1
|
Ayadi N, Descamps A, Legigan T, Dussart-Gautheret J, Monteil M, Migianu-Griffoni E, Ben Ayed T, Deschamp J, Lecouvey M. Synthesis of Aminobisphosphinates through a Cascade Reaction between Hypophosphorous Acid and Bis(trimethylsilyl)imidates Mediated by ZnI 2. Molecules 2023; 28:6226. [PMID: 37687054 PMCID: PMC10489009 DOI: 10.3390/molecules28176226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Among phosphorylated derivatives, phosphinates occupy a prominent place due to their ability to be bioisosteres of phosphates and carboxylates. These properties imply the necessity to develop efficient methodologies leading to phosphinate scaffolds. In recent years, our team has explored the nucleophilic potential of silylated phosphonite towards various electrophiles. In this paper, we propose to extend our study to other electrophiles. We describe here the implementation of a cascade reaction between (trimethylsilyl)imidates and hypophosphorous acid mediated by a Lewis acid allowing the synthesis of aminomethylenebisphosphinate derivatives. The present study focuses on methodological development including a careful NMR monitoring of the cascade reaction. The optimized conditions were successfully applied to various aliphatic and aromatic substituted (trimethylsilyl)imidates, leading to the corresponding AMBPi in moderate to good yields.
Collapse
Affiliation(s)
- Nouha Ayadi
- Department of Chemistry, Université Sorbonne Paris Nord, CSPBAT UMR CNRS 7244, 1 Rue de Chablis, F-93000 Bobigny, France; (N.A.); (A.D.); (J.D.-G.); (M.M.); (E.M.-G.)
- Department of Chemistry, Université de Carthage-INSAT—Eco-Chimie Lab (LR21ES02), Centre Urbain Nord B.P.N. 676, Tunis 1080, Tunisia;
| | - Aurélie Descamps
- Department of Chemistry, Université Sorbonne Paris Nord, CSPBAT UMR CNRS 7244, 1 Rue de Chablis, F-93000 Bobigny, France; (N.A.); (A.D.); (J.D.-G.); (M.M.); (E.M.-G.)
| | - Thibaut Legigan
- Department of Chemistry, Université Sorbonne Paris Nord, CSPBAT UMR CNRS 7244, 1 Rue de Chablis, F-93000 Bobigny, France; (N.A.); (A.D.); (J.D.-G.); (M.M.); (E.M.-G.)
| | - Jade Dussart-Gautheret
- Department of Chemistry, Université Sorbonne Paris Nord, CSPBAT UMR CNRS 7244, 1 Rue de Chablis, F-93000 Bobigny, France; (N.A.); (A.D.); (J.D.-G.); (M.M.); (E.M.-G.)
| | - Maelle Monteil
- Department of Chemistry, Université Sorbonne Paris Nord, CSPBAT UMR CNRS 7244, 1 Rue de Chablis, F-93000 Bobigny, France; (N.A.); (A.D.); (J.D.-G.); (M.M.); (E.M.-G.)
| | - Evelyne Migianu-Griffoni
- Department of Chemistry, Université Sorbonne Paris Nord, CSPBAT UMR CNRS 7244, 1 Rue de Chablis, F-93000 Bobigny, France; (N.A.); (A.D.); (J.D.-G.); (M.M.); (E.M.-G.)
| | - Taïcir Ben Ayed
- Department of Chemistry, Université de Carthage-INSAT—Eco-Chimie Lab (LR21ES02), Centre Urbain Nord B.P.N. 676, Tunis 1080, Tunisia;
| | - Julia Deschamp
- Department of Chemistry, Université Sorbonne Paris Nord, CSPBAT UMR CNRS 7244, 1 Rue de Chablis, F-93000 Bobigny, France; (N.A.); (A.D.); (J.D.-G.); (M.M.); (E.M.-G.)
| | - Marc Lecouvey
- Department of Chemistry, Université Sorbonne Paris Nord, CSPBAT UMR CNRS 7244, 1 Rue de Chablis, F-93000 Bobigny, France; (N.A.); (A.D.); (J.D.-G.); (M.M.); (E.M.-G.)
| |
Collapse
|
2
|
Ruiz Puentes P, Rueda-Gensini L, Valderrama N, Hernández I, González C, Daza L, Muñoz-Camargo C, Cruz JC, Arbeláez P. Predicting target-ligand interactions with graph convolutional networks for interpretable pharmaceutical discovery. Sci Rep 2022; 12:8434. [PMID: 35589824 PMCID: PMC9119967 DOI: 10.1038/s41598-022-12180-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/05/2022] [Indexed: 02/08/2023] Open
Abstract
Drug Discovery is an active research area that demands great investments and generates low returns due to its inherent complexity and great costs. To identify potential therapeutic candidates more effectively, we propose protein–ligand with adversarial augmentations network (PLA-Net), a deep learning-based approach to predict target–ligand interactions. PLA-Net consists of a two-module deep graph convolutional network that considers ligands’ and targets’ most relevant chemical information, successfully combining them to find their binding capability. Moreover, we generate adversarial data augmentations that preserve relevant biological backgrounds and improve the interpretability of our model, highlighting the relevant substructures of the ligands reported to interact with the protein targets. Our experiments demonstrate that the joint ligand–target information and the adversarial augmentations significantly increase the interaction prediction performance. PLA-Net achieves 86.52% in mean average precision for 102 target proteins with perfect performance for 30 of them, in a curated version of actives as decoys dataset. Lastly, we accurately predict pharmacologically-relevant molecules when screening the ligands of ChEMBL and drug repurposing Hub datasets with the perfect-scoring targets.
Collapse
Affiliation(s)
- Paola Ruiz Puentes
- Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogotá, 111711, Colombia.,Department of Biomedical Engineering, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Laura Rueda-Gensini
- Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogotá, 111711, Colombia.,Department of Biomedical Engineering, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Natalia Valderrama
- Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogotá, 111711, Colombia.,Department of Biomedical Engineering, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Isabela Hernández
- Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogotá, 111711, Colombia.,Department of Biomedical Engineering, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Cristina González
- Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogotá, 111711, Colombia.,Department of Biomedical Engineering, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Laura Daza
- Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogotá, 111711, Colombia.,Department of Biomedical Engineering, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Carolina Muñoz-Camargo
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Juan C Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Pablo Arbeláez
- Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogotá, 111711, Colombia. .,Department of Biomedical Engineering, Universidad de los Andes, Bogotá, 111711, Colombia.
| |
Collapse
|
3
|
Cheviet T, Peyrottes S. Synthesis of Aminomethylene- gem-bisphosphonates Containing an Aziridine Motif: Studies of the Reaction Scope and Insight into the Mechanism. J Org Chem 2021; 86:3107-3119. [PMID: 33476157 DOI: 10.1021/acs.joc.0c02434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A broad range of N-carbamoylaziridines were obtained and then treated by the diethyl phosphonate anion to afford α-methylene-gem-bisphosphonate aziridines. Study of the reaction's scope and additional experiments indicates that the transformation proceeds via a new mechanism involving the chelation of lithium ion. This last step is crucial for the reaction to occur and disfavors the aziridine ring-opening. A phosphonate-phosphate rearrangement from a α-hydroxybisphosphonate aziridine intermediate is also proposed for the first time. This reaction provides a simple and convenient method for the synthesis of a highly functionalized phosphonylated aziridine motif.
Collapse
Affiliation(s)
- Thomas Cheviet
- Team Nucleosides & Phosphorylated Effectors, Institute for Biomolecules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Univ. Montpellier, Campus Triolet, cc1705, Place Eugène Bataillon, 34095 Montpellier, France
| | - Suzanne Peyrottes
- Team Nucleosides & Phosphorylated Effectors, Institute for Biomolecules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Univ. Montpellier, Campus Triolet, cc1705, Place Eugène Bataillon, 34095 Montpellier, France
| |
Collapse
|
4
|
Synthesis and biological evaluation of indolylglyoxylamide bisphosphonates, antimitotic microtubule-targeting derivatives of indibulin with improved aqueous solubility. Bioorg Med Chem Lett 2020; 30:127635. [PMID: 33132173 DOI: 10.1016/j.bmcl.2020.127635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 11/24/2022]
Abstract
Indibulin (D-24851) derivatives with bisphosphonate fragment connected to the N1 atom of imidazole ring were synthesized by alkylation of (indolyl-3)methylglyoxylates with ethylenebisphosphonate. Biological evaluation of targeted compounds 4a-d using the phenotypic sea urchin embryo assay provided evidence that replacing of p-chlorobenzene ring in indibulin by bisphosphonate group did not eliminate antimitotic microtubule destabilizing activity. The most active molecule, tetraacid 5a, at physiological pH formed tetrasodium salt 6a with aqueous solubility value of at least 10 mg/mL. Molecule 5a was more potent in the sea urchin embryo assay than the parent indibulin. This compound also exhibited pronounced cytotoxicity against A549 lung carcinoma and A375 melanoma cell lines.
Collapse
|
5
|
Abstract
Phosphoantigens (pAgs) are small phosphorus-containing molecules that stimulate Vγ9Vδ2 T cells with sub-nanomolar cellular potency. Recent work has revealed that these compounds work through binding to the transmembrane immunoglobulin butyrophilin 3A1 (BTN3A1) within its intracellular B30.2 domain. Engagement of BTN3A1 is critical to the formation of an immune synapse between cells that contain pAgs and the Vγ9Vδ2 T cells. This minireview summarizes the structure-activity relationships of pAgs and their implications to the mechanisms of butyrophilin 3 activation leading to Vγ9Vδ2 T cell response.
Collapse
Affiliation(s)
- Andrew J Wiemer
- Department of Pharmaceutical Sciences and Institute for Systems Genomics, University of Connecticut, 69N. Eagleville Road, Storrs, CT, 06269, USA
| |
Collapse
|
6
|
Direct Enamido C(sp2)−H Diphosphorylation Enabled by a PCET‐Triggered Double Radical Relay: Access togem‐Bisphosphonates. Chemistry 2020; 26:5515-5521. [DOI: 10.1002/chem.202000517] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/06/2020] [Indexed: 12/25/2022]
|
7
|
Kaboudin B, Esfandiari H, Moradi A, Kazemi F, Aoyama H. ZnCl2-Mediated Double Addition of Dialkylphosphite to Nitriles for the Synthesis of 1-Aminobisphosphonates. J Org Chem 2019; 84:14943-14948. [DOI: 10.1021/acs.joc.9b02298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Babak Kaboudin
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Gava Zang, Zanjan 45137-66731, Iran
| | - Hesam Esfandiari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Gava Zang, Zanjan 45137-66731, Iran
| | - Atieh Moradi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Gava Zang, Zanjan 45137-66731, Iran
| | - Foad Kazemi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Gava Zang, Zanjan 45137-66731, Iran
| | - Hiroshi Aoyama
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
8
|
Romanenko VD. α-Heteroatom-substituted gem-Bisphosphonates: Advances in the Synthesis and Prospects for Biomedical Application. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190401141844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Functionalized gem-bisphosphonic acid derivatives being pyrophosphate isosteres are of great synthetic and biological interest since they are currently the most important class of drugs developed for the treatment of diseases associated with the disorder of calcium metabolism, including osteoporosis, Paget’s disease, and hypercalcemia. In this article, we will try to give an in-depth overview of the methods for obtaining α- heteroatom-substituted methylenebisphosphonates and acquaint the reader with the synthetic strategies that are used to develop biologically important compounds of this type.
Collapse
Affiliation(s)
- Vadim D. Romanenko
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 1-Murmanska Street, Kyiv-94, 02660, Ukraine
| |
Collapse
|
9
|
Waller DD, Park J, Tsantrizos YS. Inhibition of farnesyl pyrophosphate (FPP) and/or geranylgeranyl pyrophosphate (GGPP) biosynthesis and its implication in the treatment of cancers. Crit Rev Biochem Mol Biol 2019; 54:41-60. [DOI: 10.1080/10409238.2019.1568964] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Jaeok Park
- Department of Chemistry, McGill University, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
| | - Youla S. Tsantrizos
- Department of Chemistry, McGill University, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
| |
Collapse
|
10
|
Bortolamiol E, Chiminazzo A, Sperni L, Borsato G, Fabris F, Scarso A. Functional bisphosphonate synthesis for the development of new anti-resorption bone drug candidates. NEW J CHEM 2019. [DOI: 10.1039/c9nj02504a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Widening the bisphosphonate toolbox: new bisphosphonate scaffolds enable new functionalizations.
Collapse
Affiliation(s)
- Enrica Bortolamiol
- Dipartimento di Scienze Molecolari e Nanosistemi
- Università Ca’ Foscari di Venezia
- Mestre
- Italy
| | - Andrea Chiminazzo
- Dipartimento di Scienze Molecolari e Nanosistemi
- Università Ca’ Foscari di Venezia
- Mestre
- Italy
| | - Laura Sperni
- Dipartimento di Scienze Molecolari e Nanosistemi
- Università Ca’ Foscari di Venezia
- Mestre
- Italy
| | - Giuseppe Borsato
- Dipartimento di Scienze Molecolari e Nanosistemi
- Università Ca’ Foscari di Venezia
- Mestre
- Italy
| | - Fabrizio Fabris
- Dipartimento di Scienze Molecolari e Nanosistemi
- Università Ca’ Foscari di Venezia
- Mestre
- Italy
| | - Alessandro Scarso
- Dipartimento di Scienze Molecolari e Nanosistemi
- Università Ca’ Foscari di Venezia
- Mestre
- Italy
| |
Collapse
|
11
|
Hoeres T, Smetak M, Pretscher D, Wilhelm M. Improving the Efficiency of Vγ9Vδ2 T-Cell Immunotherapy in Cancer. Front Immunol 2018; 9:800. [PMID: 29725332 PMCID: PMC5916964 DOI: 10.3389/fimmu.2018.00800] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/03/2018] [Indexed: 12/28/2022] Open
Abstract
Increasing immunological knowledge and advances in techniques lay the ground for more efficient and broader application of immunotherapies. gamma delta (γδ) T-cells possess multiple favorable anti-tumor characteristics, making them promising candidates to be used in cellular and combination therapies of cancer. They recognize malignant cells, infiltrate tumors, and depict strong cytotoxic and pro-inflammatory activity. Here, we focus on human Vγ9Vδ2 T-cells, the most abundant γδ T-cell subpopulation in the blood, which are able to inhibit cancer progression in various models in vitro and in vivo. For therapeutic use they can be cultured and manipulated ex vivo and in the following adoptively transferred to patients, as well as directly stimulated to propagate in vivo. In clinical studies, Vγ9Vδ2 T-cells repeatedly demonstrated a low toxicity profile but hitherto only the modest therapeutic efficacy. This review provides a comprehensive summary of established and newer strategies for the enhancement of Vγ9Vδ2 T-cell anti-tumor functions. We discuss data of studies exploring methods for the sensitization of malignant cells, the improvement of recognition mechanisms and cytotoxic activity of Vγ9Vδ2 T-cells. Main aspects are the tumor cell metabolism, antibody-dependent cell-mediated cytotoxicity, antibody constructs, as well as activating and inhibitory receptors like NKG2D and immune checkpoint molecules. Several concepts show promising results in vitro, now awaiting translation to in vivo models and clinical studies. Given the array of research and encouraging findings in this area, this review aims at optimizing future investigations, specifically targeting the unanswered questions.
Collapse
Affiliation(s)
- Timm Hoeres
- Department of Hematology and Medical Oncology, Paracelsus Medical University, Nuremberg, Germany
| | - Manfred Smetak
- Department of Hematology and Medical Oncology, Paracelsus Medical University, Nuremberg, Germany
| | - Dominik Pretscher
- Department of Hematology and Medical Oncology, Paracelsus Medical University, Nuremberg, Germany
| | - Martin Wilhelm
- Department of Hematology and Medical Oncology, Paracelsus Medical University, Nuremberg, Germany
| |
Collapse
|
12
|
Lv M, Wang M, Lu K, Peng L, Zhao Y. An efficient synthesis of 2-Aminoethylidene-1,1-Bisphosphonates derivatives via Michael addition reaction. PHOSPHORUS SULFUR 2018. [DOI: 10.1080/10426507.2017.1393421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mingxiu Lv
- School of Material and Chemical Engineering, Henan University of Engineering, Zhengzhou, China
| | - Mengwei Wang
- School of Material and Chemical Engineering, Henan University of Engineering, Zhengzhou, China
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, China
| | - Kui Lu
- School of Material and Chemical Engineering, Henan University of Engineering, Zhengzhou, China
| | - Lu Peng
- School of Material and Chemical Engineering, Henan University of Engineering, Zhengzhou, China
| | - Yufen Zhao
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, China
- Departmentl of Chemistry, Xiamen University, Xiamen, China
| |
Collapse
|
13
|
Massarenti C, Bortolini O, Fantin G, Cristofaro D, Ragno D, Perrone D, Marchesi E, Toniolo G, Massi A. Fluorous-tag assisted synthesis of bile acid-bisphosphonate conjugates via orthogonal click reactions: an access to potential anti-resorption bone drugs. Org Biomol Chem 2018; 15:4907-4920. [PMID: 28548149 DOI: 10.1039/c7ob00774d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The synthesis of a small collection of novel bile acid-bisphosphonate (BA-BP) conjugates as potential drug candidates is reported. The disclosed methodology relied on the installation of azide and thiol functionalities at the head and tail positions, respectively, of the BA scaffold and its subsequent decoration by orthogonal click reactions (copper-catalyzed azide-alkyne cycloaddition, thiol-ene or thiol-yne coupling) to introduce BP units and a fluorophore. Because of the troublesome isolation of the target conjugates by standard procedures, the methodology culminated with the functionalization of the BA scaffold with a light fluorous tag to rapidly and efficiently purify intermediates and final products by fluorous solid-phase extraction.
Collapse
Affiliation(s)
- Chiara Massarenti
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, I-44121 Ferrara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Liu QZ, Wang SS, Li X, Zhao XY, Li K, Lv GC, Qiu L, Lin JG. 3D-QSAR, molecular docking, and ONIOM studies on the structure-activity relationships and action mechanism of nitrogen-containing bisphosphonates. Chem Biol Drug Des 2017; 91:735-746. [DOI: 10.1111/cbdd.13134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/15/2017] [Accepted: 10/14/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Qing-Zhu Liu
- Key Laboratory of Nuclear Medicine; Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi China
| | - Shan-Shan Wang
- Key Laboratory of Nuclear Medicine; Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi China
- School of Chemical and Material Engineering; Jiangnan University; Wuxi China
| | - Xi Li
- Key Laboratory of Nuclear Medicine; Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi China
- School of Chemical and Material Engineering; Jiangnan University; Wuxi China
| | - Xue-Yu Zhao
- Key Laboratory of Nuclear Medicine; Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi China
- School of Chemical and Material Engineering; Jiangnan University; Wuxi China
| | - Ke Li
- Key Laboratory of Nuclear Medicine; Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi China
| | - Gao-Chao Lv
- Key Laboratory of Nuclear Medicine; Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi China
| | - Ling Qiu
- Key Laboratory of Nuclear Medicine; Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi China
| | - Jian-Guo Lin
- Key Laboratory of Nuclear Medicine; Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi China
| |
Collapse
|
15
|
Chiminazzo A, Damuzzo M, Sperni L, Strukul G, Scarso A. Nitrile Containing Bisphosphonates: Easy Synthesis through Metal Catalyzed Michael
Addition. Helv Chim Acta 2017. [DOI: 10.1002/hlca.201700104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Andrea Chiminazzo
- Dipartimento di Scienze Molecolari e Nanosistemi; Università Ca’ Foscari di Venezia; via Torino 155/B IT-30172 Mestre (Ve)
| | - Martina Damuzzo
- Dipartimento di Scienze Molecolari e Nanosistemi; Università Ca’ Foscari di Venezia; via Torino 155/B IT-30172 Mestre (Ve)
| | - Laura Sperni
- Dipartimento di Scienze Molecolari e Nanosistemi; Università Ca’ Foscari di Venezia; via Torino 155/B IT-30172 Mestre (Ve)
| | - Giorgio Strukul
- Dipartimento di Scienze Molecolari e Nanosistemi; Università Ca’ Foscari di Venezia; via Torino 155/B IT-30172 Mestre (Ve)
| | - Alessandro Scarso
- Dipartimento di Scienze Molecolari e Nanosistemi; Università Ca’ Foscari di Venezia; via Torino 155/B IT-30172 Mestre (Ve)
| |
Collapse
|
16
|
Gholivand MB, Peyman H, Gholivand K, Roshanfekr H, Taherpour AA, Yaghoubi R. Experimental and Computational Evidence on the Interaction of Cycloalkyl α-Aminobisphosphonates with Calf Thymus DNA. DNA Cell Biol 2017; 36:541-551. [PMID: 28525298 DOI: 10.1089/dna.2016.3624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fluorescence spectroscopy, ultraviolet-visible absorption spectroscopy, circular dichroism spectroscopy, viscometry, cyclic voltammetry, and differential pulse voltammetry were applied to investigate the competitive interaction of DNA with the three new cycloalkyl α-aminobisphosphonates (D1-D3) and spectroscopic probe, neutral red dye, and Hoechst (HO), in a Tris-hydrogen chloride buffer (pH 7.4). The spectroscopic and voltammetric studies showed that the groove binding mode of interaction is predominant in the solution containing DNA and α-aminobisphosphonates. Furthermore, the results indicated that α-aminobisphosphonate with the lengthy N alkyl chains and larger heterocyclic ring size had a stronger interaction. The principal component analysis and theoretical quantum mechanical and molecular mechanics (QM-DFT B3LYP/6-31+G* and MM-SYBYL) methods were also applied to determine the number of chemical components presented in complexation equilibrium and identify the structure complexes of DNA with the three new cycloalkyl α-aminobisphosphonates (D1-D3), respectively.
Collapse
Affiliation(s)
- Mohammad Bagher Gholivand
- 1 Faculty of Chemistry, Sensor and Biosensor Research Center (SBRC) and Nanoscience and Nanotechnology Research Center (NNRC), Razi University , Kermanshah, Iran
| | - Hossein Peyman
- 2 Department of Chemistry, Ilam Branch, Islamic Azad University , Ilam, Iran
| | - Khodayar Gholivand
- 3 Department of Chemistry, Faculty of Science, Tarbiat Modares University , Tehran, Iran
| | - Hamideh Roshanfekr
- 2 Department of Chemistry, Ilam Branch, Islamic Azad University , Ilam, Iran
| | - Avat Arman Taherpour
- 4 Department of Organic Chemistry, Faculty of Chemistry, Razi University , Kermanshah, Iran .,5 Medical Biology Research Center, Kermanshah University of Medical Sciences , Kermanshah, Iran
| | - Rouhollah Yaghoubi
- 3 Department of Chemistry, Faculty of Science, Tarbiat Modares University , Tehran, Iran
| |
Collapse
|
17
|
Hodgins NO, Wang JTW, Al-Jamal KT. Nano-technology based carriers for nitrogen-containing bisphosphonates delivery as sensitisers of γδ T cells for anticancer immunotherapy. Adv Drug Deliv Rev 2017; 114:143-160. [PMID: 28694026 DOI: 10.1016/j.addr.2017.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/29/2017] [Accepted: 07/05/2017] [Indexed: 12/21/2022]
Abstract
Nitrogen containing bisphosphonates (N-BPs) including zoledronate (ZOL) and alendronate (ALD) inhibit farnesyl diphosphate synthase, and have been shown to have a cytotoxic affect against cancer cells as a monotherapy and to also sensitise tumour cells to destruction by γδ T cells. γδ T cells are a subset of human T lymphocytes and have a diverse range of roles in the immune system including the recognition and destruction of cancer cells. This property of γδ T cells can be harnessed for use in cancer immunotherapy through in vivo expansion or the adoptive transfer of ex vivo activated γδ T cells. The use of N-BPs with γδ T cells has been shown to have a synergistic effect in in vitro, animal and clinical studies. N-BPs have limited in vivo activity due to rapid clearance from the circulation. By encapsulating N-BPs in liposomes (L) it is possible to increase the levels of N-BPs at non-osseous tumour sites. L-ZOL and L-ALD have been shown to have different toxicological profiles than free ZOL or ALD. Both L-ALD and L-ZOL led to increased spleen weight, leucocytosis, neutrophilia and lymphocytopenia in mice after intravenous injection. L-ALD was shown to be better tolerated than L-ZOL in murine studies. Biodistribution studies have been performed in order to better understand the interaction of N-BPs and γδ T cells in vivo. Additionally, in vivo therapy studies have shown that mice treated with both L-ALD and γδ T cells had a significant reduction in tumour growth compared to mice treated with L-ALD or γδ T cells alone. The use of ligand-targeted liposomes may further increase the efficacy of this combinatory immunotherapy. Liposomes targeting the αvβ6 integrin receptor using the peptide A20FMDV2 had a greater ability than untargeted liposomes in sensitising cancer cells to destruction by γδ T cells in αvβ6 positive cancer cell lines.
Collapse
|
18
|
De Luca L, Chiminazzo A, Sperni L, Strukul G, Scarso A. Stereoselective Synthesis of Chiral Isatin Containing Bisphosphonates as Potential Anti-Resorption Bone Drugs. ChemistrySelect 2017. [DOI: 10.1002/slct.201700649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lorena De Luca
- Dipartimento di Scienze Molecolari e Nanosistemi; Università Ca' Foscari di Venezia; via Torino 155 30172 Mestre (Ve) Italy
| | - Andrea Chiminazzo
- Dipartimento di Scienze Molecolari e Nanosistemi; Università Ca' Foscari di Venezia; via Torino 155 30172 Mestre (Ve) Italy
| | - Laura Sperni
- Dipartimento di Scienze Molecolari e Nanosistemi; Università Ca' Foscari di Venezia; via Torino 155 30172 Mestre (Ve) Italy
| | - Giorgio Strukul
- Dipartimento di Scienze Molecolari e Nanosistemi; Università Ca' Foscari di Venezia; via Torino 155 30172 Mestre (Ve) Italy
| | - Alessandro Scarso
- Dipartimento di Scienze Molecolari e Nanosistemi; Università Ca' Foscari di Venezia; via Torino 155 30172 Mestre (Ve) Italy
| |
Collapse
|
19
|
Experimental and theoretical studies of interaction of aliphatic chain α-aminobisphosphonates with DNA. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.01.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Nada MH, Wang H, Workalemahu G, Tanaka Y, Morita CT. Enhancing adoptive cancer immunotherapy with Vγ2Vδ2 T cells through pulse zoledronate stimulation. J Immunother Cancer 2017; 5:9. [PMID: 28239463 PMCID: PMC5319075 DOI: 10.1186/s40425-017-0209-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 01/06/2017] [Indexed: 01/14/2023] Open
Abstract
Background Human γδ T cells expressing Vγ2Vδ2 T cell receptors monitor foreign- and self-prenyl pyrophosphate metabolites in isoprenoid biosynthesis to mediate immunity to microbes and tumors. Adoptive immunotherapy with Vγ2Vδ2 T cells has been used to treat cancer patients with partial and complete remissions. Most clinical trials and preclinical studies have used continuous zoledronate exposure to expand Vγ2Vδ2 cells where zoledronate is slowly diluted over the course of the culture. Zoledronate inhibits farnesyl diphosphate synthase (FDPS) in monocytes causing isopentenyl pyrophosphate to accumulate that then stimulates Vγ2Vδ2 cells. Because zoledronate inhibition of FDPS is also toxic for T cells, we hypothesized that a short period of exposure would reduce T cell toxicity but still be sufficient for monocytes uptake. Additionally, IL-15 increases the anti-tumor activity of murine αβ T cells in mice but its effect on the in vivo anti-tumor activity of human Vγ2Vδ2 cells has not been assessed. Methods Human Vγ2Vδ2 T cells were expanded by pulse or continuous zoledronate stimulation with IL-2 or IL-15. Expanded Vγ2Vδ2 cells were tested for their expression of effector molecules and killing of tumor cells as well as their in vivo control of human prostate cancer tumors in immunodeficient NSG mice. Results Pulse zoledronate stimulation with either IL-2 or IL-15 resulted in more uniform expansion of Vγ2Vδ2 cells with higher purity and cell numbers as compared with continuous exposure. The Vγ2Vδ2 cells had higher levels of CD107a and perforin and increased tumor cytotoxicity. Adoptive immunotherapy with Vγ2Vδ2 cells derived by pulse stimulation controlled human PC-3 prostate cancer tumors in NSG mice significantly better than those derived by continuous stimulation, halting tumor growth. Although pulse zoledronate stimulation with IL-15 preserved early memory subsets, adoptive immunotherapy with IL-15-derived Vγ2Vδ2 cells equally inhibited PC-3 tumor growth as those derived with IL-2. Conclusions Pulse zoledronate stimulation maximizes the purity, quantity, and quality of expanded Vγ2Vδ2 cells for adoptive immunotherapy but there is no advantage to using IL-15 over IL-2 in our humanized mouse model. Pulse zoledronate stimulation is a simple modification to existing protocols that will enhance the effectiveness of adoptively transferred Vγ2Vδ2 cells by increasing their numbers and anti-tumor activity. Electronic supplementary material The online version of this article (doi:10.1186/s40425-017-0209-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mohanad H Nada
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA.,Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246 USA.,Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA.,Department of Pathology, College of Medicine, Tikrit University, Tikrit, Iraq
| | - Hong Wang
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA.,Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246 USA
| | - Grefachew Workalemahu
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA.,Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246 USA
| | - Yoshimasa Tanaka
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| | - Craig T Morita
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA.,Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246 USA.,Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA
| |
Collapse
|
21
|
De Luca L, Chiminazzo A, Sperni L, Strukul G, Scarso A. Pyrrolidine-Containing Bisphosphonates as Potential Anti-Resorption Bone Drugs. Chemistry 2017; 23:3474-3478. [PMID: 28181705 DOI: 10.1002/chem.201605878] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Indexed: 11/07/2022]
Abstract
Bisphosphonates, particularly those with N-substituted groups, are currently the most popular drugs for the treatment of osteoporosis. However, their chemical structures are still rather simple and new synthetic methods are needed to expand their molecular complexity and also improve their specificity of action towards other targets as anticancer, antibacterial, and antimalarial drugs. Herein, we report a new class of potential antiresorption bisphosphonate drugs that have a pyrrolidine unit with different substituents, obtained through a simple dipolar cycloaddition reaction between azomethine ylides and vinylidenebisphosphonate derivatives as precursors. The methodology led to the efficient preparation of a wide range of (1-methylpyrrolidine-3,3-diyl)bis(phosphonic esters) derivatives with different substituents in position 4.
Collapse
Affiliation(s)
- Lorena De Luca
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, via Torino 155, 30170, Venezia Mestre, Italy
| | - Andrea Chiminazzo
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, via Torino 155, 30170, Venezia Mestre, Italy
| | - Laura Sperni
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, via Torino 155, 30170, Venezia Mestre, Italy
| | - Giorgio Strukul
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, via Torino 155, 30170, Venezia Mestre, Italy
| | - Alessandro Scarso
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, via Torino 155, 30170, Venezia Mestre, Italy
| |
Collapse
|
22
|
Theoretical and Instrumental Studies of the Competitive Interaction Between Aromatic α-Aminobisphosphonates with DNA Using Binding Probes. Appl Biochem Biotechnol 2017; 182:925-943. [PMID: 28120240 DOI: 10.1007/s12010-016-2371-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/12/2016] [Indexed: 10/20/2022]
Abstract
Fluorescence spectroscopy, UV-visible absorption spectroscopy, circular dichroism (CD) spectroscopy, viscometry, cyclic voltammetry (CV), and differential pulse voltammetry (DPV) were applied to investigate the competitive interaction of DNA with two aromatic α-aminobisphosphonates and neutral red dye (NR, intercalator) and Hoechst (Ho, groove binder) as spectroscopic probes, in a Tris-hydrogen chloride buffer solution (pH 7.4). The principal component analysis (PCA) was applied to determine the number of chemical components presented in complexation equilibrium of DNA with the aromatic α-aminobisphosphonates (B1 and B2). The spectroscopic and voltammetric studies showed that the groove binding mode of interaction is predominant in the solution containing DNA and α-aminobisphosphonates. Furthermore, the results indicated that α-aminobisphosphonate with the lengthy N-alkyl chains had a stronger interaction. The PCA and theoretical quantum mechanical and molecular mechanic methods were also utilized to determine the structure of DNA with the two α-aminobisphosphonates (B1 and B2).
Collapse
|
23
|
Chmielewska E, Kafarski P. Synthetic Procedures Leading towards Aminobisphosphonates. Molecules 2016; 21:molecules21111474. [PMID: 27827924 PMCID: PMC6273145 DOI: 10.3390/molecules21111474] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/28/2016] [Accepted: 11/02/2016] [Indexed: 11/21/2022] Open
Abstract
Growing interest in the biological activity of aminobisphosphonates has stimulated the development of methods for their synthesis. Although several general procedures were previously elaborated to reach this goal, aminobisphosphonate chemistry is still developing quite substantially. Thus, innovative modifications of the existing commonly used reactions, as well as development of new procedures, are presented in this review, concentrating on recent achievements. Additionally, selected examples of aminobisphosphonate derivatization illustrate their usefulness for obtaining new diagnostic and therapeutic agents.
Collapse
Affiliation(s)
- Ewa Chmielewska
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław 50-370, Poland.
| | - Paweł Kafarski
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław 50-370, Poland.
| |
Collapse
|
24
|
Vagapova LI, Smolobochkin AV, Gazizov AS, Burilov AR, Bogdanov AA, Pudovik MA, Sinyashin OG. Synthesis of new nucleoside analogs containing amino bisphosphonic groups. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2016. [DOI: 10.1134/s1070428016090141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Huang X, Huang R, Liao Z, Pan Y, Gou S, Wang H. Synthesis and pharmacological evaluation of dehydroabietic acid thiourea derivatives containing bisphosphonate moiety as an inducer of apoptosis. Eur J Med Chem 2015; 108:381-391. [PMID: 26706349 DOI: 10.1016/j.ejmech.2015.12.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/18/2015] [Accepted: 12/03/2015] [Indexed: 11/15/2022]
Abstract
A series of DHAA thiourea derivatives containing bisphosphonate moiety were designed and synthesized as potent antitumor agents. Structures of target molecules were confirmed using HR-MS, (1)H NMR and (13)C NMR and they exhibited potent anti-tumor activities against the SK-OV-3, BEL-7404, A549, HCT-116 and NCI-H460 tumor cell lines in vitro. Especially, compound 6e (IC50 = 1.79 ± 0.43 μM) exhibited the best anticancer activity against SK-OV-3 cell line. Its role as an inducer of apoptosis was investigated in this cell line by Annexin-V/PI binding assay and by following its capability for ROS generation, depolarization of mitochondrial transmembrane potential, activation of caspases and expression of pro- and anti-apoptotic proteins. Elevated level of ROS generation, activation of caspase-3, caspase-8, caspase-9, and Fas, higher expression of Bax, lower expression of Bcl-2, and increased level of Bax/Bcl-2 ratio identified 6e as a promising inducer of apoptosis that follows both of the mitochondria dependent pathway and the death receptor-mediated pathway. In addition, the cell cycle analysis indicated that compound 6e caused cell cycle arrest at G1 phase, induced apoptosis and led to cell death by increasing the proportion of sub-G1 cells. Furthermore, molecular docking studies showed that 6e could bind to the ATP pocket sites.
Collapse
Affiliation(s)
- Xiaochao Huang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Southeast University, Nanjing 211189, China
| | - Rizheng Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Zhixin Liao
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Southeast University, Nanjing 211189, China
| | - Yingming Pan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Southeast University, Nanjing 211189, China.
| | - Hengshan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
26
|
Becker CS, Chukanov NV, Grigor’ev IA. New Amino-Bisphosphonate Building Blocks in the Synthesis of Bisphosphonic Derivatives Based on Lead Compounds. PHOSPHORUS SULFUR 2015. [DOI: 10.1080/10426507.2014.979989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Christina S. Becker
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Novosibirsk, Russian Federation
- Novosibirsk State University, Novosibirsk, Russian Federation
| | - Nikita V. Chukanov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Novosibirsk, Russian Federation
- Novosibirsk State University, Novosibirsk, Russian Federation
| | - Igor A. Grigor’ev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Novosibirsk, Russian Federation
- Academician E.N. Meshalkin State Research Institute of Circulation Pathology, Novosibirsk, Russian Federation
| |
Collapse
|
27
|
Kimura M, Tada A, Tokoro Y, Fukuzawa SI. Silver-catalyzed asymmetric Michael addition of azomethine ylide to arylidene diphosphonates using ThioClickFerrophos ligand. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.03.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Gritzalis D, Park J, Chiu W, Cho H, Lin YS, De Schutter JW, Lacbay CM, Zielinski M, Berghuis AM, Tsantrizos YS. Probing the molecular and structural elements of ligands binding to the active site versus an allosteric pocket of the human farnesyl pyrophosphate synthase. Bioorg Med Chem Lett 2015; 25:1117-23. [PMID: 25630225 DOI: 10.1016/j.bmcl.2014.12.089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/26/2014] [Accepted: 12/29/2014] [Indexed: 11/29/2022]
Abstract
In order to explore the interactions of bisphosphonate ligands with the active site and an allosteric pocket of the human farnesyl pyrophosphate synthase (hFPPS), substituted indole and azabenzimidazole bisphosphonates were designed as chameleon ligands. NMR and crystallographic studies revealed that these compounds can occupy both sub-pockets of the active site cavity, as well as the allosteric pocket of hFPPS in the presence of the enzyme's Mg(2+) ion cofactor. These results are consistent with the previously proposed hypothesis that the allosteric pocket of hFPPS, located near the active site, plays a feed-back regulatory role for this enzyme.
Collapse
Affiliation(s)
- Dimitrios Gritzalis
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Jaeok Park
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| | - Wei Chiu
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Hyungjun Cho
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Yih-Shyan Lin
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Joris W De Schutter
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Cyrus M Lacbay
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Michal Zielinski
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| | - Albert M Berghuis
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada; Department of Microbiology and Immunology, McGill University, 3775 Rue University, Montreal, QC H3A 2B4, Canada; Groupe de Recherche Axé sur la Structure des Protéines, McGill University, 3649 Promenade Sir William Osler, Montréal, QC H3G 0B1, Canada
| | - Youla S Tsantrizos
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada; Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada; Groupe de Recherche Axé sur la Structure des Protéines, McGill University, 3649 Promenade Sir William Osler, Montréal, QC H3G 0B1, Canada.
| |
Collapse
|
29
|
Duong LT, Wesolowski GA, Leung P, Oballa R, Pickarski M. Efficacy of a cathepsin K inhibitor in a preclinical model for prevention and treatment of breast cancer bone metastasis. Mol Cancer Ther 2014; 13:2898-909. [PMID: 25249554 DOI: 10.1158/1535-7163.mct-14-0253] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cathepsin K (CatK) is essential for osteoclast-mediated bone resorption. CatK expression is also detected in breast cancer cells that metastasize to bone. Here, the CatK inhibitor L-235 dosed in prevention (10, 30, and 100 mg/kg, p.o., b.i.d.) or treatment regimen (30 mg/kg) was compared with the bisphosphonate zoledronic acid (ZOL, 7.5 μg/kg/wk, s.c.) in the intratibial injection model of MDA-MB-231 breast carcinoma in nude rats. Progression of osteolysis, skeletal tumor burden, and local metastasis was evaluated by radiography through 42 days and ex vivo μCT and histology. IHC and RT-PCR confirmed the increases in CatK protein and mRNA levels in human breast cancer primary and metastatic tumors. In the experimental model of breast cancer bone metastasis, L-235 dosed in preventive mode resulted in a dose-related reduction of osteolysis of 72%, 75%, and 87% respectively, compared with ZOL by 86% versus intact. Similarly, L-235 significantly reduced intratibial tumor volume by 29%, 40%, and 63%, respectively, compared with 56% by ZOL versus vehicle. Efficacy of L-235 and ZOL on reduction of osteolytic lesions and tumor burden was comparable in treatment versus preventive regimens. All L-235 doses inhibited cortical disruption and extraskeletal tumor growth to a level comparable with ZOL. Assessment of local metastasis demonstrated that treatment with the CatK inhibitor was more effective than ZOL in reducing breast cancer invasion. These data support the role of CatK in breast cancer skeletal growth and metastasis and CatK inhibitors may represent a novel oral therapy for treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Le T Duong
- Merck & Co. Inc., Whitehouse Station, New Jersey.
| | | | | | - Renata Oballa
- Inception Sciences Canada Inc., Vancouver, BC, Canada
| | | |
Collapse
|
30
|
Chiminazzo A, Sperni L, Damuzzo M, Strukul G, Scarso A. Copper-mediated 1,4-Conjugate Addition of Boronic Acids and Indoles to Vinylidenebisphosphonate leading togem-Bisphosphonates as Potential Antiresorption Bone Drugs. ChemCatChem 2014. [DOI: 10.1002/cctc.201402346] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Wiemer DF, Wiemer AJ. Opportunities and challenges in development of phosphoantigens as Vγ9Vδ2 T cell agonists. Biochem Pharmacol 2014; 89:301-12. [DOI: 10.1016/j.bcp.2014.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/17/2014] [Accepted: 03/17/2014] [Indexed: 01/29/2023]
|
32
|
Abstract
Allostery is the most direct and efficient way for regulation of biological macromolecule function, ranging from the control of metabolic mechanisms to signal transduction pathways. Allosteric modulators target to allosteric sites, offering distinct advantages compared to orthosteric ligands that target to active sites, such as greater specificity, reduced side effects, and lower toxicity. Allosteric modulators have therefore drawn increasing attention as potential therapeutic drugs in the design and development of new drugs. In recent years, advancements in our understanding of the fundamental principles underlying allostery, coupled with the exploitation of powerful techniques and methods in the field of allostery, provide unprecedented opportunities to discover allosteric proteins, detect and characterize allosteric sites, design and develop novel efficient allosteric drugs, and recapitulate the universal features of allosteric proteins and allosteric modulators. In the present review, we summarize the recent advances in the repertoire of allostery, with a particular focus on the aforementioned allosteric compounds.
Collapse
Affiliation(s)
- Shaoyong Lu
- Department of Pathophysiology, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| | | | | |
Collapse
|
33
|
|
34
|
Locatelli F, Merli P, Rutella S. At the Bedside: Innate immunity as an immunotherapy tool for hematological malignancies. J Leukoc Biol 2013; 94:1141-57. [DOI: 10.1189/jlb.0613343] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
35
|
Leung CY, Park J, De Schutter JW, Sebag M, Berghuis AM, Tsantrizos YS. Thienopyrimidine Bisphosphonate (ThPBP) Inhibitors of the Human Farnesyl Pyrophosphate Synthase: Optimization and Characterization of the Mode of Inhibition. J Med Chem 2013; 56:7939-50. [PMID: 23998921 DOI: 10.1021/jm400946f] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Chun Yuen Leung
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| | - Jaeok Park
- Department of Biochemistry, McGill University, 3649
Promenade Sir William Osler, Montreal, Quebec, Canada H3G 0B1
| | - Joris W. De Schutter
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| | - Michael Sebag
- Division
of Haematology, McGill University Health Center, Royal Victoria Hospital, C6.80,
687 Pine Avenue West, Montreal, Quebec, Canada H3A 1A1
| | - Albert M. Berghuis
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
- Department of Biochemistry, McGill University, 3649
Promenade Sir William Osler, Montreal, Quebec, Canada H3G 0B1
- Department of Microbiology and Immunology, McGill University, 801 Sherbrooke Street
West, Montreal, Quebec, Canada H3A 0B8
| | - Youla S. Tsantrizos
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
- Department of Biochemistry, McGill University, 3649
Promenade Sir William Osler, Montreal, Quebec, Canada H3G 0B1
- Groupe de Recherche
Axé sur la Structure des Protéines, McGill University, 3649 Promenade Sir
William Osler, Montreal, Quebec, Canada H3G 0B1
| |
Collapse
|
36
|
Chen SH, Lin SW, Lin SR, Liang PH, Yang JM. Moiety-linkage map reveals selective nonbisphosphonate inhibitors of human geranylgeranyl diphosphate synthase. J Chem Inf Model 2013; 53:2299-311. [PMID: 23919676 DOI: 10.1021/ci400227r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bisphosphonates are potent inhibitors of farnesyl pyrophosphate synthase (FPPS) and geranylgeranyl diphosphate synthase (GGPPS). Current bisphosphonate drugs (e.g., Fosamax and Zometa) are highly efficacious in the treatment of bone diseases such as osteoporosis, Paget's disease, and tumor-induced osteolysis, but they are often less potent in blood and soft-tissue due to their phosphate moieties. The discovery of nonbisphosphonate inhibitors of FPPS and/or GGPPS for the treatment of bone diseases and cancers is, therefore, a current goal. Here, we propose a moiety-linkage-based method, combining a site-moiety map with chemical structure rules (CSRs), to discover nonbisphosphonate inhibitors from thousands of commercially available compounds and known crystal structures. Our moiety-linkage map reveals the binding mechanisms and inhibitory efficacies of 51 human GGPPS (hGGPPS) inhibitors. To the best of our knowledge, we are the first team to discover two novel selective nonbisphosphonate inhibitors, which bind to the inhibitory site of hGGPPS, using CSRs and site-moiety maps. These two compounds can be considered as a novel lead for the potent inhibitors of hGGPPS for the treatment of cancers and mevalonate-pathway diseases. Moreover, based on our moiety-linkage map, we identified two key residues of hGGPPS, K202, and K212, which play an important role for the inhibitory effect of zoledronate (IC50 = 3.4 μM and 2.4 μM, respectively). This result suggests that our method can discover specific hGGPPS inhibitors across multiple prenyltransferases. These results show that the compounds that highly fit our moiety-linkage map often inhibit hGGPPS activity and induce tumor cell apoptosis. We believe that our method is useful for discovering potential inhibitors and binding mechanisms for pharmaceutical targets.
Collapse
Affiliation(s)
- Shih-Hsun Chen
- Department of Biological Science and Technology, National Chiao Tung University , Hsinchu 30050, Taiwan
| | | | | | | | | |
Collapse
|
37
|
Low toxicity and unprecedented anti-osteoclast activity of a simple sulfur-containing gem-bisphosphonate: a comparative study. Eur J Med Chem 2013; 65:448-55. [PMID: 23748153 DOI: 10.1016/j.ejmech.2013.04.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/08/2013] [Accepted: 04/11/2013] [Indexed: 11/22/2022]
Abstract
Bisphosphonates (BPs) are key drugs for the treatment of bone resorption diseases like osteoporosis, Paget's disease and some forms of tumors. Recent findings underlined the importance of lipophilic N-containing BPs to ensure high biological activity. Herein we present some unprecedented results concerning the low toxicity and good anti-osteoclast activity of low molecular weight hydrophilic S-containing BPs. A series of S and N-containing BPs bearing aromatic and aliphatic substitution were prepared through Michael addition reaction between vinylidenebisphosphonate tetraethyl ester and the proper nucleophile under basic catalysis. S-containing BPs showed a generally low toxicity, determined with the neutral-red assay using the L929 cell line, and, in particular for an aliphatic one, a good biological activity assessed on primary cultures of human osteoclasts.
Collapse
|
38
|
Zhang Y, Zhu W, Liu YL, Wang H, Wang K, Li K, No JH, Ayong L, Gulati A, Pang R, Freitas-Junior L, Morita CT, Oldfield E. Chemo-Immunotherapeutic Anti-Malarials Targeting Isoprenoid Biosynthesis. ACS Med Chem Lett 2013; 4:423-427. [PMID: 23610597 DOI: 10.1021/ml4000436] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We synthesized 30 lipophilic bisphosphonates and tested them in malaria parasite killing (targeting parasite geranylgeranyl diphosphate synthase, GGPPS) as well in human γδ T cell activation (targeting human farnesyl diphosphate synthase, FPPS). Similar patterns of activity were seen in inhibiting human FPPS and Plasmodium GGPPS, with short to medium chain-length species having most activity. In cells, shorter chain-length species had low activity, due to poor membrane permeability, and longer chain length species were poor enzyme inhibitors. Optimal activity was thus seen with ~C10 side-chains, which have the best combination of enzyme inhibition and cell penetration. We also solved the crystal structure of one potent inhibitor, bound to FPPS. The results are of interest since they suggest the possibility of a combined chemo/immuno-therapeutic approach to anti-malarial development in which both direct parasite killing as well as γδ T cell activation can be achieved with a single compound.
Collapse
Affiliation(s)
- Yonghui Zhang
- PrenylX Research Institute, Zhangjiagang 215600, People’s Republic
of China
| | | | | | - Hong Wang
- Division of Immunology, Department
of Internal Medicine, the Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Veterans
Affairs Health Care System, Iowa City, Iowa 52242, United States
| | | | | | - Joo Hwan No
- Center for Neglected Diseases Drug
Discovery, Institute Pasteur Korea, Seongnam-si,
Gyeonggi-do 463-400, South Korea
| | - Lawrence Ayong
- Center for Neglected Diseases Drug
Discovery, Institute Pasteur Korea, Seongnam-si,
Gyeonggi-do 463-400, South Korea
| | | | | | - Lucio Freitas-Junior
- Center for Neglected Diseases Drug
Discovery, Institute Pasteur Korea, Seongnam-si,
Gyeonggi-do 463-400, South Korea
| | - Craig T. Morita
- Division of Immunology, Department
of Internal Medicine, the Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Veterans
Affairs Health Care System, Iowa City, Iowa 52242, United States
| | | |
Collapse
|
39
|
Braza MS, Klein B. Anti-tumour immunotherapy with Vγ9Vδ2 T lymphocytes: from the bench to the bedside. Br J Haematol 2012; 160:123-32. [PMID: 23061882 DOI: 10.1111/bjh.12090] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Gamma delta (γδ) Τ cells are non-conventional T lymphocyte effectors that can interact with and eradicate tumour cells. Several data demonstrate that these T cells, which are implicated in the first line of defence against pathogens, have anti-tumour activity against many cancers and suggest that γδ Τ cell-mediated immunotherapy is feasible and might induce objective tumour responses. Due to the importance of γδ Τ lymphocytes in the induction and control of immunity, a complete understanding of their biology is crucial for the development of a potent cancer immunotherapy. This review discusses recent advances in γδ Τ basic research and data from clinical trials on the use of γδ Τ cells in the treatment of different cancers. It analyses how this knowledge might be applied to develop new strategies for the clinical manipulation and the potentiation of γδ Τ lymphocyte activity in cancer immunotherapy.
Collapse
|
40
|
Role of gamma-delta T-cells in cancer: another opening door to immunotherapy. Clin Transl Oncol 2012; 14:891-5. [PMID: 23054752 DOI: 10.1007/s12094-012-0935-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 08/26/2012] [Indexed: 12/28/2022]
Abstract
The gamma-delta (γδ) T-cells are a subset of T-lymphocytes characterized by the presence of a surface antigen recognition complex type 2. Those γδ T-cells represent 2-5 % of peripheral T-cells only, but they are common in organs and mucosae, acting as a first defense system in the entries to the organism. The γδ T-cells take part on immune response by direct cytolysis, development of memory phenotypes, and modulation of immune cells, and they have been implied in autoimmune disorders, immune deficiencies, infections, and tumor diseases. We reported the role of γδ T-cells in oncology, focusing in their potential applications for cancer treatment. Experimental designs and clinical trials in the treatment of solid malignancies are extensively reviewed.
Collapse
|
41
|
|
42
|
Lin YS, Park J, De Schutter JW, Huang XF, Berghuis AM, Sebag M, Tsantrizos YS. Design and Synthesis of Active Site Inhibitors of the Human Farnesyl Pyrophosphate Synthase: Apoptosis and Inhibition of ERK Phosphorylation in Multiple Myeloma Cells. J Med Chem 2012; 55:3201-15. [PMID: 22390415 DOI: 10.1021/jm201657x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yih-Shyan Lin
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal,
QC, Canada H3A 0B8
| | - Jaeok Park
- Department
of Biochemistry, McGill University, 3649
Promenade Sir William Osler,
Montreal, QC, Canada H3G 0B1
| | - Joris W. De Schutter
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal,
QC, Canada H3A 0B8
| | - Xian Fang Huang
- Division of Haematology, McGill University Health Center, Royal Victoria Hospital,
C6.80, 687 Pine Avenue West, Montreal, QC, Canada H3A 1A1
| | - Albert M. Berghuis
- Department
of Biochemistry, McGill University, 3649
Promenade Sir William Osler,
Montreal, QC, Canada H3G 0B1
| | - Michael Sebag
- Division of Haematology, McGill University Health Center, Royal Victoria Hospital,
C6.80, 687 Pine Avenue West, Montreal, QC, Canada H3A 1A1
| | - Youla S. Tsantrizos
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal,
QC, Canada H3A 0B8
- Department
of Biochemistry, McGill University, 3649
Promenade Sir William Osler,
Montreal, QC, Canada H3G 0B1
| |
Collapse
|
43
|
Ramunno A, Cosconati S, Sartini S, Maglio V, Angiuoli S, La Pietra V, Di Maro S, Giustiniano M, La Motta C, Da Settimo F, Marinelli L, Novellino E. Progresses in the pursuit of aldose reductase inhibitors: the structure-based lead optimization step. Eur J Med Chem 2012; 51:216-26. [PMID: 22436396 DOI: 10.1016/j.ejmech.2012.02.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 10/28/2022]
Abstract
Aldose reductase (ALR2) is a crucial enzyme in the development of the major complications of diabetes mellitus. Very recently it has been demonstrated that the ARL2 inhibitor, fidarestat, significantly prevents inflammatory signals (TNF-α, LPS) that cause cancer (colon, breast, prostate and lung), metastasis, asthma, and other inflammatory diseases. Currently, fidarestat is in phase III clinical trial for diabetic neuropathy and was found to be safe. Thus the finding of novel, potent ARL2 inhibitors is today more than in the past in great demand as they can pave the way for a novel therapeutic approach for a number of diseases besides the diabetes. Herein, starting from the virtual screening-derived ALR2 inhibitor S12728 (1), a rational receptor-based lead optimization has been undertaken. The design and synthetic efforts here reported led to the discovery of several new compounds endowed with low micromolar/submicromolar activities.
Collapse
Affiliation(s)
- Anna Ramunno
- Dipartimento di Scienze Farmaceutiche, Università di Salerno, Via Ponte Don Melillo 11c, 84084 Fisciano, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Xiang H, Qi X, Xie Y, Xu G, Yang C. One-pot syntheses of novel pyrazole-containing bisphosphonate esters at room temperature. Org Biomol Chem 2012; 10:7730-8. [DOI: 10.1039/c2ob25889g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Faísca Phillips AM, Barros MT. Synthesis of geminal bisphosphonates via organocatalyzed enantioselective Michael additions of cyclic ketones and 4-piperidones. Org Biomol Chem 2012; 10:404-12. [DOI: 10.1039/c1ob06473h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Zhao MX, Dai TL, Liu R, Wei DK, Zhou H, Ji FH, Shi M. Enantioselective Michael addition of 3-aryloxindoles to a vinyl bisphosphonate ester catalyzed by a cinchona alkaloid derived thiourea catalyst. Org Biomol Chem 2012; 10:7970-9. [DOI: 10.1039/c2ob25966d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Wang H, Sarikonda G, Puan KJ, Tanaka Y, Feng J, Giner JL, Cao R, Mönkkönen J, Oldfield E, Morita CT. Indirect stimulation of human Vγ2Vδ2 T cells through alterations in isoprenoid metabolism. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:5099-113. [PMID: 22013129 PMCID: PMC3326638 DOI: 10.4049/jimmunol.1002697] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human Vγ2Vδ2 T cells monitor isoprenoid metabolism by recognizing (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), an intermediate in the 2-C-methyl-d-erythritol-4-phosphate pathway used by microbes, and isopentenyl pyrophosphate (IPP), an intermediate in the mevalonate pathway used by humans. Aminobisphosphonates and alkylamines indirectly stimulate Vγ2Vδ2 cells by inhibiting farnesyl diphosphate synthase (FDPS) in the mevalonate pathway, thereby increasing IPP/triphosphoric acid 1-adenosin-5'-yl ester 3-(3-methylbut-3-enyl) ester that directly stimulate. In this study, we further characterize stimulation by these compounds and define pathways used by new classes of compounds. Consistent with FDPS inhibition, stimulation of Vγ2Vδ2 cells by aminobisphosphonates and alkylamines was much more sensitive to statin inhibition than stimulation by prenyl pyrophosphates; however, the continuous presence of aminobisphosphonates was toxic for T cells and blocked their proliferation. Aminobisphosphonate stimulation was rapid and prolonged, independent of known Ag-presenting molecules, and resistant to fixation. New classes of stimulatory compounds-mevalonate, the alcohol of HMBPP, and alkenyl phosphonates-likely stimulate differently. Mevalonate, a rate-limiting metabolite, appears to enter cells to increase IPP levels, whereas the alcohol of HMBPP and alkenyl phosphonates are directly recognized. The critical chemical feature of bisphosphonates is the amino moiety, because its loss switched aminobisphosphonates to direct Ags. Transfection of APCs with small interfering RNA downregulating FDPS rendered them stimulatory for Vγ2Vδ2 cells and increased cellular IPP. Small interfering RNAs for isopentenyl diphosphate isomerase functioned similarly. Our results show that a variety of manipulations affecting isoprenoid metabolism lead to stimulation of Vγ2Vδ2 T cells and that pulsing aminobisphosphonates would be more effective for the ex vivo expansion of Vγ2Vδ2 T cells for adoptive cancer immunotherapy.
Collapse
Affiliation(s)
- Hong Wang
- Division of Immunology, Department of Internal Medicine, Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Veterans Affairs Medical Center, EMRB 400F, Iowa City, IA 52242
| | - Ghanashyam Sarikonda
- Division of Immunology, Department of Internal Medicine, Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Veterans Affairs Medical Center, EMRB 400F, Iowa City, IA 52242
| | - Kia-Joo Puan
- Division of Immunology, Department of Internal Medicine, Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Veterans Affairs Medical Center, EMRB 400F, Iowa City, IA 52242
| | - Yoshimasa Tanaka
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto 606-8501
| | - Ju Feng
- Department of Chemistry, State University of New York-ESF, Syracuse, NY 13210
| | - José-Luis Giner
- Department of Chemistry, State University of New York-ESF, Syracuse, NY 13210
| | - Rong Cao
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801
| | - Jukka Mönkkönen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801
| | - Craig T. Morita
- Division of Immunology, Department of Internal Medicine, Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Veterans Affairs Medical Center, EMRB 400F, Iowa City, IA 52242
| |
Collapse
|
48
|
Xue ZY, Li QH, Tao HY, Wang CJ. A Facile Cu(I)/TF-BiphamPhos-Catalyzed Asymmetric Approach to Unnatural α-Amino Acid Derivatives Containing gem-Bisphosphonates. J Am Chem Soc 2011; 133:11757-65. [DOI: 10.1021/ja2043563] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhi-Yong Xue
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Qing-Hua Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Hai-Yan Tao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
49
|
Butini S, Gemma S, Brindisi M, Borrelli G, Lossani A, Ponte AM, Torti A, Maga G, Marinelli L, La Pietra V, Fiorini I, Lamponi S, Campiani G, Zisterer DM, Nathwani SM, Sartini S, La Motta C, Da Settimo F, Novellino E, Focher F. Non-nucleoside inhibitors of human adenosine kinase: synthesis, molecular modeling, and biological studies. J Med Chem 2011; 54:1401-20. [PMID: 21319802 DOI: 10.1021/jm101438u] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adenosine kinase (AK) catalyzes the phosphorylation of adenosine (Ado) to AMP by means of a kinetic mechanism in which the two substrates Ado and ATP bind the enzyme in a binary and/or ternary complex, with distinct protein conformations. Most of the described inhibitors have Ado-like structural motifs and are nonselective, and some of them (e.g., the tubercidine-like ligands) are characterized by a toxic profile. We have cloned and expressed human AK (hAK) and searched for novel non-substrate-like inhibitors. Our efforts to widen the structural diversity of AK inhibitors led to the identification of novel non-nucleoside, noncompetitive allosteric modulators characterized by a unique molecular scaffold. Among the pyrrolobenzoxa(thia)zepinones (4a-qq) developed, 4a was identified as a non-nucleoside prototype hAK inhibitor. 4a has proapoptotic efficacy, slight inhibition of short-term RNA synthesis, and cytostatic activity on tumor cell lines while showing low cytotoxicity and no significant adverse effects on short-term DNA synthesis in cells.
Collapse
Affiliation(s)
- Stefania Butini
- European Research Centre for Drug Discovery and Development, NatSynDrugs, Università di Siena, 53100 Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chiplunkar S, Dhar S, Wesch D, Kabelitz D. gammadelta T cells in cancer immunotherapy: current status and future prospects. Immunotherapy 2011; 1:663-78. [PMID: 20635991 DOI: 10.2217/imt.09.27] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
gammadelta T lymphocytes are a distinct T-cell subset that display unique features with respect to T-cell receptor (TCR) gene usage, tissue tropism and antigen recognition. Phosphoantigens contributed by a dysregulated mevalonate pathway or the bacterial nonmevalonate pathway and aminobisphosphonates are capable of activating Vgamma9Vdelta2 T cells. With the aid of synthetic phosphoantigens, large-scale expansion of gammadelta T cells and their adoptive transfer into human hosts is now possible. The present review summarizes triumphs and tribulations of clinical trials using gammadelta T-cell immunotherapy. Adoptive transfer of phosphoantigen-activated gammadelta T cells or coadministration with aminobisphosphonates/cytokines/monoclonal antibodies appear to be promising approaches for cancer immunotherapy. It can be predicted that a comprehensive understanding of the molecular interactions of this unique T-cell subset with other key immune regulators (dendritic cells and regulatory T cells) will provide an impetus to bring this modality of treatment from bench to bedside.
Collapse
Affiliation(s)
- Shubhada Chiplunkar
- Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India.
| | | | | | | |
Collapse
|