1
|
Lockwood TD. Coordination chemistry suggests that independently observed benefits of metformin and Zn 2+ against COVID-19 are not independent. Biometals 2024; 37:983-1022. [PMID: 38578560 PMCID: PMC11255062 DOI: 10.1007/s10534-024-00590-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/12/2024] [Indexed: 04/06/2024]
Abstract
Independent trials indicate that either oral Zn2+ or metformin can separately improve COVID-19 outcomes by approximately 40%. Coordination chemistry predicts a mechanistic relationship and therapeutic synergy. Zn2+ deficit is a known risk factor for both COVID-19 and non-infectious inflammation. Most dietary Zn2+ is not absorbed. Metformin is a naked ligand that presumably increases intestinal Zn2+ bioavailability and active absorption by cation transporters known to transport metformin. Intracellular Zn2+ provides a natural buffer of many protease reactions; the variable "set point" is determined by Zn2+ regulation or availability. A Zn2+-interactive protease network is suggested here. The two viral cysteine proteases are therapeutic targets against COVID-19. Viral and many host proteases are submaximally inhibited by exchangeable cell Zn2+. Inhibition of cysteine proteases can improve COVID-19 outcomes and non-infectious inflammation. Metformin reportedly enhances the natural moderating effect of Zn2+ on bioassayed proteome degradation. Firstly, the dissociable metformin-Zn2+ complex could be actively transported by intestinal cation transporters; thereby creating artificial pathways of absorption and increased body Zn2+ content. Secondly, metformin Zn2+ coordination can create a non-natural protease inhibitor independent of cell Zn2+ content. Moderation of peptidolytic reactions by either or both mechanisms could slow (a) viral multiplication (b) viral invasion and (c) the pathogenic host inflammatory response. These combined actions could allow development of acquired immunity to clear the infection before life-threatening inflammation. Nirmatrelvir (Paxlovid®) opposes COVID-19 by selective inhibition the viral main protease by a Zn2+-independent mechanism. Pending safety evaluation, predictable synergistic benefits of metformin and Zn2+, and perhaps metformin/Zn2+/Paxlovid® co-administration should be investigated.
Collapse
Affiliation(s)
- Thomas D Lockwood
- Department Pharmacology and Toxicology, School of Medicine, Wright State University, Dayton, OH, 45435, USA.
| |
Collapse
|
2
|
Abu-Serie MM, Barakat A, Ramadan S, Habashy NH. Superior cuproptotic efficacy of diethyldithiocarbamate-Cu 4O 3 nanoparticles over diethyldithiocarbamate-Cu 2O nanoparticles in metastatic hepatocellular carcinoma. Front Pharmacol 2024; 15:1388038. [PMID: 39076585 PMCID: PMC11284037 DOI: 10.3389/fphar.2024.1388038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/18/2024] [Indexed: 07/31/2024] Open
Abstract
Metastatic hepatocellular carcinoma (HC) is a serious health concern. The stemness of cancer stem cells (CSCs) is a key driver for HC tumorigenesis, apoptotic resistance, and metastasis, and functional mitochondria are critical for its maintenance. Cuproptosis is Cu-dependent non-apoptotic pathway (mitochondrial dysfunction) via inactivating mitochondrial enzymes (pyruvate dehydrogenase "PDH" and succinate dehydrogenase "SDH"). To effectively treat metastatic HC, it is necessary to induce selective cuproptosis (for halting cancer stemness genes) with selective oxidative imbalance (for increasing cell susceptibility to cuproptosis and inducing non-CSCs death). Herein, two types of Cu oxide nanoparticles (Cu4O3 "C(I + II)" NPs and Cu2O "C(I)" NPs) were used in combination with diethyldithiocarbamate (DD, an aldehyde dehydrogenase "ALDH" inhibitor) for comparative anti-HC investigation. DC(I + II) NPs exhibited higher cytotoxicity, mitochondrial membrane potential, and anti-migration impact than DC(I) NPs in the treated human HC cells (HepG2 and/or Huh7). Moreover, DC(I + II) NPs were more effective than DC(I) NPs in the treatment of HC mouse groups. This was mediated via higher selective accumulation of DC(I + II) NPs in only tumor tissues and oxidant activity, causing stronger selective inhibition of mitochondrial enzymes (PDH, SDH, and ALDH2) than DC(I)NPs. This effect resulted in more suppression of tumor and metastasis markers as well as stemness gene expressions in DC(I + II) NPs-treated HC mice. In addition, both nanocomplexes normalized liver function and hematological parameters. The computational analysis found that DC(I + II) showed higher binding affinity to most of the tested enzymes. Accordingly, DC(I + II) NPs represent a highly effective therapeutic formulation compared to DC(I) NPs for metastatic HC.
Collapse
Affiliation(s)
- Marwa M. Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sherif Ramadan
- Chemistry Department, Michigan State University, East Lansing, MI, United States
- Department of Chemistry, Benha University, Benha, Egypt
| | - Noha Hassan Habashy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Wang Y, Tang T, Yuan Y, Li N, Wang X, Guan J. Copper and Copper Complexes in Tumor Therapy. ChemMedChem 2024; 19:e202400060. [PMID: 38443744 DOI: 10.1002/cmdc.202400060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/07/2024]
Abstract
Copper (Cu), a crucial trace element in physiological processes, has garnered significant interest for its involvement in cancer progression and potential therapeutic applications. The regulation of cellular copper levels is essential for maintaining copper homeostasis, as imbalances can lead to toxicity and cell death. The development of drugs that target copper homeostasis has emerged as a promising strategy for anticancer treatment, with a particular focus on copper chelators, copper ionophores, and novel copper complexes. Recent research has also investigated the potential of copper complexes in cancer therapy.
Collapse
Affiliation(s)
- Yingqiao Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Tingxi Tang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yi Yuan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Nan Li
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoqing Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Guan
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Liang X, Li C, Yuan W, Ji M, Zhang J, Yan M, Lu Q, Gou J, Yin T, He H, Tang X, Zhang Y. Activate the endogenous Cu 2+ switch for Zn(DDC) 2 liposomes conversion: Providing a safer and less toxic alternative in cancer therapy. Int J Pharm 2024; 652:123800. [PMID: 38218507 DOI: 10.1016/j.ijpharm.2024.123800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/31/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
The ancient anti-alcohol drug disulfiram (DSF) has gained widespread attention for its highly effective anti-tumor effects in cancer treatment. Our previous studies have developed liposome of Cu (DDC)2 to overcome the limitations, like the poor water solubility. However, Cu (DDC)2 liposomes still have shown difficulties in severe hemolytic reactions at high doses and systemic toxicity, which have limited their clinical use. Therefore, this study aims to exploratively investigate the feasibility of using DSF or DDC in combination also can chelate Zn2+ to form zinc diethyldithiocarbamate (Zn (DDC)2). Furthermore, this study prepared stable and homogeneous Zn (DDC)2 liposomes, which were able to be released in the tumor microenvironment (TME). The released Zn (DDC)2 was converted to Cu (DDC)2 with the help of endogenous Cu2+-switch enriched in the TME, which has a higher stability constant compared with Zn (DDC)2. In other words, the Cu2+-switch is activated at the tumor site, completing the conversion of the less cytotoxic Zn (DDC)2 to the more cytotoxic Cu (DDC)2 for effective tumor therapy so that the Zn (DDC)2 liposomes in vivo achieved the comparable therapeutic efficacy and provided a safer alternative to Cu (DDC)2 liposomes in cancer therapy.
Collapse
Affiliation(s)
- Xinxin Liang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Chunxue Li
- Beijing Sun-Novo Pharmaceutical Research Co.Ltd 102200, NO.79 Shuangying West Road, Changping District, Beijing, China
| | - Wei Yuan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Muse Ji
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Jie Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Mingjiao Yan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Qianru Lu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China.
| |
Collapse
|
5
|
Loffelmann M, Škrott Z, Majera D, Štarha P, Kryštof V, Mistrík M. Identification of novel dithiocarbamate-copper complexes targeting p97/NPL4 pathway in cancer cells. Eur J Med Chem 2023; 261:115790. [PMID: 37690264 DOI: 10.1016/j.ejmech.2023.115790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
Dithiocarbamates (DTCs) are simple organic compounds with many applications in industry and medicine. They are potent metal chelators forming complexes with various metal ions, including copper. Recently, bis(diethyldithiocarbamate)-copper complex (CuET) has been identified as a metabolic product of the anti-alcoholic drug Antabuse (disulfiram, DSF), standing behind DSF's reported anticancer activity. Mechanistically, CuET in cells causes aggregation of NPL4 protein, an essential cofactor of the p97 segregase, an integral part of the ubiquitin-proteasome system. The malfunction of p97/NPL4 caused by CuET leads to proteotoxic stress accompanied by heat shock and unfolded protein responses and cancer cell death. However, it is not known whether the NPL4 inhibition is unique for CuET or whether it is shared with other dithiocarbamate-copper complexes. Thus, we tested 20 DTCs-copper complexes in this work for their ability to target and aggregate NPL4 protein. Surprisingly, we have found that certain potency against NPL4 is relatively common for structurally different DTCs-copper complexes, as thirteen compounds scored in the cellular NPL4 aggregation assay. These compounds also shared typical cellular phenotypes reported previously for CuET, including the NPL4/p97 proteins immobilization, accumulation of polyubiquitinated proteins, the unfolded protein, and the heat shock responses. Moreover, the active complexes were also toxic to cancer cells (the most potent in the nanomolar range), and we have found a strong positive correlation between NPL4 aggregation and cytotoxicity, confirming NPL4 as a relevant target. These results show the widespread potency of DTCs-copper complexes to target NPL4 with subsequent induction of lethal proteotoxic stress in cancer cells with implications for drug development.
Collapse
Affiliation(s)
- Martin Loffelmann
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 1333/5, Olomouc, 779 00, Czech Republic
| | - Zdeněk Škrott
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 1333/5, Olomouc, 779 00, Czech Republic
| | - Dušana Majera
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 1333/5, Olomouc, 779 00, Czech Republic
| | - Pavel Štarha
- Department of Inorganic Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 1192/12, Olomouc, 779 00, Czech Republic
| | - Vladimír Kryštof
- Department of Experimental Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, Olomouc, 783 71, Czech Republic.
| | - Martin Mistrík
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 1333/5, Olomouc, 779 00, Czech Republic.
| |
Collapse
|
6
|
Kaul L, Abdo AI, Coenye T, Swift S, Zannettino A, Süss R, Richter K. In vitro and in vivo evaluation of diethyldithiocarbamate with copper ions and its liposomal formulation for the treatment of Staphylococcus aureus and Staphylococcus epidermidis biofilms. Biofilm 2023; 5:100130. [PMID: 37274173 PMCID: PMC10238467 DOI: 10.1016/j.bioflm.2023.100130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 06/06/2023] Open
Abstract
Surgical site infections (SSIs) are mainly caused by Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis) biofilms. Biofilms are aggregates of bacteria embedded in a self-produced matrix that offers protection against antibiotics and promotes the spread of antibiotic-resistance in bacteria. Consequently, antibiotic treatment frequently fails, resulting in the need for alternative therapies. The present study describes the in vitro efficacy of the Cu(DDC)2 complex (2:1 M ratio of diethyldithiocarbamate (DDC-) and Cu2+) with additional Cu2+ against S. aureus and S. epidermidis biofilms in models mimicking SSIs and in vitro antibacterial activity of a liposomal Cu(DDC)2 + Cu2+ formulation. The in vitro activity on S. aureus and S. epidermidis biofilms grown on two hernia mesh materials and in a wound model was determined by colony forming unit (CFU) counting. Cu2+-liposomes and Cu(DDC)2-liposomes were prepared, and their antibacterial activity was assessed in vitro using the alamarBlue assay and CFU counting and in vivo using a Galleria mellonella infection model. The combination of 35 μM DDC- and 128 μM Cu2+ inhibited S. aureus and S. epidermidis biofilms on meshes and in a wound infection model. Cu(DDC)2-liposomes + free Cu2+ displayed similar antibiofilm activity to free Cu(DDC)2 + Cu2+, and significantly increased the survival of S. epidermidis-infected larvae. Whilst Cu(DDC)2 + Cu2+ showed substantial antibiofilm activity in vitro against clinically relevant biofilms, its application in mammalian in vivo models is limited by solubility. The liposomal Cu(DDC)2 + Cu2+ formulation showed antibiofilm activity in vitro and antibacterial activity and low toxicity in G. mellonella, making it a suitable water-soluble formulation for future application on infected wounds in animal trials.
Collapse
Affiliation(s)
- Laurine Kaul
- Richter Lab, Department of Surgery, Basil Hetzel Institute for Translational Health Research, University of Adelaide, 37 Woodville Road, Adelaide, SA, 5011, Australia
- Institute of Pharmaceutical Sciences, Department of Pharmaceutics, University of Freiburg, Sonnenstr. 5, 79104, Freiburg, Germany
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, 4 North Terrace, Adelaide, SA, 5000, Australia
| | - Adrian I. Abdo
- Richter Lab, Department of Surgery, Basil Hetzel Institute for Translational Health Research, University of Adelaide, 37 Woodville Road, Adelaide, SA, 5011, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, 4 North Terrace, Adelaide, SA, 5000, Australia
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Simon Swift
- Department of Molecular Medicine and Pathology, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Andrew Zannettino
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, 4 North Terrace, Adelaide, SA, 5000, Australia
- Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA, Australia
- Central Adelaide Local Health Network, Adelaide, Australia
| | - Regine Süss
- Institute of Pharmaceutical Sciences, Department of Pharmaceutics, University of Freiburg, Sonnenstr. 5, 79104, Freiburg, Germany
| | - Katharina Richter
- Richter Lab, Department of Surgery, Basil Hetzel Institute for Translational Health Research, University of Adelaide, 37 Woodville Road, Adelaide, SA, 5011, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, 4 North Terrace, Adelaide, SA, 5000, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, Australia
| |
Collapse
|
7
|
Yang Y, Zhu Y, Wang K, Miao Y, Zhang Y, Gao J, Qin H, Zhang Y. Activation of autophagy by in situ Zn 2+ chelation reaction for enhanced tumor chemoimmunotherapy. Bioact Mater 2023; 29:116-131. [PMID: 37456582 PMCID: PMC10345225 DOI: 10.1016/j.bioactmat.2023.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
Chemotherapy can induce a robust T cell antitumor immune response by triggering immunogenic cell death (ICD), a process in which tumor cells convert from nonimmunogenic to immunogenic forms. However, the antitumor immune response of ICD remains limited due to the low immunogenicity of tumor cells and the immunosuppressive tumor microenvironment. Although autophagy is involved in activating tumor immunity, the synergistic role of autophagy in ICD remains elusive and challenging. Herein, we report an autophagy amplification strategy using an ion-chelation reaction to augment chemoimmunotherapy in cancer treatments based on zinc ion (Zn2+)-doped, disulfiram (DSF)-loaded mesoporous silica nanoparticles (DSF@Zn-DMSNs). Upon pH-sensitive biodegradation of DSF@Zn-DMSNs, Zn2+ and DSF are coreleased in the mildly acidic tumor microenvironment, leading to the formation of toxic Zn2+ chelate through an in situ chelation reaction. Consequently, this chelate not only significantly stimulates cellular apoptosis and generates damage-associated molecular patterns (DAMPs) but also activates autophagy, which mediates the amplified release of DAMPs to enhance ICD. In vivo results demonstrated that DSF@Zn-DMSNs exhibit strong therapeutic efficacy via in situ ion chelation and possess the ability to activate autophagy, thus enhancing immunotherapy by promoting the infiltration of T cells. This study provides a smart in situ chelation strategy with tumor microenvironment-responsive autophagy amplification to achieve high tumor chemoimmunotherapy efficacy and biosafety.
Collapse
Affiliation(s)
- Yang Yang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
- School of Medicine, Shanghai University, Shanghai, 200444, PR China
| | - Yefei Zhu
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Kairuo Wang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Yunqiu Miao
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Yuanyuan Zhang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, PR China
| | - Huanlong Qin
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Yang Zhang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
- School of Medicine, Shanghai University, Shanghai, 200444, PR China
| |
Collapse
|
8
|
Zhou M, Tian B, Bu Y, Wu Z, Yu J, Wang S, Sun X, Zhu X, Zhou H. Enhanced pH-Responsive Chemo/Chemodynamic Synergistic Cancer Therapy Based on In Situ Cu 2+ Di-Chelation. ACS APPLIED BIO MATERIALS 2023; 6:3221-3231. [PMID: 37428493 DOI: 10.1021/acsabm.3c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Considering the chemodynamic therapy and chemotherapy independent of external stimulus witnessing great advantage in the clinical translation, developing a smart nanoplatform that can realize enhanced chemo/chemodynamic synergistic therapy in the tumor microenvironment (TME) is of great significance. Herein, we highlight the enhanced pH-responsive chemo/chemodynamic synergistic cancer therapy based on in situ Cu2+ di-chelation. The alcohol-withdrawal drug disulfiram (DSF) and chemotherapeutic drug mitoxantrone (MTO) were embedded into PEGylated mesoporous CuO (denoted as PEG-CuO@DSF@MTO NPs). The acidic TME triggered the collapse of CuO and the concurrent release of Cu2+, DSF, and MTO. Then, the in situ complexation between Cu2+ and DSF, as well as the coordination between Cu2+ and MTO not only prominently enhanced the chemotherapeutic performance but also triggered the chemodynamic therapy. In vivo mouse model experiments demonstrated that the synergistic therapy can remarkably eliminate tumors. This study provides an interesting strategy to design intelligent nanosystems, which could proceed to clinical translations.
Collapse
Affiliation(s)
- Minghua Zhou
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Anhui University, Hefei 230601, P.R. China
| | - Beibei Tian
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Anhui University, Hefei 230601, P.R. China
| | - Yingcui Bu
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Anhui University, Hefei 230601, P.R. China
| | - Zhichao Wu
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Anhui University, Hefei 230601, P.R. China
| | - Jianhua Yu
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Anhui University, Hefei 230601, P.R. China
| | - Sen Wang
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Anhui University, Hefei 230601, P.R. China
| | - Xianshun Sun
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Anhui University, Hefei 230601, P.R. China
| | - Xiaojiao Zhu
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Anhui University, Hefei 230601, P.R. China
| | - Hongping Zhou
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Anhui University, Hefei 230601, P.R. China
| |
Collapse
|
9
|
Gkouliamtzi AG, Tsaftari VC, Tarara M, Tsogas GZ. A Low-Cost Colorimetric Assay for the Analytical Determination of Copper Ions with Consumer Electronic Imaging Devices in Natural Water Samples. Molecules 2023; 28:4831. [PMID: 37375386 DOI: 10.3390/molecules28124831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
This study reports a new approach for the determination of copper ions in water samples that exploits the complexation reaction with diethyldithiocarbamate (DDTC) and uses widely available imaging devices (i.e., flatbed scanners or smartphones) as detectors. Specifically, the proposed approach is based on the ability of DDTC to bind to copper ions and form a stable Cu-DDTC complex with a distinctive yellow color detected with the camera of a smartphone in a 96-well plate. The color intensity of the formed complex is linearly proportional to the concentration of copper ions, resulting in its accurate colorimetric determination. The proposed analytical procedure for the determination of Cu2+ was easy to perform, rapid, and applicable with inexpensive and commercially available materials and reagents. Many parameters related to such an analytical determination were optimized, and a study of interfering ions present in the water samples was also carried out. Additionally, even low copper levels could be noticed by the naked eye. The assay performed was successfully applied to the determination of Cu2+ in river, tap, and bottled water samples with detection limits as low as 1.4 µM, good recoveries (89.0-109.6%), adequate reproducibility (0.6-6.1%), and high selectivity over other ions present in the water samples.
Collapse
Affiliation(s)
- Argyro G Gkouliamtzi
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Vasiliki C Tsaftari
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Maria Tarara
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - George Z Tsogas
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
10
|
A comparative study of smart nanoformulations of diethyldithiocarbamate with Cu 4O 3 nanoparticles or zinc oxide nanoparticles for efficient eradication of metastatic breast cancer. Sci Rep 2023; 13:3529. [PMID: 36864097 PMCID: PMC9981580 DOI: 10.1038/s41598-023-30553-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Metastatic tumor is initiated by metastatic seeds (cancer stem cells "CSCs") in a controlled redox microenvironment. Hence, an effective therapy that disrupts redox balance with eliminating CSCs is critical. Diethyldithiocarbamate (DE) is potent inhibitor of radical detoxifying enzyme (aldehyde dehydrogenase "ALDH"1A) causing effective eradication of CSCs. This DE effect was augmented and more selective by its nanoformulating with green synthesized copper oxide (Cu4O3) nanoparticles (NPs) and zinc oxide NPs, forming novel nanocomplexes of CD NPs and ZD NPs, respectively. These nanocomplexes exhibited the highest apoptotic, anti-migration, and ALDH1A inhibition potentials in M.D. Anderson-metastatic breast (MDA-MB) 231 cells. Importantly, these nanocomplexes revealed more selective oxidant activity than fluorouracil by elevating reactive oxygen species with depleting glutathione in only tumor tissues (mammary and liver) using mammary tumor liver metastasis animal model. Due to higher tumoral uptake and stronger oxidant activity of CD NPs than ZD NPs, CD NPs had more potential to induce apoptosis, suppress hypoxia-inducing factor gene, and eliminate CD44+CSCs with downregulating their stemness, chemoresistance, and metastatic genes and diminishing hepatic tumor marker (α-fetoprotein). These potentials interpreted the highest tumor size reduction with complete eradicating tumor metastasis to liver in CD NPs. Consequently, CD nanocomplex revealed the highest therapeutic potential representing a safe and promising nanomedicine against the metastatic stage of breast cancer.
Collapse
|
11
|
Spectroscopy and kinetics of intermediates in photochemistry of xanthate Ni(S2COEt)2 complex in CCl4. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Massoud SS, Louka FR, Salem NMH, Fischer RC, Torvisco A, Mautner FA, Vančo J, Belza J, Dvořák Z, Trávníček Z. Dinuclear doubly bridged phenoxido copper(II) complexes as efficient anticancer agents. Eur J Med Chem 2023; 246:114992. [PMID: 36525695 DOI: 10.1016/j.ejmech.2022.114992] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/12/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Two cationic [Cu2(L1-2)2](ClO4)2 (1, 2), and four neutral doubly bridged-phenoxido-copper(II) complexes [Cu2(L3-4)2] (3, 4) and [Cu2(L5-6)2(H2O)]‧2H2O (5, 6) as well as 1D polymeric catena-[Cu(L7)] (7), where HL1-2 and H2L3-7 represent tripodal tetradentate pyridyl or aliphatic-amino groups based 2,4-disubstituted phenolates, were synthesized and thoroughly characterized by various spectroscopic methods and single crystal X-ray analysis. The molecular structures of the complexes exhibited diverse geometrical environments around the central Cu(II) atoms. The in vitro antiproliferative activity of the isolated complexes and selected parent free ligands were screened against some human cancer cell lines (A2780, A2780R, PC-3, 22Rv1, MCF-7). The most promising cytotoxicity against cancer cells were obtained for 1-6, while complex 6 was found as the best performing as compared to the reference drug cisplatin. The cytotoxicity study of complex 6 was therefore extended to wider variety of cancer cell lines (HOS, A549, PANC-1, CaCo2, HeLa) and results revealed its significant cytotoxicity on all investigated human cancer cells. The cell uptake study showed that cytotoxicity of 6 (3 μM concentration and 24 h of incubation) against A2780 cells was almost independent from the intracellular levels of copper. The effect of complexes 4, 6 and 7 on cell cycle of A2780 cells indicates that the mechanism of action in these complexes is not only different from that of cisplatin but also different among them. Complex 7 was able to induce apoptosis in A2780 cells, while complexes 4 and 6 did not and on the other hand, they showed considerable effect on autophagy induction and there are some clues that these complexes were able to induce cuproptosis in A2780 cells.
Collapse
Affiliation(s)
- Salah S Massoud
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 43700, Lafayette, LA, 70504, USA; Department of Chemistry, Faculty of Science, Alexandria University, Moharam Bey, 21511, Alexandria, Egypt.
| | - Febee R Louka
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 43700, Lafayette, LA, 70504, USA
| | - Nahed M H Salem
- Department of Chemistry, Faculty of Science, Alexandria University, Moharam Bey, 21511, Alexandria, Egypt
| | - Roland C Fischer
- Institut für Anorganische Chemische, Technische Universität Graz, Stremayrgasse 9/V, A-8010, Graz, Austria
| | - Ana Torvisco
- Institut für Anorganische Chemische, Technische Universität Graz, Stremayrgasse 9/V, A-8010, Graz, Austria
| | - Franz A Mautner
- Institut für Physikalische and Theoretische Chemie, Technische Universität Graz, Stremayrgasse 9/II, A-8010, Graz, Austria.
| | - Ján Vančo
- Czech Advanced Technology and Research Institute, Regional Centre of Advanced Technologies and Materials, Palacký University, Křížkovského 511/8, CZ-779 00, Olomouc, Czech Republic
| | - Jan Belza
- Czech Advanced Technology and Research Institute, Regional Centre of Advanced Technologies and Materials, Palacký University, Křížkovského 511/8, CZ-779 00, Olomouc, Czech Republic
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Zdeněk Trávníček
- Czech Advanced Technology and Research Institute, Regional Centre of Advanced Technologies and Materials, Palacký University, Křížkovského 511/8, CZ-779 00, Olomouc, Czech Republic.
| |
Collapse
|
13
|
Sanchez Rodriguez JJ, Nunez Leon AN, Abbasi J, Shinde PS, Fedin I, Gupta A. Colloidal Synthesis, Characterization, and Photoconductivity of Quasi-Layered CuCrS 2 Nanosheets. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4164. [PMID: 36500786 PMCID: PMC9736551 DOI: 10.3390/nano12234164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
The current need to accelerate the adoption of photovoltaic (PV) systems has increased the need to explore new nanomaterials that can harvest and convert solar energy into electricity. Transition metal dichalcogenides (TMDCs) are good candidates because of their tunable physical and chemical properties. CuCrS2 has shown good electrical and thermoelectrical properties; however, its optical and photoconductivity properties remain unexplored. In this study, we synthesized CuCrS2 nanosheets with average dimensions of 43.6 ± 6.7 nm in length and 25.6 ± 4.1 nm in width using a heat-up synthesis approach and fabricated films by the spray-coating method to probe their photoresponse. This method yielded CuCrS2 nanosheets with an optical bandgap of ~1.21 eV. The fabricated film had an average thickness of ~570 nm, exhibiting a net current conversion efficiency of ~11.3%. These results demonstrate the potential use of CuCrS2 as an absorber layer in solar cells.
Collapse
|
14
|
Lu Y, Pan Q, Gao W, Pu Y, He B. Reversal of cisplatin chemotherapy resistance by glutathione-resistant copper-based nanomedicine via cuproptosis. J Mater Chem B 2022; 10:6296-6306. [PMID: 35904024 DOI: 10.1039/d2tb01150f] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Platinum-based chemotherapy is widely used to treat various cancers. However, exogenous platinum is likely to cause severe side effects and drug resistance induced by upregulated glutathione (GSH) in cancer cells poses a threat to the management of cancer progression and recurrence. Anticancer copper-organic complexes are excellent candidates to substitute platinum-based chemotherapeutics, exhibiting lower systemic toxicity and even overcoming platinum-based chemotherapy resistance. Here, we report the GSH-resistance of copper(II) bis(diethyldithiocarbamate) (CuET) and its reversal of cisplatin resistance in non-small-cell lung cancer via cuproptosis. Electrochemistry and UV-vis spectroscopy studies demonstrate that CuET possesses a lower reduction potential and the reaction inertness with GSH. Importantly, CuET overcomes the drug resistance of A549/DDP cells and the anticancer effect is hardly affected by intracellular GSH levels. To improve the solubility and bioavailability, bovine serum albumin-stabilized CuET nanoparticles (NPs) are prepared and they have a high drug loading content of 27.5% and excellent physiological stability. In vitro studies manifest that CuET NPs augment the distributions in the cytosol and cytoskeleton, inducing cell death via cuproptosis in A549/DDP cells, which is distinctly different from the apoptosis pattern induced by cisplatin. In vivo antitumor evaluation shows that the nanomedicine has superior biosafety and potent antitumor activity in a cisplatin-resistant tumor model. Our study suggests that copper-organic complex-based nanosystems could be a powerful toolbox to tackle the platinum-based drug resistance and systemic toxicity concerns.
Collapse
Affiliation(s)
- Yao Lu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China.
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu, 610106, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325027, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China.
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
15
|
Liu H, Kong Y, Liu Z, Guo X, Yang B, Yin T, He H, Gou J, Zhang Y, Tang X. Sphingomyelin-based PEGylation Cu(DDC)2 Liposomes Prepared via the Dual Function of Cu2+ for Cancer Therapy: Facilitating DDC Loading and Exerting Synergistic Antitumor Effects. Int J Pharm 2022; 621:121788. [DOI: 10.1016/j.ijpharm.2022.121788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 11/28/2022]
|
16
|
Ni(II) dithiocarbamate: synthesis, crystal structures, DFT studies and applications as precursors for nickel sulfide and nickel oxide nanoparticles. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Ge EJ, Bush AI, Casini A, Cobine PA, Cross JR, DeNicola GM, Dou QP, Franz KJ, Gohil VM, Gupta S, Kaler SG, Lutsenko S, Mittal V, Petris MJ, Polishchuk R, Ralle M, Schilsky ML, Tonks NK, Vahdat LT, Van Aelst L, Xi D, Yuan P, Brady DC, Chang CJ. Connecting copper and cancer: from transition metal signalling to metalloplasia. Nat Rev Cancer 2022; 22:102-113. [PMID: 34764459 PMCID: PMC8810673 DOI: 10.1038/s41568-021-00417-2] [Citation(s) in RCA: 573] [Impact Index Per Article: 286.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 12/25/2022]
Abstract
Copper is an essential nutrient whose redox properties make it both beneficial and toxic to the cell. Recent progress in studying transition metal signalling has forged new links between researchers of different disciplines that can help translate basic research in the chemistry and biology of copper into clinical therapies and diagnostics to exploit copper-dependent disease vulnerabilities. This concept is particularly relevant in cancer, as tumour growth and metastasis have a heightened requirement for this metal nutrient. Indeed, the traditional view of copper as solely an active site metabolic cofactor has been challenged by emerging evidence that copper is also a dynamic signalling metal and metalloallosteric regulator, such as for copper-dependent phosphodiesterase 3B (PDE3B) in lipolysis, mitogen-activated protein kinase kinase 1 (MEK1) and MEK2 in cell growth and proliferation and the kinases ULK1 and ULK2 in autophagy. In this Perspective, we summarize our current understanding of the connection between copper and cancer and explore how challenges in the field could be addressed by using the framework of cuproplasia, which is defined as regulated copper-dependent cell proliferation and is a representative example of a broad range of metalloplasias. Cuproplasia is linked to a diverse array of cellular processes, including mitochondrial respiration, antioxidant defence, redox signalling, kinase signalling, autophagy and protein quality control. Identifying and characterizing new modes of copper-dependent signalling offers translational opportunities that leverage disease vulnerabilities to this metal nutrient.
Collapse
Affiliation(s)
- Eva J Ge
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Justin R Cross
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gina M DeNicola
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Q Ping Dou
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI, USA
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA
- Department of Pathology, School of Medicine, Wayne State University, Detroit, MI, USA
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | | | - Vishal M Gohil
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Sanjeev Gupta
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, USA
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, New York, NY, USA
- Diabetes Research Center, Albert Einstein College of Medicine, New York, NY, USA
- Irwin S. and Sylvia Chanin Institute for Cancer Research, Albert Einstein College of Medicine, New York, NY, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY, USA
| | - Stephen G Kaler
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, MD, USA
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Michael J Petris
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
- Department of Ophthalmology, University of Missouri, Columbia, MO, USA
- Genetics Area Program, University of Missouri, Columbia, MO, USA
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, USA
| | | | - Martina Ralle
- Department of Molecular and Medical Genetics, Oregon Health and Sciences University, Portland, OR, USA
| | - Michael L Schilsky
- Section of Transplantation and Immunology, Division of Digestive Diseases, Department of Medicine and Surgery, Yale University Medical Center, New Haven, CT, USA
| | | | - Linda T Vahdat
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Dan Xi
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peng Yuan
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St Louis, MI, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MI, USA
| | - Donita C Brady
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
18
|
Leveraging disulfiram to treat cancer: Mechanisms of action, delivery strategies, and treatment regimens. Biomaterials 2021; 281:121335. [PMID: 34979419 DOI: 10.1016/j.biomaterials.2021.121335] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/07/2021] [Accepted: 12/24/2021] [Indexed: 02/07/2023]
Abstract
Disulfiram (DSF) has been used as an alcoholism drug for 70 years. Recently, it has attracted increasing attention owing to the distinguished anticancer activity, which can be further potentiated by the supplementation of Cu2+. Although encouraging anticancer results are obtained in lab, the clinical outcomes of oral DSF are not satisfactory, which urges an in-depth understanding of the underlying mechanisms, bottlenecks, and proposal of potential methods to address the dilemma. In this review, a critical summarization of various molecular biological anticancer mechanisms of DSF/Cu2+ is provided and the predicament of orally delivering DSF in clinical oncotherapy is explained by the metabolic barriers. We highlight the recent advances in the DSF/Cu2+ delivery strategies and the emerging treatment regimens for cancer treatment. Last but not the least, we summarize the clinical trials regarding DSF and make a prospect of DSF/Cu-based cancer therapy.
Collapse
|
19
|
Diethyldithiocarbamate/silk fibroin/polyethylene oxide nanofibrous for cancer therapy: Fabrication, characterization and in vitro evaluation. Int J Biol Macromol 2021; 193:293-299. [PMID: 34656539 DOI: 10.1016/j.ijbiomac.2021.10.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 01/07/2023]
Abstract
Cancer has become a serious disease threatening human health. To tackle this issue, developing the existing potent anticancer drugs is critical to reducing the time and cost associated with creating a new drug from scratch. Diethyldithiocarbamate (DDC) - an anticancer drug- has received considerable attention due to its selectivity and reactivity. In this study, we prepared a nanofibrous matrix from silk fibroin/polyethylene oxide loaded with diethyldithiocarbamate (DDC@SF/PEO) from an aqueous solution via an electrospinning process. Upon DDC incorporation, the nanofiber's diameter has increased from 450 nm (SF/PEO) to 1202 nm (DDC@SF/PEO) confirming the successful incorporation of DDC. Furthermore, the hydrophobicity of DDC@SF/PEO nanofibrous matrix was improved by turning SF structure from random coil (silk I) to β-sheet (silk II) through ethanol vapor treatment. Biocompatibility of DDC@SF/PEO nanofibrous matrix on human normal cells (Wi-38) showed it was safe and the apoptosis-mediated anticancer activity of DDC was enhanced. Thus, loading DDC on SF/PEO nanofibrous matrix is the key descriptor for enhanced anticancer efficacy of DDC. Considering the all-aqueous and simplistic process, the DDC@SF/PEO nanofibrous matrix could be a promising candidate for cancer treatment applications.
Collapse
|
20
|
Pastrana-Dávila A, Amaya-Flórez A, Aranaga C, Ellena J, Macías M, Flórez-López E, D'Vries RF. Synthesis, characterization, and antibacterial activity of dibenzildithiocarbamate derivates and Ni(II)–Cu(II) coordination compounds. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Mermer A, Alyar S. Synthesis, characterization, DFT calculation, antioxidant activity, ADMET and molecular docking of thiosemicarbazide derivatives and their Cu (II) complexes. Chem Biol Interact 2021; 351:109742. [PMID: 34774546 DOI: 10.1016/j.cbi.2021.109742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 01/03/2023]
Abstract
In this work, new thiosemicarbazides (ECA-1, ECA-2) and their Cu (II) complexes (ECA-1-Cu, ECA-2-Cu) were synthesized and their structures were characterized by 1H NMR, 13C NMR, FT-IR, LC-MS, UV-Vis, and thermogravimetric analysis methods. Also, the surface morphology of the all compounds were examined by SEM (Scanning Electron Microscope). In the second stage, in vitro antioxidant capacity of the obtained compounds was investigated. The evaluation of the antioxidant properties of both synthesized ligands and complexes in this study was carried out by DPPH and FRAP methods. According to the results, both complexes exhibited more antioxidant capacity than the corresponding ligands. When antioxidant effects are compared for DPPH (SC50 = 5.27 ± 0.05 μM) and for FRAP (7845.69 ± 16.75 mmolTE/g), compound ECA-2-Cu appears to have the best inhibition effect. The complexes were found non-electrolytic in nature with melting point of above 250 °C, and electronic spectra and magnetic behavior demonstrated that the complexes were found to be tetrahedral geometry. Further, in silico the ADMET properties which studies are a significant role in improving and predicting drug compounds were calculated using web-based platforms. The theoretical calculations were made using the method of Density Functional Theory (Frontier molecular orbital analyze and Nonlinear optical properties). Also, molecular docking studies were performed to evaluate the binding interactions between the ligand and complex compounds and Human Peroxiredoxin 2. Both in vitro and in silico results indicated that synthesized compounds could act as potent antioxidant agents.
Collapse
Affiliation(s)
- Arif Mermer
- University of Health Sciences Turkey, Experimental Medicine Research and Application Center, Uskudar, 34662, Istanbul, Turkey.
| | - Saliha Alyar
- Department of Chemistry, Faculty of Science, Karatekin University, Çankırı, 18100, Turkey
| |
Collapse
|
22
|
Kannappan V, Ali M, Small B, Rajendran G, Elzhenni S, Taj H, Wang W, Dou QP. Recent Advances in Repurposing Disulfiram and Disulfiram Derivatives as Copper-Dependent Anticancer Agents. Front Mol Biosci 2021; 8:741316. [PMID: 34604310 PMCID: PMC8484884 DOI: 10.3389/fmolb.2021.741316] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022] Open
Abstract
Copper (Cu) plays a pivotal role in cancer progression by acting as a co-factor that regulates the activity of many enzymes and structural proteins in cancer cells. Therefore, Cu-based complexes have been investigated as novel anticancer metallodrugs and are considered as a complementary strategy for currently used platinum agents with undesirable general toxicity. Due to the high failure rate and increased cost of new drugs, there is a global drive towards the repositioning of known drugs for cancer treatment in recent years. Disulfiram (DSF) is a first-line antialcoholism drug used in clinics for more than 65 yr. In combination with Cu, it has shown great potential as an anticancer drug by targeting a wide range of cancers. The reaction between DSF and Cu ions forms a copper diethyldithiocarbamate complex (Cu(DDC)2 also known as CuET) which is the active, potent anticancer ingredient through inhibition of NF-κB and ubiquitin-proteasome system as well as alteration of the intracellular reactive oxygen species (ROS). Importantly, DSF/Cu inhibits several molecular targets related to drug resistance, stemness, angiogenesis and metastasis and is thus considered as a novel strategy for overcoming tumour recurrence and relapse in patients. Despite its excellent anticancer efficacy, DSF has proven unsuccessful in several cancer clinical trials. This is likely due to the poor stability, rapid metabolism and/or short plasma half-life of the currently used oral version of DSF and the inability to form Cu(DDC)2 at relevant concentrations in tumour tissues. Here, we summarize the scientific rationale, molecular targets, and mechanisms of action of DSF/Cu in cancer cells and the outcomes of oral DSF ± Cu in cancer clinical trials. We will focus on the novel insights on harnessing the immune system and hypoxic microenvironment using DSF/Cu complex and discuss the emerging delivery strategies that can overcome the shortcomings of DSF-based anticancer therapies and provide opportunities for translation of DSF/Cu or its Cu(DDC)2 complex into cancer therapeutics.
Collapse
Affiliation(s)
- Vinodh Kannappan
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom.,Disulfican Ltd, University of Wolverhampton Science Park, Wolverhampton, United Kingdom
| | - Misha Ali
- Departments of Oncology, Pharmacology and Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States.,Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Benjamin Small
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom
| | - Gowtham Rajendran
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom
| | - Salena Elzhenni
- Departments of Oncology, Pharmacology and Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Hamza Taj
- Departments of Oncology, Pharmacology and Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Weiguang Wang
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom.,Disulfican Ltd, University of Wolverhampton Science Park, Wolverhampton, United Kingdom
| | - Q Ping Dou
- Departments of Oncology, Pharmacology and Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| |
Collapse
|
23
|
Pellei M, Del Bello F, Porchia M, Santini C. Zinc coordination complexes as anticancer agents. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214088] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Copper Dithiocarbamates: Coordination Chemistry and Applications in Materials Science, Biosciences and Beyond. INORGANICS 2021. [DOI: 10.3390/inorganics9090070] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Copper dithiocarbamate complexes have been known for ca. 120 years and find relevance in biology and medicine, especially as anticancer agents and applications in materials science as a single-source precursor (SSPs) to nanoscale copper sulfides. Dithiocarbamates support Cu(I), Cu(II) and Cu(III) and show a rich and diverse coordination chemistry. Homoleptic [Cu(S2CNR2)2] are most common, being known for hundreds of substituents. All contain a Cu(II) centre, being either monomeric (distorted square planar) or dimeric (distorted trigonal bipyramidal) in the solid state, the latter being held together by intermolecular C···S interactions. Their d9 electronic configuration renders them paramagnetic and thus readily detected by electron paramagnetic resonance (EPR) spectroscopy. Reaction with a range of oxidants affords d8 Cu(III) complexes, [Cu(S2CNR2)2][X], in which copper remains in a square-planar geometry, but Cu–S bonds shorten by ca. 0.1 Å. These show a wide range of different structural motifs in the solid-state, varying with changes in anion and dithiocarbamate substituents. Cu(I) complexes, [Cu(S2CNR2)2]−, are (briefly) accessible in an electrochemical cell, and the only stable example is recently reported [Cu(S2CNH2)2][NH4]·H2O. Others readily lose a dithiocarbamate and the d10 centres can either be trapped with other coordinating ligands, especially phosphines, or form clusters with tetrahedral [Cu(μ3-S2CNR2)]4 being most common. Over the past decade, a wide range of Cu(I) dithiocarbamate clusters have been prepared and structurally characterised with nuclearities of 3–28, especially exciting being those with interstitial hydride and/or acetylide co-ligands. A range of mixed-valence Cu(I)–Cu(II) and Cu(II)–Cu(III) complexes are known, many of which show novel physical properties, and one Cu(I)–Cu(II)–Cu(III) species has been reported. Copper dithiocarbamates have been widely used as SSPs to nanoscale copper sulfides, allowing control over the phase, particle size and morphology of nanomaterials, and thus giving access to materials with tuneable physical properties. The identification of copper in a range of neurological diseases and the use of disulfiram as a drug for over 50 years makes understanding of the biological formation and action of [Cu(S2CNEt2)2] especially important. Furthermore, the finding that it and related Cu(II) dithiocarbamates are active anticancer agents has pushed them to the fore in studies of metal-based biomedicines.
Collapse
|
25
|
Zha J, Bi S, Deng M, Chen K, Shi P, Feng L, He J, Pu X, Guo C, Zhao H, Li Z, Jiang Y, Song H, Xu B. Disulfiram/copper shows potent cytotoxic effects on myelodysplastic syndromes via inducing Bip-mediated apoptosis and suppressing autophagy. Eur J Pharmacol 2021; 902:174107. [PMID: 33865831 DOI: 10.1016/j.ejphar.2021.174107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/20/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022]
Abstract
Patients with myelodysplastic syndromes (MDS) who resist or fail to respond to hypomethylating agents (HMAs) show very poor outcomes and have no effective treatment strategies. Therefore, new therapeutic approaches are urgently needed for MDS patients harboring adverse prognostic factors. Repurposing disulfiram (DSF), an alcohol-abuse drug, with or without Copper (Cu) has attracted considerable attentions as a candidate anti-tumor therapy in diverse malignancies. However, the effect of DSF in the presence or absence of Cu on MDS has not been reported yet. In this study, we found that monotherapy with DSF showed mild cytotoxic effects on MDS preclinical models. However, the anti-tumor activity of DSF was significantly enhanced in the presence of Cu in MDS in vitro and in vivo with minimal safety profiles. DSF/Cu combination blocked MDS cell cycle progression at the G0/G1 phase, accompanied by reduction of the S phase. Accordingly, co-treatment with DSF and Cu downregulated the expression of Cyclin D1 and Cyclin A2, whereas this combination upregulated the level of P21 and P27. Mechanistically, the anti-MDS effectiveness of DSF/Cu was potentially associated with activation of the ER stress-related Bip pathway and inactivation of the Akt pathway. In addition, inhibition of autophagy process also contributed to the cytotoxicity of DSF/Cu in MDS cells. In conclusion, these findings provide impressive evidence that the DSF/Cu complex shows potent anti-tumor efficacies on MDS preclinical models, representing a potential alternative therapy for MDS patients and warranting further investigation in clinical contexts.
Collapse
Affiliation(s)
- Jie Zha
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, China
| | - Silei Bi
- Department of Hematology, Heze Municipal Hospital, Heze, 274031, China
| | - Manman Deng
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, China
| | - Kai Chen
- The First People's Hospital of Foshan (The Affiliated Foshan Hospital of Sun Yat-sen University), Foshan, 528000, China
| | - Pengcheng Shi
- Department of Hematology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Liying Feng
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, China
| | - Jixiang He
- Department of Hematology, Affiliated Dongguan People's Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
| | - Xuan Pu
- Department of Biology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Chengcen Guo
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haijun Zhao
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, China
| | - Zhifeng Li
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, China
| | - Yirong Jiang
- Department of Hematology, Affiliated Dongguan People's Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China.
| | - Haihan Song
- Department of Immunology, DICAT Biomedical Computation Centre, Vancouver, BC, V6B 1N9, Canada.
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, China.
| |
Collapse
|
26
|
Kelley KC, Grossman KF, Brittain-Blankenship M, Thorne KM, Akerley WL, Terrazas MC, Kosak KM, Boucher KM, Buys SS, McGregor KA, Werner TL, Agarwal N, Weis JR, Sharma S, Ward JH, Kennedy TP, Sborov DW, Shami PJ. A Phase 1 dose-escalation study of disulfiram and copper gluconate in patients with advanced solid tumors involving the liver using S-glutathionylation as a biomarker. BMC Cancer 2021; 21:510. [PMID: 33957901 PMCID: PMC8103752 DOI: 10.1186/s12885-021-08242-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/15/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Disulfiram and metals inactivate key oncoproteins resulting in anti-neoplastic activity. The goal of this study was to determine the maximum tolerated dose of copper when administered with disulfiram in patients with advanced solid tumors and liver involvement. METHODS Disulfiram 250 mg was administered daily in 28-day cycles. Four doses of copper gluconate were tested (2, 4, 6, and 8 mg of elemental copper) in a standard 3 + 3 dose escalation design. Patients were evaluated for dose limiting toxicities and response. Protein S-glutathionylation was evaluated as a pharmacodynamic marker. RESULTS Twenty-one patients were enrolled and 16 patients were evaluable for dose limiting toxicities. Among the 21 patients, there was a median of 4 lines of prior chemotherapy. Five Grade 3 toxicities were observed (anorexia, elevated aspartate aminotransferase or AST, elevated alkaline phosphatase, fever, and fatigue). Response data was available for 15 patients. Four patients had stable disease with the longest duration of disease control being 116 days. The median duration of treatment for evaluable patients was 55 days (range 28-124). Reasons for discontinuation included functional decline, disease progression, and disease-associated death. Increased S-glutathionylation of serum proteins was observed with treatment. CONCLUSION Disulfiram 250 mg daily with copper gluconate (8 mg of elemental copper) was well-tolerated in patients with solid tumors involving the liver and was not associated with dose limiting toxicities. While temporary disease stabilization was noted in some patients, no objective responses were observed. Treatment was associated with an increase in S-glutathionylation suggesting that this combination could exert a suppressive effect on cellular growth and protein function. TRIAL REGISTRATION NCT00742911 , first posted 28/08/2008.
Collapse
Affiliation(s)
- Kristen C Kelley
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Kenneth F Grossman
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | | | - Kelli M Thorne
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Wallace L Akerley
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Moises C Terrazas
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, Utah, USA
| | - Ken M Kosak
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, Utah, USA
| | - Kenneth M Boucher
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Saundra S Buys
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Kimberly A McGregor
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Theresa L Werner
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Neeraj Agarwal
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - John R Weis
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Sunil Sharma
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - John H Ward
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Thomas P Kennedy
- Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University, New Orleans, USA
| | - Douglas W Sborov
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, Utah, USA
| | - Paul J Shami
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, Utah, USA.
| |
Collapse
|
27
|
Nayeem N, Contel M. Exploring the Potential of Metallodrugs as Chemotherapeutics for Triple Negative Breast Cancer. Chemistry 2021; 27:8891-8917. [PMID: 33857345 DOI: 10.1002/chem.202100438] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Indexed: 12/11/2022]
Abstract
This review focuses on studies of coordination and organometallic compounds as potential chemotherapeutics against triple negative breast cancer (TNBC) which has one of the poorest prognoses and worst survival rates from all breast cancer types. At present, chemotherapy is still the standard of care for TNBC since only one type of targeted therapy has been recently developed. References for metal-based compounds studied in TNBC cell lines will be listed, and those of metal-specific reviews, but a detailed overview will also be provided on compounds studied in vivo (mostly in mice models) and those compounds for which some preliminary mechanistic data was obtained (in TNBC cell lines and tumors) and/or for which bioactive ligands have been used. The main goal of this review is to highlight the most promising metal-based compounds with potential as chemotherapeutic agents in TNBC.
Collapse
Affiliation(s)
- Nazia Nayeem
- Brooklyn College Cancer Center BCCC-CURE, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA.,Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA.,Biology PhD Program, The Graduate Center, The City University of New York, 365 5th Avenue, New York, New York, 11006, USA
| | - Maria Contel
- Brooklyn College Cancer Center BCCC-CURE, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA.,Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA.,Biology PhD Program, The Graduate Center, The City University of New York, 365 5th Avenue, New York, New York, 11006, USA.,Chemistry and Biochemistry PhD Programs, The Graduate Center, The City University of New York, 365 5th Avenue, New York, New York, 11006, USA.,University of Hawaii Cancer Center, 701 Ilalo St, Honolulu, Hawaii, 96813, USA
| |
Collapse
|
28
|
Chen X, Dou QP, Liu J, Tang D. Targeting Ubiquitin-Proteasome System With Copper Complexes for Cancer Therapy. Front Mol Biosci 2021; 8:649151. [PMID: 33928122 PMCID: PMC8076789 DOI: 10.3389/fmolb.2021.649151] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
Characterizing mechanisms of protein homeostasis, a process of balancing between protein synthesis and protein degradation, is important for understanding the potential causes of human diseases. The ubiquitin–proteasome system (UPS) is a well-studied mechanism of protein catabolism, which is responsible for eliminating misfolded, damaged, or aging proteins, thereby maintaining quality and quantity of cellular proteins. The UPS is composed of multiple components, including a series of enzymes (E1, E2, E3, and deubiquitinase [DUB]) and 26S proteasome (19S regulatory particles + 20S core particle). An impaired UPS pathway is involved in multiple diseases, including cancer. Several proteasome inhibitors, such as bortezomib, carfilzomib, and ixazomib, are approved to treat patients with certain cancers. However, their applications are limited by side effects, drug resistance, and drug–drug interactions observed in their clinical processes. To overcome these shortcomings, alternative UPS inhibitors have been searched for in many fields. Copper complexes (e.g., CuET, CuHQ, CuCQ, CuPDTC, CuPT, and CuHK) are found to be able to inhibit a core component of the UPS machinery, such as 20S proteasome, 19S DUBs, and NPLOC4/NPL4 complex, and are proposed to be one class of metal-based anticancer drugs. In this review, we will summarize functions and applications of copper complexes in a concise perspective, with a focus on connections between the UPS and cancer.
Collapse
Affiliation(s)
- Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Q Ping Dou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Department of Oncology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States.,Departments of Pharmacology & Pathology, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Jinbao Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
29
|
Srivastava VK. Synthesis, characterization, and biological studies of some biometal complexes. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00191-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Abstract
Background
Metal complexes Cu[C13H8O4N]22, Ni[Cl3H8O4N]23, and Co[C13H8O4N]24 of bioinorganic relevance have been synthesized with the Schiff base ligand 2-furylglyoxal–anthranilic acid (FGAA) [C13H9O4N] 1.
All the complexes are well characterized by various spectral and physical methods. The antimicrobial activity of the complexes has been studied against some of the pathogenic bacteria and fungi.
Results
Results indicate that complexes have higher antimicrobial activity than the free ligand. This would suggest that chelation reduces considerably the polarity of the metal ions in the complexes which in turn increases the hydrophobic character of the chelate and thus enables permeation, through the lipid layer of microorganisms. All the complexes were assessed for their anticancer studies against a panel of selected cancer cells HOP62 and BT474 respectively. Results showed that the complexes are promising chemotherapeutic alternatives in the search of anticancer agents. The fluorescence quenching phenomenon is observed in the Schiff base metal complexes.
Conclusion
The octahedral transition metal complexes 2, 3, and 4 have been obtained by treatment of ligand 2-furylglyoxal-anthranilic acid (FGAA) 1 with metal acetate. Complexes under investigations have shown antimicrobial, potential anticancer, and the DNA binding studies.
Graphical abstract
Collapse
|
30
|
Masaryk L, Tesarova B, Choquesillo-Lazarte D, Milosavljevic V, Heger Z, Kopel P. Structural and biological characterization of anticancer nickel(II) bis(benzimidazole) complex. J Inorg Biochem 2021; 217:111395. [PMID: 33610033 DOI: 10.1016/j.jinorgbio.2021.111395] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 11/15/2022]
Abstract
In the present study, nickel(II) complex with 2-[2-[2-(1H-benzimidazol-2-yl)ethylsulfanyl]ethyl]-1H-benzimidazole (tebb) of formula [Ni(tebb)2](ClO4)2 has been prepared and its structure was proved by X-ray crystallography. The central nickel atom is in deformed octahedral vicinity. Four nitrogen atoms of two ligands form plane of octahedral and sulfur atoms are in apical positions. Perchlorate anions are outside the coordination sphere. The coordination compound was tested for its biological activities in an array of in vitro assays. It was found that the synthesized complex possesses interesting biological activity, which is most likely related to its cell-type related uptake kinetics. The synthesized complex is readily uptaken by malignant MDA-MB-231 and CACO-2 cells with the lowest uptake by healthy Hs27 fibroblasts. The lowest IC50 values were obtained for MDA-MB-231 cells (5.2-12.7 μM), highlighting exceptional differential cytotoxicity (IC50 values for healthy fibroblasts were 38.6-51.5 μM). Furthermore, it was found the complex is capable to cause hydrolytic DNA cleavage, promotes an efficient DNA fragmentation and to trigger an extensive formation of intracellular reactive oxygen species. Overall, current work presents a synthesis of Ni(II) coordination compound with interesting biological behavior and with a promising potential to be further tested in pre-clinical models.
Collapse
Affiliation(s)
- Lukas Masaryk
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic
| | - Barbora Tesarova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Duane Choquesillo-Lazarte
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra (Consejo Superior de Investigaciones Científicas-Universidad de Granada), Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain
| | - Vedran Milosavljevic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic.
| |
Collapse
|
31
|
Ni N, Su Y, Wei Y, Ma Y, Zhao L, Sun X. Tuning Nanosiliceous Framework for Enhanced Cancer Theranostic Applications. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Nengyi Ni
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117585 Singapore
| | - Yaoquan Su
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy China Pharmaceutical University Nanjing 211198 China
| | - Yuchun Wei
- Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences Jinan 250117 China
| | - Yanling Ma
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117585 Singapore
| | - Lingzhi Zhao
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy China Pharmaceutical University Nanjing 211198 China
| | - Xiao Sun
- Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences Jinan 250117 China
| |
Collapse
|
32
|
Chakraborty T, Mukherjee S, Parveen R, Chandra A, Samanta D, Das D. A combined experimental and theoretical rationalization of an unusual zinc(ii)-mediated conversion of 18-membered Schiff-base macrocycles to 18-membered imine–amine macrocycles with imidazolidine side rings: an investigation of their bio-relevant catalytic activities. NEW J CHEM 2021. [DOI: 10.1039/d0nj05635a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Macrocyclic Zn(ii)-based Schiff base complexes exhibit significant phosphatase-like activity as well as high potential anticancer activity against breast cancer cells.
Collapse
Affiliation(s)
| | - Somali Mukherjee
- Department of Chemistry
- University of Calcutta
- Kolkata 700009
- India
| | - Rumana Parveen
- Department of Chemistry
- University of Calcutta
- Kolkata 700009
- India
| | - Arpita Chandra
- In Vitro Carcinogenesis and Cellular Chemotherapy
- Chittaranjan National Cancer Institute
- Kolkata-700026
- India
| | - Debabrata Samanta
- Department of Chemistry
- Dukhulal Nibaran Chandra College
- Aurangabad
- India
| | - Debasis Das
- Department of Chemistry
- University of Calcutta
- Kolkata 700009
- India
| |
Collapse
|
33
|
Zelenkov LE, Eliseeva AA, Baykov SV, Suslonov VV, Galmés B, Frontera A, Kukushkin VY, Ivanov DM, Bokach NA. Electron belt-to-σ-hole switch of noncovalently bound iodine(i) atoms in dithiocarbamate metal complexes. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00314c] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The nature of metals in the isostructural series of dithiocarbamate complexes affects the electron belt-to-σ-hole switch of noncovalently bound iodine(i) leading to either semicoordination, or halogen bonding.
Collapse
Affiliation(s)
- Lev E. Zelenkov
- Institute of Chemistry
- Saint Petersburg State University
- Saint Petersburg
- Russian Federation
- Department of Physics and Engineering
| | - Anastasiya A. Eliseeva
- Institute of Chemistry
- Saint Petersburg State University
- Saint Petersburg
- Russian Federation
| | - Sergey V. Baykov
- Institute of Chemistry
- Saint Petersburg State University
- Saint Petersburg
- Russian Federation
| | - Vitalii V. Suslonov
- Institute of Chemistry
- Saint Petersburg State University
- Saint Petersburg
- Russian Federation
| | - Bartomeu Galmés
- Department of Chemistry
- Universitat de les Illes Balears
- 07122 Palma de Mallorca
- Spain
| | - Antonio Frontera
- Department of Chemistry
- Universitat de les Illes Balears
- 07122 Palma de Mallorca
- Spain
| | - Vadim Yu. Kukushkin
- Institute of Chemistry
- Saint Petersburg State University
- Saint Petersburg
- Russian Federation
- Laboratory of Crystal Engineering of Functional Materials
| | - Daniil M. Ivanov
- Institute of Chemistry
- Saint Petersburg State University
- Saint Petersburg
- Russian Federation
| | - Nadezhda A. Bokach
- Institute of Chemistry
- Saint Petersburg State University
- Saint Petersburg
- Russian Federation
| |
Collapse
|
34
|
Chetioui S, Zouchoune B, Merazig H, Bouaoud SE, Rouag D, Djukic JP. Synthesis, spectroscopic characterization, crystal structure and theoretical investigation of two azo-palladium (II) complexes derived from substituted (1-phenylazo)-2-naphtol. TRANSIT METAL CHEM 2020. [DOI: 10.1007/s11243-020-00425-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Loginova NV, Harbatsevich HI, Osipovich NP, Ksendzova GA, Koval’chuk TV, Polozov GI. Metal Complexes as Promising Agents for Biomedical Applications. Curr Med Chem 2020; 27:5213-5249. [DOI: 10.2174/0929867326666190417143533] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/02/2019] [Accepted: 03/29/2019] [Indexed: 12/24/2022]
Abstract
Background::
In this review article, a brief overview of novel metallotherapeutic agents
(with an emphasis on the complexes of essential biometals) promising for medical application is
presented. We have also focused on the recent work carried out by our research team, specifically
the development of redox-active antimicrobial complexes of sterically hindered diphenols with some
essential biometals (copper, zinc, nickel).
Results::
The complexes of essential metals (manganese, iron, cobalt, nickel, copper, zinc) described
in the review show diverse in vitro biological activities, ranging from antimicrobial and antiinflammatory
to antiproliferative and enzyme inhibitory. It is necessary to emphasize that the type of
organic ligands in these metal complexes seems to be responsible for their pharmacological
activities. In the last decades, there has been a significant interest in synthesis and biological
evaluation of metal complexes with redox-active ligands. A substantial step in the development of
these redox-active agents is the study of their physicochemical and biological properties, including
investigations in vitro of model enzyme systems, which can provide evidence on a plausible
mechanism underlying the pharmacological activity. When considering the peculiarities of the
pharmacological activity of the sterically hindered diphenol derivatives and their nickel(II),
copper(II) and zinc(II) complexes synthesized, we took into account the following: (i) all these
compounds are potential antioxidants and (ii) their antimicrobial activity possibly results from their
ability to affect the electron-transport chain.
Conclusion::
We obtained novel data demonstrating that the level of antibacterial and antifungal
activity in the series of the above-mentioned metal-based antimicrobials depends not only on the
nature of the phenolic ligands and complexing metal ions, but also on the lipophilicity and reducing
ability of the ligands and metal complexes, specifically regarding the potential biotargets of their
antimicrobial action – ferricytochrome c and the superoxide anion radical. The combination of
antibacterial, antifungal and antioxidant activity allows one to consider these compounds as
promising substances for developing therapeutic agents with a broad spectrum of activities.
Collapse
Affiliation(s)
| | | | - Nikolai P. Osipovich
- Research Institute for Physico-Chemical Problems of the Belarusian State University, Minsk, Belarus
| | - Galina A. Ksendzova
- Research Institute for Physico-Chemical Problems of the Belarusian State University, Minsk, Belarus
| | | | | |
Collapse
|
36
|
Antitumor Activity of Pt(II), Ru(III) and Cu(II) Complexes. Molecules 2020; 25:molecules25153492. [PMID: 32751963 PMCID: PMC7435640 DOI: 10.3390/molecules25153492] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/25/2022] Open
Abstract
Metal complexes are currently potential therapeutic compounds. The acquisition of resistance by cancer cells or the effective elimination of cancer-affected cells necessitates a constant search for chemical compounds with specific biological activities. One alternative option is the transition metal complexes having potential as antitumor agents. Here, we present the current knowledge about the application of transition metal complexes bearing nickel(II), cobalt(II), copper(II), ruthenium(III), and ruthenium(IV). The cytotoxic properties of the above complexes causing apoptosis, autophagy, DNA damage, and cell cycle inhibition are described in this review.
Collapse
|
37
|
Yang Q, Yao Y, Li K, Jiao L, Zhu J, Ni C, Li M, Dou QP, Yang H. An Updated Review of Disulfiram: Molecular Targets and Strategies for Cancer Treatment. Curr Pharm Des 2020; 25:3248-3256. [PMID: 31419930 DOI: 10.2174/1381612825666190816233755] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/06/2019] [Indexed: 12/31/2022]
Abstract
Repurposing already approved drugs as new anticancer agents is a promising strategy considering the advantages such as low costs, low risks and less time-consumption. Disulfiram (DSF), as the first drug for antialcoholism, was approved by the U.S. Food and Drug Administration (FDA) over 60 years ago. Increasing evidence indicates that DSF has great potential for the treatment of various human cancers. Several mechanisms and targets of DSF related to cancer therapy have been proposed, including the inhibition of ubiquitin-proteasome system (UPS), cancer cell stemness and cancer metastasis, and alteration of the intracellular reactive oxygen species (ROS). This article provides a brief review about the history of the use of DSF in humans and its molecular mechanisms and targets of anticancer therapy, describes DSF delivery strategies for cancer treatment, summarizes completed and ongoing cancer clinical trials involving DSF, and offers strategies to better use DSF in cancer therapies.
Collapse
Affiliation(s)
- Qingzhu Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yao Yao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Kai Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Lin Jiao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jiazhen Zhu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Cheng Ni
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Mengmeng Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Q Ping Dou
- Departments of Oncology, Pharmacology and Pathology, Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, United States
| | - Huanjie Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
38
|
Ren L, Feng W, Shao J, Ma J, Xu M, Zhu BZ, Zheng N, Liu S. Diethyldithiocarbamate-copper nanocomplex reinforces disulfiram chemotherapeutic efficacy through light-triggered nuclear targeting. Am J Cancer Res 2020; 10:6384-6398. [PMID: 32483459 PMCID: PMC7255023 DOI: 10.7150/thno.45558] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/22/2020] [Indexed: 12/24/2022] Open
Abstract
To circumvent the huge cost, long R&D time and the difficulty to identify the targets of new drugs, repurposing the ones that have been clinically approved has been considered as a viable strategy to treat different diseases. In the current study, we outlined the rationale for repurposing disulfiram (DSF, an old alcohol-aversion drug) to treat primary breast cancer and its metastases. Methods: To overcome a few shortcomings of the individual administration of DSF, such as the dependence on copper ions (Cu2+) and limited capability in selective targeting, we here artificially synthesized the active form of DSF, diethyldithiocarbamate (DTC)-Cu complex (CuET) for cancer therapeutics. To achieve a greater efficacy in vivo, smart nanomedicines were devised through a one-step self-assembly of three functional components including a chemically stable and biocompatible phase-change material (PCM), the robust anticancer drug (CuET) and a near-infrared (NIR) dye (DIR), namely CuET/DIR NPs. A number of in vitro assays were performed including the photothermal efficacy, light-triggered drug release behavior, nuclear localization, DNA damage and induction of apoptosis of CuET/DIR NPs and molecular mechanisms underlying CuET-induced repression on cancer metastatic behaviors. Meanwhile, the mice bearing 4T1-LG12-drived orthotopic tumors were employed to evaluate in vivo biodistribution and anti-tumor effect of CuET/DIR NPs. The intravenous injection model was employed to reflect the changes of the intrinsic metastatic propensity of 4T1-LG12 cells responding to CuET/DIR NPs. Results: The rationally designed nanomedicines have self-traceability for bioimaging, long blood circulation time for enhanced drug accumulation in the tumor site and photo-responsive release of the anticancer drugs. Moreover, our data unearthed that CuET/DIR nanomedicines behave like “Trojan horse” to transport CuET into the cytoplasm, realizing substantial intracellular accumulation. Upon NIR laser irradiation, massive CuET would be triggered to release from the nanomedicines and reach a high local concentration towards the nucleus, where the pro-apoptotic effects were conducted. Importantly, our CuET/DIR nanomedicines revealed a pronounced capability to leash breast cancer metastases through inhibition on EMT. Additionally, these nanomedicines showed great biocompatibility in animals. Conclusion: These combined data unearthed a remarkably enhanced tumor-killing efficacy of our CuET nanomedicines through nuclear targeting. This work may open a new research area of repurposing DSF as innovative therapeutic agents to treat breast cancer and its metastases.
Collapse
|
39
|
Oladipo SD, Omondi B, Mocktar C. Co(III)
N
,
N
′‐diarylformamidine dithiocarbamate complexes: Synthesis, characterization, crystal structures and biological studies. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5610] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Segun D. Oladipo
- School of Chemistry and Physics, Westville CampusUniversity of Kwazulu‐Natal Private Bag X54001 Durban 4000 South Africa
| | - Bernard Omondi
- School of Chemistry and Physics, Pietermaritzburg CampusUniversity of Kwazulu‐Natal Private Bag X01 Scottsville 3209 South Africa
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences, School of Health SciencesUniversity of Kwazulu‐Natal Private Bag X54001 Durban 4000 South Africa
| |
Collapse
|
40
|
Adak P, Ghosh B, Bauzá A, Frontera A, Herron SR, Chattopadhyay SK. Binuclear and tetranuclear Zn(ii) complexes with thiosemicarbazones: synthesis, X-ray crystal structures, ATP-sensing, DNA-binding, phosphatase activity and theoretical calculations. RSC Adv 2020; 10:12735-12746. [PMID: 35492083 PMCID: PMC9051056 DOI: 10.1039/c9ra10549b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/13/2020] [Indexed: 11/21/2022] Open
Abstract
Two Zinc(ii) complexes [Zn4(L1)4]·2H2O (1) and [Zn2(L2)2]·2H2O (2) of pyruvaldehydethiosemicarbazone ligands are reported. The complexes were characterized by elemental analysis, IR, NMR, UV-vis spectroscopy and by single-crystal X-ray crystallography. X-ray crystal structure determinations of the complexes show that though Zn : ligand stoichiometry is 1 : 1 in both the complexes, the molecular unit is tetranuclear for 1 and binuclear for 2. Both the complexes show selective sensing of ATP at pH 7.4 (0.01 M HEPES) in CH3CN–H2O (9 : 1) medium in the presence of other anions like AcO−, NO3−, F−, Cl−, H2PO4−, HPO42− and P2O72−. The UV-titration experiments of complexes 1 and 2 with ATP results in binding constants of 2.0(±0.07) × 104 M−1 and 7.1(±0.05) × 103 M−1 respectively. The calculated detection limits of 6.7 μM and 1.7 μM for 1 and 2 respectively suggest that the complexes are sensitive detectors of ATP. High selectivity of the complexes is confirmed by the addition of ATP in presence of an excess of other anions. DFT studies confirm that the ATP complexes are more favorable than those with the other inorganic phosphate anions, in agreement with the experimental results. Phosphatase like activity of both complexes is investigated spectrophotometrically using 4-nitrophenylphosphate (NPP) as a substrate, indicating the complexes possess significant phosphate ester hydrolytic efficiency. The kinetics for the hydrolysis of the substrate NPP was studied by the initial rate method at 25 °C. Michaelis–Menten derived kinetic parameters indicate that rate of hydrolysis of the P–O bond by complex 1 is much greater than that of complex 2, the kcat values being 212(±5) and 38(±2) h−1 respectively. The DNA binding studies of the complexes were investigated using electronic absorption spectroscopy and fluorescence quenching. The absorption spectral titrations of the complexes with DNA indicate that the CT-DNA binding affinity (Kb) of complex 1 (2.10(±0.07) × 106 M−1) is slightly greater than that of 2 (1.11(±0.04) × 106 M−1). From fluorescence spectra the apparent binding constant (Kapp) values were calculated and they are found to be 5.41(±0.01) × 105 M−1 for 1 and 3.93(±0.02) × 105 M−1 for 2. The molecular dynamics simulation demonstrates that the Zn(ii) complex 1 is a good intercalator of DNA. A binuclear and a tetranuclear zinc(ii) of pyruvaldehyde thiosemicarbazone show selective sensing of ATP at pH 7.4 (0.01 M HEPES) in CH3CN–H2O (9 : 1) medium. The DNA binding and phosphatase activities of the complexes are also reported.![]()
Collapse
Affiliation(s)
- Piyali Adak
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur Howarh-711 103 India
| | - Bipinbihari Ghosh
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur Howarh-711 103 India
| | - Antonio Bauzá
- Department of Chemistry, University of the Balearic Islands Carretera de Valldemossa km 7.5 07122 Palma de Mallorca IllesBalears Spain
| | - Antonio Frontera
- Department of Chemistry, University of the Balearic Islands Carretera de Valldemossa km 7.5 07122 Palma de Mallorca IllesBalears Spain
| | - Steven R Herron
- Department of Chemistry, Utah Valley University 800W University Pkwy Orem UT 84058 USA
| | - Shyamal Kumar Chattopadhyay
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur Howarh-711 103 India
| |
Collapse
|
41
|
Tiekink ERT. The remarkable propensity for the formation of C–H⋯π(chelate ring) interactions in the crystals of the first-row transition metal dithiocarbamates and the supramolecular architectures they sustain. CrystEngComm 2020. [DOI: 10.1039/d0ce00289e] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
C–H⋯π(chelate ring) interactions play an important role in assembling first-row transition metal dithiocarbamates in their crystals.
Collapse
Affiliation(s)
- Edward R. T. Tiekink
- Research Centre for Crystalline Materials
- School of Science and Technology
- 5 Jalan Universiti
- Sunway University
- Bandar Sunway
| |
Collapse
|
42
|
Repurposing old drugs as new inhibitors of the ubiquitin-proteasome pathway for cancer treatment. Semin Cancer Biol 2019; 68:105-122. [PMID: 31883910 DOI: 10.1016/j.semcancer.2019.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/30/2019] [Accepted: 12/15/2019] [Indexed: 12/25/2022]
Abstract
The ubiquitin-proteasome system (UPS) plays a central role in the degradation of cellular proteins. Targeting protein degradation has been validated as an effective strategy for cancer therapy since 2003. Several components of the UPS have been validated as potential anticancer targets, including 20S proteasomes, 19S proteasome-associated deubiquitinases (DUBs) and ubiquitin ligases (E3s). 20S proteasome inhibitors (such as bortezomib/BTZ and carfilzomib/CFZ) have been approved by the U.S. Food and Drug Administration (FDA) for the treatment of multiple myeloma (MM) and some other liquid tumors. Although survival of MM patients has been improved by the introduction of BTZ-based therapies, these clinical 20S proteasome inhibitors have several limitations, including emergence of resistance in MM patients, neuro-toxicities, and little efficacy in solid tumors. One of strategies to improve the current status of cancer treatment is to repurpose old drugs with UPS-inhibitory properties as new anticancer agents. Old drug reposition represents an attractive drug discovery approach compared to the traditional de novo drug discovery process which is time-consuming and costly. In this review, we summarize status of repurposed inhibitors of various UPS components, including 20S proteasomes, 19S-associated DUBs, and ubiquitin ligase E3s. The original and new mechanisms of action, molecular targets, and potential anticancer activities of these repurposed UPS inhibitors are reviewed, and their new uses including combinational therapies for cancer treatment are discussed.
Collapse
|
43
|
Tamer Ö, Mahmoody H, Feyzioğlu KF, Kılınç O, Avci D, Orun O, Dege N, Atalay Y. Synthesis of the first mixed ligand Mn (II) and Cd (II) complexes of 4‐methoxy‐pyridine‐2‐carboxylic acid, molecular docking studies and investigation of their anti‐tumor effectsin vitro. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5416] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ömer Tamer
- Department of Physics, Faculty of Arts and SciencesSakarya University Sakarya 54187 Turkey
| | - Hayatullah Mahmoody
- Department of Physics, Faculty of Arts and SciencesSakarya University Sakarya 54187 Turkey
| | - Kağan Fehmi Feyzioğlu
- Department of Physics, Faculty of Arts and SciencesSakarya University Sakarya 54187 Turkey
| | - Olca Kılınç
- Department of Biophysics, Faculty of MedicineMarmara University Istanbul Turkey
| | - Davut Avci
- Department of Physics, Faculty of Arts and SciencesSakarya University Sakarya 54187 Turkey
| | - Oya Orun
- Department of Biophysics, Faculty of MedicineMarmara University Istanbul Turkey
| | - Necmi Dege
- Department of Physics, Faculty of Arts and SciencesOndokuz Mayıs University Samsun 55139 Turkey
| | - Yusuf Atalay
- Department of Physics, Faculty of Arts and SciencesSakarya University Sakarya 54187 Turkey
| |
Collapse
|
44
|
Li X, Du K, Sun J, Feng F. Apoferritin as a Carrier of Cu(II) Diethyldithiocarbamate and Biomedical Application for Glutathione-Responsive Combination Chemotherapy. ACS APPLIED BIO MATERIALS 2019; 3:654-663. [DOI: 10.1021/acsabm.9b01014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xiao Li
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- Department of Polymer Materials, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, P. R. China
| | - Ke Du
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jian Sun
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Fude Feng
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
45
|
Sathiyaraj E, Thirumaran S, Ciattini S, Selvanayagam S. Synthesis and characterization of Ni(II) complexes with functionalized dithiocarbamates: New single source precursors for nickel sulfide and nickel-iron sulfide nanoparticles. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119162] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
46
|
Al‐Nassiry AIA, Al‐Janabi ASM, Thayee Al‐Janabi OY, Spearman P, Alheety MA. Novel dithiocarbamate–Hg(II) complexes containing mixed ligands: Synthesis, spectroscopic characterization, and H
2
storage capacity. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201900349] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Ahmed S. M. Al‐Janabi
- Department of Biochemistry, College of Veterinary MedicineTikrit University Tikrit Iraq
| | - Omer Y. Thayee Al‐Janabi
- Department of Petroleum Processes Engineering, College of Petroleum and Minerals EngineeringTikrit University Tikrit Iraq
| | - Peter Spearman
- Faculty of Science, Engineering and Computing LondonKingston University Kingston UK
| | | |
Collapse
|
47
|
Maurya VK, Singh AK, Singh RP, Yadav S, Kumar K, Prakash P, Prasad LB. Synthesis and evaluation of Zn(II) dithiocarbamate complexes as potential antibacterial, antibiofilm, and antitumor agents. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1693041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Vinay Kumar Maurya
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ashish Kumar Singh
- Bacterial Biofilm and Drug Resistance Research Laboratory, Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ravi Pratap Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shivangi Yadav
- Bacterial Biofilm and Drug Resistance Research Laboratory, Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Krishna Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Pradyot Prakash
- Bacterial Biofilm and Drug Resistance Research Laboratory, Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Lal Bahadur Prasad
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
48
|
Li X, Shao F, Sun J, Du K, Sun Y, Feng F. Enhanced Copper-Temozolomide Interactions by Protein for Chemotherapy against Glioblastoma Multiforme. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41935-41945. [PMID: 31644262 DOI: 10.1021/acsami.9b14849] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Current treatment of recurrent glioblastoma multiforme (GBM) demands dose-intense temozolomide (TMZ), a prodrug of 5-(3-methyltriazen-1-yl) imidazole-4-carboxamide (MTIC), based on the spontaneous hydrolysis of TMZ at basic pH. However, how to control the activity of MTIC remains unknown, which poses a particular challenge to search a reliable MTIC receptor. We reported that copper, for the first time, is found to recognize and bind MTIC in the process of TMZ degradation, which means copper can play an important role in enhancing the bioavailability of MTIC derived from TMZ. Using apoferritin as a model copper-bound protein, we studied the copper-TMZ interaction in protein and observed efficient MTIC immobilization with high binding efficiency (up to 92.9% based on original TMZ) and capacity (up to 185 MTIC moieties per protein). The system was stable against both alkaline and acidic pH and could be activated by glutathione to liberate MTIC, which paves a way to deliver a DNA-alkylating agent for both TMZ-sensitive and TMZ-resistant GBM chemotherapy. Our study provides a new insight for understanding the potential relationship between the special GBM microenvironment (specific copper accumulation) and the therapeutic effect of TMZ.
Collapse
|
49
|
Askari B, Rudbari HA, Micale N, Schirmeister T, Maugeri A, Navarra M. Anticancer study of heterobimetallic platinum(II)-ruthenium(II) and platinum(II)-rhodium(III) complexes with bridging dithiooxamide ligand. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.120918] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
50
|
Synthesis and structural studies of nickel(II)- and copper(II)-N,N′-diarylformamidine dithiocarbamate complexes as antimicrobial and antioxidant agents. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.06.038] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|