuin 1 (SIRT1) and mammalian target of rapamycin (mTOR) pathways, which are currently considered critical for aging. We also discussed how these proteins and pathways may potentially interact with each other to regulate aging. We further described how the knowledge of these pathways may lead to new interventions for antiaging and against age-related disease.
Collapse
Affiliation(s)
- Mengdi Yu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; (M.Y.); (Y.Z.); (X.Z.)
| | - Hongxia Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Brian Wang
- Pathnova Laboratories Pte. Ltd. 1 Research Link, Singapore 117604, Singapore;
| | - Yinuo Zhang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; (M.Y.); (Y.Z.); (X.Z.)
| | - Xiaoying Zheng
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; (M.Y.); (Y.Z.); (X.Z.)
| | - Bei Shao
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China;
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; (M.Y.); (Y.Z.); (X.Z.)
- Correspondence: (Q.Z.); (K.J.); Tel.: +86-577-55579339 (Q.Z.); +1-81-7735-2579 (K.J.)
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Correspondence: (Q.Z.); (K.J.); Tel.: +86-577-55579339 (Q.Z.); +1-81-7735-2579 (K.J.)
| |
Collapse
|
30
|
Martínez-Morcillo FJ, Cantón-Sandoval J, Martínez-Menchón T, Corbalán-Vélez R, Mesa-Del-Castillo P, Pérez-Oliva AB, García-Moreno D, Mulero V. Non-canonical roles of NAMPT and PARP in inflammation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103881. [PMID: 33038343 DOI: 10.1016/j.dci.2020.103881] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is the most important hydrogen carrier in cell redox reactions. It is involved in mitochondrial function and metabolism, circadian rhythm, the immune response and inflammation, DNA repair, cell division, protein-protein signaling, chromatin remodeling and epigenetics. Recently, NAD+ has been recognized as the molecule of life, since, by increasing NAD+ levels in old or sick animals, it is possible to improve their health and lengthen their lifespan. In this review, we summarize the contribution of NAD+ metabolism to inflammation, with special emphasis in the major NAD+ biosynthetic enzyme, nicotinamide phosphoribosyl transferase (NAMPT), and the NAD+-consuming enzyme, poly(ADP-ribose) polymerase (PARP). The extracurricular roles of these enzymes, i.e. the proinflammatory role of NAMPT after its release, and the ability of PARP to promote a novel form of cell death, known as parthanatos, upon hyperactivation are revised and discussed in the context of several chronic inflammatory diseases.
Collapse
Affiliation(s)
- Francisco J Martínez-Morcillo
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| | - Joaquín Cantón-Sandoval
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Teresa Martínez-Menchón
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain; Servicio de Dermatología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Raúl Corbalán-Vélez
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain; Servicio de Dermatología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Pablo Mesa-Del-Castillo
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain; Servicio de Reumatología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Ana B Pérez-Oliva
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain.
| | - Diana García-Moreno
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain.
| | - Victoriano Mulero
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain.
| |
Collapse
|
31
|
Lin Q, Zuo W, Liu Y, Wu K, Liu Q. NAD + and cardiovascular diseases. Clin Chim Acta 2021; 515:104-110. [PMID: 33485900 DOI: 10.1016/j.cca.2021.01.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD) plays pivotal roles in controlling many biochemical processes. 'NAD' refers to the chemical backbone irrespective of charge, whereas 'NAD+' and 'NADH' refers to oxidized and reduced forms, respectively. NAD+/NADH ratio is essential for maintaining cellular reduction-oxidation (redox) homeostasis and for modulating energy metabolism. As a sensing or consuming enzyme of the poly (ADP-ribose) polymerase 1 (PARP1), the cyclic ADP-ribose (cADPR) synthases (CD38 and CD157), and sirtuin protein deacetylases (sirtuins, SIRTs), NAD+ participates in several key processes in cardiovascular disease. For example, NAD+ protects against metabolic syndrome, heart failure, ischemia-reperfusion (IR) injury, arrhythmia and hypertension. Accordingly, the subsequent loss of NAD+ in aging or during stress results in altered metabolic status and potentially increased disease susceptibility. Therefore, it is essential to maintain NAD+ or reduce loss in the heart. This review focuses on the involvement of NAD+ in the pathogenesis of cardiovascular disease and explores the effects of NAD+ boosting strategies in cardiovascular health.
Collapse
Affiliation(s)
- Qiuzhen Lin
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha Hunan 410011, PR China
| | - Wanyun Zuo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha Hunan 410011, PR China
| | - Yaozhong Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha Hunan 410011, PR China
| | - Keke Wu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha Hunan 410011, PR China
| | - Qiming Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha Hunan 410011, PR China.
| |
Collapse
|
32
|
Covarrubias AJ, Perrone R, Grozio A, Verdin E. NAD + metabolism and its roles in cellular processes during ageing. Nat Rev Mol Cell Biol 2020; 22:119-141. [PMID: 33353981 DOI: 10.1038/s41580-020-00313-x] [Citation(s) in RCA: 629] [Impact Index Per Article: 157.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a coenzyme for redox reactions, making it central to energy metabolism. NAD+ is also an essential cofactor for non-redox NAD+-dependent enzymes, including sirtuins, CD38 and poly(ADP-ribose) polymerases. NAD+ can directly and indirectly influence many key cellular functions, including metabolic pathways, DNA repair, chromatin remodelling, cellular senescence and immune cell function. These cellular processes and functions are critical for maintaining tissue and metabolic homeostasis and for healthy ageing. Remarkably, ageing is accompanied by a gradual decline in tissue and cellular NAD+ levels in multiple model organisms, including rodents and humans. This decline in NAD+ levels is linked causally to numerous ageing-associated diseases, including cognitive decline, cancer, metabolic disease, sarcopenia and frailty. Many of these ageing-associated diseases can be slowed down and even reversed by restoring NAD+ levels. Therefore, targeting NAD+ metabolism has emerged as a potential therapeutic approach to ameliorate ageing-related disease, and extend the human healthspan and lifespan. However, much remains to be learnt about how NAD+ influences human health and ageing biology. This includes a deeper understanding of the molecular mechanisms that regulate NAD+ levels, how to effectively restore NAD+ levels during ageing, whether doing so is safe and whether NAD+ repletion will have beneficial effects in ageing humans.
Collapse
Affiliation(s)
- Anthony J Covarrubias
- Buck Institute for Research on Aging, Novato, CA, USA.,UCSF Department of Medicine, San Francisco, CA, USA
| | | | | | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA, USA. .,UCSF Department of Medicine, San Francisco, CA, USA.
| |
Collapse
|
33
|
Graeff R, Guedes A, Quintana R, Wendt-Hornickle E, Baldo C, Walseth T, O’Grady S, Kannan M. Novel Pathway of Adenosine Generation in the Lungs from NAD +: Relevance to Allergic Airway Disease. Molecules 2020; 25:molecules25214966. [PMID: 33120985 PMCID: PMC7663290 DOI: 10.3390/molecules25214966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 11/20/2022] Open
Abstract
Adenosine and uric acid (UA) play a pivotal role in lung diseases such as asthma and chronic obstructive pulmonary disease (COPD). In the present experiments, we measured adenosine synthesis from nicotinamide adenine dinucleotide (NAD+) in membranes prepared from wild type (WT) and CD38 knockout (CD38KO) mouse lungs, from cultured airway smooth muscle and epithelial cells, and in bronchoalveolar lavage fluid after airway challenge with epidemiologically relevant allergens. Adenosine was determined using an enzymatically coupled assay that produces ATP and is detected by luminescence. Uric acid was determined by ELISA. Exposure of cultured airway epithelial cells to Alternaria alternata extract caused significant nucleotide (NAD+ and ATP) release in the culture media. The addition of NAD+ to membranes prepared from WT mice resulted in faster generation of adenosine compared to membranes from CD38KO mice. Formation of adenosine from NAD+ affected UA and ATP concentrations, its main downstream molecules. Furthermore, NAD+ and adenosine concentrations in the bronchoalveolar lavage fluid decreased significantly following airway challenge with house-dust mite extract in WT but not in CD38KO mice. Thus, NAD+ is a significant source of adenosine and UA in the airways in mouse models of allergic airway disease, and the capacity for their generation from NAD+ is augmented by CD38, a major NADase with high affinity for NAD+. This novel non-canonical NAD+-adenosine-UA pathway that is triggered by allergens has not been previously described in the airways.
Collapse
Affiliation(s)
- Richard Graeff
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA;
| | - Alonso Guedes
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; (A.G.); (R.Q.); (E.W.-H.); (C.B.)
| | - Ruth Quintana
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; (A.G.); (R.Q.); (E.W.-H.); (C.B.)
| | - Erin Wendt-Hornickle
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; (A.G.); (R.Q.); (E.W.-H.); (C.B.)
| | - Caroline Baldo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; (A.G.); (R.Q.); (E.W.-H.); (C.B.)
| | - Timothy Walseth
- Department of Pharmacology, University of Minnesota Medical School, University of Minnesota, St. Paul, MN 55455, USA;
| | - Scott O’Grady
- Department of Animal Science, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, MN 55108, USA;
| | - Mathur Kannan
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA;
- Correspondence:
| |
Collapse
|
34
|
Frederick DW, McDougal AV, Semenas M, Vappiani J, Nuzzo A, Ulrich JC, Becherer JD, Preugschat F, Stewart EL, Sévin DC, Kramer HF. Complementary NAD + replacement strategies fail to functionally protect dystrophin-deficient muscle. Skelet Muscle 2020; 10:30. [PMID: 33092650 PMCID: PMC7579925 DOI: 10.1186/s13395-020-00249-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a progressive muscle wasting disorder stemming from a loss of functional dystrophin. Current therapeutic options for DMD are limited, as small molecule modalities remain largely unable to decrease the incidence or mitigate the consequences of repetitive mechanical insults to the muscle during eccentric contractions (ECCs). METHODS Using a metabolomics-based approach, we observed distinct and transient molecular phenotypes in muscles of dystrophin-deficient MDX mice subjected to ECCs. Among the most chronically depleted metabolites was nicotinamide adenine dinucleotide (NAD), an essential metabolic cofactor suggested to protect muscle from structural and metabolic degeneration over time. We tested whether the MDX muscle NAD pool can be expanded for therapeutic benefit using two complementary small molecule strategies: provision of a biosynthetic precursor, nicotinamide riboside, or specific inhibition of the NAD-degrading ADP-ribosyl cyclase, CD38. RESULTS Administering a novel, potent, and orally available CD38 antagonist to MDX mice successfully reverted a majority of the muscle metabolome toward the wildtype state, with a pronounced impact on intermediates of the pentose phosphate pathway, while supplementing nicotinamide riboside did not significantly affect the molecular phenotype of the muscle. However, neither strategy sustainably increased the bulk tissue NAD pool, lessened muscle damage markers, nor improved maximal hindlimb strength following repeated rounds of eccentric challenge and recovery. CONCLUSIONS In the absence of dystrophin, eccentric injury contributes to chronic intramuscular NAD depletion with broad pleiotropic effects on the molecular phenotype of the tissue. These molecular consequences can be more effectively overcome by inhibiting the enzymatic activity of CD38 than by supplementing nicotinamide riboside. However, we found no evidence that either small molecule strategy is sufficient to restore muscle contractile function or confer protection from eccentric injury, undermining the modulation of NAD metabolism as a therapeutic approach for DMD.
Collapse
Affiliation(s)
- David W Frederick
- Muscle Metabolism Unit, GlaxoSmithKline R&D, Research Triangle Park, NC, Collegeville, PA, USA
| | - Alan V McDougal
- Muscle Metabolism Unit, GlaxoSmithKline R&D, Research Triangle Park, NC, Collegeville, PA, USA
| | - Melisa Semenas
- Muscle Metabolism Unit, GlaxoSmithKline R&D, Research Triangle Park, NC, Collegeville, PA, USA
| | | | - Andrea Nuzzo
- Target Sciences, Computational Biology, GlaxoSmithKline R&D, Collegeville, PA, USA
| | - John C Ulrich
- Muscle Metabolism Unit, GlaxoSmithKline R&D, Research Triangle Park, NC, Collegeville, PA, USA
| | - J David Becherer
- Muscle Metabolism Unit, GlaxoSmithKline R&D, Research Triangle Park, NC, Collegeville, PA, USA
| | - Frank Preugschat
- Muscle Metabolism Unit, GlaxoSmithKline R&D, Research Triangle Park, NC, Collegeville, PA, USA
| | - Eugene L Stewart
- Computational Sciences, Molecular Design, GlaxoSmithKline R&D, Collegeville, PA, USA.
| | | | - H Fritz Kramer
- Muscle Metabolism Unit, GlaxoSmithKline R&D, Research Triangle Park, NC, Collegeville, PA, USA
| |
Collapse
|
35
|
Xie N, Zhang L, Gao W, Huang C, Huber PE, Zhou X, Li C, Shen G, Zou B. NAD + metabolism: pathophysiologic mechanisms and therapeutic potential. Signal Transduct Target Ther 2020; 5:227. [PMID: 33028824 PMCID: PMC7539288 DOI: 10.1038/s41392-020-00311-7] [Citation(s) in RCA: 408] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/04/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) and its metabolites function as critical regulators to maintain physiologic processes, enabling the plastic cells to adapt to environmental changes including nutrient perturbation, genotoxic factors, circadian disorder, infection, inflammation and xenobiotics. These effects are mainly achieved by the driving effect of NAD+ on metabolic pathways as enzyme cofactors transferring hydrogen in oxidation-reduction reactions. Besides, multiple NAD+-dependent enzymes are involved in physiology either by post-synthesis chemical modification of DNA, RNA and proteins, or releasing second messenger cyclic ADP-ribose (cADPR) and NAADP+. Prolonged disequilibrium of NAD+ metabolism disturbs the physiological functions, resulting in diseases including metabolic diseases, cancer, aging and neurodegeneration disorder. In this review, we summarize recent advances in our understanding of the molecular mechanisms of NAD+-regulated physiological responses to stresses, the contribution of NAD+ deficiency to various diseases via manipulating cellular communication networks and the potential new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lu Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Wei Gao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Peter Ernst Huber
- CCU Molecular and Radiation Oncology, German Cancer Research Center; Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Xiaobo Zhou
- First Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Changlong Li
- West China School of Basic Medical Sciences & Forensic Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Guobo Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Bingwen Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
- CCU Molecular and Radiation Oncology, German Cancer Research Center; Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
- Department of Thoracic Oncology and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
36
|
Kang BE, Choi JY, Stein S, Ryu D. Implications of NAD + boosters in translational medicine. Eur J Clin Invest 2020; 50:e13334. [PMID: 32594513 DOI: 10.1111/eci.13334] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/07/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+ ) is an essential metabolite in energy metabolism as well as a co-substrate in biochemical reactions such as protein deacylation, protein ADP-ribosylation and cyclic ADP-ribose synthesis mediated by sirtuins, poly (ADP-ribose) polymerases (PARPs) and CD38. In eukaryotic cells, NAD+ is synthesized through three distinct pathways, which offer different strategies to modulate the bioavailability of NAD+ . The therapeutic potential of dietarily available NAD+ boosters preserving the NAD+ pool has been attracting attention after the discovery of declining NAD+ levels in ageing model organisms as well as in several age-related diseases, including cardiometabolic and neurodegenerative diseases. Here, we review the recent advances in the biology of NAD+ , including the salubrious effects of NAD+ boosters and discuss their future translational strategies.
Collapse
Affiliation(s)
- Baeki E Kang
- Molecular and Integrative Biology Lab (MIB), Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Jun-Yong Choi
- Department of Internal Medicine, Pusan National University School of Korean Medicine, Yangsan, Korea
| | - Sokrates Stein
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Dongryeol Ryu
- Molecular and Integrative Biology Lab (MIB), Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
37
|
Bulterijs S, Braeckman BP. Phenotypic Screening in C. elegans as a Tool for the Discovery of New Geroprotective Drugs. Pharmaceuticals (Basel) 2020; 13:E164. [PMID: 32722365 PMCID: PMC7463874 DOI: 10.3390/ph13080164] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 01/10/2023] Open
Abstract
Population aging is one of the largest challenges of the 21st century. As more people live to advanced ages, the prevalence of age-related diseases and disabilities will increase placing an ever larger burden on our healthcare system. A potential solution to this conundrum is to develop treatments that prevent, delay or reduce the severity of age-related diseases by decreasing the rate of the aging process. This ambition has been accomplished in model organisms through dietary, genetic and pharmacological interventions. The pharmacological approaches hold the greatest opportunity for successful translation to the clinic. The discovery of such pharmacological interventions in aging requires high-throughput screening strategies. However, the majority of screens performed for geroprotective drugs in C. elegans so far are rather low throughput. Therefore, the development of high-throughput screening strategies is of utmost importance.
Collapse
Affiliation(s)
- Sven Bulterijs
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Bart P. Braeckman
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
38
|
Zhao L, Cao J, Hu K, He X, Yun D, Tong T, Han L. Sirtuins and their Biological Relevance in Aging and Age-Related Diseases. Aging Dis 2020; 11:927-945. [PMID: 32765955 PMCID: PMC7390530 DOI: 10.14336/ad.2019.0820] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/20/2019] [Indexed: 12/18/2022] Open
Abstract
Sirtuins, initially described as histone deacetylases and gene silencers in yeast, are now known to have many more functions and to be much more abundant in living organisms. The increasing evidence of sirtuins in the field of ageing and age-related diseases indicates that they may provide novel targets for treating diseases associated with aging and perhaps extend human lifespan. Here, we summarize some of the recent discoveries in sirtuin biology that clearly implicate the functions of sirtuins in the regulation of aging and age-related diseases. Furthermore, human sirtuins are considered promising therapeutic targets for anti-aging and ageing-related diseases and have attracted interest in scientific communities to develop small molecule activators or drugs to ameliorate a wide range of ageing disorders. In this review, we also summarize the discovery and development status of sirtuin-targeted drug and further discuss the potential medical strategies of sirtuins in delaying aging and treating age-related diseases.
Collapse
Affiliation(s)
- Lijun Zhao
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Jianzhong Cao
- 2Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kexin Hu
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Xiaodong He
- 2Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dou Yun
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Tanjun Tong
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Limin Han
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| |
Collapse
|
39
|
Assessing Molecular Docking Tools to Guide Targeted Drug Discovery of CD38 Inhibitors. Int J Mol Sci 2020; 21:ijms21155183. [PMID: 32707824 PMCID: PMC7432575 DOI: 10.3390/ijms21155183] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 01/08/2023] Open
Abstract
A promising protein target for computational drug development, the human cluster of differentiation 38 (CD38), plays a crucial role in many physiological and pathological processes, primarily through the upstream regulation of factors that control cytoplasmic Ca2+ concentrations. Recently, a small-molecule inhibitor of CD38 was shown to slow down pathways relating to aging and DNA damage. We examined the performance of seven docking programs for their ability to model protein-ligand interactions with CD38. A test set of twelve CD38 crystal structures, containing crystallized biologically relevant substrates, were used to assess pose prediction. The rankings for each program based on the median RMSD between the native and predicted were Vina, AD4 > PLANTS, Gold, Glide, Molegro > rDock. Forty-two compounds with known affinities were docked to assess the accuracy of the programs at affinity/ranking predictions. The rankings based on scoring power were: Vina, PLANTS > Glide, Gold > Molegro >> AutoDock 4 >> rDock. Out of the top four performing programs, Glide had the only scoring function that did not appear to show bias towards overpredicting the affinity of the ligand-based on its size. Factors that affect the reliability of pose prediction and scoring are discussed. General limitations and known biases of scoring functions are examined, aided in part by using molecular fingerprints and Random Forest classifiers. This machine learning approach may be used to systematically diagnose molecular features that are correlated with poor scoring accuracy.
Collapse
|
40
|
Synthesis of bioactive quinazolin-4(3H)-one derivatives via microwave activation tailored by phase-transfer catalysis. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2020; 70:161-178. [PMID: 31955144 DOI: 10.2478/acph-2020-0001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/06/2019] [Indexed: 01/19/2023]
Abstract
A series of nine new 2,3-disubstituted 4(3H)-quinazolin-4-one derivatives was furnished starting from the 2-propyl-4(3H)-quinazo-line-4-one (2). The reinvestigation of the key starting quinazolinone 2 was performed under microwave irradiation (MW) and solvent-free conditions. Combination of MW and phase-transfer catalysis using tetrabutylammonium benzoate (TBAB) as a novel neutral ionic catalyst was used for carrying out N-alkylation and condensation reactions of compound 2 as a simple, efficient and eco-friendly technique. The structure of the synthesized compounds was elucidated using different spectral and chemical analyses. In vitro antimicrobial activity of the compounds was investigated against four bacterial and two fungal strains; very modest activity was achieved. Some of the synthesized compounds were screened for their antitumor activity against different human tumor cell lines. The screened compounds exhibited a significant antitumor activity on some of the cancer cell lines, melanoma (SK-MEL-2), ovarian cancer (IGROV1), renal cancer (TK-10), prostate cancer (PC-3), breast cancer (MCF7) and colon cancer (HT29). The most active, even more active than the reference 5-fluorouracil, were found to be ethyl 4-[(4-oxo-2-propylquinazolin-3(4H)-yl)methyl]benzoate (3c), 3-{2-[6-(pyrrolidin-1-yl-sulfonyl)-1,2,3,4-tetrahydroquinoline]-2-oxoethyl}-2-propylquinazolin--4(3H)-one (3e), N'-[(E)-(2H-1,3-benzodioxo-5-yl)methylidene]-2-(4-oxo-2-propylquinazolin-3(4H)-yl)acetohydrazide (10a), N'-[(E)-(4-hydroxyphenyl)methylidene]-2-(4-oxo-2-propylquinazo-lin-3(4H) -yl)acetohydrazide (10b) and N'-[(E)-(4-nitrophenyl)methyl idene]-2-(4-oxo-2-propylquinazolin-3(4H)-yl)acetohydrazide (10c).
Collapse
|
41
|
Zuo W, Liu N, Zeng Y, Liu Y, Li B, Wu K, Xiao Y, Liu Q. CD38: A Potential Therapeutic Target in Cardiovascular Disease. Cardiovasc Drugs Ther 2020; 35:815-828. [PMID: 32472237 DOI: 10.1007/s10557-020-07007-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Substantial research has demonstrated the association between cardiovascular disease and the dysregulation of intracellular calcium, ageing, reduction in nicotinamide adenine dinucleotide NAD+ content, and decrease in sirtuin activity. CD38, which comprises the soluble type, type II, and type III, is the main NADase in mammals. This molecule catalyses the production of cyclic adenosine diphosphate ribose (cADPR), nicotinic acid adenine dinucleotide phosphate (NAADP), and adenosine diphosphate ribose (ADPR), which stimulate the release of Ca2+, accompanied by NAD+ consumption and decreased sirtuin activity. Therefore, the relationship between cardiovascular disease and CD38 has been attracting increased attention. In this review, we summarize the structure, regulation, function, targeted drug development, and current research on CD38 in the cardiac context. More importantly, we provide original views about the as yet elusive mechanisms of CD38 action in certain cardiovascular disease models. Based on our review, we predict that CD38 may serve as a novel therapeutic target in cardiovascular disease in the future.
Collapse
Affiliation(s)
- Wanyun Zuo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Furong District, Changsha, 410011, Hunan, China
| | - Na Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Furong District, Changsha, 410011, Hunan, China
| | - Yunhong Zeng
- Department of Cardiology, Hunan Children's Hospital, No. 86 Ziyuan Road, Yuhua District, Changsha, 410007, Hunan, China
| | - Yaozhong Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Furong District, Changsha, 410011, Hunan, China
| | - Biao Li
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Furong District, Changsha, 410011, Hunan, China
| | - Keke Wu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Furong District, Changsha, 410011, Hunan, China
| | - Yunbin Xiao
- Department of Cardiology, Hunan Children's Hospital, No. 86 Ziyuan Road, Yuhua District, Changsha, 410007, Hunan, China.
| | - Qiming Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Furong District, Changsha, 410011, Hunan, China.
| |
Collapse
|
42
|
Reversal of endothelial dysfunction by nicotinamide mononucleotide via extracellular conversion to nicotinamide riboside. Biochem Pharmacol 2020; 178:114019. [PMID: 32389638 DOI: 10.1016/j.bcp.2020.114019] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/04/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) are effective substrates for NAD synthesis, which may act as vasoprotective agents. Here, we characterize the effects of NMN and NR on endothelial inflammation and dysfunction and test the involvement of CD73 in these effects. MATERIALS AND METHODS The effect of NMN and NR on IL1β- or TNFα-induced endothelial inflammation (ICAM1 and vWF expression), intracellular NAD concentration and NAD-related enzyme expression (NAMPT, CD38, CD73), were studied in HAECs. The effect of NMN and NR on angiotensin II-induced impairment of endothelium-dependent vasodilation was analyzed in murine aortic rings. The involvement of CD73 in NMN and NR effects was tested using CD73 inhibitor-AOPCP, or CD73-/- mice. RESULTS 24 h-incubation with NMN and NR induced anti-inflammatory effects in HAEC stimulated by IL1β or TNFα, as evidenced by a reduction in ICAM1 and vWF expression. Effects of exogenous NMN but not NR was abrogated in the presence of AOPCP, that efficiently inhibited extracellular endothelial conversion of NMN to NR, without a significant effect on the metabolism of NMN to NA. Surprisingly, intracellular NAD concentration increased in HAEC stimulated by IL1β or TNFα and this effect was associated with upregulation of NAMPT and CD73, whereas changes in CD38 expression were less pronounced. NMN and NR further increased NAD in IL1β-stimulated HAECs and AOPCP diminished NMN-induced increase in NAD, without an effect on NR-induced response. In ex vivo aortic rings stimulated with angiotensin II for 24 h, NO-dependent vasorelaxation induced by acetylcholine was impaired. NMN and NR, both prevented Ang II-induced endothelial dysfunction in the aorta. In aortic rings taken from CD73-/- mice NMN effect was lost, whereas NR effect was preserved. CONCLUSION NMN and NR modulate intracellular NAD content in endothelium, inhibit endothelial inflammation and improve NO-dependent function by CD73-dependent and independent pathways, respectively. Extracellular conversion of NMN to NR by CD73 localized in the luminal surface of endothelial cells represent important vasoprotective mechanisms to maintain intracellular NAD.
Collapse
|
43
|
Bhattacharya D, Tomar R, Babu SA. Conversion of 2,3‐Dihydrobenzo[
b
][1,4]dioxine‐2‐carboxamides to 3‐Oxoquinolin‐2(1
H
)‐ones via Ring‐Opening and Formal 6‐
endo
‐trig Cyclization‐Involved Heck Reactions. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Debabrata Bhattacharya
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306 (India)
| | - Radha Tomar
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306 (India)
| | - Srinivasarao Arulananda Babu
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306 (India)
| |
Collapse
|
44
|
Krauss R, Bosanac T, Devraj R, Engber T, Hughes RO. Axons Matter: The Promise of Treating Neurodegenerative Disorders by Targeting SARM1-Mediated Axonal Degeneration. Trends Pharmacol Sci 2020; 41:281-293. [DOI: 10.1016/j.tips.2020.01.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 02/06/2023]
|
45
|
Castro-Portuguez R, Sutphin GL. Kynurenine pathway, NAD + synthesis, and mitochondrial function: Targeting tryptophan metabolism to promote longevity and healthspan. Exp Gerontol 2020; 132:110841. [PMID: 31954874 DOI: 10.1016/j.exger.2020.110841] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 12/12/2022]
Abstract
Aging is characterized by a progressive decline in the normal physiological functions of an organism, ultimately leading to mortality. Nicotinamide adenine dinucleotide (NAD+) is an essential cofactor that plays a critical role in mitochondrial energy production as well as many enzymatic redox reactions. Age-associated decline in NAD+ is implicated as a driving factor in several categories of age-associated disease, including metabolic and neurodegenerative disease, as well as deficiency in the mechanisms of cellular defense against oxidative stress. The kynurenine metabolic pathway is the sole de novo NAD+ biosynthetic pathway, generating NAD+ from ingested tryptophan. Altered kynurenine pathway activity is associated with both aging and a variety of age-associated diseases. Kynurenine pathway interventions can extend lifespan in both fruit flies and nematodes, and altered NAD+ metabolism represents one potential mediating mechanism. Recent studies demonstrate that supplementation with NAD+ or NAD+-precursors increase longevity and promote healthy aging in fruit flies, nematodes, and mice. NAD+ levels and the intrinsic relationship to mitochondrial function have been widely studied in the context of aging. Mitochondrial function and dynamics have both been implicated in longevity determination in a range of organisms from yeast to humans, at least in part due to their intimate link to regulating an organism's cellular energy economy and capacity to resist oxidative stress. Recent findings support the idea that complex communication between the mitochondria and the nucleus orchestrates a series of events and stress responses involving mitophagy, mitochondrial number, mitochondrial unfolded protein response (UPRmt), and mitochondria fission and fusion events. In this review, we discuss how mitochondrial morphological changes and dynamics operate during aging, and how altered metabolism of tryptophan to NAD+ through the kynurenine pathway interacts with these processes.
Collapse
Affiliation(s)
- Raul Castro-Portuguez
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, 85721, AZ, USA
| | - George L Sutphin
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, 85721, AZ, USA; Department of Molecular and Cellular Biology, University of Arizona, Tucson, 85721, AZ, USA.
| |
Collapse
|
46
|
The Good, the Bad and the Unknown of CD38 in the Metabolic Microenvironment and Immune Cell Functionality of Solid Tumors. Cells 2019; 9:cells9010052. [PMID: 31878283 PMCID: PMC7016859 DOI: 10.3390/cells9010052] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/06/2019] [Accepted: 12/18/2019] [Indexed: 02/08/2023] Open
Abstract
The regulation of the immune microenvironment within solid tumors has received increasing attention with the development and clinical success of immune checkpoint blockade therapies, such as those that target the PD-1/PD-L1 axis. The metabolic microenvironment within solid tumors has proven to be an important regulator of both the natural suppression of immune cell functionality and the de novo or acquired resistance to immunotherapy. Enzymatic proteins that generate immunosuppressive metabolites like adenosine are thus attractive targets to couple with immunotherapies to improve clinical efficacy. CD38 is one such enzyme. While the role of CD38 in hematological malignancies has been extensively studied, the impact of CD38 expression within solid tumors is largely unknown, though most current data indicate an immunosuppressive role for CD38. However, CD38 is far from a simple enzyme, and there are several remaining questions that require further study. To effectively treat solid tumors, we must learn as much about this multifaceted protein as possible—i.e., which infiltrating immune cell types express CD38 for functional activities, the most effective CD38 inhibitor(s) to employ, and the influence of other similarly functioning enzymes that may also contribute towards an immunosuppressive microenvironment. Gathering knowledge such as this will allow for intelligent targeting of CD38, the reinvigoration of immune functionality and, ultimately, tumor elimination.
Collapse
|
47
|
Abstract
The sirtuin family of nicotinamide adenine dinucleotide-dependent deacylases (SIRT1-7) are thought to be responsible, in large part, for the cardiometabolic benefits of lean diets and exercise and when upregulated can delay key aspects of aging. SIRT1, for example, protects against a decline in vascular endothelial function, metabolic syndrome, ischemia-reperfusion injury, obesity, and cardiomyopathy, and SIRT3 is protective against dyslipidemia and ischemia-reperfusion injury. With increasing age, however, nicotinamide adenine dinucleotide levels and sirtuin activity steadily decrease, and the decline is further exacerbated by obesity and sedentary lifestyles. Activation of sirtuins or nicotinamide adenine dinucleotide repletion induces angiogenesis, insulin sensitivity, and other health benefits in a wide range of age-related cardiovascular and metabolic disease models. Human clinical trials testing agents that activate SIRT1 or boost nicotinamide adenine dinucleotide levels are in progress and show promise in their ability to improve the health of cardiovascular and metabolic disease patients.
Collapse
Affiliation(s)
- Alice E Kane
- From the Department of Genetics, Harvard Medical School, Boston, MA (A.E.K., D.A.S.)
| | - David A Sinclair
- From the Department of Genetics, Harvard Medical School, Boston, MA (A.E.K., D.A.S.).,Department of Pharmacology, The University of New South Wales, Sydney, Australia (D.A.S.)
| |
Collapse
|
48
|
Yang L, Li T, Li S, Wu Y, Shi X, Jin H, Liu Z, Zhao Y, Zhang L, Lee HC, Zhang L. Rational Design and Identification of Small-Molecule Allosteric Inhibitors of CD38. Chembiochem 2019; 20:2485-2493. [PMID: 31081167 DOI: 10.1002/cbic.201900169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Indexed: 11/09/2022]
Abstract
CD38 is a multi-functional signaling enzyme that catalyzes the biosynthesis of two calcium-mobilizing second messengers: cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate. It also regulates intracellular nicotinamide adenine dinucleotide (NAD) contents, associated with multiple pathophysiological processes such as aging and cancer. As such, enzymatic inhibitors of CD38 offer great potential in drug development. Here, through virtual screening and enzymatic assays, we discovered compound LX-102, which targets CD38 on the side opposite its enzymatic pocket with a binding affinity of 7.7 μm. It inhibits the NADase activity of CD38 with an IC50 of 14.9 μm. Surface plasmon resonance (SPR) and hydrogen/deuterium exchange and mass spectrometry experiments verified that LX-102 competitively binds to the epitope of the therapeutic SAR 650984 antibody in an allosteric manner. Molecular dynamics simulation was performed to demonstrate the binding dynamics of CD38 with the allosteric ligand. In summary, we established that the cavity to which SAR 650984 binds was an allosteric site and was accessible for the rational design of small chemical modulators of CD38. The lead compound LX-102 that we identified in this study could also be a useful tool for probing CD38 functions and promoting drug discovery.
Collapse
Affiliation(s)
- Lixin Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Ting Li
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Songlu Li
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Yang Wu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Xiaomeng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Yongjuan Zhao
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Hon Cheung Lee
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| |
Collapse
|
49
|
Van DU. Molecular dynamics simulation of the interaction between human CD38 and some quinoline derivative inhibitors using reactive force field. VIETNAM JOURNAL OF CHEMISTRY 2019. [DOI: 10.1002/vjch.201900073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dang Ung Van
- Hoa Binh University, N8 Bui Xuan Phai My Dinh 2 Nam Tu Liem; Hanoi 100000 Viet Nam
| |
Collapse
|
50
|
Qian M, Liu B. Pharmaceutical Intervention of Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1086:235-254. [PMID: 30232763 DOI: 10.1007/978-981-13-1117-8_15] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The aging population represents a significant worldwide socioeconomic challenge. Aging is an inevitable and multifactorial biological process and primary risk factor for most age-related diseases, such as cardiovascular diseases, cancers, type 2 diabetes mellitus (T2DM), and neurodegenerative diseases. Pharmacological interventions targeting aging appear to be a more effective approach in preventing age-related disorders compared with the treatments targeted to specific disease. In this chapter, we focus on the latest findings on molecular compounds that mimic caloric restriction (CR), supplement nicotinamide adenine dinucleotide (NAD+) levels, and eliminate senescent cells, including metformin, resveratrol, spermidine, rapamycin, NAD+ boosters, as well as senolytics. All these interventions modulate the determinants and pathways responsible for aging/longevity, such as the kinase target of rapamycin (TOR), AMP-activated protein kinase (AMPK), sirtuins, and insulin-like growth factor (IGF-1) signaling (Fig. 15.1).
Collapse
Affiliation(s)
- Minxian Qian
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Medical Research Center, Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, China
| | - Baohua Liu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Medical Research Center, Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, China.
| |
Collapse
|