1
|
Rodrigues Toledo C, Tantawy AA, Lima Fuscaldi L, Malavolta L, de Aguiar Ferreira C. EGFR- and Integrin α Vβ 3-Targeting Peptides as Potential Radiometal-Labeled Radiopharmaceuticals for Cancer Theranostics. Int J Mol Sci 2024; 25:8553. [PMID: 39126121 PMCID: PMC11313252 DOI: 10.3390/ijms25158553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The burgeoning field of cancer theranostics has witnessed advancements through the development of targeted molecular agents, particularly peptides. These agents exploit the overexpression or mutations of specific receptors, such as the Epidermal Growth Factor receptor (EGFR) and αVβ3 integrin, which are pivotal in tumor growth, angiogenesis, and metastasis. Despite the extensive research into and promising outcomes associated with antibody-based therapies, peptides offer a compelling alternative due to their smaller size, ease of modification, and rapid bioavailability, factors which potentially enhance tumor penetration and reduce systemic toxicity. However, the application of peptides in clinical settings has challenges. Their lower binding affinity and rapid clearance from the bloodstream compared to antibodies often limit their therapeutic efficacy and diagnostic accuracy. This overview sets the stage for a comprehensive review of the current research landscape as it relates to EGFR- and integrin αVβ3-targeting peptides. We aim to delve into their synthesis, radiolabeling techniques, and preclinical and clinical evaluations, highlighting their potential and limitations in cancer theranostics. This review not only synthesizes the extant literature to outline the advancements in peptide-based agents targeting EGFR and integrin αVβ3 but also identifies critical gaps that could inform future research directions. By addressing these gaps, we contribute to the broader discourse on enhancing the diagnostic precision and therapeutic outcomes of cancer treatments.
Collapse
Affiliation(s)
- Cibele Rodrigues Toledo
- The Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA; (C.R.T.); (A.A.T.)
| | - Ahmed A. Tantawy
- The Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA; (C.R.T.); (A.A.T.)
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Leonardo Lima Fuscaldi
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, São Paulo 01221-020, Brazil; (L.L.F.); (L.M.)
| | - Luciana Malavolta
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, São Paulo 01221-020, Brazil; (L.L.F.); (L.M.)
| | - Carolina de Aguiar Ferreira
- The Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA; (C.R.T.); (A.A.T.)
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
2
|
Zimmer O, Goepferich A. On the uncertainty of the correlation between nanoparticle avidity and biodistribution. Eur J Pharm Biopharm 2024; 198:114240. [PMID: 38437906 DOI: 10.1016/j.ejpb.2024.114240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/05/2024] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
The specific delivery of a drug to its site of action also known as targeted drug delivery is a topic in the field of pharmaceutics studied for decades. One approach extensively investigated in this context is the use ligand functionalized nanoparticles. These particles are modified to carry receptor specific ligands, enabling them to accumulate at a desired target site. However, while this concept initially appears straightforward to implement, in-depth research has revealed several challenges hindering target site specific particle accumulation - some of which remain unresolved to this day. One of these challenges consists in the still incomplete understanding of how nanoparticles interact with biological systems. This knowledge gap significantly compromises the predictability of particle distribution in biological systems, which is critical for therapeutic efficacy. One of the most crucial steps in delivery is the attachment of nanoparticles to cells at the target site. This attachment occurs via the formation of multiple ligand receptor bonds. A process also referred to as multivalent interaction. While multivalency has been described extensively for individual molecules and macromolecules respectively, little is known on the multivalent binding of nanoparticles to cells. Here, we will specifically introduce the concept of avidity as a measure for favorable particle membrane interactions. Also, an overview about nanoparticle and membrane properties affecting avidity will be given. Thereafter, we provide a thorough review on literature investigating the correlation between nanoparticle avidity and success in targeted particle delivery. In particular, we want to analyze the currently uncertain data on the existence and nature of the correlation between particle avidity and biodistribution.
Collapse
Affiliation(s)
- Oliver Zimmer
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Bavaria 93053, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Bavaria 93053, Germany.
| |
Collapse
|
3
|
Chen X, Sun Y, Li F, Xi L, Dai J, Zhao C, Dong Q. 68Ga-labeled TMTP1 radiotracer for PET imaging of cervical cancer. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2024; 14:110-121. [PMID: 38737640 PMCID: PMC11087289 DOI: 10.62347/nfdh6303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/02/2024] [Indexed: 05/14/2024]
Abstract
Molecular imaging enables visualization and characterization of biological processes that influence tumor behavior and response to therapy. The TMTP1 (NVVRQ) peptide has shown remarkable affinity to highly metastatic tumors and and its potential receptor is aminopeptidase P2. In this study, we have designed and synthesized a 68Ga-labeled cyclic TMTP1 radiotracer (68Ga-DOTA-TMTP1), for PET imaging of cervical cancer. The goal of this study was to investigate the properties of this radiotracer and its tumor diagnostic potential. The radiochemical yield of 68Ga-DOTA-TMTP1 was high and the radiochemical purity was greater than 95%. The octanol-water partition coefficient for 68Ga-DOTA-TMTP1 was -2.76 ± 0.08 and 68Ga-DOTA-TMTP1 has showed excellent stability in in vitro studies. The cellular uptake and efflux of 68Ga-DOTA-TMTP1 in paired highly metastatic and lowly metastatic cervical cancer cell line HeLa and C-33A as well as normal cervical epithelial cell line End1 were measured in a γ counter. 68Ga-DOTA-TMTP1 exhibited higher uptake in HeLa cells than in C-33A cells. The binding to HeLa and C-33A cells could be blocked by excess TMTP1. On microPET images, HeLa tumors were clearly visualized within 60 min and the uptake of the radiotracer in HeLa tumors was higher than that of C-33A tumors. After blocking with TMTP1, HeLa tumors uptake was significantly reduced and the specificity 68Ga-DOTA-TMTP1 was thus validated. Overall, we have successfully synthesized 68Ga-DOTA-TMTP1 with high yield and high specific activity and have demonstrated its potential role for highly metastatic tumor-targeted diagnosis.
Collapse
Affiliation(s)
- Xi Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030, Hubei, China
- National Clinical Research Centre for Obstetrics and Gynaecology, Cancer Biology Research Centre (Key Laboratory of The Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030, Hubei, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052, Henan, China
| | - Yue Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030, Hubei, China
- National Clinical Research Centre for Obstetrics and Gynaecology, Cancer Biology Research Centre (Key Laboratory of The Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030, Hubei, China
| | - Fei Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030, Hubei, China
- National Clinical Research Centre for Obstetrics and Gynaecology, Cancer Biology Research Centre (Key Laboratory of The Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030, Hubei, China
| | - Ling Xi
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030, Hubei, China
- National Clinical Research Centre for Obstetrics and Gynaecology, Cancer Biology Research Centre (Key Laboratory of The Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030, Hubei, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030, Hubei, China
- National Clinical Research Centre for Obstetrics and Gynaecology, Cancer Biology Research Centre (Key Laboratory of The Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030, Hubei, China
| | - Can Zhao
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030, Hubei, China
| | - Qingjian Dong
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030, Hubei, China
| |
Collapse
|
4
|
Xiao L, Yu S, Xu W, Sun Y, Xin J. 99mTc-3PRGD 2 SPECT/CT Imaging for Diagnosing Lymph Node Metastasis of Primary Malignant Lung Tumors. Korean J Radiol 2023; 24:1142-1150. [PMID: 37899523 PMCID: PMC10613846 DOI: 10.3348/kjr.2023.0411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/19/2023] [Accepted: 08/22/2023] [Indexed: 10/31/2023] Open
Abstract
OBJECTIVE To evaluate 99mtechnetium-three polyethylene glycol spacers-arginine-glycine-aspartic acid (99mTc-3PRGD2) single-photon emission computed tomography (SPECT)/computed tomography (CT) imaging for diagnosing lymph node metastasis of primary malignant lung neoplasms. MATERIALS AND METHODS We prospectively enrolled 26 patients with primary malignant lung tumors who underwent 99mTc-3PRGD2 SPECT/CT and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/CT imaging. Both imaging methods were analyzed in qualitative (visual dichotomous and 5-point grades for lymph nodes and lung tumors, respectively) and semi-quantitative (maximum tissue-to-background radioactive count) manners for the lymph nodes and lung tumors. The performance of the differentiation of lymph nodes with and without metastasis was determined at the per-lymph node station and per-patient levels using histopathological results as the reference standard. RESULTS Total 42 stations had metastatic lymph nodes and 136 stations had benign lymph nodes. The differences between metastatic and benign lymph nodes in the visual qualitative and semiquantitative analyses of 99mTc-3PRGD2 SPECT/CT and 18F-FDG PET/CT were statistically significant (all P < 0.001). The area under the receiver operating characteristic curve (AUC) in the semi-quantitative analysis of 99mTc-3PRGD2 SPECT/CT was 0.908 (95% confidence interval [CI], 0.851-0.966), and the sensitivity, specificity, positive predictive value, and negative predictive value were 0.86 (36/42), 0.88 (120/136), 0.69 (36/52), and 0.95 (120/126), respectively. Among the 26 patients (including two patients each with two lung tumors), 15 had pathologically confirmed lymph node metastasis. The difference between primary lung lesions in patients with and without lymph node metastasis was statistically significant only in the semi-quantitative analysis of 99mTc-3PRGD2 SPECT/CT (P = 0.007), with an AUC of 0.807 (95% CI, 0.641-0.974). CONCLUSION 99mTc-3PRGD2 SPECT/CT imaging may notably perform in the direct diagnosis of lymph node metastasis of primary malignant lung tumors and indirectly predict the presence of lymph node metastasis through uptake in the primary lesions.
Collapse
Affiliation(s)
- Liming Xiao
- Department of Nuclear Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Shupeng Yu
- Department of Nuclear Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Weina Xu
- Department of Nuclear Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yishan Sun
- Department of Nuclear Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Xin
- Department of Nuclear Medicine, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
5
|
Gajbhiye KR, Salve R, Narwade M, Sheikh A, Kesharwani P, Gajbhiye V. Lipid polymer hybrid nanoparticles: a custom-tailored next-generation approach for cancer therapeutics. Mol Cancer 2023; 22:160. [PMID: 37784179 PMCID: PMC10546754 DOI: 10.1186/s12943-023-01849-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/23/2023] [Indexed: 10/04/2023] Open
Abstract
Lipid-based polymeric nanoparticles are the highly popular carrier systems for cancer drug therapy. But presently, detailed investigations have revealed their flaws as drug delivery carriers. Lipid polymer hybrid nanoparticles (LPHNPs) are advanced core-shell nanoconstructs with a polymeric core region enclosed by a lipidic layer, presumed to be derived from both liposomes and polymeric nanounits. This unique concept is of utmost importance as a combinable drug delivery platform in oncology due to its dual structured character. To add advantage and restrict one's limitation by other, LPHNPs have been designed so to gain number of advantages such as stability, high loading of cargo, increased biocompatibility, rate-limiting controlled release, and elevated drug half-lives as well as therapeutic effectiveness while minimizing their drawbacks. The outer shell, in particular, can be functionalized in a variety of ways with stimuli-responsive moieties and ligands to provide intelligent holding and for active targeting of antineoplastic medicines, transport of genes, and theragnostic. This review comprehensively provides insight into recent substantial advancements in developing strategies for treating various cancer using LPHNPs. The bioactivity assessment factors have also been highlighted with a discussion of LPHNPs future clinical prospects.
Collapse
Affiliation(s)
- Kavita R Gajbhiye
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Erandwane, Pune, 411038, India
| | - Rajesh Salve
- Nanobioscience, Agharkar Research Institute, Pune, 411038, India
- Savitribai Phule Pune University, Pune, 411007, India
| | - Mahavir Narwade
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Erandwane, Pune, 411038, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Virendra Gajbhiye
- Nanobioscience, Agharkar Research Institute, Pune, 411038, India.
- Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
6
|
Trencsényi G, Enyedi KN, Mező G, Halmos G, Képes Z. NGR-Based Radiopharmaceuticals for Angiogenesis Imaging: A Preclinical Review. Int J Mol Sci 2023; 24:12675. [PMID: 37628856 PMCID: PMC10454655 DOI: 10.3390/ijms241612675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Angiogenesis plays a crucial role in tumour progression and metastatic spread; therefore, the development of specific vectors targeting angiogenesis has attracted the attention of several researchers. Since angiogenesis-associated aminopeptidase N (APN/CD13) is highly expressed on the surface of activated endothelial cells of new blood vessels and a wide range of tumour cells, it holds great promise for imaging and therapy in the field of cancer medicine. The selective binding capability of asparagine-glycine-arginine (NGR) motif containing molecules to APN/CD13 makes radiolabelled NGR peptides promising radiopharmaceuticals for the non-invasive, real-time imaging of APN/CD13 overexpressing malignancies at the molecular level. Preclinical small animal model systems are major keystones for the evaluation of the in vivo imaging behaviour of radiolabelled NGR derivatives. Based on existing literature data, several positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radioisotopes have been applied so far for the labelling of tumour vasculature homing NGR sequences such as Gallium-68 (68Ga), Copper-64 (64Cu), Technetium-99m (99mTc), Lutetium-177 (177Lu), Rhenium-188 (188Re), or Bismuth-213 (213Bi). Herein, a comprehensive overview is provided of the recent preclinical experiences with radiolabelled imaging probes targeting angiogenesis.
Collapse
Affiliation(s)
- György Trencsényi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary;
| | - Kata Nóra Enyedi
- ELKH-ELTE Research Group of Peptide Chemistry, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary; (K.N.E.); (G.M.)
- Institute of Chemistry, Faculty of Science, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Gábor Mező
- ELKH-ELTE Research Group of Peptide Chemistry, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary; (K.N.E.); (G.M.)
- Institute of Chemistry, Faculty of Science, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Gábor Halmos
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary;
| | - Zita Képes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary;
| |
Collapse
|
7
|
Kaihani S, Sadeghzadeh N, Abediankenari S, Abedi SM. [ 99mTc]-labeling and evaluation of a new linear peptide for imaging of glioblastoma as a α vβ 3-positive tumor. Ann Nucl Med 2022; 36:976-985. [PMID: 36097232 DOI: 10.1007/s12149-022-01786-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/23/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE In this study, we designed a new linear 6-Hydrazinonicotinamide (HYNIC)-conjugated peptide (HYNIC-KRWrNM) (M-6) and labeled with technetium-99m for gamma imaging of glioblastoma as a αvβ3-positive tumor. We evaluated tumor targeting ability of this radio-peptide and compared with previous 99mTc-labeled HYNIC-conjugated RGD analogue peptides. PROCEDURES One new linear peptide (HYNIC-KRWrNM) (M-6) was designed and labeled with technetium-99m in the presence of 2-[[1,3-dihydroxy-2-(hydroxymethyl) propan-2-yl] amino] acetic acid (Tricine)/Ethylenediamine-N,N'-diacetic acid (EDDA) as co-ligand system. Then, this 99mTc-labeled peptide ([99mTc]Tc-M-7) was evaluated for in vitro stability in saline and serum, specific binding assay, internalization, and binding affinity (Kd). In addition, we performed biodistribution study and planar imaging on nude mice bearing U87-MG xenograft as a αvβ3-positive tumor. RESULTS The radiochemical yield of [99mTc]Tc-M-7 was obtained ˃95%. This 99mTc-labeled peptide remained stable and intact in saline solution after 24 h incubation. In addition, metabolic stability of this 99mTc-labeled peptide was obtained ˃60% after 4 h incubation in serum. The Kd value for [99mTc]Tc-M-7 was obtained 5.2 ± 1.0 nM. Based on biodistribution results in nude mice bearing U87-MG xenograft, tumor/muscle activity ratio was 6.22 and decreased to 1.89 in blocking group at the same time point (4 h p.i.). The blocking experiment results also indicated that tumor uptake and kidney uptake were αvβ3-mediated. In comparison with previous HYNIC-conjugated RGD analogue peptides, kidneys had the highest uptake of this 99mTc-labeled peptide (52.29 ± 11.48 at 1.5 h p.i. and 27.04 ± 0.66%ID/g at 4 h p.i.). Finally, similar to previous 99mTc-labeled HYNIC-conjugated RGD analogue peptides, [99mTc]Tc-M-7 showed acceptable tumor uptake after 4 h post-injection (based on ROI technique, target-to-background activity ratio = 3.80). CONCLUSIONS This small linear 99mTc-labeled peptide, with high affinity to αvβ3 integrin, desirable water solubility, and cost efficient, demonstrates a potent tumor targeting ability as well as previous HYNIC-conjugated RGD analogue peptides. Hence, [99mTc]Tc-M-7 can be of service to as a new candidate for early detection of αvβ3-positive tumors.
Collapse
Affiliation(s)
- Sajad Kaihani
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, 48471-93698, Mazandaran, Iran.,Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nourollah Sadeghzadeh
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, 48471-93698, Mazandaran, Iran.
| | - Saeid Abediankenari
- Immunogenetics Research Centre, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mohammad Abedi
- Department of Radiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
8
|
Xiao L, Xin J. Advances in Clinical Oncology Research on 99mTc-3PRGD2 SPECT Imaging. Front Oncol 2022; 12:898764. [PMID: 35712468 PMCID: PMC9195171 DOI: 10.3389/fonc.2022.898764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
The integrin alpha(α)v beta(β)3 receptor is ubiquitous in malignant tumors and has a certain level of specificity for tumors. Technetium-99m hydrazinonicotinamide-dimeric cyclic arginyl-glycyl-aspartic acid peptide with three polyethylene glycol spacers (99mTc-3PRGD2) can bind specifically to the integrin αvβ3 receptor with high selectivity and strong affinity. Thus, it can specifically mark tumors and regions with angiogenesis for tumor detection and be used in single-photon emission computed tomography (SPECT) imaging. This modality has good application value for diagnosing and treating tumor lesions, such as those in the lung, breast, esophagus, head, and neck. This review provides an overview of the current clinical research progress of 99mTc-3PRGD2 SPECT imaging for tumor lesions, including for the diagnosis and differential diagnosis of tumors in different body parts, evaluation of related metastases, and evaluation of efficacy. In addition, the future clinical application prospects and possibilities of 99mTc-3PRGD2 SPECT imaging are further discussed.
Collapse
|
9
|
Sheikh A, Alhakamy NA, Md S, Kesharwani P. Recent Progress of RGD Modified Liposomes as Multistage Rocket Against Cancer. Front Pharmacol 2022; 12:803304. [PMID: 35145405 PMCID: PMC8822168 DOI: 10.3389/fphar.2021.803304] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is a life-threatening disease, contributing approximately 9.4 million deaths worldwide. To address this challenge, scientific researchers have investigated molecules that could act as speed-breakers for cancer. As an abiotic drug delivery system, liposomes can hold both hydrophilic and lipophilic drugs, which promote a controlled release, accumulate in the tumor microenvironment, and achieve elongated half-life with an enhanced safety profile. To further improve the safety and impair the off-target effect, the surface of liposomes could be modified in a way that is easily identified by cancer cells, promotes uptake, and facilitates angiogenesis. Integrins are overexpressed on cancer cells, which upon activation promote downstream cell signaling and eventually activate specific pathways, promoting cell growth, proliferation, and migration. RGD peptides are easily recognized by integrin over expressed cells. Just like a multistage rocket, ligand anchored liposomes can be selectively recognized by target cells, accumulate at the specific site, and finally, release the drug in a specific and desired way. This review highlights the role of integrin in cancer development, so gain more insights into the phenomenon of tumor initiation and survival. Since RGD is recognized by the integrin family, the fate of RGD has been demonstrated after its binding with the acceptor’s family. The role of RGD based liposomes in targeting various cancer cells is also highlighted in the paper.
Collapse
Affiliation(s)
- Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- *Correspondence: Prashant Kesharwani,
| |
Collapse
|
10
|
Florea A, Mottaghy FM, Bauwens M. Molecular Imaging of Angiogenesis in Oncology: Current Preclinical and Clinical Status. Int J Mol Sci 2021; 22:5544. [PMID: 34073992 PMCID: PMC8197399 DOI: 10.3390/ijms22115544] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022] Open
Abstract
Angiogenesis is an active process, regulating new vessel growth, and is crucial for the survival and growth of tumours next to other complex factors in the tumour microenvironment. We present possible molecular imaging approaches for tumour vascularisation and vitality, focusing on radiopharmaceuticals (tracers). Molecular imaging in general has become an integrated part of cancer therapy, by bringing relevant insights on tumour angiogenic status. After a structured PubMed search, the resulting publication list was screened for oncology related publications in animals and humans, disregarding any cardiovascular findings. The tracers identified can be subdivided into direct targeting of angiogenesis (i.e., vascular endothelial growth factor, laminin, and fibronectin) and indirect targeting (i.e., glucose metabolism, hypoxia, and matrix metallo-proteases, PSMA). Presenting pre-clinical and clinical data of most tracers proposed in the literature, the indirect targeting agents are not 1:1 correlated with angiogenesis factors but do have a strong prognostic power in a clinical setting, while direct targeting agents show most potential and specificity for assessing tumour vascularisation and vitality. Within the direct agents, the combination of multiple targeting tracers into one agent (multimers) seems most promising. This review demonstrates the present clinical applicability of indirect agents, but also the need for more extensive research in the field of direct targeting of angiogenesis in oncology. Although there is currently no direct tracer that can be singled out, the RGD tracer family seems to show the highest potential therefore we expect one of them to enter the clinical routine.
Collapse
Affiliation(s)
- Alexandru Florea
- Department of Nuclear Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany; (A.F.); (M.B.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht University, 6229HX Maastricht, The Netherlands
| | - Felix M. Mottaghy
- Department of Nuclear Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany; (A.F.); (M.B.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht University, 6229HX Maastricht, The Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229HX Maastricht, The Netherlands
| | - Matthias Bauwens
- Department of Nuclear Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany; (A.F.); (M.B.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229HX Maastricht, The Netherlands
| |
Collapse
|
11
|
New Bioconjugated Technetium and Rhenium Folates Synthesized by Transmetallation Reaction with Zinc Derivatives. Molecules 2021; 26:molecules26082373. [PMID: 33921789 PMCID: PMC8074163 DOI: 10.3390/molecules26082373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 11/17/2022] Open
Abstract
The zinc dithiocarbamates functionalized with folic acid 2Zn and 3Zn were synthesized with a simple straightforward method, using an appropriated folic acid derivative and a functionalized zinc dithiocarbamate (1Zn). Zinc complexes 2Zn and 3Zn show very low solubilities in water, making them useful for preparing Tc-99m radiopharmaceuticals with a potentially high molar activity. Thus, the transmetallation reaction in water medium between the zinc complexes 2Zn or 3Zn and the cation fac-[99mTc(H2O)3(CO)3]+, in the presence of the monodentate ligand TPPTS, leads to the formation of the 2 + 1 complexes fac-[99mTc(CO)3(SS)(P)] bioconjugated to folic acid (2Tc and 3Tc). In spite of the low solubility of 2Zn and 3Zn in water, the reaction yield is higher than 95%, and the excess zinc reagent is easily removed by centrifugation. The Tc-99m complexes were characterized by comparing their HPLC with those of the homologous rhenium complexes (2Re and 3Re) previously synthesized and characterized by standard methods. Preliminary in vivo studies with 2Tc and 3Tc indicate low specific binding to folate receptors. In summary, Tc-99m folates 2Tc and 3Tc were prepared in high yields, using a one-pot transmetallation reaction with low soluble zinc dithiocarbamates (>1 ppm), at moderate temperature, without needing a subsequent purification step.
Collapse
|
12
|
Ayo A, Laakkonen P. Peptide-Based Strategies for Targeted Tumor Treatment and Imaging. Pharmaceutics 2021; 13:pharmaceutics13040481. [PMID: 33918106 PMCID: PMC8065807 DOI: 10.3390/pharmaceutics13040481] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 02/03/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide. The development of cancer-specific diagnostic agents and anticancer toxins would improve patient survival. The current and standard types of medical care for cancer patients, including surgery, radiotherapy, and chemotherapy, are not able to treat all cancers. A new treatment strategy utilizing tumor targeting peptides to selectively deliver drugs or applicable active agents to solid tumors is becoming a promising approach. In this review, we discuss the different tumor-homing peptides discovered through combinatorial library screening, as well as native active peptides. The different structure–function relationship data that have been used to improve the peptide’s activity and conjugation strategies are highlighted.
Collapse
Affiliation(s)
- Abiodun Ayo
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
| | - Pirjo Laakkonen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
- Laboratory Animal Center, HiLIFE—Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
- Correspondence: ; Tel.: +358-50-4489100
| |
Collapse
|
13
|
Sui S, Hou Y. Assessing Doxorubicin-Induced Cardiomyopathy by 99mTc-3PRGD2 Scintigraphy Targeting Integrin αvβ3 in a Rat Model. Nuklearmedizin 2021; 60:289-298. [PMID: 33638136 DOI: 10.1055/a-1331-7138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The present study evaluated interstitial alterations in doxorubicin-induced cardiomyopathy using a radiolabeled RGD peptide 99mTc-3PRGD2 specific for integrin αvβ3 that targets myofibroblasts.Cardiomyopathy was induced in 20 Sprague-Dawley rats by intraperitoneal doxorubicin injections (2.5 mg/kg/week) for up to six weeks. 99mTc-3PRGD2 scintigraphy was performed in control rats (n = 6) at baseline and three, six, and nine weeks after first doxorubicin administration (n = 6, 6, and 5 for each time point). For another three rats of 6-week modeling, cold c(RGDyK) was co-injected with 99mTc-3PRGD2 to evaluate specific radiotracer binding. Semi-quantitative parameters were acquired to compare radiotracer uptake among all groups. The biodistribution of 99mTc-3PRGD2 was evaluated by a γ-counter after scintigraphy. Haematoxylin and eosin, and Masson's staining were used to evaluate myocardial injury and fibrosis, while western blotting and immunofluorescence co-localization were used to analyze integrin αvβ3 expression in the myocardium.The 99mTc-3PRGD2 half-life in the cardiac region (Heartt 1/2) of the 9-week model and heart radioactivity percentage (%Heart20 min, %Heart40 min and %Heart60 min) of the 6 and 9-week models were significantly increased compared to the control. Heart-to-background ratio (HBR20 min, HBR40 min and HBR60 min) increase began in the third week, continued until the sixth week, and was reversed in the ninth week, which paralleled the changing trend of cardiac integrin αvβ3 expression. The myocardial biodistribution of 99mTc-3PRGD2 was significantly correlated with integrin β3 expression.The 99mTc-3PRGD2 scintigraphy allows for non-invasive visualization of interstitial alterations during doxorubicin-induced cardiomyopathy.
Collapse
Affiliation(s)
- Shi Sui
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Hou
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
Borràs J, Lecina J, Foster J, Kashani R, Melendez-Alafort L, Sosabowski J, Suades J. Bioconjugated technetium carbonyls by transmetalation reaction with zinc derivatives. Bioorg Med Chem Lett 2021; 37:127840. [PMID: 33556570 DOI: 10.1016/j.bmcl.2021.127840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 12/14/2022]
Abstract
The transmetalation reaction between zinc dithiocarbamates functionalized with organic groups and the cation fac-[99mTc(H2O)3(CO)3]+ has been studied as a new strategy to bind biomolecules to this radionuclide for preparing radiopharmaceuticals with high molar activity. All complexes were obtained in high yields by heating at moderate temperatures and without subsequent purification. The chemical identity was ascertained by HPLC comparison with the homologous rhenium complexes. Stability studies in cysteine solution and serum have shown a good stability of the coordination set fac-[99mTc(CO)3(SS)(P)]. Preliminary biological studies of the radiocomplex functionalized with D-(+)-glucosamine with carcinoma cells have been performed.
Collapse
Affiliation(s)
- Jordi Borràs
- Departament de Química, Edifici C, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Joan Lecina
- Departament de Química, Edifici C, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Julie Foster
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, United Kingdom
| | - Roxana Kashani
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, United Kingdom
| | | | - Jane Sosabowski
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, United Kingdom
| | - Joan Suades
- Departament de Química, Edifici C, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| |
Collapse
|
15
|
Noor A, Van Zuylekom JK, Rudd SE, Waldeck K, Roselt PD, Haskali MB, Wheatcroft MP, Yan E, Hicks RJ, Cullinane C, Donnelly PS. Bivalent Inhibitors of Prostate-Specific Membrane Antigen Conjugated to Desferrioxamine B Squaramide Labeled with Zirconium-89 or Gallium-68 for Diagnostic Imaging of Prostate Cancer. J Med Chem 2020; 63:9258-9270. [PMID: 32786229 DOI: 10.1021/acs.jmedchem.0c00291] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Prostate-specific membrane antigen (PSMA) is a carboxypeptidase that is overexpressed in prostate cancer and is an excellent candidate for targeted diagnostic imaging and therapy. Lysine-ureido-glutamate inhibitors of PSMA radiolabeled with positron-emitting radionuclides can be used for diagnostic imaging with positron emission tomography (PET). A squaramide ester derivative of desferrioxamine B (H3DFOSq) was used to prepare four new agents with either one or two lysine-ureido-glutamate pharmacophores. The H3DFOSq ligand can be used to form stable complexes with either of the positron-emitting radionuclides gallium-68 (t1/2 = 68 min) or zirconium-89 (t1/2 = 3.3 days). The complexes were evaluated in PSMA-positive xenograft mouse models. Bivalent inhibitors, where two pharmacophores are tethered to a single DFOSq ligand, have better tumor uptake than their monovalent analogues. The ligands presented here, which can be labeled with either gallium-68 or zirconium-89, have the potential to increase the number of clinical sites that can perform diagnostic PET imaging.
Collapse
Affiliation(s)
- Asif Noor
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | - Stacey E Rudd
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kelly Waldeck
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Peter D Roselt
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Mohammad B Haskali
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Michael P Wheatcroft
- Telix Pharmaceuticals Limited, Suite 401, 55 Flemington Road, North Melbourne, Victoria 3051, Australia
| | - Eddie Yan
- Telix Pharmaceuticals Limited, Suite 401, 55 Flemington Road, North Melbourne, Victoria 3051, Australia
| | - Rodney J Hicks
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Carleen Cullinane
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
16
|
Majewski MW, Gandhi DM, Holyst T, Wang Z, Hernandez I, Rosas R, Zhu J, Weiler H, Dockendorff C. Synthesis and initial pharmacology of dual-targeting ligands for putative complexes of integrin αVβ3 and PAR2. RSC Med Chem 2020; 11:940-949. [PMID: 33479689 PMCID: PMC7496306 DOI: 10.1039/d0md00098a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/24/2020] [Indexed: 11/21/2022] Open
Abstract
Unpublished data from our labs led us to hypothesize that activated protein C (aPC) may initiate an anti-inflammatory signal in endothelial cells by modulating both the integrin αVβ3 and protease-activated receptor 2 (PAR2), which may exist in close proximity on the cellular surface. To test this hypothesis and to probe the possible inflammation-related pathway, we designed and synthesized dual-targeting ligands composed of modified versions of two αVβ3 ligands and two agonists of PAR2. These novel ligands were connected via copper-catalyzed alkyne-azide cycloadditions with polyethylene glycol (PEG) spacers of variable length. Initial in vitro pharmacology with EA.hy926 and HUVEC endothelial cells indicated that these ligands are effective binders of αVβ3 and potent agonists of PAR2. These were also used in preliminary studies investigating their effects on PAR2 signaling in the presence of inflammatory agents, and represent the first examples of ligands targeting both PARs and integrins, though concurrent binding to αVβ3 and PAR2 has not yet been demonstrated.
Collapse
Affiliation(s)
- Mark W Majewski
- Department of Chemistry , Marquette University , P.O. Box 1881 , Milwaukee , WI 53201-1881 , USA . ; Tel: +1 414 288 1617
| | - Disha M Gandhi
- Department of Chemistry , Marquette University , P.O. Box 1881 , Milwaukee , WI 53201-1881 , USA . ; Tel: +1 414 288 1617
| | - Trudy Holyst
- Blood Research Institute , Versiti , Milwaukee , WI 53226 , USA
| | - Zhengli Wang
- Blood Research Institute , Versiti , Milwaukee , WI 53226 , USA
| | - Irene Hernandez
- Blood Research Institute , Versiti , Milwaukee , WI 53226 , USA
| | - Ricardo Rosas
- Department of Chemistry , Marquette University , P.O. Box 1881 , Milwaukee , WI 53201-1881 , USA . ; Tel: +1 414 288 1617
| | - Jieqing Zhu
- Blood Research Institute , Versiti , Milwaukee , WI 53226 , USA
- Department of Biochemistry , Medical College of Wisconsin , Milwaukee , WI 53226 , USA
| | - Hartmut Weiler
- Blood Research Institute , Versiti , Milwaukee , WI 53226 , USA
- Department of Physiology , Medical College of Wisconsin , Milwaukee , WI 53226 , USA
| | - Chris Dockendorff
- Department of Chemistry , Marquette University , P.O. Box 1881 , Milwaukee , WI 53201-1881 , USA . ; Tel: +1 414 288 1617
| |
Collapse
|
17
|
Luo Q, Yang G, Gao H, Wang Y, Luo C, Ma X, Gao Y, Li X, Zhao H, Jia B, Shi J, Wang F. An Integrin Alpha 6-Targeted Radiotracer with Improved Receptor Binding Affinity and Tumor Uptake. Bioconjug Chem 2020; 31:1510-1521. [PMID: 32347718 DOI: 10.1021/acs.bioconjchem.0c00170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this study, we reported a 99mTc-labeled integrin α6-targeted peptide as the molecular imaging probe for tumor imaging by single-photon emission computed tomography (SPECT). We found that replacing Cys-Cys cyclized RWY peptide (sequence: cCRWYDENAC) with lactam-bridged cyclic cKiE peptide (sequence: cKRWYDENAisoE) did not sacrifice the integrin α6-binding affinity and specificity of cKiE radiotracer. To further improve the radiotracer's tumor targeting capability, the dimerized cKiE peptide (termed cKiE2) was designed, and the corresponding radiotracer 99mTc-cKiE2 was evaluated for tumor uptake and in vivo pharmacokinetics properties in tumor models. We found that cKiE2 showed higher binding affinity to integrin α6 than did monomeric RWY or cKiE peptide. The biodistribution results showed that the tumor uptake of 99mTc-cKiE2 was twice higher than that of 99mTc-RWY (3.20 ± 0.12 vs 1.26 ± 0.06 %ID/g, P < 0.001) at 0.5 h postinjection. The tumor to nontargeting tissue ratios were also enhanced in most normal organs. Specificity of 99mTc-cKiE2 for integrin α6 was demonstrated by competitive blocking of tumor uptake with excess cold peptide (3.20 ± 0.24 to 1.38 ± 0.23 %ID/g, P < 0.001). The integrin α6-positive tumors were clearly visualized by 99mTc-cKiE2/SPECT with low background except with a relatively high kidney uptake. The tumor uptake of 99mTc-cKiE2 correlates well with the tumor integrin α6 expression levels in a linear fashion (R2 = 0.9623). We also compared 99mTc-cKiE2 with an integrin αvβ3-targeted radiotracer 99mTc-3PRGD2 in the orthotopic hepatocellular carcinoma tumor models. We found that the orthotopic tumor was clearly visualized with 99mTc-cKiE2. 99mTc-3PRGD2 imaging did not show tumor contours in situ as clearly as 99mTc-cKiE2. The tumor-to-liver ratios of 99mTc-cKiE2 and 99mTc-3PRGD2 were 2.20 ± 0.17 and 0.85 ± 0.20. In conclusion, 99mTc-cKiE2 is an improved SPECT radiotracer for imaging integrin α6-positive tumors and has great potential for further clinical application.
Collapse
Affiliation(s)
- Qi Luo
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Guangjie Yang
- Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Hannan Gao
- Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Yanpu Wang
- Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Chuangwei Luo
- Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Xiaotu Ma
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yu Gao
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiaoda Li
- Medical and Healthy Analytical Center, Peking University, Beijing 100191, People's Republic of China
| | - Huiyun Zhao
- Medical and Healthy Analytical Center, Peking University, Beijing 100191, People's Republic of China
| | - Bing Jia
- Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Jiyun Shi
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Fan Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
| |
Collapse
|
18
|
Masteri Farahani A, Maleki F, Sadeghzadeh N, Abediankenari S, Abedi SM, Erfani M. 99m Tc-(EDDA/tricine)-HYNIC-GnRH analogue as a potential imaging probe for diagnosis of prostate cancer. Chem Biol Drug Des 2020; 96:850-860. [PMID: 32279449 DOI: 10.1111/cbdd.13693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/20/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022]
Abstract
Prostate cancer is a serious threat to men's health, so it is necessary to develop the techniques for early detection of this malignancy. Radiolabeled peptides are the useful tools for diagnosis of prostate cancer. In this research, we designed a new HYNIC-conjugated GnRH analogue and labeled it by 99m Tc with tricine/EDDA as coligands. We used aminohexanoic acid (Ahx) as a hydrocarbon linker to generate 99m Tc-(tricine/EDDA)-HYNIC-Ahx-[DLys6 ]GnRH. The radiopeptide exhibited high radiochemical purity and stability in solution and serum. Two human prostate cancer cell lines LN-CaP and DU-145 were used for cellular experiments. The binding specificity and affinity of radiopeptide for LN-CaP were superior to DU-145 cells. The Kd values for LN-CaP and DU-145 cells were 41.91 ± 7.03 nM and 55.96 ± 10.56 nM, respectively. High kidney uptake proved that the main excretion route of radiopeptide was through the urinary system. The tumor/muscle ratio of 99m Tc-HYNIC-Ahx-[DLys6 ]GnRH was 4.14 at 1 hr p.i. that decreased to 2.41 at 4 hr p.i. in LN-CaP tumor-xenografted nude mice. The blocking experiment revealed that the tumor uptake was receptor-mediated. The lesion was visualized clearly using 99m Tc-[DLys6 ]GnRH at 1 hr p.i. Accordingly, this research highlights the capability of 99m Tc-(tricine/EDDA)-HYNIC-Ahx-[DLys6 ]GnRH peptide as a promising agent for GnRHR-expressing tumor imaging.
Collapse
Affiliation(s)
- Arezou Masteri Farahani
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fariba Maleki
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nourollah Sadeghzadeh
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Abediankenari
- Immunogenetics Research Centre, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mohammad Abedi
- Department of Radiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mostafa Erfani
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran
| |
Collapse
|
19
|
Abstract
Single photon emission computed tomography (SPECT) is the state-of-the-art imaging modality in nuclear medicine despite the fact that only a few new SPECT tracers have become available in the past 20 years. Critical for the future success of SPECT is the design of new and specific tracers for the detection, localization, and staging of a disease and for monitoring therapy. The utility of SPECT imaging to address oncologic questions is dependent on radiotracers that ideally exhibit excellent tissue penetration, high affinity to the tumor-associated target structure, specific uptake and retention in the malignant lesions, and rapid clearance from non-targeted tissues and organs. In general, a target-specific SPECT radiopharmaceutical can be divided into two main parts: a targeting biomolecule (e.g., peptide, antibody fragment) and a γ-radiation-emitting radionuclide (e.g., 99mTc, 123I). If radiometals are used as the radiation source, a bifunctional chelator is needed to link the radioisotope to the targeting entity. In a rational SPECT tracer design, these single components have to be critically evaluated in order to achieve a balance among the demands for adequate target binding, and a rapid clearance of the radiotracer. The focus of this chapter is to depict recent developments of tumor-targeted SPECT radiotracers for imaging of cancer diseases. Possibilities for optimization of tracer design and potential causes for design failure are discussed and highlighted with selected examples.
Collapse
|
20
|
68Ga-labeled dimeric and trimeric cyclic RGD peptides as potential PET radiotracers for imaging gliomas. Appl Radiat Isot 2019; 148:168-177. [DOI: 10.1016/j.apradiso.2019.03.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/08/2019] [Accepted: 03/25/2019] [Indexed: 01/04/2023]
|
21
|
Liu J, Cheng X, Tian X, Guan D, Ao J, Wu Z, Huang W, Le Z. Design and synthesis of novel dual-cyclic RGD peptides for αvβ3 integrin targeting. Bioorg Med Chem Lett 2019; 29:896-900. [DOI: 10.1016/j.bmcl.2019.01.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 01/02/2023]
|
22
|
Cyclic Peptides: Promising Scaffolds for Biopharmaceuticals. Genes (Basel) 2018; 9:genes9110557. [PMID: 30453533 PMCID: PMC6267108 DOI: 10.3390/genes9110557] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 12/31/2022] Open
Abstract
To date, small molecules and macromolecules, including antibodies, have been the most pursued substances in drug screening and development efforts. Despite numerous favorable features as a drug, these molecules still have limitations and are not complementary in many regards. Recently, peptide-based chemical structures that lie between these two categories in terms of both structural and functional properties have gained increasing attention as potential alternatives. In particular, peptides in a circular form provide a promising scaffold for the development of a novel drug class owing to their adjustable and expandable ability to bind a wide range of target molecules. In this review, we discuss recent progress in methodologies for peptide cyclization and screening and use of bioactive cyclic peptides in various applications.
Collapse
|
23
|
Rezazadeh F, Sadeghzadeh N. Tumor targeting with 99m Tc radiolabeled peptides: Clinical application and recent development. Chem Biol Drug Des 2018; 93:205-221. [PMID: 30299570 DOI: 10.1111/cbdd.13413] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/19/2018] [Accepted: 09/23/2018] [Indexed: 01/16/2023]
Abstract
Targeting overexpressed receptors on the cancer cells with radiolabeled peptides has become very important in nuclear oncology in the recent years. Peptides are small and have easy preparation and easy radiolabeling protocol with no side-effect and toxicity. These properties made them a valuable tool for tumor targeting. Based on the successful imaging of neuroendocrine tumors with 111 In-octreotide, other receptor-targeting peptides such as bombesin (BBN), cholecystokinin/gastrin analogues, neurotensin analogues, glucagon-like peptide-1, and RGD peptides are currently under development or undergoing clinical trials. The most frequently used radionuclides for tumor imaging are 99m Tc and 111 In for single-photon emission computed tomography and 68 Ga and 18 F for positron emission tomography imaging. This review presents some of the 99m Tc-labeled peptides, with regard to their potential for radionuclide imaging of tumors in clinical and preclinical application.
Collapse
Affiliation(s)
- Farzaneh Rezazadeh
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nourollah Sadeghzadeh
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
24
|
Cen B, Wei Y, Huang W, Teng M, He S, Li J, Wang W, He G, Bai X, Liu X, Yuan Y, Pan X, Ji A. An Efficient Bivalent Cyclic RGD-PIK3CB siRNA Conjugate for Specific Targeted Therapy against Glioblastoma In Vitro and In Vivo. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 13:220-232. [PMID: 30312846 PMCID: PMC6178240 DOI: 10.1016/j.omtn.2018.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 01/14/2023]
Abstract
The PI3K-AKT-mTOR-signaling pathway is frequently activated in glioblastoma (GBM). Inhibition of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta (PIK3CB)/p110β (a PI3K catalytic isoform) by RNAi substantially suppresses GBM growth with less toxicity to normal astrocytes. However, insufficient and non-specific small interfering RNA (siRNA) delivery may limit the efficacy of RNAi-based therapies against GBM. Here we prepared a novel methoxy-modified PIK3CB siRNA molecule (siPIK3CB) that was covalently conjugated to a [cyclo(Arg-Gly-Asp-D-Phe-Lys)-Ahx]2-Glu-PEG-MAL (biRGD) peptide, which selectively binds to integrin αvβ3 receptors. The αvβ3-positive U87MG cell line was selected as a representative for GBM. An orthotopic GBM xenograft model based on luciferase-expressing U87MG was established and validated in vivo to investigate bio-distribution and anti-tumor efficacy of biRGD-siPIK3CB. In vitro, biRGD-siPIK3CB specifically entered and silenced PIK3CB expression in GBM cells in an αvβ3 receptor-dependent manner, thus inhibiting cell cycle progression and migration and enhancing apoptosis. In vivo, intravenously injected biRGD-siPIK3CB substantially slowed GBM growth and prolonged survival by reducing tumor viability with silencing PIK3CB expression. Furthermore, biRGD-siPIK3CB led to mild tubulointerstitial injury in the treatment of GBM without obvious hepatotoxicity, whereas co-infusion of Gelofusine obviously alleviated this injury without compromising anti-tumor efficacy. These findings revealed a great translational potential of biRGD-siPIK3CB conjugate as a novel molecule for GBM therapy.
Collapse
Affiliation(s)
- Bohong Cen
- Department of Pharmacy, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, Guangdong, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China; Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong, China; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong, China
| | - Yuanyi Wei
- Department of Pharmacy, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Wen Huang
- Department of Pharmacy, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Muzhou Teng
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Shuai He
- Department of Pharmacy, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Jianlong Li
- Department of Orthopaedic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Wei Wang
- Guangzhou RiboBio Co., Guangzhou 510663, Guangdong, China
| | - Guolin He
- Department of Hepatobiliary Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Xin Bai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China; Department of Orthopaedic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xiaoxia Liu
- Department of Pharmacy, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, Guangdong, China; Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510275, Guangdong, China
| | - Yawei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong, China.
| | - Xinghua Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, Guangdong, China; Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Aimin Ji
- Department of Pharmacy, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, Guangdong, China; Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China.
| |
Collapse
|
25
|
Technetium-99m-based simple and convenient radiolabeling of Escherichia coli for in vivo tracking of microorganisms. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-5941-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
26
|
Debordeaux F, Chansel-Debordeaux L, Pinaquy JB, Fernandez P, Schulz J. What about αvβ3 integrins in molecular imaging in oncology? Nucl Med Biol 2018; 62-63:31-46. [DOI: 10.1016/j.nucmedbio.2018.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/19/2018] [Accepted: 04/30/2018] [Indexed: 10/17/2022]
|
27
|
Taira Y, Uehara T, Tsuchiya M, Takemori H, Mizuno Y, Takahashi S, Suzuki H, Hanaoka H, Akizawa H, Arano Y. Coordination-Mediated Synthesis of Purification-Free Bivalent 99mTc-Labeled Probes for in Vivo Imaging of Saturable System. Bioconjug Chem 2018; 29:459-466. [PMID: 29320158 DOI: 10.1021/acs.bioconjchem.7b00788] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the synthesis of technetium-99m (99mTc) labeled target-specific ligands, the presence of a large excess of unlabeled ligands over 99mTc in the injectate hinders target accumulation of 99mTc-labeled ligands by competing for target molecules. To circumvent the problem, we recently developed a concept of the metal coordination-mediated multivalency, and proved the concept with a 99mTc-labeled trivalent compound [99mTc(CO)3(CN-RGD)3]+. In this study, D-penicillamine (Pen) was selected as a chelating molecule and a cyclic RGDfK peptide was conjugated to Pen via a hexanoic linkage (Pen-Ahx-c(RGDfK)). 99mTc complexation reaction, and the stability, integrin αvβ3 binding affinity, and biodistribution of the 99mTc-labeled probe were investigated to evaluate the applicability of the concept to bivalent probes. 99mTc-[Pen-Ahx-c(RGDfK)]2 was obtained over 95% radiochemical yields under low Pen-Ahx-c(RGDfK) concentration (50 μM). 99mTc-[Pen-Ahx-c(RGDfK)]2 showed approximately 10-times higher integrin αvβ3 binding affinity than the monovalent compounds, Pen-Ahx-c(RGDfK) and c(RGDyV). In biodistribution studies, the tumor accumulation of 99mTc-[Pen-Ahx-c(RGDfK)]2 was decreased to 77% and 43% of HPLC-purified (Pen-Ahx-c(RGDfK)-free) 99mTc-[Pen-Ahx-c(RGDfK)]2 by the presence of 5 nmol of unlabeled Pen-Ahx-c(RGDfK) and Re-[Pen-Ahx-c(RGDfK)]2, respectively. 99mTc-[Pen-Ahx-c(RGDfK)]2 provided tumor image without removing unlabeled ligand, while a 99mTc-labeled monovalent probe prepared from a monovalent ligand could not. These findings indicate the availability of the design concept to prepare 99mTc-labeled bivalent probes with a variety of 99mTc core and other metallic radionuclides of clinical relevance.
Collapse
Affiliation(s)
- Yuichiro Taira
- Graduate School of Pharmaceutical Sciences, Chiba University , Chiba, 260-8675, Japan
| | - Tomoya Uehara
- Graduate School of Pharmaceutical Sciences, Chiba University , Chiba, 260-8675, Japan
| | - Masao Tsuchiya
- Graduate School of Pharmaceutical Sciences, Chiba University , Chiba, 260-8675, Japan
| | - Hideaki Takemori
- Graduate School of Pharmaceutical Sciences, Chiba University , Chiba, 260-8675, Japan
| | - Yuki Mizuno
- Graduate School of Pharmaceutical Sciences, Chiba University , Chiba, 260-8675, Japan.,Showa Pharmaceutical University , Machida, 194-8543, Japan
| | - Shiori Takahashi
- Graduate School of Pharmaceutical Sciences, Chiba University , Chiba, 260-8675, Japan
| | - Hiroyuki Suzuki
- Graduate School of Pharmaceutical Sciences, Chiba University , Chiba, 260-8675, Japan
| | - Hirofumi Hanaoka
- Graduate School of Medicine, Gunma University , Maebashi, 371-8511, Japan
| | | | - Yasushi Arano
- Graduate School of Pharmaceutical Sciences, Chiba University , Chiba, 260-8675, Japan
| |
Collapse
|
28
|
Raposo Moreira Dias A, Pina A, Dal Corso A, Arosio D, Belvisi L, Pignataro L, Caruso M, Gennari C. Multivalency Increases the Binding Strength of RGD Peptidomimetic-Paclitaxel Conjugates to Integrin α V β 3. Chemistry 2017; 23:14410-14415. [PMID: 28816404 PMCID: PMC5656903 DOI: 10.1002/chem.201703093] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Indexed: 11/29/2022]
Abstract
This work reports the synthesis of three multimeric RGD peptidomimetic‐paclitaxel conjugates featuring a number of αVβ3 integrin ligands ranging from 2 to 4. These constructs were assembled by conjugation of the integrin αVβ3 ligand cyclo[DKP‐RGD]‐CH2NH2 with paclitaxel via a 2′‐carbamate with a self‐immolative spacer, the lysosomally cleavable Val‐Ala dipeptide linker, a multimeric scaffold, a triazole linkage, and finally a PEG spacer. Two monomeric conjugates were also synthesized as reference compounds. Remarkably, the new multimeric conjugates showed a binding affinity for the purified integrin αVβ3 receptor that increased with the number of integrin ligands (reaching a minimum IC50 value of 1.2 nm for the trimeric), thus demonstrating that multivalency is an effective strategy to strengthen the ligand–target interactions.
Collapse
Affiliation(s)
- André Raposo Moreira Dias
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi 19, 20133, Milan, Italy), Fax: (+39) 02-5031-4072
| | - Arianna Pina
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi 19, 20133, Milan, Italy), Fax: (+39) 02-5031-4072
| | - Alberto Dal Corso
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi 19, 20133, Milan, Italy), Fax: (+39) 02-5031-4072
| | - Daniela Arosio
- CNR, Istituto di Scienze e Tecnologie Molecolari (ISTM), Via C. Golgi, 19, 20133, Milan, Italy
| | - Laura Belvisi
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi 19, 20133, Milan, Italy), Fax: (+39) 02-5031-4072.,CNR, Istituto di Scienze e Tecnologie Molecolari (ISTM), Via C. Golgi, 19, 20133, Milan, Italy
| | - Luca Pignataro
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi 19, 20133, Milan, Italy), Fax: (+39) 02-5031-4072
| | - Michele Caruso
- Nerviano Medical Sciences, Viale Pasteur, 10, 20014, Nerviano, Italy
| | - Cesare Gennari
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi 19, 20133, Milan, Italy), Fax: (+39) 02-5031-4072.,CNR, Istituto di Scienze e Tecnologie Molecolari (ISTM), Via C. Golgi, 19, 20133, Milan, Italy
| |
Collapse
|
29
|
North AJ, Karas JA, Ma MT, Blower PJ, Ackermann U, White JM, Donnelly PS. Rhenium and Technetium-oxo Complexes with Thioamide Derivatives of Pyridylhydrazine Bifunctional Chelators Conjugated to the Tumour Targeting Peptides Octreotate and Cyclic-RGDfK. Inorg Chem 2017; 56:9725-9741. [PMID: 28766938 PMCID: PMC5569669 DOI: 10.1021/acs.inorgchem.7b01247] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Indexed: 11/29/2022]
Abstract
This research aimed to develop new tumor targeted theranostic agents taking advantage of the similarities in coordination chemistry between technetium and rhenium. A γ-emitting radioactive isotope of technetium is commonly used in diagnostic imaging, and there are two β- emitting radioactive isotopes of rhenium that have the potential to be of use in radiotherapy. Variants of the 6-hydrazinonicotinamide (HYNIC) bifunctional ligands have been prepared by appending thioamide functional groups to 6-hydrazinonicotinamide to form pyridylthiosemicarbazide ligands (SHYNIC). The new bidentate ligands were conjugated to the tumor targeting peptides Tyr3-octreotate and cyclic-RGD. The new ligands and conjugates were used to prepare well-defined {M═O}3+ complexes (where M = 99mTc or natRe or 188Re) that feature two targeting peptides attached to the single metal ion. These new SHYNIC ligands are capable of forming well-defined rhenium and technetium complexes and offer the possibility of using the 99mTc imaging and 188/186Re therapeutic matched pairs.
Collapse
Affiliation(s)
- Andrea J. North
- The School of Chemistry
and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 3010, Victorria, Australia
| | - John A. Karas
- The School of Chemistry
and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 3010, Victorria, Australia
| | - Michelle T. Ma
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, Fourth Floor Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, U.K.
| | - Philip J. Blower
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, Fourth Floor Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, U.K.
| | - Uwe Ackermann
- Department of Molecular Imaging and Therapy, Department
of Medicine, University of Melbourne, Austin Health, Studley Road, Heidelberg, Victoria 3010, Australia
| | - Jonathan M. White
- The School of Chemistry
and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 3010, Victorria, Australia
| | - Paul S. Donnelly
- The School of Chemistry
and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 3010, Victorria, Australia
| |
Collapse
|
30
|
Xu D, Zhao ZQ, Chen ST, Yang Y, Fang W, Liu S. Iminodiacetic acid as bifunctional linker for dimerization of cyclic RGD peptides. Nucl Med Biol 2017; 48:1-8. [PMID: 28157625 DOI: 10.1016/j.nucmedbio.2017.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/03/2017] [Accepted: 01/17/2017] [Indexed: 12/18/2022]
|
31
|
Ai P, Wang H, Liu K, Wang T, Gu W, Ye L, Yan C. The relative length of dual-target conjugated on iron oxide nanoparticles plays a role in brain glioma targeting. RSC Adv 2017. [DOI: 10.1039/c7ra02102j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cy5.5-labeled, CTX/PEG-FA dual-target conjugated Fe3O4 NPs were prepared and the effect of dual-target relative length on glioma targeting was investigated.
Collapse
Affiliation(s)
- Penghui Ai
- Department of Neurosurgery
- Beijing Sanbo Brain Hospital
- Capital Medical University
- Beijing 100093
- P. R. China
| | - Hao Wang
- Department of Anatomy
- School of Basic Medical Sciences
- Capital Medical University
- Beijing 100069
- P. R. China
| | - Kang Liu
- School of Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069
- P. R. China
| | - Tingjian Wang
- Department of Neurosurgery
- Beijing Sanbo Brain Hospital
- Capital Medical University
- Beijing 100093
- P. R. China
| | - Wei Gu
- School of Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069
- P. R. China
| | - Ling Ye
- School of Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069
- P. R. China
| | - Changxiang Yan
- Department of Neurosurgery
- Beijing Sanbo Brain Hospital
- Capital Medical University
- Beijing 100093
- P. R. China
| |
Collapse
|
32
|
Hahn EM, Estrada-Ortiz N, Han J, Ferreira VFC, Kapp TG, Correia JDG, Casini A, Kühn FE. Functionalization of Ruthenium(II) Terpyridine Complexes with Cyclic RGD Peptides To Target Integrin Receptors in Cancer Cells. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201601094] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Eva M. Hahn
- Molecular Catalysis, Catalysis Research Center and Department of Chemistry; Technische Universität München; Lichtenbergstr. 4 85747 Garching bei München Germany
- School of Chemistry; Cardiff University; Park Place CF103AT Cardiff United Kingdom
| | - Natalia Estrada-Ortiz
- Groningen Research Institute of Pharmacy; University of Groningen; Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Jiaying Han
- Groningen Research Institute of Pharmacy; University of Groningen; Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Vera F. C. Ferreira
- Centro de Ciências e Tecnologias Nucleares; Instituto Superior Técnico; Universidade de Lisboa, CTN; Estrada Nacional 10 (km 139.7) 2695-066 Bobadela LRS Portugal
| | - Tobias G. Kapp
- Institute for Advanced Study; Technische Universität München; Lichtenbergstr. 2a 85748 Garching Germany
| | - João D. G. Correia
- Centro de Ciências e Tecnologias Nucleares; Instituto Superior Técnico; Universidade de Lisboa, CTN; Estrada Nacional 10 (km 139.7) 2695-066 Bobadela LRS Portugal
| | - Angela Casini
- School of Chemistry; Cardiff University; Park Place CF103AT Cardiff United Kingdom
- Groningen Research Institute of Pharmacy; University of Groningen; Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
- Institute for Advanced Study; Technische Universität München; Lichtenbergstr. 2a 85748 Garching Germany
| | - Fritz E. Kühn
- Molecular Catalysis, Catalysis Research Center and Department of Chemistry; Technische Universität München; Lichtenbergstr. 4 85747 Garching bei München Germany
| |
Collapse
|
33
|
Jin X, Liang N, Wang M, Meng Y, Jia B, Shi X, Li S, Luo J, Luo Y, Cui Q, Zheng K, Liu Z, Shi J, Li F, Wang F, Zhu Z. Integrin Imaging with 99mTc-3PRGD2 SPECT/CT Shows High Specificity in the Diagnosis of Lymph Node Metastasis from Non-Small Cell Lung Cancer. Radiology 2016; 281:958-966. [PMID: 27479638 DOI: 10.1148/radiol.2016150813] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Purpose To evaluate an integrin imaging approach based on single photon emission computed tomography (SPECT)/computed tomography (CT) by using technetium 99m (99mTc)-dimeric cyclic arginine-glycine-aspartic acid (RGD) peptides with three polyethylene glycol spacers (3PRGD2) as the tracer to target the integrin αvβ3 expression in lung cancer and lymph node metastasis. Materials and Methods With ethics committee approval and written informed consent, 65 patients (41 male, 24 female; mean age, 60 years ± 11 [standard deviation]) with suspicious lung lesions were recruited with informed consent. The patients underwent both 99mTc-3PRGD2 SPECT/CT and fluorine 18 (18F) fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT within 1 week. Finally, 65 lung lesions in 53 patients were pathologically diagnosed as non-small cell lung cancer (NSCLC) and 14 lung lesions in 12 patients were benign. Per-region analysis of lymph nodes included 248 regions with metastasis and 56 negative regions. Twenty specimens from the removed lung lesions or lymph nodes were stained with integrin αvβ3, CD34, and Ki-67 to correlate with the image findings. Receiver operating characteristic curve, z statistics, McNemar test, and χ2 analysis were used to compare the diagnostic performance of the two imaging methods. Results 99mTc-3PRGD2 SPECT/CT was found to be more specific than 18F-FDG PET/CT in the per-region diagnosis of lymph node metastasis (specificity, 94.6% vs 75.0%; P = .008) when the sensitivity of the two methods was comparable (88.3% vs 90.7%; P = .557). There was no significant difference between the two methods in the per-lesion diagnosis of lung tumor (z = 0.82, P = .410). The accumulation level of 99mTc-3PRGD2 was found in positive correlation with the integrin αvβ3 expression (r = 0.84, P = .001) and microvessel density (r = 0.63, P = .011) in the tumors. Conclusion 99mTc-3PRGD2 SPECT/CT shows high specificity in the diagnosis of lymph node metastasis from NSCLC, which may benefit surgical decision making for the patients. © RSNA, 2016.
Collapse
Affiliation(s)
- Xiaona Jin
- From the Departments of Nuclear Medicine (X.J., X.S., Y.L., K.Z., F.L., Z.Z.), Thoracic Surgery (N.L., S.L.), Respiratory Medicine (M.W., J.L.), and Pathology (Y.M., Q.C.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing 100730, China; Medical Isotopes Research Center, Peking University, Beijing, China (B.J., Z.L., J.S., F.W.); and Interdisciplinary Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China (F.W.)
| | - Naixin Liang
- From the Departments of Nuclear Medicine (X.J., X.S., Y.L., K.Z., F.L., Z.Z.), Thoracic Surgery (N.L., S.L.), Respiratory Medicine (M.W., J.L.), and Pathology (Y.M., Q.C.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing 100730, China; Medical Isotopes Research Center, Peking University, Beijing, China (B.J., Z.L., J.S., F.W.); and Interdisciplinary Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China (F.W.)
| | - Mengzhao Wang
- From the Departments of Nuclear Medicine (X.J., X.S., Y.L., K.Z., F.L., Z.Z.), Thoracic Surgery (N.L., S.L.), Respiratory Medicine (M.W., J.L.), and Pathology (Y.M., Q.C.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing 100730, China; Medical Isotopes Research Center, Peking University, Beijing, China (B.J., Z.L., J.S., F.W.); and Interdisciplinary Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China (F.W.)
| | - Yunxiao Meng
- From the Departments of Nuclear Medicine (X.J., X.S., Y.L., K.Z., F.L., Z.Z.), Thoracic Surgery (N.L., S.L.), Respiratory Medicine (M.W., J.L.), and Pathology (Y.M., Q.C.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing 100730, China; Medical Isotopes Research Center, Peking University, Beijing, China (B.J., Z.L., J.S., F.W.); and Interdisciplinary Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China (F.W.)
| | - Bing Jia
- From the Departments of Nuclear Medicine (X.J., X.S., Y.L., K.Z., F.L., Z.Z.), Thoracic Surgery (N.L., S.L.), Respiratory Medicine (M.W., J.L.), and Pathology (Y.M., Q.C.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing 100730, China; Medical Isotopes Research Center, Peking University, Beijing, China (B.J., Z.L., J.S., F.W.); and Interdisciplinary Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China (F.W.)
| | - Ximin Shi
- From the Departments of Nuclear Medicine (X.J., X.S., Y.L., K.Z., F.L., Z.Z.), Thoracic Surgery (N.L., S.L.), Respiratory Medicine (M.W., J.L.), and Pathology (Y.M., Q.C.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing 100730, China; Medical Isotopes Research Center, Peking University, Beijing, China (B.J., Z.L., J.S., F.W.); and Interdisciplinary Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China (F.W.)
| | - Shanqing Li
- From the Departments of Nuclear Medicine (X.J., X.S., Y.L., K.Z., F.L., Z.Z.), Thoracic Surgery (N.L., S.L.), Respiratory Medicine (M.W., J.L.), and Pathology (Y.M., Q.C.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing 100730, China; Medical Isotopes Research Center, Peking University, Beijing, China (B.J., Z.L., J.S., F.W.); and Interdisciplinary Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China (F.W.)
| | - Jinmei Luo
- From the Departments of Nuclear Medicine (X.J., X.S., Y.L., K.Z., F.L., Z.Z.), Thoracic Surgery (N.L., S.L.), Respiratory Medicine (M.W., J.L.), and Pathology (Y.M., Q.C.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing 100730, China; Medical Isotopes Research Center, Peking University, Beijing, China (B.J., Z.L., J.S., F.W.); and Interdisciplinary Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China (F.W.)
| | - Yaping Luo
- From the Departments of Nuclear Medicine (X.J., X.S., Y.L., K.Z., F.L., Z.Z.), Thoracic Surgery (N.L., S.L.), Respiratory Medicine (M.W., J.L.), and Pathology (Y.M., Q.C.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing 100730, China; Medical Isotopes Research Center, Peking University, Beijing, China (B.J., Z.L., J.S., F.W.); and Interdisciplinary Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China (F.W.)
| | - Quancai Cui
- From the Departments of Nuclear Medicine (X.J., X.S., Y.L., K.Z., F.L., Z.Z.), Thoracic Surgery (N.L., S.L.), Respiratory Medicine (M.W., J.L.), and Pathology (Y.M., Q.C.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing 100730, China; Medical Isotopes Research Center, Peking University, Beijing, China (B.J., Z.L., J.S., F.W.); and Interdisciplinary Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China (F.W.)
| | - Kun Zheng
- From the Departments of Nuclear Medicine (X.J., X.S., Y.L., K.Z., F.L., Z.Z.), Thoracic Surgery (N.L., S.L.), Respiratory Medicine (M.W., J.L.), and Pathology (Y.M., Q.C.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing 100730, China; Medical Isotopes Research Center, Peking University, Beijing, China (B.J., Z.L., J.S., F.W.); and Interdisciplinary Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China (F.W.)
| | - Zhaofei Liu
- From the Departments of Nuclear Medicine (X.J., X.S., Y.L., K.Z., F.L., Z.Z.), Thoracic Surgery (N.L., S.L.), Respiratory Medicine (M.W., J.L.), and Pathology (Y.M., Q.C.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing 100730, China; Medical Isotopes Research Center, Peking University, Beijing, China (B.J., Z.L., J.S., F.W.); and Interdisciplinary Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China (F.W.)
| | - Jiyun Shi
- From the Departments of Nuclear Medicine (X.J., X.S., Y.L., K.Z., F.L., Z.Z.), Thoracic Surgery (N.L., S.L.), Respiratory Medicine (M.W., J.L.), and Pathology (Y.M., Q.C.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing 100730, China; Medical Isotopes Research Center, Peking University, Beijing, China (B.J., Z.L., J.S., F.W.); and Interdisciplinary Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China (F.W.)
| | - Fang Li
- From the Departments of Nuclear Medicine (X.J., X.S., Y.L., K.Z., F.L., Z.Z.), Thoracic Surgery (N.L., S.L.), Respiratory Medicine (M.W., J.L.), and Pathology (Y.M., Q.C.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing 100730, China; Medical Isotopes Research Center, Peking University, Beijing, China (B.J., Z.L., J.S., F.W.); and Interdisciplinary Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China (F.W.)
| | - Fan Wang
- From the Departments of Nuclear Medicine (X.J., X.S., Y.L., K.Z., F.L., Z.Z.), Thoracic Surgery (N.L., S.L.), Respiratory Medicine (M.W., J.L.), and Pathology (Y.M., Q.C.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing 100730, China; Medical Isotopes Research Center, Peking University, Beijing, China (B.J., Z.L., J.S., F.W.); and Interdisciplinary Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China (F.W.)
| | - Zhaohui Zhu
- From the Departments of Nuclear Medicine (X.J., X.S., Y.L., K.Z., F.L., Z.Z.), Thoracic Surgery (N.L., S.L.), Respiratory Medicine (M.W., J.L.), and Pathology (Y.M., Q.C.), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing 100730, China; Medical Isotopes Research Center, Peking University, Beijing, China (B.J., Z.L., J.S., F.W.); and Interdisciplinary Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China (F.W.)
| |
Collapse
|
34
|
Zhao M, Yang W, Zhang M, Li G, Wang S, Wang Z, Ma X, Kang F, Wang J. Evaluation of 68Ga-labeled iNGR peptide with tumor-penetrating motif for microPET imaging of CD13-positive tumor xenografts. Tumour Biol 2016; 37:12123-12131. [PMID: 27220318 DOI: 10.1007/s13277-016-5068-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/05/2016] [Indexed: 11/27/2022] Open
Abstract
The aim of the study is to evaluate the efficacy of 68Ga-labeled iNGR, containing Asn-Gly-Arg (NGR) homing sequence and CendR (R/KXXR/K) penetrating motif, as a new molecular probe for microPET imaging of CD13-positive xenografts. The synthesized iNGR and NGR peptides were conjugated with DOTA and then labeled with 68Ga. 68Ga-iNGR and 68Ga-NGR were compared in the performance of the in vitro stability, partition coefficient, binding affinity, cell uptake analysis, in vivo microPET imaging, and biodistribution studies in CD13-positive HT-1080 and CD13-negative HT-29 cell lines. The in vitro results revealed that both probes exhibited high radiochemical purity and stability, and no significant difference between two probes was observed in terms of the binding affinity to CD13. In vivo microPET/CT imaging showed that the uptake of 68Ga-iNGR in HT-1080 tumor was significantly higher than that of 68Ga-NGR. Moreover, tumor 68Ga-iNGR uptake could be completely blocked by cold NGR and partially blocked by neutralizing NRP-1 antibody. We concluded that 68Ga-iNGR has a higher tumor uptake and better tumor retention than 68Ga-NGR through NRP-1, indicating that CendR motif modification is a promising method for improving NGR peptide performance.
Collapse
Affiliation(s)
- Mingxuan Zhao
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, No.127 West Changle Road, Xi'an, 710032, China.,Department of Nuclear Medicine, Kunming General Hospital of the People's Liberation Army, No. 212 Daguan Road, Kunming, 650032, China
| | - Weidong Yang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, No.127 West Changle Road, Xi'an, 710032, China
| | - Mingru Zhang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, No.127 West Changle Road, Xi'an, 710032, China
| | - Guoquan Li
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, No.127 West Changle Road, Xi'an, 710032, China
| | - Shengjun Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, No.127 West Changle Road, Xi'an, 710032, China
| | - Zhe Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, No.127 West Changle Road, Xi'an, 710032, China
| | - Xiaowei Ma
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, No.127 West Changle Road, Xi'an, 710032, China
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, No.127 West Changle Road, Xi'an, 710032, China.
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, No.127 West Changle Road, Xi'an, 710032, China.
| |
Collapse
|
35
|
Shi J, Wang F, Liu S. Radiolabeled cyclic RGD peptides as radiotracers for tumor imaging. BIOPHYSICS REPORTS 2016; 2:1-20. [PMID: 27819026 PMCID: PMC5071373 DOI: 10.1007/s41048-016-0021-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/01/2016] [Indexed: 12/19/2022] Open
Abstract
The integrin family comprises 24 transmembrane receptors, each a heterodimeric combination of one of 18α and one of 8β subunits. Their main function is to integrate the cell adhesion and interaction with the extracellular microenvironment with the intracellular signaling and cytoskeletal rearrangement through transmitting signals across the cell membrane upon ligand binding. Integrin αvβ3 is a receptor for the extracellular matrix proteins containing arginine–glycine–aspartic (RGD) tripeptide sequence. The αvβ3 is generally expressed in low levels on the epithelial cells and mature endothelial cells, but it is highly expressed in many solid tumors. The αvβ3 levels correlate well with the potential for tumor metastasis and aggressiveness, which make it an important biological target for development of antiangiogenic drugs, and molecular imaging probes for early tumor diagnosis. Over the last decade, many radiolabeled cyclic RGD peptides have been evaluated as radiotracers for imaging tumors by SPECT or PET. Even though they are called “αvβ3-targeted” radiotracers, the radiolabeled cyclic RGD peptides are also able to bind αvβ5, α5β1, α6β4, α4β1, and αvβ6 integrins, which may help enhance their tumor uptake due to the “increased receptor population.” This article will use the multimeric cyclic RGD peptides as examples to illustrate basic principles for development of integrin-targeted radiotracers and focus on different approaches to maximize their tumor uptake and T/B ratios. It will also discuss important assays for pre-clinical evaluations of the integrin-targeted radiotracers, and their potential applications as molecular imaging tools for noninvasive monitoring of tumor metastasis and early detection of the tumor response to antiangiogenic therapy.
Collapse
Affiliation(s)
- Jiyun Shi
- Interdisciplinary Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China ; Medical Isotopes Research Center, Peking University, Beijing, 100191 China
| | - Fan Wang
- Interdisciplinary Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China ; Medical Isotopes Research Center, Peking University, Beijing, 100191 China
| | - Shuang Liu
- School of Health Sciences, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
36
|
Mizuno Y, Uehara T, Hanaoka H, Endo Y, Jen CW, Arano Y. Purification-Free Method for Preparing Technetium-99m-Labeled Multivalent Probes for Enhanced in Vivo Imaging of Saturable Systems. J Med Chem 2016; 59:3331-9. [PMID: 26999587 DOI: 10.1021/acs.jmedchem.6b00024] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metallic radionuclides provide target-specific radiolabeled probes for molecular imaging in radiochemical yields sufficient for administration to subjects without purification. However, unlabeled ligands in the injectate can compete for targeted molecules with radiolabeled probes, which eventually necessitates postlabeling purification. Herein we describe a "1 to 3" design to circumvent the issue by taking advantage of inherent coordination properties of technetium-99m ((99m)Tc). A monovalent RGD ligand possessing an isonitrile as a coordinating moiety (CN-RGD) was reacted with [(99m)Tc(CO)3(OH2)3](+) to prepare [(99m)Tc(CO)3(CN-RGD)3](+) in over 95% radiochemical yields. This complex exhibited higher integrin αvβ3 binding affinity than its unlabeled monovalent ligand, primarily due to its multivalency. This compound visualized a murine tumor without removing unlabeled ligands, while a (99m)Tc-labeled monovalent probe derived from a monovalent ligand could not. The metal coordination-mediated synthesis of radiolabeled multivalent probes thereby can be a useful approach for preparing ready-to-use target-specific probes labeled with (99m)Tc and other metallic radionuclides of interest.
Collapse
Affiliation(s)
- Yuki Mizuno
- Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675 Japan
| | - Tomoya Uehara
- Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675 Japan
| | - Hirofumi Hanaoka
- Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675 Japan
| | - Yota Endo
- Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675 Japan
| | - Chun-Wei Jen
- Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675 Japan
| | - Yasushi Arano
- Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675 Japan
| |
Collapse
|
37
|
Gilad Y, Noy E, Senderowitz H, Albeck A, Firer MA, Gellerman G. Dual-drug RGD conjugates provide enhanced cytotoxicity to melanoma and non-small lung cancer cells. Biopolymers 2016; 106:160-171. [PMID: 26715008 DOI: 10.1002/bip.22800] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/02/2015] [Accepted: 12/18/2015] [Indexed: 01/22/2023]
Abstract
To enhance the efficacy of targeted drug delivery, four new peptide-ligand conjugates were synthesized, each consisting of a cyclic RGDfK penta-peptide loaded with two anticancer drugs. The drug release profiles in different media of these new compounds and their cytotoxic activity against melanoma and non-small lung cancer cell lines were evaluated and compared with those of their singly loaded analogs. The cyclic RGDfK penta-peptide was selected as a targeting moiety because of its high affinity and selectivity to the αv β3 integrin receptor, which is frequently over-expressed in various types of cancer cells. The peptide's core was modified at the side chain of its Lys residue by coupling it with a sixth amino acid (AA) - either Lys (5a) or Ser (5b) (Lys/Ser splitter), resulting in two functional sites which enabled the loading of two therapeutic equivalents onto a single targeting carrier. Using Lys as a splitter resulted in two primary amines. Consequently, conjugates 1a and 1b were synthesized by coupling of 2 Chlorambucils (CLBs) or 2 Camptothecins (CPTs), respectively, to the primary amines of 5a. Conjugate 1c was synthesized from 5b by loading two equivalents of CLB on the amine and the hydroxyl of the Ser splitter, resulting in a homodimeric system with two distinct conjugation sites - amide and ester. The heterodimeric conjugate 1d of CLB and CPT was synthesized by loading each one of the primary amines of 5a with two different drugs - CLB and CPT. The doubling of drug equivalents loaded onto the targeting peptide correlated with enhanced cytotoxic efficacy of the conjugates towards cancer cells. The versatility of chemical linkages of the drugs to the peptides resulted in conjugates with different drug release profiles. Molecular dynamics simulations performed on conjugate 1d demonstrated that this compound occupies a conformational space similar to the bio-active conformation of an integrin-bound cyclic RGD peptide reference peptide (c(RGDf(NMe)V). The modified position in 1d (relative to the reference peptide) points away from the integrin, leading us to hypothesize that this peptide binds the integrin in a manner similar to that of the reference peptide thereby fulfilling a crucial requirement for targeted delivery. The strategy of dual drug loading on a single peptide carrier, gives rise to drugs with different mechanisms of action and release profiles, thus substantially increasing the efficacy of selective killing of tumor cells and while reducing the risk of the development of drug resistance. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 160-171, 2016.
Collapse
Affiliation(s)
- Y Gilad
- Department of Biological Chemistry, Ariel University, Ariel, 40700, Israel.,The Julius Spokojny Bioorganic Chemistry Laboratory, Department of Chemistry, Bar Ilan University, Ramat Gan, 52900, Israel
| | - E Noy
- Department of Chemistry, Bar Ilan University, Ramat Gan, 52900, Israel
| | - H Senderowitz
- Department of Chemistry, Bar Ilan University, Ramat Gan, 52900, Israel
| | - A Albeck
- The Julius Spokojny Bioorganic Chemistry Laboratory, Department of Chemistry, Bar Ilan University, Ramat Gan, 52900, Israel
| | - M A Firer
- Department of Chemical Engineering, Ariel University, Ariel, 40700, Israel
| | - G Gellerman
- Department of Biological Chemistry, Ariel University, Ariel, 40700, Israel
| |
Collapse
|
38
|
Comparison of biological properties of 99mTc-labeled cyclic RGD Peptide trimer and dimer useful as SPECT radiotracers for tumor imaging. Nucl Med Biol 2016; 43:661-669. [PMID: 27556955 DOI: 10.1016/j.nucmedbio.2016.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/12/2016] [Accepted: 02/22/2016] [Indexed: 11/22/2022]
Abstract
INTRODUCTION This study sought to evaluate a 99mTc-labeled trimeric cyclic RGD peptide (99mTc-4P-RGD3) as the new radiotracer for tumor imaging. The objective was to compare its biological properties with those of 99mTc-3P-RGD2 in the same animal model. METHODS HYNIC-4P-RGD3 was prepared by reacting 4P-RGD3 with excess HYNIC-OSu in the presence of diisopropylethylamine. 99mTc-4P-RGD3 was prepared using a kit formulation, and evaluated for its tumor-targeting capability and biodistribution properties in the BALB/c nude mice with U87MG human glioma xenografts. Planar and SPECT imaging studies were performed in athymic nude mice with U87MG glioma xenografts. For comparison purpose, 99mTc-3P-RGD2 (a αvβ3-targeted radiotracer currently under clinical evaluation for tumor imaging in cancer patients) was also evaluated in the same animal models. Blocking experiments were used to demonstrate the αvβ3 specificity of 99mTc-4P-RGD3. RESULTS 99mTc-4P-RGD3 was prepared with >95% RCP and high specific activity (~200GBq/μmol). 99mTc-4P-RGD3 and 99mTc-3P-RGD2 shared almost identical tumor uptake and similar biodistribution properties. 99mTc-4P-RGD3 had higher uptake than 99mTc-3P-RGD2 in the intestines and kidneys; but it showed better metabolic stability. The U87MG tumors were clearly visualized by SPECT with excellent contrast with 99mTc-4P-RGD3 and 99mTc-3P-RGD2. CONCLUSION Increasing peptide multiplicity from 3P-RGD2 to 4P-RGD3 offers no advantages with respect to the tumor-targeting capability. 99mTc-4P-RGD3 is as good a SPECT radiotracer as 99mTc-3P-RGD2 for imaging αvβ3-positive tumors.
Collapse
|
39
|
Preparation and bioevaluation of [99mTcN]2+-labeled tetrameric complex of E-c(RGDfK)2 as a radiotracer for imaging αvβ3 integrins in tumors. J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-015-4680-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Study of novel molecular probe 99mTc-3PRGD2 in the diagnosis of rheumatoid arthritis. Nucl Med Commun 2015; 36:1208-14. [DOI: 10.1097/mnm.0000000000000375] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Liu S. Radiolabeled Cyclic RGD Peptide Bioconjugates as Radiotracers Targeting Multiple Integrins. Bioconjug Chem 2015; 26:1413-38. [PMID: 26193072 DOI: 10.1021/acs.bioconjchem.5b00327] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Angiogenesis is a requirement for tumor growth and metastasis. The angiogenic process depends on vascular endothelial cell migration and invasion, and is regulated by various cell adhesion receptors. Integrins are such a family of receptors that facilitate the cellular adhesion to and migration on extracellular matrix proteins in the intercellular spaces and basement membranes. Among 24 members of the integrin family, αvβ3 is studied most extensively for its role in tumor angiogenesis and metastasis. The αvβ3 is expressed at relatively low levels on epithelial cells and mature endothelial cells, but it is highly expressed on the activated endothelial cells of tumor neovasculature and some tumor cells. This restricted expression makes αvβ3 an excellent target to develop antiangiogenic drugs and diagnostic molecular imaging probes. Since αvβ3 is a receptor for extracellular matrix proteins with one or more RGD tripeptide sequence, many radiolabeled cyclic RGD peptides have been evaluated as "αvβ3-targeted" radiotracers for tumor imaging over the past decade. This article will use the dimeric and tetrameric cyclic RGD peptides developed in our laboratories as examples to illustrate basic principles for development of αvβ3-targeted radiotracers. It will focus on different approaches to maximize the radiotracer tumor uptake and tumor/background ratios. This article will also discuss some important assays for preclinical evaluations of integrin-targeted radiotracers. In general, multimerization of cyclic RGD peptides increases their integrin binding affinity and the tumor uptake and retention times of their radiotracers. Regardless of their multiplicity, the capability of cyclic RGD peptides to bind other integrins (namely, αvβ5, α5β1, α6β4, α4β1, and αvβ6) is expected to enhance the radiotracer tumor uptake due to the increased integrin population. The results from preclinical and clinical studies clearly show that radiolabeled cyclic RGD peptides (such as (99m)Tc-3P-RGD2, (18)F-Alfatide-I, and (18)F-Alfatide-II) are useful as the molecular imaging probes for early cancer detection and noninvasive monitoring of the tumor response to antiangiogenic therapy.
Collapse
Affiliation(s)
- Shuang Liu
- School of Health Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
42
|
Dash A, Chakraborty S, Pillai MRA, Knapp FFR. Peptide receptor radionuclide therapy: an overview. Cancer Biother Radiopharm 2015; 30:47-71. [PMID: 25710506 DOI: 10.1089/cbr.2014.1741] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Peptide receptor radionuclide therapy (PRRT) is a site-directed targeted therapeutic strategy that specifically uses radiolabeled peptides as biological targeting vectors designed to deliver cytotoxic levels of radiation dose to cancer cells, which overexpress specific receptors. Interest in PRRT has steadily grown because of the advantages of targeting cellular receptors in vivo with high sensitivity as well as specificity and treatment at the molecular level. Recent advances in molecular biology have not only stimulated advances in PRRT in a sustainable manner but have also pushed the field significantly forward to several unexplored possibilities. Recent decades have witnessed unprecedented endeavors for developing radiolabeled receptor-binding somatostatin analogs for the treatment of neuroendocrine tumors, which have played an important role in the evolution of PRRT and paved the way for the development of other receptor-targeting peptides. Several peptides targeting a variety of receptors have been identified, demonstrating their potential to catalyze breakthroughs in PRRT. In this review, the authors discuss several of these peptides and their analogs with regard to their applications and potential in radionuclide therapy. The advancement in the availability of combinatorial peptide libraries for peptide designing and screening provides the capability of regulating immunogenicity and chemical manipulability. Moreover, the availability of a wide range of bifunctional chelating agents opens up the scope of convenient radiolabeling. For these reasons, it would be possible to envision a future where the scope of PRRT can be tailored for patient-specific application. While PRRT lies at the interface between many disciplines, this technology is inextricably linked to the availability of the therapeutic radionuclides of required quality and activity levels and hence their production is also reviewed.
Collapse
Affiliation(s)
- Ashutosh Dash
- 1 Isotope Production and Applications Division, Bhabha Atomic Research Centre , Mumbai, India
| | | | | | | |
Collapse
|
43
|
Guo H, Miao Y. Introduction of an 8-aminooctanoic acid linker enhances uptake of 99mTc-labeled lactam bridge-cyclized α-MSH peptide in melanoma. J Nucl Med 2014; 55:2057-63. [PMID: 25453052 DOI: 10.2967/jnumed.114.145896] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED The purpose of this study was to examine the effects of amino acid, hydrocarbon, and polyethylene glycol (PEG) linkers on the melanoma targeting and imaging properties of (99m)Tc-labeled lactam bridge-cyclized HYNIC-linker-Nle-CycMSHhex (hydrazinonicotinamide-linker-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2) peptides. METHODS Four novel peptides (HYNIC-GGGNle-CycMSHhex, HYNIC-GSGNle-CycMSHhex, HYNIC-PEG2Nle-CycMSHhex, and HYNIC-AocNle-CycMSHhex) were designed and synthesized. The melanocortin-1 receptor binding affinities of the peptides were determined in B16/F1 melanoma cells. The biodistribution of (99m)Tc(ethylenediaminediacetic acid [EDDA])-HYNIC-GGGNle-CycMSHhex, (99m)Tc(EDDA)-HYNIC-GSGNle-CycMSHhex, (99m)Tc(EDDA)-HYNIC-PEG2Nle-CycMSHhex, and (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex were determined in B16/F1 melanoma-bearing C57 mice at 2 h after injection to select a lead peptide for further evaluation. The melanoma targeting and imaging properties of (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex were further examined because of its high melanoma uptake. RESULTS The inhibitory concentrations of 50% (IC50) for HYNIC-GGGNle-CycMSHhex, HYNIC-GSGNle-CycMSHhex, HYNIC-PEG2Nle-CycMSHhex, and HYNIC-AocNle-CycMSHhex were 0.7 ± 0.1, 0.8 ± 0.09, 0.4 ± 0.08, and 0.3 ± 0.06 nM, respectively, in B16/F1 melanoma cells. Among these four (99m)Tc-labeled peptides, (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex displayed the highest melanoma uptake (22.3 ± 1.72 percentage injected dose/g) at 2 h after injection. (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex exhibited high tumor-to-normal-organ uptake ratios except for the kidneys. The tumor-to-kidney uptake ratios of (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex were 3.29, 3.63, and 6.78 at 2, 4, and 24 h, respectively, after injection. The melanoma lesions were clearly visualized by SPECT/CT using (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex as an imaging probe at 2 h after injection. CONCLUSION High melanoma uptake and fast urinary clearance of (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex highlighted its potential for metastatic melanoma detection in the future.
Collapse
Affiliation(s)
- Haixun Guo
- College of Pharmacy, University of New Mexico, Albuquerque, New Mexico
| | - Yubin Miao
- College of Pharmacy, University of New Mexico, Albuquerque, New Mexico Cancer Research and Treatment Center, University of New Mexico, Albuquerque, New Mexico; and Department of Dermatology, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
44
|
Zheng Y, Ji S, Czerwinski A, Valenzuela F, Pennington M, Liu S. FITC-conjugated cyclic RGD peptides as fluorescent probes for staining integrin αvβ3/αvβ5 in tumor tissues. Bioconjug Chem 2014; 25:1925-41. [PMID: 25312799 PMCID: PMC4240344 DOI: 10.1021/bc500452y] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
This study sought to evaluate FITC-conjugated
cyclic RGD peptides
(FITC-RGD2, FITC-3P-RGD2, and FITC-Galacto-RGD2) as fluorescent probes for in vitro assays of integrin αvβ3/αvβ5 expression in tumor tissues. FITC-RGD2, FITC-3P-RGD2, and FITC-Galacto-RGD2 were prepared, and their
integrin αvβ3/αvβ5 binding affinity was determined using the displacement
assay against 125I-echistatin bound to U87MG glioma cells.
IC50 values of FITC-Galacto-RGD2, FITC-3P-RGD2, and FITC-RGD2 were calculated to be 28 ±
8, 32 ± 7, and 89 ± 17 nM, respectively. The integrin αvβ3/αvβ5 binding affinity followed a general trend: FITC-Galacto-RGD2 ∼ FITC-3P-RGD2 > FITC-RGD2.
The xenografted tumor-bearing models were established by subcutaneous
injection of 5 × 106 tumor cells into shoulder flank
(U87MG, A549, HT29, and PC-3) or mammary fat pad (MDA-MB-435) of each
athymic nude mouse. Three to six weeks after inoculation, the tumor
size was 0.1–0.3 g. Tumors were harvested for integrin αvβ3/αvβ5 staining, as well as hematoxylin and eosin (H&E) staining. Six
human carcinoma tissues (colon cancer, pancreatic cancer, lung adenocarcinoma,
squamous cell lung cancer, gastric cancer, and esophageal cancer)
were obtained from recently diagnosed cancer patients. Human carcinoma
slides were deparaffinized in xylene, rehydrated with ethanol, and
then used for integrin αvβ3/αvβ5 staining, as well as H&E staining.
It was found that the tumor staining procedures with FITC-conjugated
cyclic RGD peptides were much simpler than those with the fluorescence-labeled
integrin αvβ3 antibodies. Since
FITC-RGD2, FITC-3P-RGD2, and FITC-Galacto-RGD2 were able to co-localize with the fluorescence-labeled integrin
β3 antibody, their tumor localization and tumor cell
binding are integrin αvβ3-specific.
Quantification of the fluorescent intensity in five xenografted tumors
(U87MG, MDA-MB-435, A549, HT29, and PC-3) and six human carcinoma
tissues revealed an excellent linear relationship between the relative
integrin αvβ3/αvβ5 expression levels determined with FITC-Galacto-RGD2 and those obtained with the fluorescence-labeled anti-human
integrin β3 antibody. There was also an excellent
linear relationship between the tumor uptake (%ID/g) of 99mTc-3P-RGD2 (an integrin αvβ3/αvβ5-targeted radiotracer)
and the relative integrin αvβ3/αvβ5 expression levels from the quantification
of fluorescent intensity in the tumor tissues stained with FITC-Galacto-RGD2. These results suggest that FITC-conjugated cyclic RGD peptides
might be useful to correlate the in vitro findings with the in vivo
imaging data from an integrin αvβ3/αvβ5-targeted radiotracer. The
results from this study clearly showed that the FITC-conjugated cyclic
RGD peptides (particularly FITC-3P-RGD2 and FITC-Galacto-RGD2) are useful fluorescent probes for assaying relative integrin
αvβ3/αvβ5 expression levels in tumor tissues.
Collapse
Affiliation(s)
- Yumin Zheng
- Department of Nuclear Medicine, China-Japan Friendship Hospital , Beijing, 100029, China
| | | | | | | | | | | |
Collapse
|
45
|
Zheng Y, Ji S, Tomaselli E, Yang Y, Liu S. Comparison of biological properties of (111)In-labeled dimeric cyclic RGD peptides. Nucl Med Biol 2014; 42:137-45. [PMID: 25459111 DOI: 10.1016/j.nucmedbio.2014.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/30/2014] [Accepted: 10/07/2014] [Indexed: 12/18/2022]
Abstract
INTRODUCTION In this study two (111)In-labeled dimeric cyclic RGD peptides, (111)In(DOTA-Galacto-RGD2) and (111)In(DOTA-3P-RGD2), were evaluated as radiotracers for breast tumor imaging. The objective was to evaluate the impact of SAA, PEG2 and 1,2,3-triazole linkers as compare to PEG4 on the tumor uptake and excretion kinetics of (111)In radiotracers. METHODS DOTA-Galacto-RGD2 was prepared by conjugation of Galacto-RGD2 with DOTA-OSu in the presence of diisopropylethylamine. Its integrin αvβ3 binding affinity was determined using a whole-cell displacement assay against (125)I-echistatin bound to U87MG glioma cells, and was compared with those of c(RGDfK), DOTA-3P-RGD2 and DOTA-3P-RGK2 (a nonsense peptide conjugate with "scrambled" RGK sequences). (111)In(DOTA-Galacto-RGD2) and (111)In(DOTA-3P-RGD2) were prepared and evaluated for their tumor-targeting capability and biodistribution properties in athymic nude mice bearing MDA-MB-435 breast tumor xenografts. Planar imaging studies were performed to demonstrate the utility of (111)In(DOTA-Galacto-RGD2) and (111)In(DOTA-3P-RGD2) for breast tumor imaging. RESULTS IC50 values of DOTA-Galacto-RGD2, DOTA-3P-RGD2, and DOTA-3P-RGK2 were calculated to be 27±2, 29±4, 596±48nM, respectively. The tumor uptake values of (111)In(DOTA-Galacto-RGD2) (6.79±0.98, 6.56±0.56, 4.17±0.61 and 1.09±0.13 %ID/g at 1, 4, 24 and 72hours p.i., respectively) were almost identical to those of (111)In(DOTA-3P-RGD2) (6.17±1.65, 5.94±0.84, 3.40±0.50 and 0.99±0.20 %ID/g, respectively). (111)In(DOTA-Galacto-RGD2) had a faster clearance from blood and muscle than (111)In(DOTA-3P-RGD2), leading to higher tumor/blood and tumor/muscle ratios. (111)In(DOTA-3P-RGD2) had lower liver uptake and better tumor/liver ratios than (111)In(DOTA-Galacto-RGD2). The tumor uptake of (111)In(DOTA-Galacto-RGD2) and (111)In(DOTA-3P-RGD2) was both integrin αvβ3 and RGD-specific. Imaging data suggest that (111)In(DOTA-Galacto-RGD2) and (111)In(DOTA-3P-RGD2) are useful as radiotracers for imaging integrin αvβ3-positive breast tumors. CONCLUSION The results from this study suggest that replacing PEG4 linkers between two RGD moieties with a pair of SAA, PEG2 and 1,2,3-triazole groups has little impact on integrin αvβ3 binding affinity and tumor uptake of (111)In-labeled dimeric cyclic RGD peptides. Despite the subtle differences in their excretion kinetics from noncancerous tissues, (111)In(DOTA-Galacto-RGD2) and (111)In(DOTA-3P-RGD2) are useful radiotracers for imaging integrin αvβ3-positive breast tumors.
Collapse
Affiliation(s)
- Yumin Zheng
- Department of Nuclear Medicine, China-Japan Friendship Hospital, Beijing, 100029, China; School of Health Sciences, Purdue University, IN 47907, USA
| | - Shundong Ji
- School of Health Sciences, Purdue University, IN 47907, USA
| | | | - Yong Yang
- School of Health Sciences, Purdue University, IN 47907, USA
| | - Shuang Liu
- School of Health Sciences, Purdue University, IN 47907, USA.
| |
Collapse
|
46
|
Fu T, Qu W, Qiu F, Li Y, Shao G, Tian W, Hua Z, Zhang Y, Wang F. (99m)Tc-3P-RGD2 micro-single-photon emission computed tomography/computed tomography provides a rational basis for integrin αvβ3-targeted therapy. Cancer Biother Radiopharm 2014; 29:351-8. [PMID: 25286251 DOI: 10.1089/cbr.2014.1622] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
PURPOSE This study was to demonstrate the utility of (99m)Tc-3P-RGD2 micro-single-photon emission computed tomography/computed tomography (SPECT/CT) for the integrin αvβ3 expression quantification in NCI-H446 and A549 lung cancer xenografts. MATERIALS AND METHODS (99m)Tc-3P-RGD2 was prepared with high radiochemical purity (97%±2%) and showing high in vitro stability. The in vitro affinities of (99m)Tc-3P-RGD2 to NCI-H446 and A549 tumor cells were analyzed with γ-counter, while the in vivo uptakes in NCI-H446 and A549 xenografts were evaluated with micro-SPECT/CT. The region of interest was drawn over the tumor site and contralateral muscle on the SPECT/CT image, and the tumor to nontumor (T/NT) ratio was calculated to estimate αvβ3 expression and tumor uptake. The expressions of integrin αvβ3 in vitro and in vivo were analyzed using a flow cytometer and immunofluorescence. RESULTS Micro-SPECT/CT demonstrated focal uptake in the tumors. T/NT ratio in NCI-H446 xenografts was significantly higher compared with the A549 tumor model, as 5.92±0.82 and 3.62±0.91, respectively, with p<0.05. In addition, integrin αvβ3 expression in NCI-H446 cells was significantly higher compared with the A549 cells, which was consistent with the imaging data. A linear relationship was observed between (99m)Tc-3P-RGD2 uptake and αvβ3 expression (R(2)=0.7667, p<0.001). CONCLUSION (99m)Tc-3P-RGD2 SPECT/CT could be used to quantify integrin αvβ3 expression within tumors, providing a rational basis for integrin αvβ3-targeted cancer therapy.
Collapse
Affiliation(s)
- Tong Fu
- 1 Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University , Nanjing, Jiangsu Province, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Yang Y, Ji S, Liu S. Impact of multiple negative charges on blood clearance and biodistribution characteristics of 99mTc-labeled dimeric cyclic RGD peptides. Bioconjug Chem 2014; 25:1720-9. [PMID: 25144854 PMCID: PMC4166031 DOI: 10.1021/bc500309r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
This
study sought to evaluate the impact of multiple negative charges
on blood clearance kinetics and biodistribution properties of 99mTc-labeled RGD peptide dimers. Bioconjugates HYNIC-P6G-RGD2 and HYNIC-P6D-RGD2 were prepared by reacting P6G-RGD2 and P6D-RGD2, respectively, with excess HYNIC-OSu
in the presence of diisopropylethylamine. Their IC50 values
were determined to be 31 ± 5 and 41 ± 6 nM, respectively,
against 125I-echistatin bound to U87MG glioma cells in
a whole-cell displacement assay. Complexes [99mTc(HYNIC-P6G-RGD2)(tricine)(TPPTS)] (99mTc-P6G-RGD2)
and [99mTc(HYNIC-P6D-RGD2)(tricine)(TPPTS)]
(99mTc-P6D-RGD2) were prepared in high radiochemical
purity (RCP > 95%) and specific activity (37–110 GBq/μmol).
They were evaluated in athymic nude mice bearing U87MG glioma xenografts
for their biodistribution. The most significant difference between 99mTc-P6D-RGD2 and 99mTc-P6G-RGD2 was their blood radioactivity levels and tumor uptake. The
initial blood radioactivity level for 99mTc-P6D-RGD2 (4.71 ± 1.00%ID/g) was ∼5× higher than that
of 99mTc-P6G-RGD2 (0.88 ± 0.05%ID/g), but
this difference disappeared at 60 min p.i. 99mTc-P6D-RGD2 had much lower tumor uptake (2.20–3.11%ID/g) than 99mTc-P6G-RGD2 (7.82–9.27%ID/g) over a 2
h period. Since HYNIC-P6D-RGD2 and HYNIC-P6G-RGD2 shared a similar integrin αvβ3 binding affinity (41 ± 6 nM versus 31 ± 5 nM), the difference
in their blood activity and tumor uptake is most likely related to
the nine negative charges and high protein binding of 99mTc-P6D-RGD2. Despite its low uptake in U87MG tumors, the
tumor uptake of 99mTc-P6D-RGD2 was integrin
αvβ3-specific. SPECT/CT studies
were performed using 99mTc-P6G-RGD2 in athymic
nude mice bearing U87MG glioma and MDA-MB-231 breast cancer xenografts.
The SPECT/CT data demonstrated the tumor-targeting capability of 99mTc-P6G-RGD2, and its tumor uptake depends on
the integrin αvβ3 expression levels
on tumor cells and neovasculature. It was concluded that the multiple
negative charges have a significant impact on the blood clearance
kinetics and tumor uptake of 99mTc-labeled dimeric cyclic
RGD peptides.
Collapse
Affiliation(s)
- Yong Yang
- School of Health Sciences, Purdue University , 550 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | | | | |
Collapse
|
48
|
Sun Y, Zeng Y, Zhu Y, Feng F, Xu W, Wu C, Xing B, Zhang W, Wu P, Cui L, Wang R, Li F, Chen X, Zhu Z. Application of (68)Ga-PRGD2 PET/CT for αvβ3-integrin imaging of myocardial infarction and stroke. Theranostics 2014; 4:778-86. [PMID: 24955139 PMCID: PMC4063976 DOI: 10.7150/thno.8809] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/30/2014] [Indexed: 01/14/2023] Open
Abstract
Purpose: Ischemic vascular diseases, including myocardial infarction (MI) and stroke, have been found to be associated with elevated expression of αvβ3-integrin, which provides a promising target for semi-quantitative monitoring of the disease. For the first time, we employed 68Ga-S-2-(isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid-PEG3-E[c(RGDyK)]2 (68Ga-PRGD2) to evaluate the αvβ3-integrin-related repair in post-MI and post-stroke patients via positron emission tomography/computed tomography (PET/CT). Methods: With Institutional Review Board approval, 23 MI patients (3 days-2 years post-MI) and 16 stroke patients (3 days-13 years post-stroke) were recruited. After giving informed consent, each patient underwent a cardiac or brain PET/CT scan 30 min after the intravenous injection of 68Ga-PRGD2 in a dose of approximately 1.85 MBq (0.05 mCi) per kilogram body weight. Two stroke patients underwent repeat scans three months after the event. Results: Patchy 68Ga-PRGD2 uptake occurred in or around the ischemic regions in 20/23 MI patients and punctate multifocal uptake occurred in 8/16 stroke patients. The peak standardized uptake values (pSUVs) in MI were 1.94 ± 0.48 (mean ± SD; range, 0.62-2.69), significantly higher than those in stroke (mean ± SD, 0.46 ± 0.29; range, 0.15-0.93; P < 0.001). Higher 68Ga-PRGD2 uptake was observed in the patients 1-3 weeks after the initial onset of the MI/stroke event. The uptake levels were significantly correlated with the diameter of the diseases (r = 0.748, P = 0.001 for MI and r = 0.835, P = 0.003 for stroke). Smaller or older lesions displayed no uptake. Conclusions: 68Ga-PRGD2 uptake was observed around the ischemic region in both MI and stroke patients, which was correlated with the disease phase and severity. The different image patterns and uptake levels in MI and stroke patients warrant further investigations.
Collapse
|
49
|
Li H, Zhou H, Krieger S, Parry JJ, Whittenberg JJ, Desai AV, Rogers BE, Kenis PJA, Reichert DE. Triazine-based tool box for developing peptidic PET imaging probes: syntheses, microfluidic radiolabeling, and structure-activity evaluation. Bioconjug Chem 2014; 25:761-72. [PMID: 24661266 PMCID: PMC3993951 DOI: 10.1021/bc500034n] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
![]()
This
study was aimed at developing a triazine-based modular platform
for targeted PET imaging. We synthesized mono- or bis-cyclo(RGDfK)
linked triazine-based conjugates specifically targeting integrin αvβ3 receptors. The core molecules could be
easily linked to targeting peptide and radiolabeled bifunctional chelator.
The spacer core molecule was synthesized in 2 or 3 steps in 64–80%
yield, and the following conjugation reactions with cyclo(RGDfK) peptide
or bifunctional chelator were accomplished using “click”
chemistry or amidation reactions. The DOTA-TZ-Bis-cyclo(RGDfK) 13 conjugate was radiolabeled successfully with 64Cu(OAc)2 using a microfluidic method, resulting in higher
specific activity with above 95% labeling yields compared to conventional
radiolabeling (SA ca. 850 vs 600 Ci/mmol). The dimeric cyclo(RGDfK)
peptide was found to display significant bivalency effect using I125-Echistatin binding assay with IC50 value as 178.5 ± 57.1 nM, which displayed a 3.6-fold enhancement
of binding affinity compared to DOTA-TZ-cyclo(RGDfK) 14 conjugate on U87MG human glioblastoma cell. Biodistribution of all
four conjugates in female athymic nude mice were evaluated. DOTA-“Click”-cyclo(RGDfK) 15 had the highest tumor uptake among these four at 4 h p.i.
with 1.90 ± 0.65%ID/g, while there was no clear bivalency effect
for DOTA-TZ-BisRGD in vivo, which needs further experiments
to address the unexpected questions.
Collapse
Affiliation(s)
- Hairong Li
- Radiological Sciences Division, Mallinckrodt Institute of Radiology, Washington University School of Medicine , 510 South Kingshighway Boulevard, St. Louis, Missouri 63110, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Shi J, Fan D, Dong C, Liu H, Jia B, Zhao H, Jin X, Liu Z, Li F, Wang F. Anti-tumor effect of integrin targeted (177)Lu-3PRGD2 and combined therapy with Endostar. Theranostics 2014; 4:256-66. [PMID: 24505234 PMCID: PMC3915089 DOI: 10.7150/thno.7781] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 12/04/2013] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Targeted radiotherapy (TRT) is an emerging approach for tumor treatment. Previously, 3PRGD2 (a dimeric RGD peptide with 3 PEG4 linkers) has been demonstrated to be of advantage for integrin αvβ3 targeting. Given the promising results of (99m)Tc-3PRGD2 for lung cancer detection in human beings, we are encouraged to investigate the radiotherapeutic efficacy of radiolabeled 3PRGD2. The goal of this study was to investigate and optimize the integrin αvβ3 mediated therapeutic effect of (177)Lu-3PRGD2 in the animal model. EXPERIMENTAL DESIGN Biodistribution, gamma imaging and maximum tolerated dose (MTD) studies of (177)Lu-3PRGD2 were performed. The targeted radiotherapy (TRT) with single dose and repeated doses as well as the combined therapy of TRT and the anti-angiogenic therapy (AAT) with Endostar were conducted in U87MG tumor model. The hematoxylin and eosin (H&E) staining and immunochemistry (IHC) were performed post-treatment to evaluate the therapeutic effect. RESULTS The U87MG tumor uptake of (177)Lu-3PRGD2 was relatively high (6.03 ± 0.65 %ID/g, 4.62 ± 1.44 %ID/g, 3.55 ± 1.08 %ID/g, and 1.22 ± 0.18 %ID/g at 1 h, 4 h, 24 h, and 72 h postinjection, respectively), and the gamma imaging could visualize the tumors clearly. The MTD of (177)Lu-3PRGD2 in nude mice (>111 MBq) was twice to that of (90)Y-3PRGD2 (55.5 MBq). U87MG tumor growth was significantly delayed by (177)Lu-3PRGD2 TRT. Significantly increased anti-tumor effects were observed in the two doses or combined treatment groups. CONCLUSION The two-dose TRT and combined therapy with Endostar potently enhanced the tumor growth inhibition, but the former does not need to inject daily for weeks, avoiding a lot of unnecessary inconvenience and suffering for patients, which could potentially be rapidly translated into clinical practice in the future.
Collapse
Affiliation(s)
- Jiyun Shi
- 1. Medical Isotopes Research Center, Peking University, Beijing 100191, China
- 2. Medical and Healthy Analytical Center, Peking University, Beijing 100191, China
| | - Di Fan
- 1. Medical Isotopes Research Center, Peking University, Beijing 100191, China
- 3. Department of Radiation Medicine, Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Chengyan Dong
- 1. Medical Isotopes Research Center, Peking University, Beijing 100191, China
- 3. Department of Radiation Medicine, Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Hao Liu
- 1. Medical Isotopes Research Center, Peking University, Beijing 100191, China
- 3. Department of Radiation Medicine, Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Bing Jia
- 1. Medical Isotopes Research Center, Peking University, Beijing 100191, China
- 3. Department of Radiation Medicine, Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Huiyun Zhao
- 1. Medical Isotopes Research Center, Peking University, Beijing 100191, China
- 2. Medical and Healthy Analytical Center, Peking University, Beijing 100191, China
| | - Xiaona Jin
- 4. Department of Nuclear Medicine, Peking Union Medical College Hospital, Beijing 100857, China
| | - Zhaofei Liu
- 1. Medical Isotopes Research Center, Peking University, Beijing 100191, China
- 3. Department of Radiation Medicine, Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Fang Li
- 4. Department of Nuclear Medicine, Peking Union Medical College Hospital, Beijing 100857, China
| | - Fan Wang
- 1. Medical Isotopes Research Center, Peking University, Beijing 100191, China
- 3. Department of Radiation Medicine, Basic Medical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|