1
|
Tsuboi T, Hattori K, Ishimoto T, Imai K, Doke T, Hagita J, Ariyoshi J, Furuhashi K, Kato N, Ito Y, Kamiya Y, Asanuma H, Maruyama S. In vivo efficacy and safety of systemically administered serinol nucleic acid-modified antisense oligonucleotides in mouse kidney. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102387. [PMID: 39850319 PMCID: PMC11754010 DOI: 10.1016/j.omtn.2024.102387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/08/2024] [Indexed: 01/25/2025]
Abstract
Nucleic acid medicine encompassing antisense oligonucleotides (ASOs) has garnered interest as a potential avenue for next-generation therapeutics. However, their therapeutic application has been constrained by challenges such as instability, off-target effects, delivery issues, and immunogenic responses. Furthermore, their practical utility in treating kidney diseases remains unrealized. Recently, we developed a serinol nucleic acid-modified ASO (SNA-ASO) that exhibits significant nuclease resistance. In this study, we evaluated the in vivo efficacy of SNA-ASOs in mouse kidney. We subcutaneously administered various types of phosphorothioate-modified gapmer ASOs with SNA or 2'-O-methoxyethyl (2'-MOE) modifications (MOE-ASO) targeting sodium glucose cotransporter 2 (SGLT2) in mice. The subcutaneous administration of SGLT2-SNA-ASO led to a dose-dependent reduction in renal SGLT2 expression and subsequent glucosuria. The inhibitory effects of SGLT2-SNA-ASO were more potent and prolonged than those of ASOs without SNA. Moreover, SGLT2-SNA-ASO did not cause severe liver damage, unlike SGLT2-MOE-ASO. The administration of Cy5-labeled-ASOs demonstrated an early increase in renal uptake, particularly in the renal proximal tubules, when modified with SNA. In conclusion, systemic administration of SGLT2-ASO modified with the artificial nucleic acid SNA effectively suppressed renal SGLT2 expression and induced urinary glucose excretion. These results suggest that SNA-modified ASOs show potential for application in developing nucleic acid therapeutics.
Collapse
Affiliation(s)
- Toshiki Tsuboi
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Nephrology, Yokkaichi Municipal Hospital, Yokkaichi, Japan
| | - Keita Hattori
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takuji Ishimoto
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute, Japan
| | - Kentaro Imai
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute, Japan
| | - Tomohito Doke
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Junichiro Hagita
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute, Japan
| | - Jumpei Ariyoshi
- Laboratory of Bioanalytical Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Kazuhiro Furuhashi
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Noritoshi Kato
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiko Ito
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute, Japan
| | - Yukiko Kamiya
- Department of Biomolecular Engineering, Nagoya University Graduate School of Engineering, Nagoya, Japan
- Laboratory of Bioanalytical Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Hiroyuki Asanuma
- Department of Biomolecular Engineering, Nagoya University Graduate School of Engineering, Nagoya, Japan
| | - Shoichi Maruyama
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
2
|
Tomasini S, Vigo P, Margiotta F, Scheele US, Panella R, Kauppinen S. The Role of microRNA-22 in Metabolism. Int J Mol Sci 2025; 26:782. [PMID: 39859495 PMCID: PMC11766054 DOI: 10.3390/ijms26020782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
microRNA-22 (miR-22) plays a pivotal role in the regulation of metabolic processes and has emerged as a therapeutic target in metabolic disorders, including obesity, type 2 diabetes, and metabolic-associated liver diseases. While miR-22 exhibits context-dependent effects, promoting or inhibiting metabolic pathways depending on tissue and condition, current research highlights its therapeutic potential, particularly through inhibition strategies using chemically modified antisense oligonucleotides. This review examines the dual regulatory functions of miR-22 across key metabolic pathways, offering perspectives on its integration into next-generation diagnostic and therapeutic approaches while acknowledging the complexities of its roles in metabolic homeostasis.
Collapse
Affiliation(s)
- Simone Tomasini
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, 2450 Copenhagen, Denmark; (S.T.); (U.S.S.); (R.P.)
| | - Paolo Vigo
- Resalis Therapeutics Srl, Via E. De Sonnaz 19, 10121 Torino, Italy
| | - Francesco Margiotta
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy;
| | - Ulrik Søberg Scheele
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, 2450 Copenhagen, Denmark; (S.T.); (U.S.S.); (R.P.)
| | - Riccardo Panella
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, 2450 Copenhagen, Denmark; (S.T.); (U.S.S.); (R.P.)
- Resalis Therapeutics Srl, Via E. De Sonnaz 19, 10121 Torino, Italy
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy;
- European Biomedical Research Institute of Salerno (EBRIS), Via Salvatore de Renzi 50, 84125 Salerno, Italy
| | - Sakari Kauppinen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, 2450 Copenhagen, Denmark; (S.T.); (U.S.S.); (R.P.)
| |
Collapse
|
3
|
Ruchi R, Raman GM, Kumar V, Bahal R. Evolution of antisense oligonucleotides: navigating nucleic acid chemistry and delivery challenges. Expert Opin Drug Discov 2025; 20:63-80. [PMID: 39653607 DOI: 10.1080/17460441.2024.2440095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024]
Abstract
INTRODUCTION Antisense oligonucleotide (ASO) was established as a viable therapeutic option for genetic disorders. ASOs can target RNAs implicated in various diseases, including upregulated mRNA and pre-mRNA undergoing abnormal alternative splicing events. Therapeutic applications of ASOs have been proven with the Food and Drug Administration approval of several drugs in recent years. Earlier enzymatic stability and delivery remains a big challenge for ASOs. Introducing new chemical modifications and new formulations resolving the issues related to the nuclease stability and delivery of the ASOs. Excitingly, ASOs-based bioconjugates that target the hepatocyte have gained much attraction. Efforts are ongoing to increase the therapeutic application of the ASOs to the extrahepatic tissue as well. AREA COVERED We have briefly discussed the mechanism of ASOs, the development of new chemistries, and delivery strategies for ASO-based drug discovery and development. The discussion focuses more on the already approved ASOs and those in the clinical development stage. EXPERT OPINION To expand the clinical application of ASOs, continuous effort is required to develop precise delivery strategies for targeting extrahepatic tissue to minimize the off-target effects.
Collapse
Affiliation(s)
- Ruchi Ruchi
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Govind Mukesh Raman
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
- Farmington High School, Farmington, CT, USA
| | - Vikas Kumar
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
4
|
Dowerah D, V N Uppuladinne M, Paul S, Das D, Gour NK, Biswakarma N, Sarma PJ, Sonavane UB, Joshi RR, Ray SK, Deka RC. A Study Modeling Bridged Nucleic Acid-Based ASOs and Their Impact on the Structure and Stability of ASO/RNA Duplexes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21407-21426. [PMID: 39370641 DOI: 10.1021/acs.langmuir.4c02171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Antisense medications treat diseases that cannot be treated using traditional pharmacological technologies. Nucleotide monomers of bare and phosphorothioate (PS)-modified LNA, N-MeO-amino-BNA, 2',4'-BNANC[NH], 2',4'-BNANC[NMe], and N-Me-aminooxy-BNA antisense modifications were considered for a detailed DFT-based quantum chemical study to estimate their molecular-level structural and electronic properties. Oligomer hybrid duplex stability is described by performing an elaborate MD simulation study by incorporating the PS-LNA and PS-BNA antisense modifications onto 14-mer ASO/RNA hybrid gapmer type duplexes targeting protein PTEN mRNA nucleic acid sequence (5'-CTTAGCACTGGCCT-3'/3'-GAAUCGUGACCGGA-5'). Replica sets of MD simulations were performed accounting to two data sets, each set simulated for 1 μs simulation time. Bulk properties of oligomers are regulated by the chemical properties of their monomers. As such, the primary goal of this work focused on establishing an organized connection between the monomeric BNA nucleotide's electronic effects observed in DFT studies and the macroscopic behavior of the BNA antisense oligomers, as observed in MD simulations. The results from this study predicted that spatial orientation of MO-isosurfaces of the BNA nucleotides are concentrated in the nucleobase region. These BNA nucleotides may become less accessible for various electronic interactions when coupled as ASOs forming duplexes with target RNAs and when the ASO/RNA duplexes further bind with the RNase H. Understanding such electronic interactions is crucial to design superior antisense modifications with specific electronic properties. Also, for the particular nucleic acid sequence solvation of the duplexes although were higher compared to the natural oligonucleotides, their binding energies being relatively lower may lead to decreased antisense activity compared to existing analogs such as the LNAs and MOEs. Fine tuning these BNAs to obtain superior binding affinity is thus a necessity.
Collapse
Affiliation(s)
- Dikshita Dowerah
- CMML-Catalysis and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| | - Mallikarjunachari V N Uppuladinne
- HPC - Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Panchavati, Pashan, Pune 411008, India
| | - Subrata Paul
- CMML-Catalysis and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784028, India
- Department of Chemistry, Assam University, Silchar, Assam 788011, India
| | - Dharitri Das
- CMML-Catalysis and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| | - Nand K Gour
- CMML-Catalysis and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| | - Nishant Biswakarma
- CMML-Catalysis and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| | - Plaban J Sarma
- CMML-Catalysis and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784028, India
- Department of Chemistry, Gargaon College, Simaluguri, Sivasagar, Assam 785686, India
| | - Uddhavesh B Sonavane
- HPC - Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Panchavati, Pashan, Pune 411008, India
| | - Rajendra R Joshi
- HPC - Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Panchavati, Pashan, Pune 411008, India
| | - Suvendra K Ray
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur, Assam 784028, India
- Center for Multidisciplinary Research, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| | - Ramesh Ch Deka
- CMML-Catalysis and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784028, India
- Center for Multidisciplinary Research, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| |
Collapse
|
5
|
Novikova D, Sagaidak A, Vorona S, Tribulovich V. A Visual Compendium of Principal Modifications within the Nucleic Acid Sugar Phosphate Backbone. Molecules 2024; 29:3025. [PMID: 38998973 PMCID: PMC11243533 DOI: 10.3390/molecules29133025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Nucleic acid chemistry is a huge research area that has received new impetus due to the recent explosive success of oligonucleotide therapy. In order for an oligonucleotide to become clinically effective, its monomeric parts are subjected to modifications. Although a large number of redesigned natural nucleic acids have been proposed in recent years, the vast majority of them are combinations of simple modifications proposed over the past 50 years. This review is devoted to the main modifications of the sugar phosphate backbone of natural nucleic acids known to date. Here, we propose a systematization of existing knowledge about modifications of nucleic acid monomers and an acceptable classification from the point of view of chemical logic. The visual representation is intended to inspire researchers to create a new type of modification or an original combination of known modifications that will produce unique oligonucleotides with valuable characteristics.
Collapse
Affiliation(s)
- Daria Novikova
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology, St. Petersburg 190013, Russia
| | - Aleksandra Sagaidak
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology, St. Petersburg 190013, Russia
| | - Svetlana Vorona
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology, St. Petersburg 190013, Russia
| | - Vyacheslav Tribulovich
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology, St. Petersburg 190013, Russia
| |
Collapse
|
6
|
Chen CC, Han J, Chinn CA, Rounds JS, Li X, Nikan M, Myszka M, Tong L, Passalacqua LFM, Bredy T, Wood MA, Luptak A. Inhibition of Cpeb3 ribozyme elevates CPEB3 protein expression and polyadenylation of its target mRNAs and enhances object location memory. eLife 2024; 13:e90116. [PMID: 38319152 PMCID: PMC10919898 DOI: 10.7554/elife.90116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 02/05/2024] [Indexed: 02/07/2024] Open
Abstract
A self-cleaving ribozyme that maps to an intron of the cytoplasmic polyadenylation element-binding protein 3 (Cpeb3) gene is thought to play a role in human episodic memory, but the underlying mechanisms mediating this effect are not known. We tested the activity of the murine sequence and found that the ribozyme's self-scission half-life matches the time it takes an RNA polymerase to reach the immediate downstream exon, suggesting that the ribozyme-dependent intron cleavage is tuned to co-transcriptional splicing of the Cpeb3 mRNA. Our studies also reveal that the murine ribozyme modulates maturation of its harboring mRNA in both cultured cortical neurons and the hippocampus: inhibition of the ribozyme using an antisense oligonucleotide leads to increased CPEB3 protein expression, which enhances polyadenylation and translation of localized plasticity-related target mRNAs, and subsequently strengthens hippocampal-dependent long-term memory. These findings reveal a previously unknown role for self-cleaving ribozyme activity in regulating experience-induced co-transcriptional and local translational processes required for learning and memory.
Collapse
Affiliation(s)
- Claire C Chen
- Department of Pharmaceutical Sciences, University of California, IrvineIrvineUnited States
| | - Joseph Han
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, IrvineIrvineUnited States
| | - Carlene A Chinn
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, IrvineIrvineUnited States
| | - Jacob S Rounds
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, IrvineIrvineUnited States
| | - Xiang Li
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, IrvineIrvineUnited States
| | | | - Marie Myszka
- Department of Chemistry, University of California, IrvineIrvineUnited States
| | - Liqi Tong
- Institute for Memory Impairments and Neurological Disorders, University of California, IrvineIrvineUnited States
| | - Luiz FM Passalacqua
- Department of Pharmaceutical Sciences, University of California, IrvineIrvineUnited States
| | - Timothy Bredy
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, IrvineIrvineUnited States
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, IrvineIrvineUnited States
| | - Andrej Luptak
- Department of Pharmaceutical Sciences, University of California, IrvineIrvineUnited States
- Department of Chemistry, University of California, IrvineIrvineUnited States
- Department of Molecular Biology and Biochemistry, University of California, IrvineIrvineUnited States
| |
Collapse
|
7
|
Terada C, Oh K, Tsubaki R, Chan B, Aibara N, Ohyama K, Shibata MA, Wada T, Harada-Shiba M, Yamayoshi A, Yamamoto T. Dynamic and static control of the off-target interactions of antisense oligonucleotides using toehold chemistry. Nat Commun 2023; 14:7972. [PMID: 38042877 PMCID: PMC10693639 DOI: 10.1038/s41467-023-43714-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/17/2023] [Indexed: 12/04/2023] Open
Abstract
Off-target interactions between antisense oligonucleotides (ASOs) with state-of-the-art modifications and biological components still pose clinical safety liabilities. To mitigate a broad spectrum of off-target interactions and enhance the safety profile of ASO drugs, we here devise a nanoarchitecture named BRace On a THERapeutic aSo (BROTHERS or BRO), which is composed of a standard gapmer ASO paired with a partially complementary peptide nucleic acid (PNA) strand. We show that these non-canonical ASO/PNA hybrids have reduced non-specific protein-binding capacity. The optimization of the structural and thermodynamic characteristics of this duplex system enables the operation of an in vivo toehold-mediated strand displacement (TMSD) reaction, effectively reducing hybridization with RNA off-targets. The optimized BROs dramatically mitigate hepatotoxicity while maintaining the on-target knockdown activity of their parent ASOs in vivo. This technique not only introduces a BRO class of drugs that could have a transformative impact on the extrahepatic delivery of ASOs, but can also help uncover the toxicity mechanism of ASOs.
Collapse
Affiliation(s)
- Chisato Terada
- Department of Chemistry of Biofunctional Molecules, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- JSPS Research Fellow (DC1), Japan Society for the Promotion of Science, Tokyo, Japan
| | - Kaho Oh
- Department of Chemistry of Biofunctional Molecules, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Ryutaro Tsubaki
- Department of Chemistry of Biofunctional Molecules, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Bun Chan
- Graduate School of Engineering, Nagasaki University, Nagasaki, Japan
| | - Nozomi Aibara
- Department of Pharmacy Practice, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kaname Ohyama
- Department of Molecular Pathochemistry, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Masa-Aki Shibata
- Department of Anatomy and Cell Biology, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Takehiko Wada
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, Miyagi, Japan
| | - Mariko Harada-Shiba
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
- Cardiovascular Center, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Asako Yamayoshi
- Department of Chemistry of Biofunctional Molecules, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tsuyoshi Yamamoto
- Department of Chemistry of Biofunctional Molecules, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
8
|
Kim J. Nucleic Acid-Based Approaches to Tackle KRAS Mutant Cancers. Int J Mol Sci 2023; 24:16933. [PMID: 38069255 PMCID: PMC10707712 DOI: 10.3390/ijms242316933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Activating mutations in KRAS are highly relevant to various cancers, driving persistent efforts toward the development of drugs that can effectively inhibit KRAS activity. Previously, KRAS was considered 'undruggable'; however, the recent advances in our understanding of RNA and nucleic acid chemistry and delivery formulations have sparked a paradigm shift in the approach to KRAS inhibition. We are currently witnessing a large wave of next-generation drugs for KRAS mutant cancers-nucleic acid-based therapeutics. In this review, we discuss the current progress in targeting KRAS mutant tumors and outline significant developments in nucleic acid-based strategies. We delve into their mechanisms of action, address existing challenges, and offer insights into the current clinical trial status of these approaches. We aim to provide a thorough understanding of the potential of nucleic acid-based strategies in the field of KRAS mutant cancer therapeutics.
Collapse
Affiliation(s)
- Jimi Kim
- Department of Life Sciences, Gachon University, Seongnam 13120, Republic of Korea;
- Department of Health Science and Technology, GAIHST, Lee Gil Ya Cancer and Diabetes Institute, Incheon 21999, Republic of Korea
| |
Collapse
|
9
|
Maretina M, Il’ina A, Egorova A, Glotov A, Kiselev A. Development of 2'-O-Methyl and LNA Antisense Oligonucleotides for SMN2 Splicing Correction in SMA Cells. Biomedicines 2023; 11:3071. [PMID: 38002071 PMCID: PMC10669464 DOI: 10.3390/biomedicines11113071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a devastating neurodegenerative disease caused by mutations in the SMN1 gene. Existing therapies demonstrate positive results on SMA patients but still might be ameliorated in efficacy and price. In the presented study we designed antisense oligonucleotides (AONs), targeting intronic splicing silencer sites, some were modified with 2'-O-methyl, others with LNA. The AONs have been extensively tested in different concentrations, both individually and combined, in order to effectively target the ISS-N1 and A+100G splicing silencer regions in intron 7 of the SMN2 gene. By treating SMA-cultured fibroblasts with certain AONs, we discovered a remarkable increase in the levels of full-length SMN transcripts and the number of nuclear gems. This increase was observed to be dose-dependent and reached levels comparable to those found in healthy cells. When added to cells together, most of the tested molecules showed a remarkable synergistic effect in correcting splicing. Through our research, we have discovered that the impact of oligonucleotides is greatly influenced by their length, sequence, and pattern of modification.
Collapse
Affiliation(s)
- Marianna Maretina
- Department of Genomic Medicine Named after V.S. Baranov, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (M.M.); (A.E.); (A.G.)
| | - Arina Il’ina
- Faculty of Biology, Saint Petersburg State University, Universitetskaya Embankment 7–9, 199034 Saint Petersburg, Russia;
| | - Anna Egorova
- Department of Genomic Medicine Named after V.S. Baranov, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (M.M.); (A.E.); (A.G.)
| | - Andrey Glotov
- Department of Genomic Medicine Named after V.S. Baranov, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (M.M.); (A.E.); (A.G.)
| | - Anton Kiselev
- Department of Genomic Medicine Named after V.S. Baranov, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (M.M.); (A.E.); (A.G.)
| |
Collapse
|
10
|
Pagoni M, Cava C, Sideris DC, Avgeris M, Zoumpourlis V, Michalopoulos I, Drakoulis N. miRNA-Based Technologies in Cancer Therapy. J Pers Med 2023; 13:1586. [PMID: 38003902 PMCID: PMC10672431 DOI: 10.3390/jpm13111586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The discovery of therapeutic miRNAs is one of the most exciting challenges for pharmaceutical companies. Since the first miRNA was discovered in 1993, our knowledge of miRNA biology has grown considerably. Many studies have demonstrated that miRNA expression is dysregulated in many diseases, making them appealing tools for novel therapeutic approaches. This review aims to discuss miRNA biogenesis and function, as well as highlight strategies for delivering miRNA agents, presenting viral, non-viral, and exosomic delivery as therapeutic approaches for different cancer types. We also consider the therapeutic role of microRNA-mediated drug repurposing in cancer therapy.
Collapse
Affiliation(s)
- Maria Pagoni
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Claudia Cava
- Department of Science, Technology and Society, University School for Advanced Studies IUSS Pavia, 27100 Pavia, Italy;
| | - Diamantis C. Sideris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece;
| | - Margaritis Avgeris
- Laboratory of Clinical Biochemistry—Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, “P. & A. Kyriakou” Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Vassilios Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece;
| | - Ioannis Michalopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece;
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| |
Collapse
|
11
|
Pfeiffer LS, Stafforst T. Precision RNA base editing with engineered and endogenous effectors. Nat Biotechnol 2023; 41:1526-1542. [PMID: 37735261 DOI: 10.1038/s41587-023-01927-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/26/2023] [Indexed: 09/23/2023]
Abstract
RNA base editing refers to the rewriting of genetic information within an intact RNA molecule and serves various functions, such as evasion of the endogenous immune system and regulation of protein function. To achieve this, certain enzymes have been discovered in human cells that catalyze the conversion of one nucleobase into another. This natural process could be exploited to manipulate and recode any base in a target transcript. In contrast to DNA base editing, analogous changes introduced in RNA are not permanent or inheritable but rather allow reversible and doseable effects that appeal to various therapeutic applications. The current practice of RNA base editing involves the deamination of adenosines and cytidines, which are converted to inosines and uridines, respectively. In this Review, we summarize current site-directed RNA base-editing strategies and highlight recent achievements to improve editing efficiency, precision, codon-targeting scope and in vivo delivery into disease-relevant tissues. Besides engineered editing effectors, we focus on strategies to harness endogenous adenosine deaminases acting on RNA (ADAR) enzymes and discuss limitations and future perspectives to apply the tools in basic research and as a therapeutic modality. We expect the field to realize the first RNA base-editing drug soon, likely on a well-defined genetic disease. However, the long-term challenge will be to carve out the sweet spot of the technology where its unique ability is exploited to modulate signaling cues, metabolism or other clinically relevant processes in a safe and doseable manner.
Collapse
Affiliation(s)
- Laura S Pfeiffer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Thorsten Stafforst
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany.
- Gene and RNA Therapy Center, Faculty of Medicine, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
12
|
Roschewski M, Patel MR, Reagan PM, Saba NS, Collins GP, Arkenau HT, de Vos S, Nuttall B, Acar M, Burke K, White RD, Udriste M, Sharma S, Dougherty B, Stetson D, Jenkins D, Mortlock A, Forcina A, Munugalavadla V, Flinn I. Phase I Study of Acalabrutinib Plus Danvatirsen (AZD9150) in Relapsed/Refractory Diffuse Large B-Cell Lymphoma Including Circulating Tumor DNA Biomarker Assessment. Clin Cancer Res 2023; 29:3301-3312. [PMID: 37364001 PMCID: PMC10472096 DOI: 10.1158/1078-0432.ccr-22-2483] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/16/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
PURPOSE Novel targeted and immunotherapies have improved outcomes in relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL), but toxicities limit widespread use. The selective Bruton tyrosine kinase (BTK) inhibitor acalabrutinib has activity in patients with R/R DLBCL but durable responses are uncommon. STAT3 inhibition has demonstrated clinical activity in DLBCL. PATIENTS AND METHODS Final results of the phase I study of acalabrutinib plus STAT3 inhibitor (danvatirsen; AZD9150) in patients with R/R DLBCL are reported. Danvatirsen 200 mg intravenous infusion [Days 1, 3, 5 (Cycle 1); weekly infusions starting Day 8, Cycle 1] was administered in combination with oral acalabrutinib 100 mg twice daily until progressive disease (PD) or unacceptable toxicity. Primary endpoints were safety and tolerability. Secondary endpoints included efficacy, pharmacokinetics, and immunogenicity. RESULTS Seventeen patients received combination treatment. One dose-limiting toxicity (Grade 3 liver transaminase) occurred in 1 patient. The most common reason for treatment discontinuation was PD (65%). In evaluable patients (n = 17), objective response rate was 24%; median duration of response was 1.9 months. All responders with available DLBCL cell-of-origin data were either activated B-cell or nongerminal center B-cell like subtype. Genetic subtype did not correlate with response. Baseline and longitudinal plasma cell-free DNA (cfDNA) concentrations were mostly higher in nonresponding patients. cfDNA changes were generally concordant with imaging. Pretreatment circulating B-cell levels were higher in responders versus nonresponders. CONCLUSIONS Targeting both STAT3 and BTK in combination is safe and tolerable but efficacy is limited in R/R DLBCL. Results support evaluation of circulating tumor DNA as a biomarker for clinical response.
Collapse
Affiliation(s)
- Mark Roschewski
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Manish R. Patel
- Florida Cancer Specialists/Sarah Cannon Research Institute, Sarasota, Florida
| | - Patrick M. Reagan
- Division of Hematology/Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Nakhle S. Saba
- Section of Hematology and Medical Oncology, Deming Department of Medicine, Tulane University, New Orleans, Louisiana
| | - Graham P. Collins
- NIHR Oxford Biomedical Research Centre, Oxford Cancer and Haematology Centre, Churchill Hospital, Oxford, United Kingdom
| | | | - Sven de Vos
- David Geffen School of Medicine at UCLA, Los Angeles, California
| | | | - Melih Acar
- AstraZeneca, South San Francisco, California
| | | | | | | | | | | | | | | | | | | | | | - Ian Flinn
- Sarah Cannon Research Institute, Nashville, Tennessee
| |
Collapse
|
13
|
Kawamoto Y, Wu Y, Takahashi Y, Takakura Y. Development of nucleic acid medicines based on chemical technology. Adv Drug Deliv Rev 2023; 199:114872. [PMID: 37244354 DOI: 10.1016/j.addr.2023.114872] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
Oligonucleotide-based therapeutics have attracted attention as an emerging modality that includes the modulation of genes and their binding proteins related to diseases, allowing us to take action on previously undruggable targets. Since the late 2010s, the number of oligonucleotide medicines approved for clinical uses has dramatically increased. Various chemistry-based technologies have been developed to improve the therapeutic properties of oligonucleotides, such as chemical modification, conjugation, and nanoparticle formation, which can increase nuclease resistance, enhance affinity and selectivity to target sites, suppress off-target effects, and improve pharmacokinetic properties. Similar strategies employing modified nucleobases and lipid nanoparticles have been used for developing coronavirus disease 2019 mRNA vaccines. In this review, we provide an overview of the development of chemistry-based technologies aimed at using nucleic acids for developing therapeutics over the past several decades, with a specific emphasis on the structural design and functionality of chemical modification strategies.
Collapse
Affiliation(s)
- Yusuke Kawamoto
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| | - You Wu
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
14
|
Dowerah D, V. N. Uppuladinne M, Sarma PJ, Biswakarma N, Sonavane UB, Joshi RR, Ray SK, Namsa ND, Deka RC. Design of LNA Analogues Using a Combined Density Functional Theory and Molecular Dynamics Approach for RNA Therapeutics. ACS OMEGA 2023; 8:22382-22405. [PMID: 37396274 PMCID: PMC10308574 DOI: 10.1021/acsomega.2c07860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/17/2023] [Indexed: 07/04/2023]
Abstract
Antisense therapeutics treat a wide spectrum of diseases, many of which cannot be addressed with the current drug technologies. In the quest to design better antisense oligonucleotide drugs, we propose five novel LNA analogues (A1-A5) for modifying antisense oligonucleotides and establishing each with the five standard nucleic acids: adenine (A), guanine (G), cytosine (C), thymine (T), and uracil (U). Monomer nucleotides of these modifications were considered for a detailed Density Functional Theory (DFT)-based quantum chemical analysis to determine their molecular-level structural and electronic properties. A detailed MD simulation study was done on a 14-mer ASO (5'-CTTAGCACTGGCCT-3') containing these modifications targeting PTEN mRNA. Results from both molecular- and oligomer-level analysis clearly depicted LNA-level stability of the modifications, the ASO/RNA duplexes maintaining stable Watson-Crick base pairing preferring RNA-mimicking A-form duplexes. Notably, monomer MO isosurfaces for both purines and pyrimidines were majorly distributed on the nucleobase region in modifications A1 and A2 and in the bridging unit in modifications A3, A4, and A5, suggesting that A3/RNA, A4/RNA, and A5/RNA duplexes interact more with the RNase H and solvent environment. Accordingly, solvation of A3/RNA, A4/RNA, and A5/RNA duplexes was higher compared to that of LNA/RNA, A1/RNA, and A2/RNA duplexes. This study has resulted in a successful archetype for creating advantageous nucleic acid modifications tailored for particular needs, fulfilling a useful purpose of designing novel antisense modifications, which may overcome the drawbacks and improve the pharmacokinetics of existing LNA antisense modifications.
Collapse
Affiliation(s)
- Dikshita Dowerah
- CMML—Catalysis
and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784 028, India
| | - Mallikarjunachari V. N. Uppuladinne
- HPC—Medical
& Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Panchavati, Pashan, Pune 411008, India
| | - Plaban J. Sarma
- CMML—Catalysis
and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784 028, India
- Department
of Chemistry, Gargaon College, Sivasagar, Assam 785685, India
| | - Nishant Biswakarma
- CMML—Catalysis
and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784 028, India
| | - Uddhavesh B. Sonavane
- HPC—Medical
& Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Panchavati, Pashan, Pune 411008, India
| | - Rajendra R. Joshi
- HPC—Medical
& Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Panchavati, Pashan, Pune 411008, India
| | - Suvendra K. Ray
- Department
of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur, Assam 784028, India
- Center
for Multidisciplinary Research, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| | - Nima D. Namsa
- Department
of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur, Assam 784028, India
- Center
for Multidisciplinary Research, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| | - Ramesh Ch. Deka
- CMML—Catalysis
and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784 028, India
- Center
for Multidisciplinary Research, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| |
Collapse
|
15
|
Chen CC, Han J, Chinn CA, Rounds JS, Li X, Nikan M, Myszka M, Tong L, Passalacqua LFM, Bredy TW, Wood MA, Lupták A. Inhibition of CPEB3 ribozyme elevates CPEB3 protein expression and polyadenylation of its target mRNAs, and enhances object location memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.543953. [PMID: 37333407 PMCID: PMC10274809 DOI: 10.1101/2023.06.07.543953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
A self-cleaving ribozyme that maps to an intron of the cytoplasmic polyadenylation element binding protein 3 (CPEB3) gene is thought to play a role in human episodic memory, but the underlying mechanisms mediating this effect are not known. We tested the activity of the murine sequence and found that the ribozyme's self-scission half-life matches the time it takes an RNA polymerase to reach the immediate downstream exon, suggesting that the ribozyme-dependent intron cleavage is tuned to co-transcriptional splicing of the CPEB3 mRNA. Our studies also reveal that the murine ribozyme modulates maturation of its harboring mRNA in both cultured cortical neurons and the hippocampus: inhibition of the ribozyme using an antisense oligonucleotide leads to increased CPEB3 protein expression, which enhances polyadenylation and translation of localized plasticity-related target mRNAs, and subsequently strengthens hippocampal-dependent long-term memory. These findings reveal a previously unknown role for self-cleaving ribozyme activity in regulating experience-induced co-transcriptional and local translational processes required for learning and memory.
Collapse
Affiliation(s)
- Claire C. Chen
- Department of Pharmaceutical Sciences, University of California–Irvine, Irvine, California 92697, United States
| | - Joseph Han
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California–Irvine, Irvine, California 92697, United States
| | - Carlene A. Chinn
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California–Irvine, Irvine, California 92697, United States
| | - Jacob S. Rounds
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California–Irvine, Irvine, California 92697, United States
| | - Xiang Li
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California–Irvine, Irvine, California 92697, United States
| | - Mehran Nikan
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Marie Myszka
- Department of Chemistry, University of California–Irvine, Irvine, California 92697, United States
| | - Liqi Tong
- Institute for Memory Impairments and Neurological Disorders, University of California–Irvine, Irvine, California 92697, United States
| | - Luiz F. M. Passalacqua
- Department of Pharmaceutical Sciences, University of California–Irvine, Irvine, California 92697, United States
| | - Timothy W. Bredy
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California–Irvine, Irvine, California 92697, United States
| | - Marcelo A. Wood
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California–Irvine, Irvine, California 92697, United States
| | - Andrej Lupták
- Department of Pharmaceutical Sciences, University of California–Irvine, Irvine, California 92697, United States
- Department of Chemistry, University of California–Irvine, Irvine, California 92697, United States
- Department of Molecular Biology and Biochemistry, University of California–Irvine, Irvine, California 92697, United States
| |
Collapse
|
16
|
Batistatou N, Kritzer JA. Investigation of Sequence-Penetration Relationships of Antisense Oligonucleotides. Chembiochem 2023; 24:e202300009. [PMID: 36791388 PMCID: PMC10305730 DOI: 10.1002/cbic.202300009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/17/2023]
Abstract
A major limitation for the development of more effective oligonucleotide therapeutics has been a lack of understanding of their penetration into the cytosol. While prior work has shown how backbone modifications affect cytosolic penetration, it is unclear how cytosolic penetration is affected by other features including base composition, base sequence, length, and degree of secondary structure. We have applied the chloroalkane penetration assay, which exclusively reports on material that reaches the cytosol, to investigate the effects of these characteristics on the cytosolic uptake of druglike oligonucleotides. We found that base composition and base sequence had moderate effects, while length did not correlate directly with the degree of cytosolic penetration. Investigating further, we found that the degree of secondary structure had the largest and most predictable correlations with cytosolic penetration. These methods and observations add a layer of design for maximizing the efficacy of new oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Nefeli Batistatou
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Joshua A. Kritzer
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
17
|
Sawamoto H, Sasaki T, Takegawa-Araki T, Utsugi M, Furukawa H, Hirakawa Y, Yamairi F, Kurita T, Murahashi K, Yamada K, Ohta T, Kumagai S, Takemiya A, Obika S, Kotera J. Synthesis and properties of a novel modified nucleic acid, 2'-N-methanesulfonyl-2'-amino-locked nucleic acid. Bioorg Med Chem Lett 2023; 88:129289. [PMID: 37068560 DOI: 10.1016/j.bmcl.2023.129289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023]
Abstract
2'-Amino-locked nucleic acid has a functionalizable nitrogen atom at the 2'-position of its furanose ring that can provide desired properties to a nucleic acid as a scaffold. In this study, we synthesized a novel nucleic acid, 2'-N-methanesulfonyl-2'-amino-locked nucleic acid (ALNA[Ms]) and conducted comparative studies on the physical and pharmacological properties of the ALNA[Ms] and on conventional nucleic acids, such as 2'-methylamino-LNA (ALNA[Me]), which is a classical 2'-amino-LNA derivative, and also on 2',4'-BNA/LNA (LNA). ALNA[Ms] oligomers exhibited binding affinities for the complementary RNA strand that are similar to those of conventional nucleic acids. Four types of ALNA[Ms] nucleosides exhibited no genotoxicity in bacterial reverse mutation assays. The knockdown abilities of Malat1 RNA using the Matat1 antisense oligonucleotide (ASO) containing ALNA[Ms] were higher than those of ALNA[Me] and were closer to those of LNA. Furthermore, the ASO containing ALNA[Ms] showed different tissue tropism from that containing LNA. ALNA[Ms] exhibited biological activities that were distinct from conventional constrained nucleic acids, suggesting the possibility that ALNA[Ms] can serve as novel modified nucleic acids in oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Hiroaki Sawamoto
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Shonan Health Innovation Park, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan.
| | - Takashi Sasaki
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Shonan Health Innovation Park, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan.
| | - Tomo Takegawa-Araki
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Shonan Health Innovation Park, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Masayuki Utsugi
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Shonan Health Innovation Park, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Hiroyuki Furukawa
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Shonan Health Innovation Park, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Yoko Hirakawa
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Shonan Health Innovation Park, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Fumiko Yamairi
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Shonan Health Innovation Park, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Takashi Kurita
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Shonan Health Innovation Park, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Karin Murahashi
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Shonan Health Innovation Park, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Katsuya Yamada
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Shonan Health Innovation Park, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Tetsuya Ohta
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Shonan Health Innovation Park, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Shinji Kumagai
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Shonan Health Innovation Park, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Akihiro Takemiya
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Shonan Health Innovation Park, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Satoshi Obika
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Jun Kotera
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Shonan Health Innovation Park, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
18
|
Gwag T, Li D, Ma E, Guo Z, Liang Y, Wang S. CD47 antisense oligonucleotide treatment attenuates obesity and its-associated metabolic dysfunction. Sci Rep 2023; 13:2748. [PMID: 36797364 PMCID: PMC9935863 DOI: 10.1038/s41598-023-30006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Previous study from our lab has revealed a new role of CD47 in regulating adipose tissue function, energy homeostasis and the development of obesity and metabolic disease in CD47 deficient mice. In this study, the therapeutic potential of an antisense oligonucleotide (ASO) targeting to CD47 in obesity and its-associated complications was determined in two obese mouse models (diet induced and genetic models). In diet induced obesity, male C57BL6 mice were fed with high fat (HF) diet to induce obesity and then treated with CD47ASO or control ASO for 8 weeks. In genetic obese mouse model, male six-week old ob/ob mice were treated with ASOs for 9 weeks. We found that CD47ASO treatment reduced HF diet-induced weight gain, decreased fat mass, prevented dyslipidemia, and improved glucose tolerance. These changes were accompanied by reduced inflammation in white adipose tissue and decreased hepatic steatosis. This protection was also seen in CD47ASO treated ob/ob mice. Mechanistically, CD47ASO treatment increased mice physical activity and energy expenditure, contributing to weight loss and improved metabolic outcomes in obese mice. Collectively, these findings suggest that CD47ASO might serve as a new treatment option for obesity and its-associated metabolic complications.
Collapse
Affiliation(s)
- Taesik Gwag
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Wethington Bldg. Room 583, 900 S. Limestone Street, Lexington, KY, 40536, USA
- Lexington Veterans Affairs Medical Center, Lexington, KY, 40502, USA
| | - Dong Li
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Wethington Bldg. Room 583, 900 S. Limestone Street, Lexington, KY, 40536, USA
- Lexington Veterans Affairs Medical Center, Lexington, KY, 40502, USA
| | - Eric Ma
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Wethington Bldg. Room 583, 900 S. Limestone Street, Lexington, KY, 40536, USA
| | - Zhenheng Guo
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Wethington Bldg. Room 583, 900 S. Limestone Street, Lexington, KY, 40536, USA
| | - Ying Liang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Shuxia Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Wethington Bldg. Room 583, 900 S. Limestone Street, Lexington, KY, 40536, USA.
- Lexington Veterans Affairs Medical Center, Lexington, KY, 40502, USA.
| |
Collapse
|
19
|
Paul D, Miller MH, Born J, Samaddar S, Ni H, Avila H, Krishnamurthy VR, Thirunavukkarasu K. The Promising Therapeutic Potential of Oligonucleotides for Pulmonary Fibrotic Diseases. Expert Opin Drug Discov 2023; 18:193-206. [PMID: 36562410 DOI: 10.1080/17460441.2023.2160439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Fibrotic lung diseases represent a large subset of diseases with an unmet clinical need. Oligonucleotide therapies (ONT) are a promising therapeutic approach for the treatment of pulmonary disease as they can inhibit pathways that are otherwise difficult to target. Additionally, targeting the lung specifically with ONT is advantageous because it reduces the possibilities of systemic side effects and tolerability concerns. AREAS COVERED This review presents the chemical basis of designing various ONTs currently known to treat fibrotic lung diseases. Further, the authors have also discussed the delivery vehicle, routes of administration, physiological barriers of the lung, and toxicity concerns with ONTs. EXPERT OPINION ONTs provide a promising therapeutic approach for the treatment of fibrotic diseases of the lung, particularly because ONTs directly delivered to the lung show little systemic side effects compared to current therapeutic strategies. Dry powder aerosolized inhalers may be a good strategy for getting ONTs into the lung in humans. However, as of now, no dry powder ONTs have been approved for use in the clinical setting, and this challenge must be overcome for future therapies. Various delivery methods that can aid in direct targeting may also improve the use of ONTs for lung fibrotic diseases.
Collapse
Affiliation(s)
| | | | - Josh Born
- Genetic Medicine, Eli Lilly and Company
| | - Shayak Samaddar
- Bioproduct Drug Development, Eli Lilly and Company, Indianapolis, IN, US
| | | | | | | | | |
Collapse
|
20
|
Takegawa-Araki T, Yasukawa K, Iwazaki N, Maruyama H, Furukawa H, Sawamoto H, Obika S. Parallel synthesis of oligonucleotides containing N-acyl amino-LNA and their therapeutic effects as anti-microRNAs. Org Biomol Chem 2022; 20:9351-9361. [PMID: 36383101 DOI: 10.1039/d2ob01809h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
2'-Amino-locked nucleic acid (ALNA), maintains excellent duplex stability, and the nitrogen at the 2'-position is an attractive scaffold for functionalization. Herein, a facile and efficient method for the synthesis of various 2'-N-acyl amino-LNA derivatives by direct acylation of the 2'-amino moiety contained in the synthesized oligonucleotides and its fundamental properties are described. The introduction of the acylated amino-LNA enhances the potency of the molecules as therapeutic anti-microRNA oligonucleotides.
Collapse
Affiliation(s)
- Tomo Takegawa-Araki
- Soyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan
| | - Kai Yasukawa
- Soyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan
| | - Norihiko Iwazaki
- Soyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan
| | - Hideto Maruyama
- Soyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan
| | - Hiroyuki Furukawa
- Soyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan
| | - Hiroaki Sawamoto
- Soyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
21
|
Burel SA, Machemer T, Baker BF, Kwoh TJ, Paz S, Younis H, Henry SP. Early-Stage Identification and Avoidance of Antisense Oligonucleotides Causing Species-Specific Inflammatory Responses in Human Volunteer Peripheral Blood Mononuclear Cells. Nucleic Acid Ther 2022; 32:457-472. [PMID: 35976085 DOI: 10.1089/nat.2022.0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A human peripheral blood mononuclear cell (PBMC)-based assay was developed to identify antisense oligonucleotide (ASO) with the potential to activate a cellular innate immune response outside of an acceptable level. The development of this assay was initiated when ISIS 353512 targeting the messenger ribonucleic acid for human C-reactive protein (CRP) was tested in a phase I clinical trial, in which healthy human volunteers unexpectedly experienced increases in interleukin-6 (IL-6) and CRP. This level of immune stimulation was not anticipated following rodent and nonhuman primate safety studies in which no evidence of exaggerated proinflammatory effects were observed. The IL-6 increase induced by ISIS 353512 was caused by activation of B cells. The IL-6 induction was inhibited by chloroquine pretreatment of PBMCs and the nature of ASOs suggested that the response is mediated by a Toll-like receptor (TLR), in all likelihood TLR9. While assessing the inter PBMC donor variability, two classes of human PBMC responders to ISIS 353512 were identified (discriminator and nondiscriminators). The discriminator donor PBMCs were shown to produce low level of IL-6 after 24 h in culture, in the absence of ASO treatment. The PBMC assay using discriminator donors was shown to be reproducible, allowing to assess reliably the immune potential of ASOs by comparison to known benchmark ASO controls that were previously shown to be either safe or inflammatory in clinical trials. Clinical Trial registration numbers: NCT00048321 NCT00330330 NCT00519727.
Collapse
Affiliation(s)
| | - Todd Machemer
- IONIS Pharmaceuticals, Inc., Carlsbad, California, USA
| | | | - T Jesse Kwoh
- IONIS Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Suzanne Paz
- IONIS Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Husam Younis
- IONIS Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Scott P Henry
- IONIS Pharmaceuticals, Inc., Carlsbad, California, USA
| |
Collapse
|
22
|
Sarli SL, Watts JK. Harnessing nucleic acid technologies for human health on earth and in space. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:113-126. [PMID: 36336357 DOI: 10.1016/j.lssr.2022.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/01/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Nucleic acid therapeutics are a versatile class of sequence-programmable drugs that offer a robust and clinically viable strategy to modulate expression or correct genetic defects contributing to disease. The majority of drugs currently on the market target proteins; however, proteins only represent a subset of possible disease targets. Nucleic acid therapeutics allow intuitive engagement with genome sequences providing a more direct way to target many diseases at their genetic root cause. Their clinical success depends on platform technologies which can support durable and well tolerated pharmacological activity in a given tissue. Nucleic acid drugs possess a potent combination of target specificity and adaptability required to advance drug development for many diseases. As these therapeutic technologies mature, their clinical applications can also expand access to personalized therapies for patients with rare or solo genetic diseases. Spaceflight crew members exposed to the unique hazards of spaceflight, especially those related to galactic cosmic radiation (GCR) exposure, represent another patient subset who may also benefit from nucleic acid drugs as countermeasures. In this review, we will discuss the various classes of RNA- and DNA-targeted nucleic acid drugs, provide an overview of their present-day clinical applications, and describe major strategies to improve their delivery, safety, and overall efficacy.
Collapse
Affiliation(s)
- Samantha L Sarli
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jonathan K Watts
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
23
|
Ito Y, Mizuno K, Sumise S, Kimura A, Noguchi N, Fuchi Y, Hari Y. Generation of 4'-Carbon Radicals via 1,5-Hydrogen Atom Transfer for the Synthesis of Bridged Nucleosides. Org Lett 2022; 24:7696-7700. [PMID: 36214750 DOI: 10.1021/acs.orglett.2c03285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The rapid and facile generation of 4'-carbon radicals from oxime imidates of nucleosides via 1,5-hydrogen atom transfer induced by iminyl radicals was developed. The cyclization of 4'-carbon radicals with olefins, followed by the hydrolysis of imidate residues, provided various 2'-O,4'-C- and 3'-O,4'-C-bridged nucleosides. This operationally simple approach can be applied to the few-step syntheses of 6'S-methyl-2'-O,4'-C-ethylene-bridged 5-methyluridine (6'S-Me-ENA-T) and S-constrained ethyl-bridged 5-methyluridine (S-cEt-T).
Collapse
Affiliation(s)
- Yuta Ito
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Koichi Mizuno
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Sanae Sumise
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Airi Kimura
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Nozomi Noguchi
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Yasufumi Fuchi
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Yoshiyuki Hari
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima 770-8514, Japan
| |
Collapse
|
24
|
Ericson E, Bergenholm L, Andréasson A, Dix CI, Knöchel J, Hansson SF, Lee R, Schumi J, Antonsson M, Fjellström O, Nasr P, Liljeblad M, Carlsson B, Kechagias S, Lindén D, Ekstedt M. Hepatic patatin-like phospholipase domain-containing 3 levels are increased in I148M risk allele carriers and correlate with NAFLD in humans. Hepatol Commun 2022; 6:2689-2701. [PMID: 35833455 PMCID: PMC9512469 DOI: 10.1002/hep4.2032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/29/2022] [Accepted: 06/13/2022] [Indexed: 11/09/2022] Open
Abstract
In nonalcoholic fatty liver disease (NAFLD) the patatin-like phospholipase domain-containing 3 (PNPLA3) rs738409 variant is a contributor. In mice, the Pnpla3 148M variant accumulates on lipid droplets and probably leads to sequestration of a lipase cofactor leading to impaired mobilization of triglycerides. To advance our understanding of the localization and abundance of PNPLA3 protein in humans, we used liver biopsies from patients with NAFLD to investigate the link to NAFLD and the PNPLA3 148M genotype. We experimentally qualified an antibody against human PNPLA3. Hepatic PNPLA3 protein fractional area and localization were determined by immunohistochemistry in biopsies from a well-characterized NAFLD cohort of 67 patients. Potential differences in hepatic PNPLA3 protein levels among patients related to degree of steatosis, lobular inflammation, ballooning, and fibrosis, and PNPLA3 I148M gene variants were assessed. Immunohistochemistry staining in biopsies from patients with NAFLD showed that hepatic PNPLA3 protein was predominantly localized to the membranes of small and large lipid droplets in hepatocytes. PNPLA3 protein levels correlated strongly with steatosis grade (p = 0.000027) and were also significantly higher in patients with lobular inflammation (p = 0.009), ballooning (p = 0.022), and significant fibrosis (stage 2-4, p = 0.014). In addition, PNPLA3 levels were higher in PNPLA3 rs738409 148M (CG, GG) risk allele carriers compared to 148I (CC) nonrisk allele carriers (p = 0.0029). Conclusion: PNPLA3 protein levels were associated with increased hepatic lipid content and disease severity in patients with NAFLD and were higher in PNPLA3 rs738409 (148M) risk allele carriers. Our hypothesis that increased hepatic levels of PNPLA3 may be part of the pathophysiological mechanism of NAFLD is supported.
Collapse
Affiliation(s)
- Elke Ericson
- Genome EngineeringDiscovery SciencesBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Linnéa Bergenholm
- Drug Metabolism and PharmacokineticsResearch and Early DevelopmentCardiovascular, Renal, and MetabolismBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Anne‐Christine Andréasson
- Bioscience CardiovascularResearch and Early DevelopmentCardiovascular, Renal, and MetabolismBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Carly I. Dix
- Discovery BiologyDiscovery Sciences, BioPharmaceuticals R&DAstraZenecaCambridgeUK
| | - Jane Knöchel
- Clinical Pharmacology and Quantitative PharmacologyClinical Pharmacology and Safety SciencesBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Sara F. Hansson
- Translational Science and Experimental MedicineResearch and Early DevelopmentCardiovascular, Renal, and MetabolismBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Richard Lee
- Antisense Drug DiscoveryIonis PharmaceuticalsCarlsbadCaliforniaUSA
- Preclinical Pharmacology and Translational Medicine, Verve TherapeuticsCambridgeMassachusettsUSA
| | - Jennifer Schumi
- Early Biometrics and Statistical InnovationData Science and Artificial IntelligenceBioPharmaceuticals R&DAstraZenecaGaithersburgMarylandUSA
| | - Madeleine Antonsson
- Drug Metabolism and PharmacokineticsResearch and Early DevelopmentCardiovascular, Renal, and MetabolismBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Ola Fjellström
- ProjectsCardiovascular, Renal, and MetabolismBiopharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Patrik Nasr
- Department of Gastroenterology and HepatologyDepartment of HealthMedicine and Caring SciencesLinköping UniversityLinköpingSweden
| | - Mathias Liljeblad
- Translational Science and Experimental MedicineResearch and Early DevelopmentCardiovascular, Renal, and MetabolismBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Björn Carlsson
- Early Clinical DevelopmentResearch and Early DevelopmentCardiovascular, Renal, and MetabolismBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Stergios Kechagias
- Department of Gastroenterology and HepatologyDepartment of HealthMedicine and Caring SciencesLinköping UniversityLinköpingSweden
| | - Daniel Lindén
- Bioscience MetabolismResearch and Early DevelopmentCardiovascular, Renal, and MetabolismBioPharmaceuticals R&DAstraZenecaGothenburgSweden
- Division of EndocrinologyDepartment of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Mattias Ekstedt
- Department of Gastroenterology and HepatologyDepartment of HealthMedicine and Caring SciencesLinköping UniversityLinköpingSweden
| |
Collapse
|
25
|
Helm J, Schöls L, Hauser S. Towards Personalized Allele-Specific Antisense Oligonucleotide Therapies for Toxic Gain-of-Function Neurodegenerative Diseases. Pharmaceutics 2022; 14:pharmaceutics14081708. [PMID: 36015334 PMCID: PMC9416334 DOI: 10.3390/pharmaceutics14081708] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022] Open
Abstract
Antisense oligonucleotides (ASOs) are single-stranded nucleic acid strings that can be used to selectively modify protein synthesis by binding complementary (pre-)mRNA sequences. By specific arrangements of DNA and RNA into a chain of nucleic acids and additional modifications of the backbone, sugar, and base, the specificity and functionality of the designed ASOs can be adjusted. Thereby cellular uptake, toxicity, and nuclease resistance, as well as binding affinity and specificity to its target (pre-)mRNA, can be modified. Several neurodegenerative diseases are caused by autosomal dominant toxic gain-of-function mutations, which lead to toxic protein products driving disease progression. ASOs targeting such mutations—or even more comprehensively, associated variants, such as single nucleotide polymorphisms (SNPs)—promise a selective degradation of the mutant (pre-)mRNA while sparing the wild type allele. By this approach, protein expression from the wild type strand is preserved, and side effects from an unselective knockdown of both alleles can be prevented. This makes allele-specific targeting strategies a focus for future personalized therapies. Here, we provide an overview of current strategies to develop personalized, allele-specific ASO therapies for the treatment of neurodegenerative diseases, such Huntington’s disease (HD) and spinocerebellar ataxia type 3 (SCA3/MJD).
Collapse
Affiliation(s)
- Jacob Helm
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Hertie Institute for Clinical Brain Research and Department of Neurology, University of Tübingen, 72076 Tübingen, Germany
- Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Ludger Schöls
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Hertie Institute for Clinical Brain Research and Department of Neurology, University of Tübingen, 72076 Tübingen, Germany
| | - Stefan Hauser
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Hertie Institute for Clinical Brain Research and Department of Neurology, University of Tübingen, 72076 Tübingen, Germany
- Correspondence:
| |
Collapse
|
26
|
Bartolucci D, Pession A, Hrelia P, Tonelli R. Precision Anti-Cancer Medicines by Oligonucleotide Therapeutics in Clinical Research Targeting Undruggable Proteins and Non-Coding RNAs. Pharmaceutics 2022; 14:pharmaceutics14071453. [PMID: 35890348 PMCID: PMC9315662 DOI: 10.3390/pharmaceutics14071453] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/24/2022] [Accepted: 07/08/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer incidence and mortality continue to increase, while the conventional chemotherapeutic drugs confer limited efficacy and relevant toxic side effects. Novel strategies are urgently needed for more effective and safe therapeutics in oncology. However, a large number of proteins are considered undruggable by conventional drugs, such as the small molecules. Moreover, the mRNA itself retains oncological functions, and its targeting offers the double advantage of blocking the tumorigenic activities of the mRNA and the translation into protein. Finally, a large family of non-coding RNAs (ncRNAs) has recently emerged that are also dysregulated in cancer, but they could not be targeted by drugs directed against the proteins. In this context, this review describes how the oligonucleotide therapeutics targeting RNA or DNA sequences, are emerging as a new class of drugs, able to tackle the limitations described above. Numerous clinical trials are evaluating oligonucleotides for tumor treatment, and in the next few years some of them are expected to reach the market. We describe the oligonucleotide therapeutics targeting undruggable proteins (focusing on the most relevant, such as those originating from the MYC and RAS gene families), and for ncRNAs, in particular on those that are under clinical trial evaluation in oncology. We highlight the challenges and solutions for the clinical success of oligonucleotide therapeutics, with particular emphasis on the peculiar challenges that render it arduous to treat tumors, such as heterogeneity and the high mutation rate. In the review are presented these and other advantages offered by the oligonucleotide as an emerging class of biotherapeutics for a new era of precision anti-cancer medicine.
Collapse
Affiliation(s)
| | - Andrea Pession
- Pediatric Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Roberto Tonelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
- Correspondence:
| |
Collapse
|
27
|
Yoshida T, Morihiro K, Naito Y, Mikami A, Kasahara Y, Inoue T, Obika S. Identification of nucleobase chemical modifications that reduce the hepatotoxicity of gapmer antisense oligonucleotides. Nucleic Acids Res 2022; 50:7224-7234. [PMID: 35801870 PMCID: PMC9303313 DOI: 10.1093/nar/gkac562] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 05/30/2022] [Accepted: 06/23/2022] [Indexed: 12/26/2022] Open
Abstract
Currently, gapmer antisense oligonucleotide (ASO) therapeutics are under clinical development for the treatment of various diseases, including previously intractable human disorders; however, they have the potential to induce hepatotoxicity. Although several groups have reported the reduced hepatotoxicity of gapmer ASOs following chemical modifications of sugar residues or internucleotide linkages, only few studies have described nucleobase modifications to reduce hepatotoxicity. In this study, we introduced single or multiple combinations of 17 nucleobase derivatives, including four novel derivatives, into hepatotoxic locked nucleic acid gapmer ASOs and examined their effects on hepatotoxicity. The results demonstrated successful identification of chemical modifications that strongly reduced the hepatotoxicity of gapmer ASOs. This approach expands the ability to design gapmer ASOs with optimal therapeutic profiles.
Collapse
Affiliation(s)
- Tokuyuki Yoshida
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Kunihiko Morihiro
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan
| | - Yuki Naito
- Database Center for Life Science (DBCLS), 1111 Yata, Mishima, Shizuoka 411-8540, Japan.,National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Atsushi Mikami
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Yuuya Kasahara
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan
| | - Takao Inoue
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan
| |
Collapse
|
28
|
Bellver-Sanchis A, Singh Choudhary B, Companys-Alemany J, Sukanya, Ávila-López PA, Martínez Rodríguez AL, Brea Floriani JM, Malik R, Pallàs M, Pérez B, Griñán-Ferré C. Structure-Based Virtual Screening and in vitro and in vivo Analyses Revealed Potent Methyltransferase G9a Inhibitors as Prospective Anti-Alzheimer's Agents. ChemMedChem 2022; 17:e202200002. [PMID: 35413149 PMCID: PMC9401600 DOI: 10.1002/cmdc.202200002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/11/2022] [Indexed: 11/20/2022]
Abstract
G9a is a lysine methyltransferase able to di-methylate lysine 9 of histone H3, promoting the repression of genes involved in learning and memory. Novel strategies based on synthesizing epigenetic drugs could regulate gene expression through histone post-translational modifications and effectively treat neurodegenerative diseases, like Alzheimer's disease (AD). Here, potential G9a inhibitors were identified using a structure-based virtual screening against G9a, followed by in vitro and in vivo screenings. First, screening methods with the AD transgenic Caenorhabditis elegans strain CL2006, showed that the toxicity/function range was safe and recovered age-dependent paralysis. Likewise, we demonstrated that the best candidates direct target G9a by reducing H3 K9me2 in the CL2006 strain. Further characterization of these compounds involved the assessment of the blood-brain barrier-permeability and impact on amyloid-β aggregation, showing promising results. Thus, we present a G9a inhibitor candidate, F, with a novel and potent structure, providing both leads in G9a inhibitor design and demonstrating their participation in reducing AD pathology.
Collapse
Affiliation(s)
- Aina Bellver-Sanchis
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, Universitat de Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Bhanwar Singh Choudhary
- Department of Pharmacy, Central University of Rajasthan, Bandarsindari, Ajmer, 305817, India
- Department of Pharmaceutical Chemistry and Quality Assurance, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana, Gujarat, 384012, India
| | - Júlia Companys-Alemany
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, Universitat de Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Sukanya
- Department of Pharmacy, Central University of Rajasthan, Bandarsindari, Ajmer, 305817, India
| | - Pedro A Ávila-López
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Antón Leandro Martínez Rodríguez
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Jose Manuel Brea Floriani
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Ruchi Malik
- Department of Pharmacy, Central University of Rajasthan, Bandarsindari, Ajmer, 305817, India
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, Universitat de Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Belén Pérez
- Department of Pharmacology, Therapeutic and Toxicology, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, Universitat de Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028, Barcelona, Spain
| |
Collapse
|
29
|
Kuo C, Nikan M, Yeh ST, Chappell AE, Tanowitz M, Seth PP, Prakash TP, Mullick AE. Targeted Delivery of Antisense Oligonucleotides Through Angiotensin Type 1 Receptor. Nucleic Acid Ther 2022; 32:300-311. [PMID: 35612431 DOI: 10.1089/nat.2021.0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We evaluated the potential of AGTR1, the principal receptor for angiotensin II (Ang II) and a member of the G protein-coupled receptor family, for targeted delivery of antisense oligonucleotides (ASOs) in cells and tissues with abundant AGTR1 expression. Ang II peptide ASO conjugates maintained robust AGTR1 signaling and receptor internalization when ASO was placed at the N-terminus of the peptide, but not at C-terminus. Conjugation of Ang II peptide improved ASO potency up to 12- to 17-fold in AGTR1-expressing cells. Additionally, evaluation of Ang II conjugates in cells lacking AGTR1 revealed no enhancement of ASO potency. Ang II peptide conjugation improves potency of ASO in mouse heart, adrenal, and adipose tissues. The data presented in this report add to a growing list of approaches for improving ASO potency in extrahepatic tissues.
Collapse
Affiliation(s)
- Carol Kuo
- Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Mehran Nikan
- Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Steve T Yeh
- Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | | | | | - Punit P Seth
- Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | | | | |
Collapse
|
30
|
Yang YW, Poudel B, Frederick J, Dhillon P, Shrestha R, Ma Z, Wu J, Okamoto K, Kopp JB, Booten SL, Gattis D, Watt AT, Palmer M, Aghajan M, Susztak K. Antisense oligonucleotides ameliorate kidney dysfunction in podocyte specific APOL1 risk variant mice. Mol Ther 2022; 30:2491-2504. [PMID: 35450819 DOI: 10.1016/j.ymthe.2022.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 03/23/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022] Open
Abstract
Coding variants (named G1 and G2) in Apolipoprotein L1 (APOL1) can explain the most excess risk of kidney disease observed in African Americans. It has been proposed that risk variant APOL1 dose, such as increased risk variant APOL1 level serves as a trigger (second hit) for disease development. The goal of this study was to determine whether lowering risk variant APOL1 levels protects from disease development in podocyte specific transgenic mouse disease model. We administered antisense oligonucleotides (ASO) targeting APOL1 to podocyte specific G2APOL1 mice and observed efficient reduction of APOL1 levels. APOL1 ASO1, which more efficiently lowered APOL1 transcript levels, protected mice from albuminuria, glomerulosclerosis, tubulointerstitial fibrosis, and renal failure. The administration of APOL1 ASO1 was effective even for established disease in the NEFTA-rtTA/TRE-G2APOL1 (NEFTA/G2APOL1) mice. We observed a strong correlation between APOL1 transcript level and disease severity. We concluded that an APOL1 ASO1 may be an effective therapeutic approach for APOL1-associated glomerular disease.
Collapse
Affiliation(s)
- Ya-Wen Yang
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA; Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Bibek Poudel
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Julia Frederick
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Poonam Dhillon
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Rojesh Shrestha
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Ziyuan Ma
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Junnan Wu
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Koji Okamoto
- Kidney Disease Section, NIDDK, NIH, Bethesda, MD, USA
| | | | | | | | | | - Matthew Palmer
- Department of Pathology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Katalin Susztak
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
31
|
Synthesis of 4'-C-(aminoethyl)thymidine and 4'-C-[(N-methyl)aminoethyl]thymidine by a new synthetic route and evaluation of the properties of the DNAs containing the nucleoside analogs. Bioorg Med Chem 2022; 60:116690. [PMID: 35259549 DOI: 10.1016/j.bmc.2022.116690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 11/21/2022]
Abstract
A gapmer-type antisense oligonucleotide is an oligonucleotide therapeutic that targets pathogenic mRNA directly, and it is expected to be a next-generation therapeutic drug. In this study, we designed and synthesized 4'-C-[(N-methyl)aminoethyl]-thymidine (4'-MAE-T) as a novel nucleoside analog and compared its properties with those of 4'-C-aminoethyl-thymidine (4'-AE-T). Furthermore, we designed a new synthetic route for 4'-C-aminoethyl-modified nucleosides and accomplished the synthesis of 4'-AE-T via a novel pathway with high total yield. DNA containing 4'-MAE-T analogs decreased RNA affinity slightly more than unmodified DNA and DNA containing 4'-AE-T, but significantly improved nuclease resistance compared to unmodified DNA in a solution containing bovine serum. In addition, the impact of 4'-MAE-T on DNA stability was higher than that of 4'-AE-T. Also, DNA containing these analogs can activate Escherichia coli-derived RNase H. Thus, 4'-MAE-T has the potential to be used in gapmer-type antisense nucleic acids as a suitable candidate for the development of therapeutic antisense oligonucleotides.
Collapse
|
32
|
Revenko A, Carnevalli LS, Sinclair C, Johnson B, Peter A, Taylor M, Hettrick L, Chapman M, Klein S, Solanki A, Gattis D, Watt A, Hughes AM, Magiera L, Kar G, Ireland L, Mele DA, Sah V, Singh M, Walton J, Mairesse M, King M, Edbrooke M, Lyne P, Barry ST, Fawell S, Goldberg FW, MacLeod AR. Direct targeting of FOXP3 in Tregs with AZD8701, a novel antisense oligonucleotide to relieve immunosuppression in cancer. J Immunother Cancer 2022; 10:jitc-2021-003892. [PMID: 35387780 PMCID: PMC8987763 DOI: 10.1136/jitc-2021-003892] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The Regulatory T cell (Treg) lineage is defined by the transcription factor FOXP3, which controls immune-suppressive gene expression profiles. Tregs are often recruited in high frequencies to the tumor microenvironment where they can suppress antitumor immunity. We hypothesized that pharmacological inhibition of FOXP3 by systemically delivered, unformulated constrained ethyl-modified antisense oligonucleotides could modulate the activity of Tregs and augment antitumor immunity providing therapeutic benefit in cancer models and potentially in man. METHODS We have identified murine Foxp3 antisense oligonucleotides (ASOs) and clinical candidate human FOXP3 ASO AZD8701. Pharmacology and biological effects of FOXP3 inhibitors on Treg function and antitumor immunity were tested in cultured Tregs and mouse syngeneic tumor models. Experiments were controlled by vehicle and non-targeting control ASO groups as well as by use of multiple independent FOXP3 ASOs. Statistical significance of biological effects was evaluated by one or two-way analysis of variance with multiple comparisons. RESULTS AZD8701 demonstrated a dose-dependent knockdown of FOXP3 in primary Tregs, reduction of suppressive function and efficient target downregulation in humanized mice at clinically relevant doses. Surrogate murine FOXP3 ASO, which efficiently downregulated Foxp3 messenger RNA and protein levels in primary Tregs, reduced Treg suppressive function in immune suppression assays in vitro. FOXP3 ASO promoted more than 70% reduction in FOXP3 levels in Tregs in vitro and in vivo, strongly modulated Treg effector molecules (eg, ICOS, CTLA-4, CD25 and 4-1BB), and augmented CD8+ T cell activation and produced antitumor activity in syngeneic tumor models. The combination of FOXP3 ASOs with immune checkpoint blockade further enhanced antitumor efficacy. CONCLUSIONS Antisense inhibitors of FOXP3 offer a promising novel cancer immunotherapy approach. AZD8701 is being developed clinically as a first-in-class FOXP3 inhibitor for the treatment of cancer currently in Ph1a/b clinical trial (NCT04504669).
Collapse
Affiliation(s)
| | | | | | - Ben Johnson
- Ionis Pharmaceuticals, Carlsbad, California, USA
| | | | | | | | - Melissa Chapman
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | | | | | | | - Andrew Watt
- Ionis Pharmaceuticals, Carlsbad, California, USA
| | | | | | - Gozde Kar
- Oncology R&D, AstraZeneca, Cambridge, UK
| | | | | | - Vasu Sah
- Oncology R&D, AstraZeneca, Waltham, MA, USA
| | | | | | | | | | | | - Paul Lyne
- Oncology R&D, AstraZeneca, Waltham, MA, USA
| | | | | | | | | |
Collapse
|
33
|
Pierce JB, Zhou H, Simion V, Feinberg MW. Long Noncoding RNAs as Therapeutic Targets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1363:161-175. [PMID: 35220570 DOI: 10.1007/978-3-030-92034-0_9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as critical regulators of cellular functions including maintenance of cellular homeostasis as well as the onset and progression of disease. LncRNAs often exhibit cell-, tissue-, and disease-specific expression patterns, making them desirable therapeutic targets. LncRNAs are commonly targeted using oligonucleotide therapeutics, and advances in oligonucleotide chemistry including C2 ribose sugar modifications such as 2'-fluoro, 2'-O-methyl, and 2-O-methoxyethyl modifications; 2'4'-constrained nucleotides such as locked nucleic acids and constrained 2'-O-ethyl (cEt) nucleotides; and phosphorothioate bonds have dramatically improved efficacy of oligonucleotide therapies. Novel delivery platforms such as viral vectors and nanoparticles have also improved pharmacokinetic properties of oligonucleotides targeting lncRNAs. Accumulating pre-clinical studies have utilized these strategies to therapeutically target lncRNAs and alter progression of many different disease states including Snhg12 and Chast in cardiovascular disease, Mirt2 and HOTTIP in sepsis and autoimmune disease, and Malat1 and HOXB-AS3 in cancer. Emerging oligonucleotide conjugation methods including the use of peptide nucleic acids hold promise to facilitate targeting to specific tissue types. Here, we review recent advances in lncRNA therapeutics and provide examples of how lncRNAs have been successfully targeted in pre-clinical models of disease. Finally, we detail remaining challenges facing the lncRNA field and how advances in delivery platforms and oligonucleotide chemistry might help overcome these barriers to catalyze the translation of pre-clinical studies to successful pharmaceutical development.
Collapse
Affiliation(s)
- Jacob B Pierce
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Haoyang Zhou
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Viorel Simion
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark W Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
34
|
Gopi C, Dhanaraju MD, Dhanaraju K. Antisense oligonucleotides: recent progress in the treatment of various diseases. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00202-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Antisense oligonucleotides are a promising novel class of therapeutic agents to treat different diseases in living things. They provide an efficient method for making target-selective agents because they change gene expression sequences. Therefore, the malfunctioning protein could be stopped, and the source of disease would be obliterated. The existing reviews of antisense oligonucleotides are focusing on discovery, development and concept. However, there is no review paper concerning the latest development of antisense oligonucleotides and their different therapeutic uses. Therefore, the present work has been targeting a comprehensive summary of newly synthesized antisense oligonucleotides and their biological activities.
Main body
Antisense oligonucleotides are different from traditional therapeutic agents that are planned to interact with mRNA and modulate protein expression through a unique mechanism of action. In the last three decades, several researchers revealed the newer antisense oligonucleotides found with a high therapeutic profile due to more selective action on the drug target and thus producing a lesser side effect and low toxicity. This review emphasizes the research work on antisense oligonucleotides and their therapeutic activities.
Short conclusion
With the support of the literature review, here we enlisted various antisense oligonucleotides that were prepared by appropriate technique and explored their pharmacological activities. To the best of our knowledge, it is the right time to consider the antisense oligonucleotides as a perfect choice of treatment for different diseases due to conceptual simplicity, more selective action, lesser side effects, low toxicity and permanent cure.
Graphical abstract
Collapse
|
35
|
Ma WK, Voss DM, Scharner J, Costa ASH, Lin KT, Jeon HY, Wilkinson JE, Jackson M, Rigo F, Bennett CF, Krainer AR. ASO-based PKM splice-switching therapy inhibits hepatocellular carcinoma growth. Cancer Res 2021; 82:900-915. [PMID: 34921016 DOI: 10.1158/0008-5472.can-20-0948] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 10/22/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022]
Abstract
The M2 pyruvate kinase (PKM2) isoform is upregulated in most cancers and plays a crucial role in regulation of the Warburg effect, which is characterized by the preference for aerobic glycolysis over oxidative phosphorylation for energy metabolism. PKM2 is an alternative-splice isoform of the PKM gene and is a potential therapeutic target. Antisense oligonucleotides (ASO) that switch PKM splicing from the cancer-associated PKM2 to the PKM1 isoform have been shown to induce apoptosis in cultured glioblastoma cells when delivered by lipofection. Here, we explore the potential of ASO-based PKM splice switching as a targeted therapy for liver cancer. A more potent lead cEt/DNA ASO induced PKM splice-switching and inhibited the growth of cultured hepatocellular carcinoma (HCC) cells. This PKM isoform switch increased pyruvate-kinase activity and altered glucose metabolism. In an orthotopic HCC xenograft mouse model, the lead ASO and a second ASO targeting a non-overlapping site inhibited tumor growth. Finally, in a genetic HCC mouse model, a surrogate mouse-specific ASO induced Pkm splice switching and inhibited tumorigenesis, without observable toxicity. These results lay the groundwork for a potential ASO-based splicing therapy for HCC.
Collapse
Affiliation(s)
| | - Dillon M Voss
- Medical Scientist Training Program (MSTP), Stony Brook University School of Medicine
| | | | - Ana S H Costa
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai
| | | | | | - John E Wilkinson
- Unit for Laboratory Animal Medicine, University of Michigan–Ann Arbor
| | | | | | | | | |
Collapse
|
36
|
Sacco A, Federico C, Todoerti K, Ziccheddu B, Palermo V, Giacomini A, Ravelli C, Maccarinelli F, Bianchi G, Belotti A, Ribolla R, Favasuli V, Revenko AS, Macleod AR, Willis B, Cai H, Hauser J, Rooney C, Willis SE, Martin PL, Staniszewska A, Ambrose H, Hanson L, Cattaneo C, Tucci A, Rossi G, Ronca R, Neri A, Mitola S, Bolli N, Presta M, Moschetta M, Ross S, Roccaro AM. Specific targeting of the KRAS mutational landscape in myeloma as a tool to unveil the elicited antitumor activity. Blood 2021; 138:1705-1720. [PMID: 34077955 PMCID: PMC9710471 DOI: 10.1182/blood.2020010572] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/07/2021] [Indexed: 12/14/2022] Open
Abstract
Alterations in KRAS have been identified as the most recurring somatic variants in the multiple myeloma (MM) mutational landscape. Combining DNA and RNA sequencing, we studied 756 patients and observed KRAS as the most frequently mutated gene in patients at diagnosis; in addition, we demonstrated the persistence or de novo occurrence of the KRAS aberration at disease relapse. Small-molecule inhibitors targeting KRAS have been developed; however, they are selective for tumors carrying the KRASG12C mutation. Therefore, there is still a need to develop novel therapeutic approaches to target the KRAS mutational events found in other tumor types, including MM. We used AZD4785, a potent and selective antisense oligonucleotide that selectively targets and downregulates all KRAS isoforms, as a tool to dissect the functional sequelae secondary to KRAS silencing in MM within the context of the bone marrow niche and demonstrated its ability to significantly silence KRAS, leading to inhibition of MM tumor growth, both in vitro and in vivo, and confirming KRAS as a driver and therapeutic target in MM.
Collapse
Affiliation(s)
- Antonio Sacco
- Clinical Research Development and Phase I Unit, CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Cinzia Federico
- Clinical Research Development and Phase I Unit, CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Katia Todoerti
- Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Bachisio Ziccheddu
- Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin, Italy
| | - Valentina Palermo
- Clinical Research Development and Phase I Unit, CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Federica Maccarinelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giada Bianchi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Angelo Belotti
- Hematology, ASST Spedali Civili di Brescia, Brescia, Italy
| | | | - Vanessa Favasuli
- Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | | | | | | | - Joana Hauser
- Oncology R &D, AstraZeneca, Cambridge, United Kingdom; and
| | - Claire Rooney
- Oncology R &D, AstraZeneca, Cambridge, United Kingdom; and
| | | | | | | | - Helen Ambrose
- Oncology R &D, AstraZeneca, Cambridge, United Kingdom; and
| | - Lyndsey Hanson
- Oncology R &D, AstraZeneca, Cambridge, United Kingdom; and
| | | | | | - Giuseppe Rossi
- Hematology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Antonino Neri
- Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Niccolò Bolli
- Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Sarah Ross
- Oncology R &D, AstraZeneca, Cambridge, United Kingdom; and
| | - Aldo M. Roccaro
- Clinical Research Development and Phase I Unit, CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| |
Collapse
|
37
|
Kapustin AN, Davey P, Longmire D, Matthews C, Linnane E, Rustogi N, Stavrou M, Devine PWA, Bond NJ, Hanson L, Sonzini S, Revenko A, MacLeod AR, Ross S, Chiarparin E, Puri S. Antisense oligonucleotide activity in tumour cells is influenced by intracellular LBPA distribution and extracellular vesicle recycling. Commun Biol 2021; 4:1241. [PMID: 34725463 PMCID: PMC8560811 DOI: 10.1038/s42003-021-02772-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/08/2021] [Indexed: 12/18/2022] Open
Abstract
Next generation modified antisense oligonucleotides (ASOs) are commercially approved new therapeutic modalities, yet poor productive uptake and endosomal entrapment in tumour cells limit their broad application. Here we compare intracellular traffic of anti KRAS antisense oligonucleotide (AZD4785) in tumour cell lines PC9 and LK2, with good and poor productive uptake, respectively. We find that the majority of AZD4785 is rapidly delivered to CD63+late endosomes (LE) in both cell lines. Importantly, lysobisphosphatidic acid (LBPA) that triggers ASO LE escape is presented in CD63+LE in PC9 but not in LK2 cells. Moreover, both cell lines recycle AZD4785 in extracellular vesicles (EVs); however, AZD4785 quantification by advanced mass spectrometry and proteomic analysis reveals that LK2 recycles more AZD4785 and RNA-binding proteins. Finally, stimulating LBPA intracellular production or blocking EV recycling enhances AZD4785 activity in LK2 but not in PC9 cells thus offering a possible strategy to enhance ASO potency in tumour cells with poor productive uptake of ASOs. Kapustin et al. investigate the intracellular trafficking of anti-KRAS antisense oligonucleotides. They show that the oligonucleotide AZD4785 is recycled via late endosomes in extracellular vesicles in both cells with poor and good oligo productive uptake, and that inducing lysobisphosphatidic acid in late endosomes or blocking EV recycling enhance AZD4785 activity in cells with poor productive uptake, potentially offering improved treatment strategies.
Collapse
Affiliation(s)
- Alexander N Kapustin
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
| | - Paul Davey
- Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - David Longmire
- Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Carl Matthews
- Antibody Discovery & Protein Engineering, R&D, AstraZeneca, Cambridge, UK
| | - Emily Linnane
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Nitin Rustogi
- Analytical Sciences, Biopharmaceutical Development, R&D, AstraZeneca, Cambridge, UK
| | - Maria Stavrou
- Analytical Sciences, Biopharmaceutical Development, R&D, AstraZeneca, Cambridge, UK
| | - Paul W A Devine
- Analytical Sciences, Biopharmaceutical Development, R&D, AstraZeneca, Cambridge, UK
| | - Nicholas J Bond
- Analytical Sciences, Biopharmaceutical Development, R&D, AstraZeneca, Cambridge, UK
| | - Lyndsey Hanson
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Alderley Park, UK
| | - Silvia Sonzini
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | | | - Sarah Ross
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | | | - Sanyogitta Puri
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
38
|
Chen JZ, Sawada H, Ye D, Katsumata Y, Kukida M, Ohno-Urabe S, Moorleghen JJ, Franklin MK, Howatt DA, Sheppard MB, Mullick AE, Lu HS, Daugherty A. Deletion of AT1a (Angiotensin II Type 1a) Receptor or Inhibition of Angiotensinogen Synthesis Attenuates Thoracic Aortopathies in Fibrillin1 C1041G/+ Mice. Arterioscler Thromb Vasc Biol 2021; 41:2538-2550. [PMID: 34407634 PMCID: PMC8458261 DOI: 10.1161/atvbaha.121.315715] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objective: A cardinal feature of Marfan syndrome is thoracic aortic aneurysm. The contribution of the renin-angiotensin system via AT1aR (Ang II [angiotensin II] receptor type 1a) to thoracic aortic aneurysm progression remains controversial because the beneficial effects of angiotensin receptor blockers have been ascribed to off-target effects. This study used genetic and pharmacological modes of attenuating angiotensin receptor and ligand, respectively, to determine their roles on thoracic aortic aneurysm in mice with fibrillin-1 haploinsufficiency (Fbn1C1041G/+). Approach and Results: Thoracic aortic aneurysm in Fbn1C1041G/+ mice was found to be strikingly sexual dimorphic. Males displayed aortic dilation over 12 months while aortic dilation in Fbn1C1041G/+ females did not differ significantly from wild-type mice. To determine the role of AT1aR, Fbn1C1041G/+ mice that were either +/+ or -/- for AT1aR were generated. AT1aR deletion reduced expansion of ascending aorta and aortic root diameter from 1 to 12 months of age in males. Medial thickening and elastin fragmentation were attenuated. An antisense oligonucleotide against angiotensinogen was administered to male Fbn1C1041G/+ mice to determine the effects of Ang II depletion. Antisense oligonucleotide against angiotensinogen administration attenuated dilation of the ascending aorta and aortic root and reduced extracellular remodeling. Aortic transcriptome analyses identified potential targets by which inhibition of the renin-angiotensin system reduced aortic dilation in Fbn1C1041G/+ mice. Conclusions: Deletion of AT1aR or inhibition of Ang II production exerted similar effects in attenuating pathologies in the proximal thoracic aorta of male Fbn1C1041G/+ mice. Inhibition of the renin-angiotensin system attenuated dysregulation of genes within the aorta related to pathology of Fbn1C1041G/+ mice.
Collapse
MESH Headings
- Angiotensinogen/genetics
- Angiotensinogen/metabolism
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/prevention & control
- Disease Models, Animal
- Female
- Fibrillin-1/genetics
- Fibrillin-1/metabolism
- Gene Deletion
- Genetic Predisposition to Disease
- Haploinsufficiency
- Male
- Marfan Syndrome/genetics
- Marfan Syndrome/metabolism
- Marfan Syndrome/pathology
- Mice, Inbred C57BL
- Mice, Knockout
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/metabolism
- Phenotype
- Receptor, Angiotensin, Type 1/deficiency
- Receptor, Angiotensin, Type 1/genetics
- Renin-Angiotensin System/genetics
- Sex Characteristics
- Sex Factors
- Transcriptome
- Mice
Collapse
Affiliation(s)
- Jeff Z. Chen
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| | - Hisashi Sawada
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| | - Dien Ye
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
| | - Yuriko Katsumata
- Department Biostatistics, University of Kentucky, Lexington, KY
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
| | - Masayoshi Kukida
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
| | - Satoko Ohno-Urabe
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
| | - Jessica J. Moorleghen
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
| | - Michael K. Franklin
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
| | - Deborah A. Howatt
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
| | - Mary B. Sheppard
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
- Department of Family and Community Medicine, University of Kentucky, Lexington, KY
- Department of Surgery, University of Kentucky, Lexington, KY
| | | | - Hong S. Lu
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| |
Collapse
|
39
|
Ito Y, Nishida K, Tsutsui N, Fuchi Y, Hari Y. Synthesis and Properties of Oligonucleotides Containing 2′‐
O
,4′‐
C
‐Ethylene‐Bridged 5‐Methyluridine with Exocyclic Methylene and Methyl Groups in the Bridge. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuta Ito
- Faculty of Pharmaceutical Sciences Tokushima Bunri University Nishihama, Yamashiro-cho Tokushima 770-8514 Japan
| | - Kodai Nishida
- Faculty of Pharmaceutical Sciences Tokushima Bunri University Nishihama, Yamashiro-cho Tokushima 770-8514 Japan
| | - Norika Tsutsui
- Faculty of Pharmaceutical Sciences Tokushima Bunri University Nishihama, Yamashiro-cho Tokushima 770-8514 Japan
| | - Yasufumi Fuchi
- Faculty of Pharmaceutical Sciences Tokushima Bunri University Nishihama, Yamashiro-cho Tokushima 770-8514 Japan
| | - Yoshiyuki Hari
- Faculty of Pharmaceutical Sciences Tokushima Bunri University Nishihama, Yamashiro-cho Tokushima 770-8514 Japan
| |
Collapse
|
40
|
Caputo M, Kurhe Y, Kumari S, Cansby E, Amrutkar M, Scandalis E, Booten SL, Ståhlman M, Borén J, Marschall HU, Aghajan M, Mahlapuu M. Silencing of STE20-type kinase MST3 in mice with antisense oligonucleotide treatment ameliorates diet-induced nonalcoholic fatty liver disease. FASEB J 2021; 35:e21567. [PMID: 33891332 DOI: 10.1096/fj.202002671rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/15/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is emerging as a leading cause of chronic liver disease worldwide. Despite intensive nonclinical and clinical research in this field, no specific pharmacological therapy is currently approved to treat NAFLD, which has been recognized as one of the major unmet medical needs of the 21st century. Our recent studies have identified STE20-type kinase MST3, which localizes to intracellular lipid droplets, as a critical regulator of ectopic fat accumulation in human hepatocytes. Here, we explored whether treatment with Mst3-targeting antisense oligonucleotides (ASOs) can promote hepatic lipid clearance and mitigate NAFLD progression in mice in the context of obesity. We found that administration of Mst3-targeting ASOs in mice effectively ameliorated the full spectrum of high-fat diet-induced NAFLD including liver steatosis, inflammation, fibrosis, and hepatocellular damage. Mechanistically, Mst3 ASOs suppressed lipogenic gene expression, as well as acetyl-CoA carboxylase (ACC) protein abundance, and substantially reduced lipotoxicity-mediated oxidative and endoplasmic reticulum stress in the livers of obese mice. Furthermore, we found that MST3 protein levels correlated positively with the severity of NAFLD in human liver biopsies. In summary, this study provides the first in vivo evidence that antagonizing MST3 signaling is sufficient to mitigate NAFLD progression in conditions of excess dietary fuels and warrants future investigations to assess whether MST3 inhibitors may provide a new strategy for the treatment of patients with NAFLD.
Collapse
Affiliation(s)
- Mara Caputo
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Yeshwant Kurhe
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sima Kumari
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Emmelie Cansby
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Manoj Amrutkar
- Department of Hepato-Pancreato-Biliary Surgery, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | | | - Marcus Ståhlman
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jan Borén
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hanns-Ulrich Marschall
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Margit Mahlapuu
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
41
|
Bizot F, Vulin A, Goyenvalle A. Current Status of Antisense Oligonucleotide-Based Therapy in Neuromuscular Disorders. Drugs 2021; 80:1397-1415. [PMID: 32696107 DOI: 10.1007/s40265-020-01363-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neuromuscular disorders include a wide range of diseases affecting the peripheral nervous system, which are primarily characterized by progressive muscle weakness and wasting. While there were no effective therapies until recently, several therapeutic approaches have advanced to clinical trials in the past few years. Among these, the antisense technology aiming at modifying RNA processing and function has remarkably progressed and a few antisense oligonucleotides (ASOs) have now been approved. Despite these recent clinical successes, several ASOs have also failed and clinical programs have been suspended, in most cases when the route of administration was systemic, highlighting the existing challenges notably with respect to effective ASO delivery. In this review we summarize the recent advances and current status of antisense based-therapies for neuromuscular disorders, using successful as well as unsuccessful examples to highlight the variability of outcomes depending on the target tissue and route of administration. We describe the different ASO-mediated therapeutic approaches, including splice-switching applications, steric-blocking strategies and targeted gene knock-down mediated by ribonuclease H recruitment. In this overview, we discuss the merits and challenges of the current ASO technology, and discuss the future of ASO development.
Collapse
Affiliation(s)
- Flavien Bizot
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000, Versailles, France
| | - Adeline Vulin
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000, Versailles, France.,SQY Therapeutics, Université de Versailles St-Quentin, Montigny le Bretonneux, France
| | - Aurélie Goyenvalle
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000, Versailles, France. .,LIA BAHN, Centre scientifique de Monaco, Monaco, Monaco.
| |
Collapse
|
42
|
Sun X, Feinberg MW. Vascular Endothelial Senescence: Pathobiological Insights, Emerging Long Noncoding RNA Targets, Challenges and Therapeutic Opportunities. Front Physiol 2021; 12:693067. [PMID: 34220553 PMCID: PMC8242592 DOI: 10.3389/fphys.2021.693067] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/07/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a stable form of cell cycle arrest in response to various stressors. While it serves as an endogenous pro-resolving mechanism, detrimental effects ensue when it is dysregulated. In this review, we introduce recent advances for cellular senescence and inflammaging, the underlying mechanisms for the reduction of nicotinamide adenine dinucleotide in tissues during aging, new knowledge learned from p16 reporter mice, and the development of machine learning algorithms in cellular senescence. We focus on pathobiological insights underlying cellular senescence of the vascular endothelium, a critical interface between blood and all tissues. Common causes and hallmarks of endothelial senescence are highlighted as well as recent advances in endothelial senescence. The regulation of cellular senescence involves multiple mechanistic layers involving chromatin, DNA, RNA, and protein levels. New targets are discussed including the roles of long noncoding RNAs in regulating endothelial cellular senescence. Emerging small molecules are highlighted that have anti-aging or anti-senescence effects in age-related diseases and impact homeostatic control of the vascular endothelium. Lastly, challenges and future directions are discussed including heterogeneity of endothelial cells and endothelial senescence, senescent markers and detection of senescent endothelial cells, evolutionary differences for immune surveillance in mice and humans, and long noncoding RNAs as therapeutic targets in attenuating cellular senescence. Accumulating studies indicate that cellular senescence is reversible. A better understanding of endothelial cellular senescence through lifestyle and pharmacological interventions holds promise to foster a new frontier in the management of cardiovascular disease risk.
Collapse
Affiliation(s)
- Xinghui Sun
- Department of Biochemistry, University of Nebraska–Lincoln, Lincoln, NE, United States
- Nebraska Center for the Prevention of Obesity Diseases Through Dietary Molecules, University of Nebraska–Lincoln, Lincoln, NE, United States
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska–Lincoln, Lincoln, NE, United States
| | - Mark W. Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
43
|
Prakash TP, Yu J, Shen W, De Hoyos CL, Berdeja A, Gaus H, Liang XH, Crooke ST, Seth PP. Site-specific Incorporation of 2',5'-Linked Nucleic Acids Enhances Therapeutic Profile of Antisense Oligonucleotides. ACS Med Chem Lett 2021; 12:922-927. [PMID: 34141070 DOI: 10.1021/acsmedchemlett.1c00072] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/01/2021] [Indexed: 12/30/2022] Open
Abstract
Site-specific incorporation of 2'-modifications and neutral linkages in the deoxynucleotide gap region of toxic phosphorothioate (PS) gapmer ASOs can enhance therapeutic index and safety. In this manuscript, we determined the effect of introducing 2',5'-linked RNA in the deoxynucleotide gap region on toxicity and potency of PS ASOs. Our results demonstrate that incorporation of 2',5'-linked RNA in the gap region dramatically improved hepatotoxicity profile of PS-ASOs without compromising potency and provide a novel alternate chemical approach for improving therapeutic index of ASO drugs.
Collapse
Affiliation(s)
- Thazha P. Prakash
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Jinghua Yu
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Wen Shen
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Cheryl Li De Hoyos
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Andres Berdeja
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Hans Gaus
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Xue-hai Liang
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Stanley T. Crooke
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Punit P. Seth
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California 92010, United States
| |
Collapse
|
44
|
Nilsson JR, Baladi T, Gallud A, Baždarević D, Lemurell M, Esbjörner EK, Wilhelmsson LM, Dahlén A. Fluorescent base analogues in gapmers enable stealth labeling of antisense oligonucleotide therapeutics. Sci Rep 2021; 11:11365. [PMID: 34059711 PMCID: PMC8166847 DOI: 10.1038/s41598-021-90629-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/13/2021] [Indexed: 01/28/2023] Open
Abstract
To expand the antisense oligonucleotide (ASO) fluorescence labeling toolbox beyond covalent conjugation of external dyes (e.g. ATTO-, Alexa Fluor-, or cyanine dyes), we herein explore fluorescent base analogues (FBAs) as a novel approach to endow fluorescent properties to ASOs. Both cytosine and adenine analogues (tC, tCO, 2CNqA, and pA) were incorporated into a 16mer ASO sequence with a 3-10-3 cEt-DNA-cEt (cEt = constrained ethyl) gapmer design. In addition to a comprehensive photophysical characterization, we assess the label-induced effects on the gapmers' RNA affinities, RNA-hybridized secondary structures, and knockdown efficiencies. Importantly, we find practically no perturbing effects for gapmers with single FBA incorporations in the biologically critical gap region and, except for pA, the FBAs do not affect the knockdown efficiencies. Incorporating two cytosine FBAs in the gap is equally well tolerated, while two adenine analogues give rise to slightly reduced knockdown efficiencies and what could be perturbed secondary structures. We furthermore show that the FBAs can be used to visualize gapmers inside live cells using fluorescence microscopy and flow cytometry, enabling comparative assessment of their uptake. This altogether shows that FBAs are functional ASO probes that provide a minimally perturbing in-sequence labeling option for this highly relevant drug modality.
Collapse
Affiliation(s)
- Jesper R Nilsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Tom Baladi
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden.,Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Audrey Gallud
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden.,Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Dženita Baždarević
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Malin Lemurell
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elin K Esbjörner
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - L Marcus Wilhelmsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Anders Dahlén
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
45
|
Targeting Smyd3 by next-generation antisense oligonucleotides suppresses liver tumor growth. iScience 2021; 24:102473. [PMID: 34113819 PMCID: PMC8169948 DOI: 10.1016/j.isci.2021.102473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/23/2021] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
The oncogenic function of suppressor of variegation, enhancer of zeste and MYeloid-Nervy-DEAF1-domain family methyltransferase Smyd3 has been implicated in various malignancies, including hepatocellular carcinoma (HCC). Here, we show that targeting Smyd3 by next-generation antisense oligonucleotides (Smyd3-ASO) is an efficient approach to modulate its mRNA levels in vivo and to halt the growth of already initiated liver tumors. Smyd3-ASO treatment dramatically decreased tumor burden in a mouse model of chemically induced HCC and negatively affected the growth rates, migration, oncosphere formation, and xenograft growth capacity of a panel of human hepatic cancer cell lines. Smyd3-ASOs prevented the activation of oncofetal genes and the development of cancer-specific gene expression program. The results point to a mechanism by which Smyd3-ASO treatment blocks cellular de-differentiation, a hallmark feature of HCC development, and, as a result, it inhibits the expansion of hepatic cancer stem cells, a population that has been presumed to resist chemotherapy.
Collapse
|
46
|
Su Y, Bayarjargal M, Hale TK, Filichev VV. DNA with zwitterionic and negatively charged phosphate modifications: Formation of DNA triplexes, duplexes and cell uptake studies. Beilstein J Org Chem 2021; 17:749-761. [PMID: 33828619 PMCID: PMC8022206 DOI: 10.3762/bjoc.17.65] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
Two phosphate modifications were introduced into the DNA backbone using the Staudinger reaction between the 3’,5’-dinucleoside β-cyanoethyl phosphite triester formed during DNA synthesis and sulfonyl azides, 4-(azidosulfonyl)-N,N,N-trimethylbutan-1-aminium iodide (N+ azide) or p-toluenesulfonyl (tosyl or Ts) azide, to provide either a zwitterionic phosphoramidate with N+ modification or a negatively charged phosphoramidate for Ts modification in the DNA sequence. The incorporation of these N+ and Ts modifications led to the formation of thermally stable parallel DNA triplexes, regardless of the number of modifications incorporated into the oligodeoxynucleotides (ONs). For both N+ and Ts-modified ONs, the antiparallel duplexes formed with complementary RNA were more stable than those formed with complementary DNA (except for ONs with modification in the middle of the sequence). Additionally, the incorporation of N+ modifications led to the formation of duplexes with a thermal stability that was less dependent on the ionic strength than native DNA duplexes. The thermodynamic analysis of the melting curves revealed that it is the reduction in unfavourable entropy, despite the decrease in favourable enthalpy, which is responsible for the stabilisation of duplexes with N+ modification. N+ONs also demonstrated greater resistance to nuclease digestion by snake venom phosphodiesterase I than the corresponding Ts-ONs. Cell uptake studies showed that Ts-ONs can enter the nucleus of mouse fibroblast NIH3T3 cells without any transfection reagent, whereas, N+ONs remain concentrated in vesicles within the cytoplasm. These results indicate that both N+ and Ts-modified ONs are promising for various in vivo applications.
Collapse
Affiliation(s)
- Yongdong Su
- School of Fundamental Sciences, Massey University, Private Bag 11-222, 4442 Palmerston North, New Zealand
| | - Maitsetseg Bayarjargal
- School of Fundamental Sciences, Massey University, Private Bag 11-222, 4442 Palmerston North, New Zealand
| | - Tracy K Hale
- School of Fundamental Sciences, Massey University, Private Bag 11-222, 4442 Palmerston North, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Vyacheslav V Filichev
- School of Fundamental Sciences, Massey University, Private Bag 11-222, 4442 Palmerston North, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| |
Collapse
|
47
|
Horie N, Yamaguchi T, Kumagai S, Obika S. Synthesis and properties of oligonucleotides modified with an N-methylguanidine-bridged nucleic acid (GuNA[Me]) bearing adenine, guanine, or 5-methylcytosine nucleobases. Beilstein J Org Chem 2021; 17:622-629. [PMID: 33747234 PMCID: PMC7940814 DOI: 10.3762/bjoc.17.54] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/18/2021] [Indexed: 11/23/2022] Open
Abstract
Chemical modifications have been extensively used for therapeutic oligonucleotides because they strongly enhance the stability against nucleases, binding affinity to the targets, and efficacy. We previously reported that oligonucleotides modified with an N-methylguanidine-bridged nucleic acid (GuNA[Me]) bearing the thymine (T) nucleobase show excellent biophysical properties for applications in antisense technology. In this paper, we describe the synthesis of GuNA[Me] phosphoramidites bearing other typical nucleobases including adenine (A), guanine (G), and 5-methylcytosine (mC). The phosphoramidites were successfully incorporated into oligonucleotides following the method previously developed for the GuNA[Me]-T-modified oligonucleotides. The binding affinity of the oligonucleotides modified with GuNA[Me]-A, -G, or -mC toward the complementary single-stranded DNAs or RNAs was systematically evaluated. All of the GuNA[Me]-modified oligonucleotides were found to have a strong affinity for RNAs. These data indicate that GuNA[Me] could be a useful modification for therapeutic antisense oligonucleotides.
Collapse
Affiliation(s)
- Naohiro Horie
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takao Yamaguchi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shinji Kumagai
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Shonan Health Innovation Park, 2-26-1 Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.,National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
48
|
Nguyen Q, Yokota T. Degradation of Toxic RNA in Myotonic Dystrophy Using Gapmer Antisense Oligonucleotides. Methods Mol Biol 2021; 2176:99-109. [PMID: 32865785 DOI: 10.1007/978-1-0716-0771-8_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Myotonic dystrophy (DM) types 1 (DM1) and 2 (DM2) are caused by autosomal dominant gain-of-function RNA which are, in turn, created by the expansion of repeat sequences in the DMPK and ZNF9 genes, respectively. The expansions are highly unstable and biased for further expansion in somatic cells and across generations. Despite the different genes involved, DM1 and DM2 share several clinical features due to having the similar underlying mechanism of repetitive RNA-mediated toxicity. Both disorders manifest as multisystemic conditions with features including myotonia, cataract development, and abnormalities in cardiac conduction. At present, there is no cure for DM and treatments mostly aim at symptom management. Among the therapeutics being developed, antisense therapy using gapmers is one of the most promising. Compared to other antisense oligonucleotides, gapmers maintain the ability to induce RNase H cleavage while having enhanced target binding affinity and nuclease resistance. This chapter will consolidate the different strategies studied thus far to develop a treatment for DM1 through the targeting of toxic repetitive RNA using gapmers.
Collapse
Affiliation(s)
- Quynh Nguyen
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
- The Friends of Garret Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada.
| |
Collapse
|
49
|
Efficient Gene Suppression by DNA/DNA Double-Stranded Oligonucleotide In Vivo. Mol Ther 2021; 29:838-847. [PMID: 33290725 PMCID: PMC7854292 DOI: 10.1016/j.ymthe.2020.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
We recently reported the antisense properties of a DNA/RNA heteroduplex oligonucleotide consisting of a phosphorothioate DNA-gapmer antisense oligonucleotide (ASO) strand and its complementary phosphodiester RNA/phosphorothioate 2′-O-methyl RNA strand. When α-tocopherol was conjugated with the complementary strand, the heteroduplex oligonucleotide silenced the target RNA more efficiently in vivo than did the parent single-stranded ASO. In this study, we designed a new type of the heteroduplex oligonucleotide, in which the RNA portion of the complementary strand was replaced with phosphodiester DNA, yielding an ASO/DNA double-stranded structure. The ASO/DNA heteroduplex oligonucleotide showed similar activity and liver accumulation as did the original ASO/RNA design. Structure-activity relationship studies of the complementary DNA showed that optimal increases in the potency and the accumulation were seen when the flanks of the phosphodiester DNA complement were protected using 2′-O-methyl RNA and phosphorothioate modifications. Furthermore, evaluation of the degradation kinetics of the complementary strands revealed that the DNA-complementary strand as well as the RNA strand were completely cleaved in vivo. Our results expand the repertoire of chemical modifications that can be used with the heteroduplex oligonucleotide technology, providing greater design flexibility for future therapeutic applications.
Collapse
|
50
|
Scharner J, Aznarez I. Clinical Applications of Single-Stranded Oligonucleotides: Current Landscape of Approved and In-Development Therapeutics. Mol Ther 2020; 29:540-554. [PMID: 33359792 PMCID: PMC7854307 DOI: 10.1016/j.ymthe.2020.12.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/19/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Single-stranded oligonucleotides have been explored as a therapeutic modality for more than 20 years. Only during the last 5 years have single-stranded oligonucleotides become a modality of choice in the fields of precision medicine and targeted therapeutics. Recently, there have been a number of development efforts involving this modality that have led to treatments for genetic diseases that were once untreatable. This review highlights key applications of single-stranded oligonucleotides that function in a sequence-dependent manner when applied to modulate precursor (pre-)mRNA splicing, gene expression, and immune pathways. These applications have been used to address diseases that range from neurological to muscular to metabolic, as well as to develop vaccines. The wide range of applications denotes the versatility of single-stranded oligonucleotides as a robust therapeutic platform. The focus of this review is centered on approved single-stranded oligonucleotide therapies and the evolution of oligonucleotide therapeutics into novel applications currently in clinical development.
Collapse
|