1
|
Cerne R, Smith JL, Chrzanowska A, Lippa A. Nonsedating anxiolytics. Pharmacol Biochem Behav 2024; 245:173895. [PMID: 39461622 DOI: 10.1016/j.pbb.2024.173895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024]
Abstract
Anxiety disorders are the most prevalent psychiatric pathology with substantial cost to society, but the existing treatments are often inadequate. This has rekindled the interest in the GABAA-receptor (GABAAR) positive allosteric modulator (PAM) compounds, which have a long history in treatment of anxiety beginning with diazepam, chlordiazepoxide, and alprazolam. While the GABAAR PAMs possess remarkable anxiolytic efficacy, they have fallen out of favor due to a host of adverse effects including sedation, motor impairment, addictive potential and tolerance development. A substantial effort was thus devoted to the design of GABAAR PAMs as anxiolytics with reduced sedative liabilities. Several non-benzodiazepine (BZD) GABAAPAMs progressed to clinical trials (bretazenil, abecarnil, alpidem, and ocinaplon) with alpidem obtaining regulatory approval as anxiolytic, but later withdrawn from market due to hepatotoxicity. Advances in molecular biology gave birth to a host of subtype selective GABAAR-PAMs which suffered from signs of sedation and motor impairment and only three compounds progressed to proof-of-concept studies (TPA-023, AZD7325 and PF-06372865). TPA-023 was terminated due to toxicity in preclinical species while AZD7325 and PF-06372865 did not achieve efficacy endpoints in patients. We highlight a new compound, KRM-II-81, that is an imidazodiazepine selective for GABAAR containing α2/3 and β3 proteins. In preclinical studies KRM-II-81 produced anxiolytic-like effects but with minimal sedation, respiratory depression, and abuse liability. Thus, KRM-II-81 is a newly discovered, non- BZD anxiolytic compound, which targets a selective population of GABAAR for improved therapeutic gain and reduced side effects.
Collapse
Affiliation(s)
- Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA; RespireRx Pharmaceuticals Inc., Glen Rock, NJ, USA; Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | - Jodi L Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA
| | | | - Arnold Lippa
- RespireRx Pharmaceuticals Inc., Glen Rock, NJ, USA
| |
Collapse
|
2
|
Neumann E, Cramer T, Acuña MA, Scheurer L, Beccarini C, Luscher B, Wildner H, Zeilhofer HU. γ1 GABA A Receptors in Spinal Nociceptive Circuits. J Neurosci 2024; 44:e0591242024. [PMID: 39137998 PMCID: PMC11466064 DOI: 10.1523/jneurosci.0591-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
GABAergic neurons and GABAA receptors (GABAARs) are critical elements of almost all neuronal circuits. Most GABAARs of the CNS are heteropentameric ion channels composed of two α, two β, and one γ subunits. These receptors serve as important drug targets for benzodiazepine (BDZ) site agonists, which potentiate the action of GABA at GABAARs. Most GABAAR classifications rely on the heterogeneity of the α subunit (α1-α6) included in the receptor complex. Heterogeneity of the γ subunits (γ1-γ3), which mediate synaptic clustering of GABAARs and contribute, together with α subunits, to the benzodiazepine (BDZ) binding site, has gained less attention, mainly because γ2 subunits greatly outnumber the other γ subunits in most brain regions. Here, we have investigated a potential role of non-γ2 GABAARs in neural circuits of the spinal dorsal horn, a key site of nociceptive processing. Female and male mice were studied. We demonstrate that besides γ2 subunits, γ1 subunits are significantly expressed in the spinal dorsal horn, especially in its superficial layers. Unlike global γ2 subunit deletion, which is lethal, spinal cord-specific loss of γ2 subunits was well tolerated. GABAAR clustering in the superficial dorsal horn remained largely unaffected and antihyperalgesic actions of HZ-166, a nonsedative BDZ site agonist, were partially retained. Our results thus suggest that the superficial dorsal horn harbors functionally relevant amounts of γ1 subunits that support the synaptic clustering of GABAARs in this site. They further suggest that γ1 containing GABAARs contribute to the spinal control of nociceptive information flow.
Collapse
Affiliation(s)
- Elena Neumann
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Teresa Cramer
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Mario A Acuña
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Louis Scheurer
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Camilla Beccarini
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Bernhard Luscher
- Departments of Biology, Biochemistry and Molecular Biology, and Psychiatry and Penn State Neuroscience Institute, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Hendrik Wildner
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
3
|
Nakakubo S, Hiramatsu Y, Goto T, Kimura S, Narugami M, Nakajima M, Ueda Y, Shiraishi H, Manabe A, Sharmin D, Cook JM, Egawa K. Therapeutic effects of KRM-II-81, positive allosteric modulator for α2/3 subunit containing GABA A receptors, in a mouse model of Dravet syndrome. Front Pharmacol 2023; 14:1273633. [PMID: 37849734 PMCID: PMC10577232 DOI: 10.3389/fphar.2023.1273633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/21/2023] [Indexed: 10/19/2023] Open
Abstract
Introduction: Dravet syndrome (DS) is an intractable epilepsy syndrome concomitant with neurodevelopmental disorder that begins in infancy. DS is dominantly caused by mutations in the SCN1A gene, which encodes the α subunit of a voltage-gated Na channel. Pre-synaptic inhibitory dysfunction is regarded as the pathophysiological mechanism, but an effective strategy for ameliorating seizures and behavioral problems is still under development. Here, we evaluated the effects of KRM-II-81, a newly developed positive allosteric modulator for α 2/3 subunit containing GABAA receptors (α2/3-GABAAR) in a mice model of DS both in vivo and at the neuronal level. Methods: We used knock-in mice carrying a heterozygous, clinically relevant SCN1A mutation (background strain: C57BL/6 J) as a model of the DS (Scn1a WT/A1783V mice), knock-in mouse strain carrying a heterozygous, clinically relevant SCN1A mutation (A1783V). Seizure threshold and locomotor activity was evaluated by using the hyperthermia-induced seizure paradigm and open filed test, respectively. Anxiety-like behavior was assessed by avoidance of the center region in locomotor activity. We estimated a sedative effect by the total distance traveled in locomotor activity and grip strength. Inhibitory post synaptic currents (IPSCs) were recorded from a hippocampal CA1 pyramidal neuron in an acutely prepared brain slice. Results: KRM-II-81 significantly increased the seizure threshold of Scn1a WT/A1783V mice in a dose-dependent manner. A low dose of KRM-II-81 specifically improved anxiety-like behavior of Scn1a WT/A1783V mice. A sedative effect was induced by relatively high dose of KRM-II-81 in Scn1a WT/A1783V mice, the dose of which was not sedative for WT mice. KRM-II-81 potentiated IPSCs by increasing its decay time kinetics. This effect was more prominent in Scn1a WT/A1783V mice. Discussion: Higher activation of α2/3-GABAAR by KRM-II-81 suggests a compensatory modification of post synaptic inhibitory function against presynaptic inhibitory dysfunction in Scn1a WT/A1783V. The increased sensitivity for KRM-II-81 may be relevant to the distinct dose-dependent effect in each paradigm of Scn1a WT/A1783V mice. Conclusion: Selective activation for α2/3-GABAAR by KRM-II-81 could be potential therapeutic strategy for treating seizures and behavioral problems in DS.
Collapse
Affiliation(s)
- Sachiko Nakakubo
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Japan
| | - Yasuyoshi Hiramatsu
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Japan
| | - Takeru Goto
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Japan
| | - Syuhei Kimura
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Japan
| | - Masashi Narugami
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Japan
| | - Midori Nakajima
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Japan
| | - Yuki Ueda
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Japan
| | - Hideaki Shiraishi
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Japan
| | - Atsushi Manabe
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Japan
| | - Dishary Sharmin
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - James M. Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Kiyoshi Egawa
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Japan
| |
Collapse
|
4
|
Perucca E, Bialer M, White HS. New GABA-Targeting Therapies for the Treatment of Seizures and Epilepsy: I. Role of GABA as a Modulator of Seizure Activity and Recently Approved Medications Acting on the GABA System. CNS Drugs 2023; 37:755-779. [PMID: 37603262 PMCID: PMC10501955 DOI: 10.1007/s40263-023-01027-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 08/22/2023]
Abstract
γ-Aminobutyric acid (GABA) is the most prevalent inhibitory neurotransmitter in the mammalian brain and has been found to play an important role in the pathogenesis or the expression of many neurological diseases, including epilepsy. Although GABA can act on different receptor subtypes, the component of the GABA system that is most critical to modulation of seizure activity is the GABAA-receptor-chloride (Cl-) channel complex, which controls the movement of Cl- ions across the neuronal membrane. In the mature brain, binding of GABA to GABAA receptors evokes a hyperpolarising (anticonvulsant) response, which is mediated by influx of Cl- into the cell driven by its concentration gradient between extracellular and intracellular fluid. However, in the immature brain and under certain pathological conditions, GABA can exert a paradoxical depolarising (proconvulsant) effect as a result of an efflux of chloride from high intracellular to lower extracellular Cl- levels. Extensive preclinical and clinical evidence indicates that alterations in GABAergic inhibition caused by drugs, toxins, gene defects or other disease states (including seizures themselves) play a causative or contributing role in facilitating or maintaning seizure activity. Conversely, enhancement of GABAergic transmission through pharmacological modulation of the GABA system is a major mechanism by which different antiseizure medications exert their therapeutic effect. In this article, we review the pharmacology and function of the GABA system and its perturbation in seizure disorders, and highlight how improved understanding of this system offers opportunities to develop more efficacious and better tolerated antiseizure medications. We also review the available data for the two most recently approved antiseizure medications that act, at least in part, through GABAergic mechanisms, namely cenobamate and ganaxolone. Differences in the mode of drug discovery, pharmacological profile, pharmacokinetic properties, drug-drug interaction potential, and clinical efficacy and tolerability of these agents are discussed.
Collapse
Affiliation(s)
- Emilio Perucca
- Department of Medicine (Austin Health), The University of Melbourne, Melbourne, VIC, Australia.
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.
- Melbourne Brain Centre, 245 Burgundy Street, Heidelberg, VIC, 3084, Australia.
| | - Meir Bialer
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- David R. Bloom Center for Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - H Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Pandey KP, Divović B, Rashid F, Golani LK, Cerne R, Zahn NM, Meyer MJ, Arnold LA, Sharmin D, Mian MY, Smith JL, Ping X, Jin X, Lippa A, Tiruveedhula VVNPB, Cook JM, Savić MM, Witkin JM. Structural Analogs of the GABAkine KRM-II-81 Are Orally Bioavailable Anticonvulsants without Sedation. J Pharmacol Exp Ther 2023; 385:50-61. [PMID: 36746611 PMCID: PMC10029819 DOI: 10.1124/jpet.122.001362] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/22/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023] Open
Abstract
To provide back-up compounds to support the development of the GABAA receptor (GABAAR) potentiator KRM-II-81, three novel analogs were designed: replacing the pyridinyl with 2'-Cl-phenyl (FR-II-60), changing the positions of the N and O atoms in the oxazole ring with addition of an ethyl group (KPP-III-34 and KPP-III-51), or substituting a Br atom for the ethynyl of KRM-II-81 (KPP-III-34). The compounds bound to brain GABAARs. Intraperitoneal administration of FR-II-60 and KPP-III-34 produced anticonvulsant activity in mice [maximal electroshock (MES)-induced seizures or 6 Hz-induced seizures], whereas KPP-III-51 did not. Although all compounds were orally bioavailable, structural changes reduced the plasma and brain (FR-II-60 and KPP-III-51) exposures relative to KRM-II-81. Oral administration of each compound produced dose-dependent increases in the latency for both clonic and tonic seizures and the lethality induced by pentylenetetrazol (PTZ) in mice. Since KPP-III-34 produced the highest brain area under the curve (AUC) exposures, it was selected for further profiling. Oral administration of KPP-III-34 suppressed seizures in corneal-kindled mice, hippocampal paroxysmal discharges in mesial temporal lobe epileptic mice, and PTZ-induced convulsions in rats. Only transient sensorimotor impairment was observed in mice, and doses of KPP-III-34 up to 500 mg/kg did not produce impairment in rats. Molecular docking studies demonstrated that all compounds displayed a reduced propensity for binding to α1His102 compared with the sedating compound alprazolam; the bromine-substituted KPP-III-34 achieved the least interaction. Overall, these findings document the oral bioavailability and anticonvulsant efficacy of three novel analogs of KRM-II-81 with reduced sedative effects. SIGNIFICANCE STATEMENT: A new non-sedating compound, KRM-II-81, with reduced propensity for tolerance is moving into clinical development. Three new analogs were orally bioavailable, produced anticonvulsant effects in rodents, and displayed low sensorimotor impairment. KPP-III-34 demonstrated efficacy in models of pharmacoresistant epilepsy. Docking studies demonstrated a low propensity for compound binding to the α1His102 residue implicated in sedation. Thus, three additional structures have been added to the list of non-sedating imidazodiazepine anticonvulsants that could serve as backups in the clinical development of KRM-II-81.
Collapse
Affiliation(s)
- Kamal P Pandey
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (K.P.P., F.R., L.K.G., N.M.Z., M.J.M., L.A.A., D.S., M.Y.M., V.V.N.P.B.T., J.M.C., J.M.W.);
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (B.D., M.M.S.);
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (R.C., J.L.S., J.M.W.);
- Department of Anatomy and Cell BiologyIndiana University/Purdue University, Indianapolis, Indiana (R.C., X.P., X.J.);
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (R.C.); and RespireRx Pharmaceuticals Inc., Glen Rock, New Jersey (A.L., J.M.C., J.M.W.)
| | - Branka Divović
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (K.P.P., F.R., L.K.G., N.M.Z., M.J.M., L.A.A., D.S., M.Y.M., V.V.N.P.B.T., J.M.C., J.M.W.)
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (B.D., M.M.S.)
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (R.C., J.L.S., J.M.W.)
- Department of Anatomy and Cell BiologyIndiana University/Purdue University, Indianapolis, Indiana (R.C., X.P., X.J.)
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (R.C.); and RespireRx Pharmaceuticals Inc., Glen Rock, New Jersey (A.L., J.M.C., J.M.W.)
| | - Farjana Rashid
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (K.P.P., F.R., L.K.G., N.M.Z., M.J.M., L.A.A., D.S., M.Y.M., V.V.N.P.B.T., J.M.C., J.M.W.)
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (B.D., M.M.S.)
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (R.C., J.L.S., J.M.W.)
- Department of Anatomy and Cell BiologyIndiana University/Purdue University, Indianapolis, Indiana (R.C., X.P., X.J.)
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (R.C.); and RespireRx Pharmaceuticals Inc., Glen Rock, New Jersey (A.L., J.M.C., J.M.W.)
| | - Lalit K Golani
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (K.P.P., F.R., L.K.G., N.M.Z., M.J.M., L.A.A., D.S., M.Y.M., V.V.N.P.B.T., J.M.C., J.M.W.)
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (B.D., M.M.S.)
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (R.C., J.L.S., J.M.W.)
- Department of Anatomy and Cell BiologyIndiana University/Purdue University, Indianapolis, Indiana (R.C., X.P., X.J.)
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (R.C.); and RespireRx Pharmaceuticals Inc., Glen Rock, New Jersey (A.L., J.M.C., J.M.W.)
| | - Rok Cerne
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (K.P.P., F.R., L.K.G., N.M.Z., M.J.M., L.A.A., D.S., M.Y.M., V.V.N.P.B.T., J.M.C., J.M.W.)
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (B.D., M.M.S.)
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (R.C., J.L.S., J.M.W.)
- Department of Anatomy and Cell BiologyIndiana University/Purdue University, Indianapolis, Indiana (R.C., X.P., X.J.)
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (R.C.); and RespireRx Pharmaceuticals Inc., Glen Rock, New Jersey (A.L., J.M.C., J.M.W.)
| | - Nicolas M Zahn
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (K.P.P., F.R., L.K.G., N.M.Z., M.J.M., L.A.A., D.S., M.Y.M., V.V.N.P.B.T., J.M.C., J.M.W.)
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (B.D., M.M.S.)
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (R.C., J.L.S., J.M.W.)
- Department of Anatomy and Cell BiologyIndiana University/Purdue University, Indianapolis, Indiana (R.C., X.P., X.J.)
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (R.C.); and RespireRx Pharmaceuticals Inc., Glen Rock, New Jersey (A.L., J.M.C., J.M.W.)
| | - Michelle Jean Meyer
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (K.P.P., F.R., L.K.G., N.M.Z., M.J.M., L.A.A., D.S., M.Y.M., V.V.N.P.B.T., J.M.C., J.M.W.)
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (B.D., M.M.S.)
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (R.C., J.L.S., J.M.W.)
- Department of Anatomy and Cell BiologyIndiana University/Purdue University, Indianapolis, Indiana (R.C., X.P., X.J.)
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (R.C.); and RespireRx Pharmaceuticals Inc., Glen Rock, New Jersey (A.L., J.M.C., J.M.W.)
| | - Leggy A Arnold
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (K.P.P., F.R., L.K.G., N.M.Z., M.J.M., L.A.A., D.S., M.Y.M., V.V.N.P.B.T., J.M.C., J.M.W.)
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (B.D., M.M.S.)
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (R.C., J.L.S., J.M.W.)
- Department of Anatomy and Cell BiologyIndiana University/Purdue University, Indianapolis, Indiana (R.C., X.P., X.J.)
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (R.C.); and RespireRx Pharmaceuticals Inc., Glen Rock, New Jersey (A.L., J.M.C., J.M.W.)
| | - Dishary Sharmin
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (K.P.P., F.R., L.K.G., N.M.Z., M.J.M., L.A.A., D.S., M.Y.M., V.V.N.P.B.T., J.M.C., J.M.W.)
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (B.D., M.M.S.)
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (R.C., J.L.S., J.M.W.)
- Department of Anatomy and Cell BiologyIndiana University/Purdue University, Indianapolis, Indiana (R.C., X.P., X.J.)
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (R.C.); and RespireRx Pharmaceuticals Inc., Glen Rock, New Jersey (A.L., J.M.C., J.M.W.)
| | - Md Yeunus Mian
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (K.P.P., F.R., L.K.G., N.M.Z., M.J.M., L.A.A., D.S., M.Y.M., V.V.N.P.B.T., J.M.C., J.M.W.)
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (B.D., M.M.S.)
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (R.C., J.L.S., J.M.W.)
- Department of Anatomy and Cell BiologyIndiana University/Purdue University, Indianapolis, Indiana (R.C., X.P., X.J.)
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (R.C.); and RespireRx Pharmaceuticals Inc., Glen Rock, New Jersey (A.L., J.M.C., J.M.W.)
| | - Jodi L Smith
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (K.P.P., F.R., L.K.G., N.M.Z., M.J.M., L.A.A., D.S., M.Y.M., V.V.N.P.B.T., J.M.C., J.M.W.)
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (B.D., M.M.S.)
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (R.C., J.L.S., J.M.W.)
- Department of Anatomy and Cell BiologyIndiana University/Purdue University, Indianapolis, Indiana (R.C., X.P., X.J.)
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (R.C.); and RespireRx Pharmaceuticals Inc., Glen Rock, New Jersey (A.L., J.M.C., J.M.W.)
| | - Xingjie Ping
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (K.P.P., F.R., L.K.G., N.M.Z., M.J.M., L.A.A., D.S., M.Y.M., V.V.N.P.B.T., J.M.C., J.M.W.)
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (B.D., M.M.S.)
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (R.C., J.L.S., J.M.W.)
- Department of Anatomy and Cell BiologyIndiana University/Purdue University, Indianapolis, Indiana (R.C., X.P., X.J.)
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (R.C.); and RespireRx Pharmaceuticals Inc., Glen Rock, New Jersey (A.L., J.M.C., J.M.W.)
| | - Xiaoming Jin
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (K.P.P., F.R., L.K.G., N.M.Z., M.J.M., L.A.A., D.S., M.Y.M., V.V.N.P.B.T., J.M.C., J.M.W.)
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (B.D., M.M.S.)
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (R.C., J.L.S., J.M.W.)
- Department of Anatomy and Cell BiologyIndiana University/Purdue University, Indianapolis, Indiana (R.C., X.P., X.J.)
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (R.C.); and RespireRx Pharmaceuticals Inc., Glen Rock, New Jersey (A.L., J.M.C., J.M.W.)
| | - Arnold Lippa
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (K.P.P., F.R., L.K.G., N.M.Z., M.J.M., L.A.A., D.S., M.Y.M., V.V.N.P.B.T., J.M.C., J.M.W.)
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (B.D., M.M.S.)
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (R.C., J.L.S., J.M.W.)
- Department of Anatomy and Cell BiologyIndiana University/Purdue University, Indianapolis, Indiana (R.C., X.P., X.J.)
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (R.C.); and RespireRx Pharmaceuticals Inc., Glen Rock, New Jersey (A.L., J.M.C., J.M.W.)
| | - V V N Phani Babu Tiruveedhula
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (K.P.P., F.R., L.K.G., N.M.Z., M.J.M., L.A.A., D.S., M.Y.M., V.V.N.P.B.T., J.M.C., J.M.W.)
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (B.D., M.M.S.)
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (R.C., J.L.S., J.M.W.)
- Department of Anatomy and Cell BiologyIndiana University/Purdue University, Indianapolis, Indiana (R.C., X.P., X.J.)
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (R.C.); and RespireRx Pharmaceuticals Inc., Glen Rock, New Jersey (A.L., J.M.C., J.M.W.)
| | - James M Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (K.P.P., F.R., L.K.G., N.M.Z., M.J.M., L.A.A., D.S., M.Y.M., V.V.N.P.B.T., J.M.C., J.M.W.)
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (B.D., M.M.S.)
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (R.C., J.L.S., J.M.W.)
- Department of Anatomy and Cell BiologyIndiana University/Purdue University, Indianapolis, Indiana (R.C., X.P., X.J.)
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (R.C.); and RespireRx Pharmaceuticals Inc., Glen Rock, New Jersey (A.L., J.M.C., J.M.W.)
| | - Miroslav M Savić
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (K.P.P., F.R., L.K.G., N.M.Z., M.J.M., L.A.A., D.S., M.Y.M., V.V.N.P.B.T., J.M.C., J.M.W.)
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (B.D., M.M.S.)
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (R.C., J.L.S., J.M.W.)
- Department of Anatomy and Cell BiologyIndiana University/Purdue University, Indianapolis, Indiana (R.C., X.P., X.J.)
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (R.C.); and RespireRx Pharmaceuticals Inc., Glen Rock, New Jersey (A.L., J.M.C., J.M.W.)
| | - Jeffrey M Witkin
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (K.P.P., F.R., L.K.G., N.M.Z., M.J.M., L.A.A., D.S., M.Y.M., V.V.N.P.B.T., J.M.C., J.M.W.);
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (B.D., M.M.S.);
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (R.C., J.L.S., J.M.W.);
- Department of Anatomy and Cell BiologyIndiana University/Purdue University, Indianapolis, Indiana (R.C., X.P., X.J.);
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (R.C.); and RespireRx Pharmaceuticals Inc., Glen Rock, New Jersey (A.L., J.M.C., J.M.W.)
| |
Collapse
|
6
|
Rezaee E, Ahmadi F, Shabaninia M, Khoramjouy M, Azizi Farsani Z, Shahhosseini S, Tabatabai SA, Faizi M. Novel 2-substituted-5-(4-chloro-2-phenoxy)phenyl-1,3,4-oxadiazole derivatives, ligands of GABAA/benzodiazepine receptor complex: Design, synthesis, radioligand binding assay, and pharmacological evaluation. EXCLI JOURNAL 2023; 22:250-262. [PMID: 36998711 PMCID: PMC10043390 DOI: 10.17179/excli2022-5639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/02/2023] [Indexed: 04/01/2023]
Abstract
Agonists of Benzodiazepine (BZD) receptor are exhaustively used in the control of muscle spasms, seizure, anxiety, and insomnia. BZDs have some unwanted effects; therefore, the development of new BZD receptor agonists with better efficacy and fewer unwanted effects is one of the subjects of interest. In this study, based on the pharmacophore/receptor model of the BZD binding site of GABAA receptors, a series of new 2-substituted-5-(4-chloro-2-phenoxy)phenyl-1,3,4-oxadiazole derivatives (6a-f) were designed. Energy minima conformers of the designed compounds and diazepam were well matched in conformational analysis and showed proper interaction with the BZD-binding site of the GABAA receptor model (α1β2ϒ2) in docking studies. The designed compounds were synthesized in acceptable yield and evaluated for their in vitro affinity to the benzodiazepine receptor of rat brains by radioligand receptor binding assay. The results demonstrated that the affinities of most of the novel compounds were even higher than diazepam. The novel compound 6a with the best affinity in radioligand receptor binding assay (Ki=0.44 nM and IC50= 0.73±0.17 nM) had considerable hypnotic activity and weak anticonvulsant and anxiolytic effects with no negative effect on memory in animal models. Flumazenil as a selective benzodiazepine receptor antagonist was able to prevent hypnotic and anticonvulsant effects of 6a indicating the role of BZD receptors in these effects.
Collapse
Affiliation(s)
- Elham Rezaee
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ahmadi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Shabaninia
- Premier Care Long Term Care Pharmacy, North Little Rock, Arkansas, USA
| | - Mona Khoramjouy
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Azizi Farsani
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soraya Shahhosseini
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayyed Abbas Tabatabai
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *To whom correspondence should be addressed: Sayyed Abbas Tabatabai, Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran, E-mail:
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Cerne R, Lippa A, Poe MM, Smith JL, Jin X, Ping X, Golani LK, Cook JM, Witkin JM. GABAkines - Advances in the discovery, development, and commercialization of positive allosteric modulators of GABA A receptors. Pharmacol Ther 2022; 234:108035. [PMID: 34793859 PMCID: PMC9787737 DOI: 10.1016/j.pharmthera.2021.108035] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 11/08/2021] [Indexed: 12/25/2022]
Abstract
Positive allosteric modulators of γ-aminobutyric acid-A (GABAA) receptors or GABAkines have been widely used medicines for over 70 years for anxiety, epilepsy, sleep, and other disorders. Traditional GABAkines like diazepam have safety and tolerability concerns that include sedation, motor-impairment, respiratory depression, tolerance and dependence. Multiple GABAkines have entered clinical development but the issue of side-effects has not been fully solved. The compounds that are presently being developed and commercialized include several neuroactive steroids (an allopregnanolone formulation (brexanolone), an allopregnanolone prodrug (LYT-300), Sage-324, zuranolone, and ganaxolone), the α2/3-preferring GABAkine, KRM-II-81, and the α2/3/5-preferring GABAkine PF-06372865 (darigabat). The neuroactive steroids are in clinical development for post-partum depression, intractable epilepsy, tremor, status epilepticus, and genetic epilepsy disorders. Darigabat is in development for epilepsy and anxiety. The imidazodiazepine, KRM-II-81 is efficacious in animal models for the treatment of epilepsy and post-traumatic epilepsy, acute and chronic pain, as well as anxiety and depression. The efficacy of KRM-II-81 in models of pharmacoresistant epilepsy, preventing the development of seizure sensitization, and in brain tissue of intractable epileptic patients bodes well for improved therapeutics. Medicinal chemistry efforts are also ongoing to identify novel and improved GABAkines. The data document gaps in our understanding of the molecular pharmacology of GABAkines that drive differential pharmacological profiles, but emphasize advancements in the ability to successfully utilize GABAA receptor potentiation for therapeutic gain in neurology and psychiatry.
Collapse
Affiliation(s)
- Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN USA,Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, Ljubljana, Slovenia.,RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA,Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Arnold Lippa
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA
| | | | - Jodi L. Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN USA
| | - Xiaoming Jin
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Xingjie Ping
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Lalit K. Golani
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - James M. Cook
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA,Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jeffrey M. Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN USA,RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA,Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
8
|
The imidazodiazepine, KRM-II-81: An example of a newly emerging generation of GABAkines for neurological and psychiatric disorders. Pharmacol Biochem Behav 2022; 213:173321. [PMID: 35041859 DOI: 10.1016/j.pbb.2021.173321] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023]
Abstract
GABAkines, or positive allosteric modulators of γ-aminobutyric acid-A (GABAA) receptors, are used for the treatment of anxiety, epilepsy, sleep, and other disorders. The search for improved GABAkines, with reduced safety liabilities (e.g., dependence) or side-effect profiles (e.g., sedation) constituted multiple discovery and development campaigns that involved a multitude of strategies over the past century. Due to the general lack of success in the development of new GABAkines, there had been a decades-long draught in bringing new GABAkines to market. Recently, however, there has been a resurgence of efforts to bring GABAkines to patients, the FDA approval of the neuroactive steroid brexanolone for post-partum depression in 2019 being the first. Other neuroactive steroids are in various stages of clinical development (ganaxolone, zuranolone, LYT-300, Sage-324, PRAX 114, and ETX-155). These GABAkines and non-steroid compounds (GRX-917, a TSPO binding site ligand), darigabat (CVL-865), an α2/3/5-preferring GABAkine, SAN711, an α3-preferring GABAkine, and the α2/3-preferring GABAkine, KRM-II-81, bring new therapeutic promise to this highly utilized medicinal target in neurology and psychiatry. Herein, we also discuss possible conditions that have enabled the transition to a new age of GABAkines. We highlight the pharmacology of KRM-II-81 that has the most preclinical data reported. KRM-II-81 is the lead compound in a new series of orally bioavailable imidazodiazepines entering IND-enabling safety studies. KRM-II-81 has a preclinical profile predicting efficacy against pharmacoresistant epilepsies, traumatic brain injury, and neuropathic pain. KRM-II-81 also produces anxiolytic- and antidepressant-like effects in rodent models. Other key features of the pharmacology of this compound are its low sedation rate, lack of tolerance development, and the ability to prevent the development of seizure sensitization.
Collapse
|
9
|
Tolerance and dependence following chronic alprazolam treatment in rhesus monkeys: Role of GABA A receptor subtypes. Drug Alcohol Depend 2021; 228:108985. [PMID: 34500240 PMCID: PMC8595788 DOI: 10.1016/j.drugalcdep.2021.108985] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND To assess GABAA receptor subtypes involved in benzodiazepine tolerance and dependence, we evaluated the ability of subtype-selective and non-selective ligands to substitute for (i.e., produce "cross-tolerance") or precipitate withdrawal during chronic alprazolam treatment. METHODS Four female rhesus monkeys (Macaca mulatta) were implanted with chronic intravenous catheters and administered alprazolam (1.0 mg/kg every 4 h). Following 14+ days of chronic alprazolam, acute administration of selected doses of non-selective and subtype-selective ligands were substituted for, or administered with, alprazolam, followed by quantitative behavioral observations. The ligands included alprazolam and midazolam (positive modulators, non-selective), zolpidem (positive modulator, preferential affinity for α1-containing GABAA receptors), HZ-166 (positive modulator, preferential efficacy at α2- and α3-containing GABAA receptors), and βCCT (antagonist, preferential affinity for α1-containing GABAA receptors). RESULTS Acutely, alprazolam and midazolam both induced observable ataxia along with a mild form of sedation referred to as "rest/sleep posture" at a lower dose (0.1 mg/kg, i.v.), whereas at a higher dose (1.0 mg/kg, i.v.), induced deep sedation and observable ataxia. With chronic alprazolam treatment, observable ataxia and deep sedation were reduced significantly, whereas rest/sleep posture was unchanged or emerged. Zolpidem showed a similar pattern of effects, whereas no behaviors engendered by HZ-166 were changed by chronic alprazolam. Administration of βCCT, but not HZ-166, resulted in significant withdrawal signs. CONCLUSIONS These results are consistent with a role for α1-containing GABAA receptor subtypes in tolerance and dependence observed with chronic alprazolam, although other receptors may be involved in the withdrawal syndrome.
Collapse
|
10
|
Kandeda AK, Taiwe GS, Ayissi REM, Moutchida C. An aqueous extract of Canarium schweinfurthii attenuates seizures and potentiates sleep in mice: Evidence for involvement of GABA Pathway. Biomed Pharmacother 2021; 142:111973. [PMID: 34343898 DOI: 10.1016/j.biopha.2021.111973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 01/03/2023] Open
Abstract
About 30% of epileptic patients continue to have seizures. The present study investigates the anticonvulsant and sedative effects of an aqueous extract of C. schweinfurthii in mice. Anticonvulsant effects of C. schweinfurthii aqueous extract (0.01-300 mg/kg, p.o.) were tested against 4-aminopyridine (4-AP, 15 mg/kg, i.p.) -, pilocarpine (PILO, 380 mg/kg, i.p.) - and pentylenetetrazole (PTZ, 75 mg/kg, i.p.) -induced seizures, while sedative effects were tested on diazepam (35 mg/kg, i.p.)-induced sleep. Afterward, the most effective dose of the extract (11.9 mg/kg) was antagonized with N-methyl-β-carboline-3-carboxamide or flumazenil. In another set of experiments, mice were sacrificed for the estimation of GABA content and GABA-T activity in the cerebral cortex. The dose of the extract that protected 50% of mice (ED50) against 4-AP, PILO, and PTZ was respectively 4.43 mg/kg (versus 12.01 for phenobarbital), 9.59 mg/kg (vs 8.67 for diazepam), and 2.12 mg/kg (vs 0.20 for clonazepam). Further, the ED50 of the extract that increased the duration of sleep was 0.24 mg/kg (vs 0.84 for phenobarbital). N-methyl-β-carboline-3-carboxamide or flumazenil antagonized (p < 0.001) the anticonvulsant effect of C. schweinfurthii in PTZ-induced seizures and diazepam-induced sleep when compared to the negative control group. The extract at all doses increased (p < 0.001) the GABA content and decreased (p < 0.001) GABA-T activity. These findings suggest that C. schweinfurthii possesses anticonvulsant and sedative effects. These effects seem to be mediated via the modulation of the GABA neurotransmission. These data explain the use of this plant to treat epilepsy in Cameroon traditional medicine.
Collapse
Affiliation(s)
- Antoine Kavaye Kandeda
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Germain Sotoing Taiwe
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Rigobert Espoir Mbomo Ayissi
- Department of Biological Sciences, Higher Teachers' Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon
| | - Clémentine Moutchida
- Department of Psychology, University of Yaoundé I, P.O. Box 755, Yaoundé, Cameroon
| |
Collapse
|
11
|
Vézina-Dawod S, Perreault M, Guay LD, Gerber N, Gobeil S, Biron E. Synthesis and biological evaluation of novel 1,4-benzodiazepin-3-one derivatives as potential antitumor agents against prostate cancer. Bioorg Med Chem 2021; 45:116314. [PMID: 34333393 DOI: 10.1016/j.bmc.2021.116314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022]
Abstract
A novel tumor suppressing agent was discovered against PC-3 prostate cancer cells from the screening of a 1,4-benzodiazepin-3-one library. In this study, 96 highly diversified 2,4,5-trisubstituted 1,4-benzodiazepin-3-one derivatives were prepared by a two-step approach using sequential Ugi multicomponent reaction and simultaneous deprotection and cyclization to afford pure compounds bearing a wide variety of substituents. The most promising compound showed a potent and selective antiproliferative activity against prostate cancer cell line PC-3 (GI50 = 10.2 µM), but had no effect on LNCAP, LAPC4 and DU145 cell lines. The compound was initially prepared as a mixture of two diastereomers and after their separation by HPLC, similar antiproliferative activities against PC-3 cells were observed for both diastereomers (2S,5S: GI50 = 10.8 µM and 2S,5R: GI50 = 7.0 µM). Additionally, both diastereomers showed comparable stability profiles after incubation with human liver microsomes. Finally, in vivo evaluation of the hit compound with the chick chorioallantoic membrane xenograft assay revealed a good toxicity profile and significant antitumor activity after intravenous injection.
Collapse
Affiliation(s)
- Simon Vézina-Dawod
- Faculté de pharmacie, Université Laval, Québec, QC G1V 0A6, Canada; Centre de recherche du CHU de Québec-Université Laval, 2705 boulevard Laurier, Québec, QC G1V 4G2, Canada
| | - Martin Perreault
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada; Centre de recherche du CHU de Québec-Université Laval, 2705 boulevard Laurier, Québec, QC G1V 4G2, Canada
| | - Louis-David Guay
- Faculté de pharmacie, Université Laval, Québec, QC G1V 0A6, Canada; Centre de recherche du CHU de Québec-Université Laval, 2705 boulevard Laurier, Québec, QC G1V 4G2, Canada
| | - Nicolas Gerber
- Faculté de pharmacie, Université Laval, Québec, QC G1V 0A6, Canada; Centre de recherche du CHU de Québec-Université Laval, 2705 boulevard Laurier, Québec, QC G1V 4G2, Canada
| | - Stéphane Gobeil
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada; Centre de recherche du CHU de Québec-Université Laval, 2705 boulevard Laurier, Québec, QC G1V 4G2, Canada
| | - Eric Biron
- Faculté de pharmacie, Université Laval, Québec, QC G1V 0A6, Canada; Centre de recherche du CHU de Québec-Université Laval, 2705 boulevard Laurier, Québec, QC G1V 4G2, Canada.
| |
Collapse
|
12
|
Golani LK, Platt DM, Rüedi-Bettschen D, Edwanker C, Huang S, Poe MM, Furtmüller R, Sieghart W, Cook JM, Rowlett JK. 8-Substituted Triazolobenzodiazepines: In Vitro and In Vivo Pharmacology in Relation to Structural Docking at the α1 Subunit-Containing GABA A Receptor. Front Pharmacol 2021; 12:625233. [PMID: 33959005 PMCID: PMC8094182 DOI: 10.3389/fphar.2021.625233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/26/2021] [Indexed: 11/25/2022] Open
Abstract
In order to develop improved anxiolytic drugs, 8-substituted analogs of triazolam were synthesized in an effort to discover compounds with selectivity for α2/α3 subunit-containing GABAA subtypes. Two compounds in this series, XLi-JY-DMH (6-(2-chlorophenyl)-8-ethynyl-1-methyl-4H-benzo [f][1,2,4]triazolo[4,3-a][1,4]diazepine) and SH-TRI-108 [(E)-8-ethynyl-1-methyl-6-(pyridin-2-yl)-4H-benzo [f][1,2,4]triazolo[4,3-a][1,4]diazepine], were evaluated for in vitro and in vivo properties associated with GABAA subtype-selective ligands. In radioligand binding assays conducted in transfected HEK cells containing rat αXβ3γ2 subtypes (X = 1,2,3,5), no evidence of selectivity was obtained, although differences in potency relative to triazolam were observed overall (triazolam > XLi-JY-DMH > SH-TRI-108). In studies with rat αXβ3γ2 subtypes (X = 1,2,3,5) using patch-clamp electrophysiology, no differences in maximal potentiation of GABA-mediated Cl- current was obtained across subtypes for any compound. However, SH-TRI-108 demonstrated a 25-fold difference in functional potency between α1β3γ2 vs. α2β3γ2 subtypes. We evaluated the extent to which this potency difference translated into behavioral pharmacological differences in monkeys. In a rhesus monkey conflict model of anxiolytic-like effects, triazolam, XLi-JY-DMH, and SH-TR-108 increased rates of responding attenuated by shock (anti-conflict effect) but also attenuated non-suppressed responding. In a squirrel monkey observation procedure, both analogs engendered a profile of sedative-motor effects similar to that reported previously for triazolam. In molecular docking studies, we found that the interactions of the 8-ethynyl triazolobenzodiazepines with the C-loop of the α1GABAA site was stronger than that of imidazodiazepines XHe-II-053 and HZ-166, which may account for the non-sedating yet anxiolytic profile of these latter compounds when evaluated in previous studies.
Collapse
Affiliation(s)
- Lalit K. Golani
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Donna M. Platt
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Harvard Medical School, New England Primate Research Center, Southborough, MA, United States
| | - Daniela Rüedi-Bettschen
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Harvard Medical School, New England Primate Research Center, Southborough, MA, United States
| | - Chitra Edwanker
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Shenming Huang
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Michael M. Poe
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | | | - Werner Sieghart
- Brain Research Institute, Medical University, Vienna, Austria
| | - James M. Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - James K. Rowlett
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Harvard Medical School, New England Primate Research Center, Southborough, MA, United States
| |
Collapse
|
13
|
Knutson DE, Smith JL, Ping X, Jin X, Golani LK, Li G, Tiruveedhula VVNPB, Rashid F, Mian MY, Jahan R, Sharmin D, Cerne R, Cook JM, Witkin JM. Imidazodiazepine Anticonvulsant, KRM-II-81, Produces Novel, Non-diazepam-like Antiseizure Effects. ACS Chem Neurosci 2020; 11:2624-2637. [PMID: 32786313 DOI: 10.1021/acschemneuro.0c00295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The need for improved medications for the treatment of epilepsy and chronic pain is essential. Epileptic patients typically take multiple antiseizure drugs without complete seizure freedom, and chronic pain is not fully managed with current medications. A positive allosteric modulator (PAM) of α2/3-containing GABAA receptors (5-(8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazole[1,5-α][1,4]diazepin-3-yl) oxazole or KRM-II-81 (8) is a lead compound in a series of imidazodiazepines. We previously reported that KRM-II-81 produces broad-based anticonvulsant and antinociceptive efficacy in rodent models and provides a wider margin over motoric side effects than that of other GABAA receptor PAMs. The present series of experiments was designed to fill key missing gaps in prior preclinical studies assessing whether KRM-II-81 could be further differentiated from nonselective GABAA receptor PAMs using the anticonvulsant diazepam (DZP) as a comparator. In multiple chemical seizure provocation models in mice, KRM-II-81 was either equally or more efficacious than DZP. Most strikingly, KRM-II-81 but not DZP blocked the development of seizure sensitivity to the chemoconvulsants cocaine and pentylenetetrazol in seizure kindling models. These and predecessor data have placed KRM-II-81 into consideration for clinical development requiring the manufacture of kilogram amounts of good manufacturing practice material. We describe here a novel synthetic route amenable to kilogram quantity production. The new biological and chemical data provide key steps forward in the development of KRM-II-81 (8) as an improved treatment option for patients suffering from epilepsy.
Collapse
Affiliation(s)
- Daniel E. Knutson
- Department of Chemistry & Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Jodi L. Smith
- Laboratory of Antiepileptic Drug Discovery, Peyton Manning Hospital for Children Ascension St. Vincent, Indianapolis, Indiana 46260, United States
| | - Xingjie Ping
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, Indiana 46202,United States
| | - Xiaoming Jin
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, Indiana 46202,United States
| | - Lalit K. Golani
- Department of Chemistry & Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Guanguan Li
- Department of Chemistry & Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - V. V. N. Phani Babu Tiruveedhula
- Department of Chemistry & Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Farjana Rashid
- Department of Chemistry & Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Md Yeunus Mian
- Department of Chemistry & Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Rajwana Jahan
- Department of Chemistry & Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Dishary Sharmin
- Department of Chemistry & Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Peyton Manning Hospital for Children Ascension St. Vincent, Indianapolis, Indiana 46260, United States
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - James M. Cook
- Department of Chemistry & Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Jeffrey M. Witkin
- Department of Chemistry & Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
- Laboratory of Antiepileptic Drug Discovery, Peyton Manning Hospital for Children Ascension St. Vincent, Indianapolis, Indiana 46260, United States
- Departments of Neuroscience and Trauma Research, Ascension St. Vincent Hospital, Indianapolis, Indiana 46260, United States
| |
Collapse
|
14
|
Biggerstaff A, Kivell B, Smith JL, Mian MY, Golani LK, Rashid F, Sharmin D, Knutson DE, Cerne R, Cook JM, Witkin JM. The α2,3-selective potentiators of GABA A receptors, KRM-II-81 and MP-III-80, produce anxiolytic-like effects and block chemotherapy-induced hyperalgesia in mice without tolerance development. Pharmacol Biochem Behav 2020; 196:172996. [PMID: 32668266 DOI: 10.1016/j.pbb.2020.172996] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022]
Abstract
Opiate analgesics are one of the treatment options for severe chronic pain, including late-stage cancer, chronic back pain and other disorders. The recent resurgence in opioid overdose has highlighted the serious need for alternative medicines for pain management. While a role for potentiators of α2/3-containing GABAA receptors in the modulation of pain has been known for several years, advancements in this area required data from selective compounds. KRM-II-81(5-(8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5-a][1,4]diazepin-3- yl)oxazole) and analogs selectively potentiate GABAA receptors containing α2/3 subunits and have recently been shown to attenuate pain behaviors in several acute and chronic pain models in rodents. The present study was designed to ascertain whether KRM-II-81 and the structural analog MP-III-80 (3-ethyl-5-(8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5-a][1,4]diazepin-3-yl)-1,2,4-oxadiazole) would block chemotherapeutic agent paclitaxel-induced pain in male, C57BL/6 mice. Both compounds significantly inhibited pain behaviors evoked by cold and tactile stimulation in paclitaxel-treated mice as did the neuropathic pain drug gabapentin. Subchronic dosing for 22 days with KRM-II-81 and MP-III-80 demonstrated enduring analgesic efficacy without tolerance development, while the effects of gabapentin showed evidence of tolerance development. KRM-II-81 and MP-III-80 also decreased marble-burying behavior in this mouse strain as did the anxiolytic drug chlordiazepoxide. In contrast to KRM-II-81 and MP-III-80, chlordiazepoxide had motor-impairing effects at anxiolytic-like doses. The data add to the literature documenting that these selective potentiators of α2/3-containing GABAA receptors are effective in a host of animal models used to detect novel analgesic drugs. The anxiolytic-like efficacy of these compounds fits well with the comorbidity of anxiety in patients with chronic pain and cancer.
Collapse
Affiliation(s)
- A Biggerstaff
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - B Kivell
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - J L Smith
- Laboratory of Antiepileptic Drug Discovery, Peyton Manning Hospital for Children, Ascension St. Vincent, Indianapolis, IN, USA
| | - Md Y Mian
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - L K Golani
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - F Rashid
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - D Sharmin
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - D E Knutson
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - R Cerne
- Laboratory of Antiepileptic Drug Discovery, Peyton Manning Hospital for Children, Ascension St. Vincent, Indianapolis, IN, USA; Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, Ljubljana, Slovenia
| | - J M Cook
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - J M Witkin
- Laboratory of Antiepileptic Drug Discovery, Peyton Manning Hospital for Children, Ascension St. Vincent, Indianapolis, IN, USA; Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA; Departments of Neuroscience and Trauma Research, Ascension St. Vincent Hospital, Indianapolis, IN, USA.
| |
Collapse
|
15
|
Tudeau L, Acuña MA, Albisetti GW, Neumann E, Ralvenius WT, Scheurer L, Poe M, Cook JM, Johannssen HC, Zeilhofer HU. Mice lacking spinal α2GABA A receptors: Altered GABAergic neurotransmission, diminished GABAergic antihyperalgesia, and potential compensatory mechanisms preventing a hyperalgesic phenotype. Brain Res 2020; 1741:146889. [PMID: 32439345 DOI: 10.1016/j.brainres.2020.146889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/24/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022]
Abstract
Diminished synaptic inhibition in the superficial spinal dorsal horn contributes to exaggerated pain responses that accompany peripheral inflammation and neuropathy. α2GABAA receptors (α2GABAAR) constitute the most abundant GABAAR subtype at this site and are the targets of recently identified antihyperalgesic compounds. Surprisingly, hoxb8-α2-/- mice that lack α2GABAAR from the spinal cord and peripheral sensory neurons exhibit unaltered sensitivity to acute painful stimuli and develop normal inflammatory and neuropathic hyperalgesia. Here, we provide a comprehensive analysis of GABAergic neurotransmission, of behavioral phenotypes and of possible compensatory mechanisms in hoxb8-α2-/- mice. Our results confirm that hoxb8-α2-/- mice show significantly diminished GABAergic inhibitory postsynaptic currents (IPSCs) in the superficial dorsal horn but no hyperalgesic phenotype. We also confirm that the potentiation of dorsal horn GABAergic IPSCs by the α2-preferring GABAAR modulator HZ-166 is reduced in hoxb8-α2-/- mice and that hoxb8-α2-/- mice are resistant to the analgesic effects of HZ-166. Tonic GABAergic currents, glycinergic IPSCs, and sensory afferent-evoked EPSCs did not show significant changes in hoxb8-α2-/- mice rendering a compensatory up-regulation of other GABAAR subtypes or of glycine receptors unlikely. Although expression of serotonin and of the serotonin producing enzyme tryptophan hydroxylase (TPH2) was significantly increased in the dorsal horn of hoxb8-α2-/- mice, ablation of serotonergic terminals from the lumbar spinal cord failed to unmask a nociceptive phenotype. Our results are consistent with an important contribution of α2GABAAR to spinal nociceptive control but their ablation early in development appears to activate yet-to-be identified compensatory mechanisms that protect hoxb8-α2-/- mice from hyperalgesia.
Collapse
Affiliation(s)
- Laetitia Tudeau
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Mario A Acuña
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Gioele W Albisetti
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Elena Neumann
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - William T Ralvenius
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Louis Scheurer
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Michael Poe
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, USA
| | - James M Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, USA
| | - Helge C Johannssen
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland; Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, CH-8093 Zurich, Switzerland.
| |
Collapse
|
16
|
Witkin JM, Li G, Golani LK, Xiong W, Smith JL, Ping X, Rashid F, Jahan R, Cerne R, Cook JM, Jin X. The Positive Allosteric Modulator of α2/3-Containing GABA A Receptors, KRM-II-81, Is Active in Pharmaco-Resistant Models of Epilepsy and Reduces Hyperexcitability after Traumatic Brain Injury. J Pharmacol Exp Ther 2020; 372:83-94. [PMID: 31694876 PMCID: PMC6927408 DOI: 10.1124/jpet.119.260968] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 10/17/2019] [Indexed: 12/14/2022] Open
Abstract
The imidizodiazepine, 5-(8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5-a][1,4]diazepin-3-yl)oxazole (KRM-II-81), is selective for α2/3-containing GABAA receptors. KRM-II-81 dampens seizure activity in rodent models with enhanced efficacy and reduced motor-impairment compared with diazepam. In the present study, KRM-II-81 was studied in assays designed to detect antiepileptics with improved chances of impacting pharmaco-resistant epilepsies. The potential for reducing neural hyperactivity weeks after traumatic brain injury was also studied. KRM-II-81 suppressed convulsions in corneal-kindled mice. Mice with kainate-induced mesial temporal lobe seizures exhibited spontaneous recurrent hippocampal paroxysmal discharges that were significantly reduced by KRM-II-81 (15 mg/kg, orally). KRM-II-81 also decreased convulsions in rats undergoing amygdala kindling in the presence of lamotrigine (lamotrigine-insensitive model) (ED50 = 19 mg/kg, i.p.). KRM-II-81 reduced focal and generalized seizures in a kainate-induced chronic epilepsy model in rats (20 mg/kg, i.p., three times per day). In mice with damage to the left cerebral cortex by controlled-cortical impact, enduring neuronal hyperactivity was dampened by KRM-II-81 (10 mg/kg, i.p.) as observed through in vivo two-photon imaging of layer II/III pyramidal neurons in GCaMP6-expressing transgenic mice. No notable side effects emerged up to doses of 300 mg/kg KRM-II-81. Molecular modeling studies were conducted: docking in the binding site of the α1β3γ2L GABAA receptor showed that replacing the C8 chlorine atom of alprazolam with the acetylene of KRM-II-81 led to loss of the key interaction with α1His102, providing a structural rationale for its low affinity for α1-containing GABAA receptors compared with benzodiazepines such as alprazolam. Overall, these findings predict that KRM-II-81 has improved therapeutic potential for epilepsy and post-traumatic epilepsy. SIGNIFICANCE STATEMENT: We describe the effects of a relatively new orally bioavailable small molecule in rodent models of pharmaco-resistant epilepsy and traumatic brain injury. KRM-II-81 is more potent and generally more efficacious than standard-of-care antiepileptics. In silico docking experiments begin to describe the structural basis for the relative lack of motor impairment induced by KRM-II-81. KRM-II-81 has unique structural and anticonvulsant effects, predicting its potential as an improved antiepileptic drug and novel therapy for post-traumatic epilepsy.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| | - Guanguan Li
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| | - Lalit K Golani
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| | - Wenhui Xiong
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| | - Jodi L Smith
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| | - Xingjie Ping
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| | - Farjana Rashid
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| | - Rajwana Jahan
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| | - Rok Cerne
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| | - James M Cook
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| | - Xiaoming Jin
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| |
Collapse
|
17
|
Elias RS, Hassan QMA, Emshary CA, Sultan HA, Saeed BA. Formation and temporal evolution of diffraction ring patterns in a newly prepared dihydropyridone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 223:117297. [PMID: 31265962 DOI: 10.1016/j.saa.2019.117297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/29/2019] [Accepted: 06/19/2019] [Indexed: 06/09/2023]
Abstract
A dihydropyridone has been prepared from butylamine and curcumin. A theoretical DFT study was conducted to determine the most stable conformer of the studied molecule (among three conformers) using the B3LYP/6-311+G(d,p) level of theory. This is assisted by the prediction of the 13C NMR chemical shifts of the conformers which then correlated with the observed 13C NMR chemical shifts. A TD-DFT study was conducted to analyze the electronic spectrum of the most stable conformer in order to determine the transitions responsible for the longer band in the electronic spectrum of the molecule. As well the frontier orbitals in the most stable conformer were analyzed to establish the density of donor and acceptor sites in the molecule that may be responsible for the nonlinear optical (NLO) properties of the studied molecule. Diffraction ring patterns were observed as a result of the use of visible, 473 nm, low power single mode laser beam traversed a thin cell containing solution of dihydropyridone. The nonlinear refractive index, n2, was determined based on the number of diffraction rings per a pattern observed and by the Z-scan technique and both results are compared. The upward convection heat effect appears to be responsible for the asymmetries observed in the diffraction ring patterns. The use of convergent and divergent laser beams has led to new types of diffraction ring patterns. Temporal evolution of each diffraction ring patterns was registered. The diffraction ring patterns experimentally obtained are numerically calculated using the Fresnel-Kirchhoff diffraction integral, with good qualitative and reasonable quantitative agreements.
Collapse
Affiliation(s)
- Rita S Elias
- College of Pharmacy, University of Basrah, Basrah, Iraq
| | - Qusay M A Hassan
- Department of Physics, College of Education for Pure Sciences, University of Basrah, Basrah, Iraq.
| | - C A Emshary
- Department of Physics, College of Education for Pure Sciences, University of Basrah, Basrah, Iraq
| | - H A Sultan
- Department of Physics, College of Education for Pure Sciences, University of Basrah, Basrah, Iraq
| | - Bahjat A Saeed
- Department of Chemistry, College of Education for Pure Sciences, University of Basrah, Basrah, Iraq
| |
Collapse
|
18
|
Maramai S, Benchekroun M, Ward SE, Atack JR. Subtype Selective γ-Aminobutyric Acid Type A Receptor (GABAAR) Modulators Acting at the Benzodiazepine Binding Site: An Update. J Med Chem 2019; 63:3425-3446. [DOI: 10.1021/acs.jmedchem.9b01312] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Samuele Maramai
- Sussex Drug Discovery Centre, University of Sussex, Brighton BN1 9QJ, U.K
| | - Mohamed Benchekroun
- Sussex Drug Discovery Centre, University of Sussex, Brighton BN1 9QJ, U.K
- Équipe de Chimie Moléculaire, Laboratoire de Génomique Bioinformatique et Chimie Moléculaire, GBCM, EA7528, Conservatoire National des Arts et Métiers, 2 rue Conté, 75003 Paris, France
| | - Simon E. Ward
- Medicines Discovery Institute, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - John R. Atack
- Medicines Discovery Institute, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| |
Collapse
|
19
|
Witkin JM, Ping X, Cerne R, Mouser C, Jin X, Hobbs J, Tiruveedhula VVNPB, Li G, Jahan R, Rashid F, Kumar Golani L, Cook JM, Smith JL. The value of human epileptic tissue in the characterization and development of novel antiepileptic drugs: The example of CERC-611 and KRM-II-81. Brain Res 2019; 1722:146356. [PMID: 31369732 DOI: 10.1016/j.brainres.2019.146356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/17/2019] [Accepted: 07/29/2019] [Indexed: 12/25/2022]
Abstract
The need for improved antiepileptics is clearly mandated despite the existence of multiple existing medicines from different chemical and mechanistic classes. Standard of care agents do not fully control epilepsies and have a variety of side-effect and safety issues. Patients typically take multiple antiepileptic drugs and yet many continue to have seizures. Antiepileptic-unresponsive seizures are life-disrupting and life-threatening. One approach to seizure control is surgical resection of affected brain tissue and associated neural circuits. Although non-human brain studies can provide insight into novel antiepileptic mechanisms, human epileptic brain is the bottom-line biological substrate. Human epileptic brain can provide definitive information on the presence or absence of the putative protein targets of interest in the patient population, the potential changes in these proteins in the epileptic state, and the engagement of novel molecules and their functional impact in target tissue. In this review, we discuss data on two novel potential antiepileptic drugs. CERC-611 (LY3130481) is an AMPA receptor antagonist that selectively blocks AMPA receptors associated with the auxiliary protein TARP γ-8 and is in clinical development. KRM-II-81 is a positive allosteric modulator of GABAA receptors selectively associated with protein subunits α2 and α 3. Preclinical data on these compounds argue that patient-based biological data increase the probability that a newly discovered molecule will translate its antiepileptic potential to patients.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| | - Xingjie Ping
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Rok Cerne
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Claire Mouser
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiaoming Jin
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Jon Hobbs
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Guanguan Li
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Rajwana Jahan
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Farjana Rashid
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Lalit Kumar Golani
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - James M Cook
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jodi L Smith
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, IN, USA.
| |
Collapse
|
20
|
Belinskaia DA, Belinskaia MA, Barygin OI, Vanchakova NP, Shestakova NN. Psychotropic Drugs for the Management of Chronic Pain and Itch. Pharmaceuticals (Basel) 2019; 12:ph12020099. [PMID: 31238561 PMCID: PMC6631469 DOI: 10.3390/ph12020099] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/11/2022] Open
Abstract
Clinical observations have shown that patients with chronic neuropathic pain or itch exhibit symptoms of increased anxiety, depression and cognitive impairment. Such patients need corrective therapy with antidepressants, antipsychotics or anticonvulsants. It is known that some psychotropic drugs are also effective for the treatment of neuropathic pain and pruritus syndromes due to interaction with the secondary molecular targets. Our own clinical studies have identified antipruritic and/or analgesic efficacy of the following compounds: tianeptine (atypical tricyclic antidepressant), citalopram (selective serotonin reuptake inhibitor), mianserin (tetracyclic antidepressant), carbamazepine (anticonvulsant), trazodone (serotonin antagonist and reuptake inhibitor), and chlorprothixene (antipsychotic). Venlafaxine (serotonin-norepinephrine reuptake inhibitor) is known to have an analgesic effect too. The mechanism of such effect of these drugs is not fully understood. Herein we review and correlate the literature data on analgesic/antipruritic activity with pharmacological profile of these compounds.
Collapse
Affiliation(s)
- Daria A Belinskaia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia.
| | - Mariia A Belinskaia
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Oleg I Barygin
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia.
| | - Nina P Vanchakova
- Department of Pedagogy and Psychology, Faculty of Postgraduate Education, First Pavlov State Medical University, L'va Tolstogo str. 6-8, St. Petersburg 197022, Russia.
| | - Natalia N Shestakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia.
| |
Collapse
|
21
|
Li G, Golani LK, Jahan R, Rashid F, Cook JM. Improved Synthesis of Anxiolytic, Anticonvulsant and Antinociceptive α2/α3-GABA(A)ergic Receptor Subtype Selective Ligands as Promising Agents to Treat Anxiety, Epilepsy, as well as Neuropathic Pain. SYNTHESIS-STUTTGART 2018; 50:4124-4132. [PMID: 32773890 PMCID: PMC7413181 DOI: 10.1055/s-0037-1610211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An improved synthesis of the anxiolytic, anticonvulsant and antinociceptive compounds: Hz-166, and its bioisosteres 1,2,4-oxadiazole (MP-III-080) and 1,3-oxazole (KRM-II-81) were executed in higher yields and with more facile purification methods (crystallization, etc.) in multigram quantities without column chromatography. In the synthesis of KRM-II-81, an alternative procedure was employed using the selective reducing reagent, potassium diisobutyl-t-butoxy aluminum hydride (PDBBA), to prepare the desired C(3)-aldehyde in the absence of [N(5)-C(6)] imine reduction in good yield on 20 gram scale.
Collapse
Affiliation(s)
- Guanguan Li
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, United States
| | - Lalit K Golani
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, United States
| | - Rajwana Jahan
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, United States
| | - Farjana Rashid
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, United States
| | - James M Cook
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, United States
| |
Collapse
|
22
|
Sieghart W, Savić MM. International Union of Basic and Clinical Pharmacology. CVI: GABAA Receptor Subtype- and Function-selective Ligands: Key Issues in Translation to Humans. Pharmacol Rev 2018; 70:836-878. [DOI: 10.1124/pr.117.014449] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
23
|
Witkin J, Smith J, Ping X, Gleason S, Poe M, Li G, Jin X, Hobbs J, Schkeryantz J, McDermott J, Alatorre A, Siemian J, Cramer J, Airey D, Methuku K, Tiruveedhula V, Jones T, Crawford J, Krambis M, Fisher J, Cook J, Cerne R. Bioisosteres of ethyl 8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazo [1,5-a][1,4]diazepine-3-carboxylate (HZ-166) as novel alpha 2,3 selective potentiators of GABAA receptors: Improved bioavailability enhances anticonvulsant efficacy. Neuropharmacology 2018; 137:332-343. [DOI: 10.1016/j.neuropharm.2018.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 04/29/2018] [Accepted: 05/03/2018] [Indexed: 10/17/2022]
|
24
|
Duke AN, Meng Z, Platt DM, Atack JR, Dawson GR, Reynolds DS, Tiruveedhula VVNPB, Li G, Stephen MR, Sieghart W, Cook JM, Rowlett JK. Evidence That Sedative Effects of Benzodiazepines Involve Unexpected GABA A Receptor Subtypes: Quantitative Observation Studies in Rhesus Monkeys. J Pharmacol Exp Ther 2018; 366:145-157. [PMID: 29720564 PMCID: PMC5988000 DOI: 10.1124/jpet.118.249250] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/30/2018] [Indexed: 11/22/2022] Open
Abstract
In nonhuman primates we tested a new set of behavioral categories for observable sedative effects using pediatric anesthesiology classifications as a basis. Using quantitative behavioral observation techniques in rhesus monkeys, we examined the effects of alprazolam and diazepam (nonselective benzodiazepines), zolpidem (preferential binding to α1 subunit-containing GABAA receptors), HZ-166 (8-ethynyl-6-(2'-pyridine)-4H-2,5,10b-triaza-benzo[e]azulene-3-carboxylic acid ethyl ester; functionally selective with relatively high intrinsic efficacy for α2 and α3 subunit-containing GABAA receptors), MRK-696 [7-cyclobutyl-6-(2-methyl-2H-1,2,4-triazol-2-ylmethoxy)-3-(2-flurophenyl)-1,2,4-triazolo(4,3-b)pyridazine; no selectivity but partial intrinsic activity], and TPA023B 6,2'-diflouro-5'-[3-(1-hydroxy-1-methylethyl)imidazo[1,2-b][1,2,4]triazin-7-yl]biphenyl-2-carbonitrile; partial intrinsic efficacy and selectivity for α2, α3, α5 subunit-containing GABAA receptors]. We further examined the role of α1 subunit-containing GABAA receptors in benzodiazepine-induced sedative effects by pretreating animals with the α1 subunit-preferring antagonist β-carboline-3-carboxylate-t-butyl ester (βCCT). Increasing doses of alprazolam and diazepam resulted in the emergence of observable ataxia, rest/sleep posture, and moderate and deep sedation. In contrast, zolpidem engendered dose-dependent observable ataxia and deep sedation but not rest/sleep posture or moderate sedation, and HZ-166 and TPA023 induced primarily rest/sleep posture. MRK-696 induced rest/sleep posture and observable ataxia. Zolpidem, but no other compounds, significantly increased tactile/oral exploration. The sedative effects engendered by alprazolam, diazepam, and zolpidem generally were attenuated by βCCT pretreatments, whereas rest/sleep posture and suppression of tactile/oral exploration were insensitive to βCCT administration. These data suggest that α2/3-containing GABAA receptor subtypes unexpectedly may mediate a mild form of sedation (rest/sleep posture), whereas α1-containing GABAA receptors may play a role in moderate/deep sedation.
Collapse
Affiliation(s)
- Angela N Duke
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts (A.N.D., Z.M., D.M.P., J.K.R.); Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (D.M.P., J.K.R.); Medicines Discovery Institute, Cardiff University, Cardiff, Wales, United Kingdom (J.R.A.); P1Vital, University of Oxford, Warneford Hospital, Headington, Oxford, United Kingdom (G.R.D.); Alzheimer's Research UK, Granta Park, Great Abington, Cambridge, United Kingdom (D.S.R.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (V.V.N.P.B.T., G.L., M.R.S., J.M.C.); and Division of Biochemistry and Molecular Biology, Center for Brain Research, Medical University of Vienna, Vienna, Austria (W.S.)
| | - Zhiqiang Meng
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts (A.N.D., Z.M., D.M.P., J.K.R.); Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (D.M.P., J.K.R.); Medicines Discovery Institute, Cardiff University, Cardiff, Wales, United Kingdom (J.R.A.); P1Vital, University of Oxford, Warneford Hospital, Headington, Oxford, United Kingdom (G.R.D.); Alzheimer's Research UK, Granta Park, Great Abington, Cambridge, United Kingdom (D.S.R.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (V.V.N.P.B.T., G.L., M.R.S., J.M.C.); and Division of Biochemistry and Molecular Biology, Center for Brain Research, Medical University of Vienna, Vienna, Austria (W.S.)
| | - Donna M Platt
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts (A.N.D., Z.M., D.M.P., J.K.R.); Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (D.M.P., J.K.R.); Medicines Discovery Institute, Cardiff University, Cardiff, Wales, United Kingdom (J.R.A.); P1Vital, University of Oxford, Warneford Hospital, Headington, Oxford, United Kingdom (G.R.D.); Alzheimer's Research UK, Granta Park, Great Abington, Cambridge, United Kingdom (D.S.R.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (V.V.N.P.B.T., G.L., M.R.S., J.M.C.); and Division of Biochemistry and Molecular Biology, Center for Brain Research, Medical University of Vienna, Vienna, Austria (W.S.)
| | - John R Atack
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts (A.N.D., Z.M., D.M.P., J.K.R.); Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (D.M.P., J.K.R.); Medicines Discovery Institute, Cardiff University, Cardiff, Wales, United Kingdom (J.R.A.); P1Vital, University of Oxford, Warneford Hospital, Headington, Oxford, United Kingdom (G.R.D.); Alzheimer's Research UK, Granta Park, Great Abington, Cambridge, United Kingdom (D.S.R.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (V.V.N.P.B.T., G.L., M.R.S., J.M.C.); and Division of Biochemistry and Molecular Biology, Center for Brain Research, Medical University of Vienna, Vienna, Austria (W.S.)
| | - Gerard R Dawson
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts (A.N.D., Z.M., D.M.P., J.K.R.); Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (D.M.P., J.K.R.); Medicines Discovery Institute, Cardiff University, Cardiff, Wales, United Kingdom (J.R.A.); P1Vital, University of Oxford, Warneford Hospital, Headington, Oxford, United Kingdom (G.R.D.); Alzheimer's Research UK, Granta Park, Great Abington, Cambridge, United Kingdom (D.S.R.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (V.V.N.P.B.T., G.L., M.R.S., J.M.C.); and Division of Biochemistry and Molecular Biology, Center for Brain Research, Medical University of Vienna, Vienna, Austria (W.S.)
| | - David S Reynolds
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts (A.N.D., Z.M., D.M.P., J.K.R.); Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (D.M.P., J.K.R.); Medicines Discovery Institute, Cardiff University, Cardiff, Wales, United Kingdom (J.R.A.); P1Vital, University of Oxford, Warneford Hospital, Headington, Oxford, United Kingdom (G.R.D.); Alzheimer's Research UK, Granta Park, Great Abington, Cambridge, United Kingdom (D.S.R.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (V.V.N.P.B.T., G.L., M.R.S., J.M.C.); and Division of Biochemistry and Molecular Biology, Center for Brain Research, Medical University of Vienna, Vienna, Austria (W.S.)
| | - V V N Phani Babu Tiruveedhula
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts (A.N.D., Z.M., D.M.P., J.K.R.); Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (D.M.P., J.K.R.); Medicines Discovery Institute, Cardiff University, Cardiff, Wales, United Kingdom (J.R.A.); P1Vital, University of Oxford, Warneford Hospital, Headington, Oxford, United Kingdom (G.R.D.); Alzheimer's Research UK, Granta Park, Great Abington, Cambridge, United Kingdom (D.S.R.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (V.V.N.P.B.T., G.L., M.R.S., J.M.C.); and Division of Biochemistry and Molecular Biology, Center for Brain Research, Medical University of Vienna, Vienna, Austria (W.S.)
| | - Guanguan Li
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts (A.N.D., Z.M., D.M.P., J.K.R.); Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (D.M.P., J.K.R.); Medicines Discovery Institute, Cardiff University, Cardiff, Wales, United Kingdom (J.R.A.); P1Vital, University of Oxford, Warneford Hospital, Headington, Oxford, United Kingdom (G.R.D.); Alzheimer's Research UK, Granta Park, Great Abington, Cambridge, United Kingdom (D.S.R.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (V.V.N.P.B.T., G.L., M.R.S., J.M.C.); and Division of Biochemistry and Molecular Biology, Center for Brain Research, Medical University of Vienna, Vienna, Austria (W.S.)
| | - Michael Rajesh Stephen
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts (A.N.D., Z.M., D.M.P., J.K.R.); Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (D.M.P., J.K.R.); Medicines Discovery Institute, Cardiff University, Cardiff, Wales, United Kingdom (J.R.A.); P1Vital, University of Oxford, Warneford Hospital, Headington, Oxford, United Kingdom (G.R.D.); Alzheimer's Research UK, Granta Park, Great Abington, Cambridge, United Kingdom (D.S.R.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (V.V.N.P.B.T., G.L., M.R.S., J.M.C.); and Division of Biochemistry and Molecular Biology, Center for Brain Research, Medical University of Vienna, Vienna, Austria (W.S.)
| | - Werner Sieghart
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts (A.N.D., Z.M., D.M.P., J.K.R.); Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (D.M.P., J.K.R.); Medicines Discovery Institute, Cardiff University, Cardiff, Wales, United Kingdom (J.R.A.); P1Vital, University of Oxford, Warneford Hospital, Headington, Oxford, United Kingdom (G.R.D.); Alzheimer's Research UK, Granta Park, Great Abington, Cambridge, United Kingdom (D.S.R.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (V.V.N.P.B.T., G.L., M.R.S., J.M.C.); and Division of Biochemistry and Molecular Biology, Center for Brain Research, Medical University of Vienna, Vienna, Austria (W.S.)
| | - James M Cook
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts (A.N.D., Z.M., D.M.P., J.K.R.); Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (D.M.P., J.K.R.); Medicines Discovery Institute, Cardiff University, Cardiff, Wales, United Kingdom (J.R.A.); P1Vital, University of Oxford, Warneford Hospital, Headington, Oxford, United Kingdom (G.R.D.); Alzheimer's Research UK, Granta Park, Great Abington, Cambridge, United Kingdom (D.S.R.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (V.V.N.P.B.T., G.L., M.R.S., J.M.C.); and Division of Biochemistry and Molecular Biology, Center for Brain Research, Medical University of Vienna, Vienna, Austria (W.S.)
| | - James K Rowlett
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts (A.N.D., Z.M., D.M.P., J.K.R.); Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (D.M.P., J.K.R.); Medicines Discovery Institute, Cardiff University, Cardiff, Wales, United Kingdom (J.R.A.); P1Vital, University of Oxford, Warneford Hospital, Headington, Oxford, United Kingdom (G.R.D.); Alzheimer's Research UK, Granta Park, Great Abington, Cambridge, United Kingdom (D.S.R.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (V.V.N.P.B.T., G.L., M.R.S., J.M.C.); and Division of Biochemistry and Molecular Biology, Center for Brain Research, Medical University of Vienna, Vienna, Austria (W.S.)
| |
Collapse
|
25
|
Convenient two-step synthesis of highly functionalized benzo-fused 1,4-diazepin-3-ones and 1,5-diazocin-4-ones by sequential Ugi and intramolecular S N Ar reactions. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.09.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Schwienteck KL, Li G, Poe MM, Cook JM, Banks ML, Negus SS. Abuse-related effects of subtype-selective GABA A receptor positive allosteric modulators in an assay of intracranial self-stimulation in rats. Psychopharmacology (Berl) 2017; 234:2091-2101. [PMID: 28365836 PMCID: PMC5875719 DOI: 10.1007/s00213-017-4615-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/22/2017] [Indexed: 12/21/2022]
Abstract
RATIONALE GABAA positive allosteric modulators (GABAA PAMs), such as diazepam and zolpidem, are used clinically for anxiety and insomnia, but abuse liability is a concern. Novel GABAA PAMS may have lower abuse liability while retaining clinical utility. OBJECTIVE The present study compared abuse-related effects of the non-selective GABAA PAM diazepam, the α1-selective GABAA PAM zolpidem, and three novel GABAA PAMs (JY-XHe-053, XHe-II-053, and HZ-166) using intracranial self-stimulation (ICSS) in rats. These novel compounds have relatively low efficacy at α1-, α2-, and α3-containing GABAA receptors, putative in vivo selectivity at α2/α3-containing GABAA receptors, and produce anxiolytic-like effects with limited sedation in non-human primates. METHODS Adult, male Sprague-Dawley rats (n = 17) were each implanted with a bipolar electrode in the medial forebrain bundle and trained to respond under a fixed-ratio 1 schedule of reinforcement for electrical brain stimulation. The potency and time course of effects were compared for diazepam (0.1-10 mg/kg), zolpidem (0.032-3.2 mg/kg), and the three novel compounds (JY-XHe-053, XHe-II-053, and HZ-166; all 3.2-32 mg/kg). RESULTS Zolpidem and diazepam produced transient facilitation of ICSS at small doses and more sustained rate-decreasing effects at larger doses. JY-XHe-053 and HZ-166 produced weak and inconsistent ICSS facilitation, whereas XHe-II-053 had no effect on ICSS. CONCLUSIONS These results support a key role for α1-containing GABAA receptors in mediating GABAA PAM-induced ICSS facilitation. These results are concordant with drug self-administration studies in monkeys in suggesting that GABAA PAMs with low α1 efficacy and putative α2/α3 selectivity have lower abuse liability than high-efficacy non-selective or α1-selective GABAA PAMs.
Collapse
Affiliation(s)
| | - Guanguan Li
- Dept of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI
| | - Michael M. Poe
- Dept of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI
| | - James M. Cook
- Dept of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI
| | - Matthew L. Banks
- Dept of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA
| | - S. Stevens Negus
- Dept of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA,Communicating Author: S. Stevens Negus, PhD, Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12 Street, PO Box 980613, Richmond, VA 23298, Phone: 804-828-3158,
| |
Collapse
|
27
|
Witkin JM, Cerne R, Wakulchik M, S J, Gleason SD, Jones TM, Li G, Arnold LA, Li JX, Schkeryantz JM, Methuku KR, Cook JM, Poe MM. Further evaluation of the potential anxiolytic activity of imidazo[1,5-a][1,4]diazepin agents selective for α2/3-containing GABA A receptors. Pharmacol Biochem Behav 2017; 157:35-40. [PMID: 28442369 PMCID: PMC5519285 DOI: 10.1016/j.pbb.2017.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 11/24/2022]
Abstract
Positive allosteric modulators of GABAA receptors transduce a host of beneficial effects including anxiolytic actions. We have recently shown that bioavailability and anxiolytic-like activity can be improved by eliminating the ester functionality in imidazo[1,5-a][1,4]diazepines. In the present series of experiments, we further substantiate the value of heterocyle replacement of the ester for potential treatment of anxiety. None of three esters was active in a Vogel conflict test in rats that detects anxiolytic drugs like diazepam. Compounds 7 and 8, ester bioisosters, were selective for alpha 2 and 3 over alpha 1-containing GABAA receptors but also had modest efficacy at GABAA alpha 5-containing receptors. Compound 7 was efficacious and potent in this anxiolytic-detecting assay without affecting non-punished responding. The efficacies of the esters and of compound 7 were predicted from their efficacies as anticonvulsants against the GABAA antagonist pentylenetetrazole (PTZ). In contrast, the related structural analog, compound 8, did not produce anxiolytic-like effects in rats despite anticonvulsant efficacy. These data thus support the following conclusions: 1) ancillary pharmacological actions of compound 8 might be responsible for its lack of anxiolytic-like efficacy despite its efficacy as an anticonvulsant 2) esters of imidazo[1,5-a][1,4]diazepines do not demonstrate anxiolytic-like effects in rats due to their low bioavailability and 3) replacement of the ester function with suitable heterocycles markedly improves bioavailability and engenders molecules with the opportunity to have potent and efficacious effects in vivo that correspond to human anxiolytic actions.
Collapse
Affiliation(s)
- J M Witkin
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, United States.
| | - R Cerne
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, United States
| | - M Wakulchik
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, United States
| | - J S
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, United States
| | - S D Gleason
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, United States
| | - T M Jones
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, United States
| | - G Li
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - L A Arnold
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - J-X Li
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - J M Schkeryantz
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, United States
| | - K R Methuku
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - J M Cook
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - M M Poe
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| |
Collapse
|
28
|
A Review of the Updated Pharmacophore for the Alpha 5 GABA(A) Benzodiazepine Receptor Model. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2015; 2015:430248. [PMID: 26682068 PMCID: PMC4657098 DOI: 10.1155/2015/430248] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/16/2015] [Accepted: 07/02/2015] [Indexed: 12/22/2022]
Abstract
An updated model of the GABA(A) benzodiazepine receptor pharmacophore of the α5-BzR/GABA(A) subtype has been constructed prompted by the synthesis of subtype selective ligands in light of the recent developments in both ligand synthesis, behavioral studies, and molecular modeling studies of the binding site itself. A number of BzR/GABA(A) α5 subtype selective compounds were synthesized, notably α5-subtype selective inverse agonist PWZ-029 (1) which is active in enhancing cognition in both rodents and primates. In addition, a chiral positive allosteric modulator (PAM), SH-053-2′F-R-CH3 (2), has been shown to reverse the deleterious effects in the MAM-model of schizophrenia as well as alleviate constriction in airway smooth muscle. Presented here is an updated model of the pharmacophore for α5β2γ2 Bz/GABA(A) receptors, including a rendering of PWZ-029 docked within the α5-binding pocket showing specific interactions of the molecule with the receptor. Differences in the included volume as compared to α1β2γ2, α2β2γ2, and α3β2γ2 will be illustrated for clarity. These new models enhance the ability to understand structural characteristics of ligands which act as agonists, antagonists, or inverse agonists at the Bz BS of GABA(A) receptors.
Collapse
|
29
|
Ralvenius WT, Benke D, Acuña MA, Rudolph U, Zeilhofer HU. Analgesia and unwanted benzodiazepine effects in point-mutated mice expressing only one benzodiazepine-sensitive GABAA receptor subtype. Nat Commun 2015; 6:6803. [PMID: 25865415 PMCID: PMC4829939 DOI: 10.1038/ncomms7803] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 03/02/2015] [Indexed: 01/19/2023] Open
Abstract
Agonists at the benzodiazepine-binding site of GABAA receptors (BDZs) enhance synaptic inhibition through four subtypes (α1, α2, α3 and α5) of GABAA receptors (GABAAR). When applied to the spinal cord, they alleviate pathological pain; however, insufficient efficacy after systemic administration and undesired effects preclude their use in routine pain therapy. Previous work suggested that subtype-selective drugs might allow separating desired antihyperalgesia from unwanted effects, but the lack of selective agents has hitherto prevented systematic analyses. Here we use four lines of triple GABAAR point-mutated mice, which express only one benzodiazepine-sensitive GABAAR subtype at a time, to show that targeting only α2GABAARs achieves strong antihyperalgesia and reduced side effects (that is, no sedation, motor impairment and tolerance development). Additional pharmacokinetic and pharmacodynamic analyses in these mice explain why clinically relevant antihyperalgesia cannot be achieved with nonselective BDZs. These findings should foster the development of innovative subtype-selective BDZs for novel indications such as chronic pain. Benzodiazepines (BDZs) target GABAA receptors to alleviate pain but these also cause side effects. Here the authors use mice in which only one GABAA receptor is BDZ-sensitive at a time to identify α2GABAA as the receptor that provides maximal analgesic activity but minimal side-effects in response to BDZs.
Collapse
Affiliation(s)
- William T Ralvenius
- 1] Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland [2] Center for Neuroscience Zurich (ZNZ), Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Dietmar Benke
- 1] Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland [2] Center for Neuroscience Zurich (ZNZ), Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Mario A Acuña
- 1] Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland [2] Center for Neuroscience Zurich (ZNZ), Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Uwe Rudolph
- 1] Laboratory of Genetic Neuropharmacology, McLean Hospital, 115 Mill Street, Belmont, Massachusetts 02478, USA [2] Department of Psychiatry, Harvard Medical School, 401 Park Drive, Boston, Massachusetts 02215, USA
| | - Hanns Ulrich Zeilhofer
- 1] Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland [2] Center for Neuroscience Zurich (ZNZ), Winterthurerstrasse 190, CH-8057 Zurich, Switzerland [3] Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| |
Collapse
|
30
|
Zeilhofer HU, Ralvenius WT, Acuña MA. Restoring the Spinal Pain Gate. DIVERSITY AND FUNCTIONS OF GABA RECEPTORS: A TRIBUTE TO HANNS MÖHLER, PART B 2015; 73:71-96. [DOI: 10.1016/bs.apha.2014.11.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
31
|
Sudhapriya N, Nandakumar A, Arun Y, Perumal PT, Balachandran C, Emi N. An expedient route to highly diversified [1,2,3]triazolo[1,5-a][1,4]benzodiazepines and their evaluation for antimicrobial, antiproliferative and in silico studies. RSC Adv 2015. [DOI: 10.1039/c5ra12497b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A simple and facile synthesis of a series of diversified [1,2,3]triazolo[1,5-a][1,4]benzodiazepines has been achieved successfully via a one-pot method under milder conditions and evaluated for their biological activity.
Collapse
Affiliation(s)
- N. Sudhapriya
- Organic & Bio-Organic Chemistry Division
- CSIR – Central Leather Research Institute
- Chennai-600020
- India
| | - A. Nandakumar
- Organic & Bio-Organic Chemistry Division
- CSIR – Central Leather Research Institute
- Chennai-600020
- India
| | - Y. Arun
- Organic & Bio-Organic Chemistry Division
- CSIR – Central Leather Research Institute
- Chennai-600020
- India
| | - P. T. Perumal
- Organic & Bio-Organic Chemistry Division
- CSIR – Central Leather Research Institute
- Chennai-600020
- India
| | - C. Balachandran
- Department of Hematology
- Fujita Health University
- Toyoake
- Japan
| | - Nobuhiko Emi
- Department of Hematology
- Fujita Health University
- Toyoake
- Japan
| |
Collapse
|
32
|
Antihyperalgesia by α2-GABAA receptors occurs via a genuine spinal action and does not involve supraspinal sites. Neuropsychopharmacology 2014; 39:477-87. [PMID: 24045508 PMCID: PMC3870792 DOI: 10.1038/npp.2013.221] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 08/08/2013] [Accepted: 08/19/2013] [Indexed: 11/20/2022]
Abstract
Drugs that enhance GABAergic inhibition alleviate inflammatory and neuropathic pain after spinal application. This antihyperalgesia occurs mainly through GABAA receptors (GABAARs) containing α2 subunits (α2-GABAARs). Previous work indicates that potentiation of these receptors in the spinal cord evokes profound antihyperalgesia also after systemic administration, but possible synergistic or antagonistic actions of supraspinal α2-GABAARs on spinal antihyperalgesia have not yet been addressed. Here we generated two lines of GABAAR-mutated mice, which either lack α2-GABAARs specifically from the spinal cord, or, which express only benzodiazepine-insensitive α2-GABAARs at this site. We analyzed the consequences of these mutations for antihyperalgesia evoked by systemic treatment with the novel non-sedative benzodiazepine site agonist HZ166 in neuropathic and inflammatory pain. Wild-type mice and both types of mutated mice had similar baseline nociceptive sensitivities and developed similar hyperalgesia. However, antihyperalgesia by systemic HZ166 was reduced in both mutated mouse lines by about 60% and was virtually indistinguishable from that of global point-mutated mice, in which all α2-GABAARs were benzodiazepine insensitive. The major (α2-dependent) component of GABAAR-mediated antihyperalgesia was therefore exclusively of spinal origin, whereas supraspinal α2-GABAARs had neither synergistic nor antagonistic effects on antihyperalgesia. Our results thus indicate that drugs that specifically target α2-GABAARs exert their antihyperalgesic effect through enhanced spinal nociceptive control. Such drugs may therefore be well-suited for the systemic treatment of different chronic pain conditions.
Collapse
|
33
|
Insights into functional pharmacology of α₁ GABA(A) receptors: how much does partial activation at the benzodiazepine site matter? Psychopharmacology (Berl) 2013; 230:113-23. [PMID: 23685860 PMCID: PMC3795825 DOI: 10.1007/s00213-013-3143-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 04/29/2013] [Indexed: 01/09/2023]
Abstract
RATIONALE Synthesis of ligands inactive or with low activity at α₁ GABA(A) receptors has become the key concept for development of novel, more tolerable benzodiazepine (BZ)-like drugs. WYS8, a remarkably (105 times) α₁-subtype selective partial positive modulator, may serve as a pharmacological tool for refining the role of α₁ GABA(A) receptors in mediation of BZs' effects. OBJECTIVES Here, the effects of WYS8 on GABA-induced currents and on diazepam-induced potentiation of recombinant BZ-sensitive GABA(A) receptors were studied in more detail. In addition, the behavioral profile of WYS8 (0.2, 1, and 10 mg/kg i.p.), on its own and in combination with diazepam, was tested in the spontaneous locomotor activity, elevated plus maze, grip strength, rotarod, and pentylenetetrazole tests. RESULTS WYS8, applied at an in vivo attainable concentration of 100 nM, reduced the stimulation of GABA currents by 1 μM diazepam by 57 % at α₁β₃γ₂, but not at α₂β₃γ₂, α₃β₃γ₂, or α₅β₃γ₂ GABA(A) receptors. The administration of WYS8 alone induced negligible behavioral consequences. When combined with diazepam, WYS8 caused a reduction in sedation, muscle relaxation, and anticonvulsant activity, as compared with this BZ alone, whereas ataxia was preserved, and the anxiolytic effect of 2 mg/kg diazepam was unmasked. CONCLUSIONS Hence, a partial instead of full activation at α₁ GABA(A) receptors did not necessarily result in the attenuation of the effects assumed to be mediated by activation of these receptors, or in the full preservation of the effects mediated by activation of other GABA(A) receptors. Thus, the role of α₁ GABA(A) receptors appears more complex than that proposed by genetic studies.
Collapse
|
34
|
Synthesis of tetrazolodiazepines by a five-centered four-component azide Ugi reaction. Scope and limitations. Russ Chem Bull 2013. [DOI: 10.1007/s11172-012-0214-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
GABA(A) receptor modulation: potential to deliver novel pain medicines? Eur J Pharmacol 2013; 716:17-23. [PMID: 23500203 DOI: 10.1016/j.ejphar.2013.01.070] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 12/10/2012] [Accepted: 01/09/2013] [Indexed: 11/23/2022]
Abstract
GAB(A) (γ-aminobutyric acid) is abundantly expressed within the brain, and spinal cord pain circuits where it acts as the principal mediator of fast inhibitory neurotransmission. However, drugs that target GABA(A) receptor function such as the classical benzodiazepines have not been optimised to promote analgesia, are limited by side effects and are not routinely used for this purpose in humans. Compounds such as NS11394, L-838,417, HZ166 and TPA023 all bind to the same benzodiazepine site on the GABA(A) receptor to allosterically modulate receptor function and enhance the actions of GABA. By virtue of their ability to activate selected subtypes of GABA(A) receptors (principally those containing α2, α3 and α5 subunits) these compounds have been shown to possess excellent tolerability profiles in animals. Importantly, a number of these molecules also mediate profound analgesia in animal models of inflammatory and neuropathic pain. Other modulators such as neurosteroids bind to distinct sites on GABA(A) receptor α subunits, possess a unique pharmacology and are capable of targeting alternative GABA(A) receptor expressing populations. Moreover, neurosteroids also have pronounced analgesic actions in animal pain models. The continuing call for novel mechanism of action analgesics to target specific pathologies, especially in clinical neuropathic conditions, emphasizes the need to test modulators of GABA(A) receptor function in both human experimental pain models and pain patients.
Collapse
|
36
|
Drexler B, Zinser S, Huang S, Poe MM, Rudolph U, Cook JM, Antkowiak B. Enhancing the function of alpha5-subunit-containing GABAA receptors promotes action potential firing of neocortical neurons during up-states. Eur J Pharmacol 2013; 703:18-24. [PMID: 23380687 DOI: 10.1016/j.ejphar.2013.01.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 01/12/2013] [Accepted: 01/16/2013] [Indexed: 11/27/2022]
Abstract
Neocortical neurons mediate the sedative and anticonvulsant properties of benzodiazepines. These agents enhance synaptic inhibition via positive modulation of γ-aminobutyric acid (GABAA) receptors harboring α1-, α2-, α3- or α5-protein subunits. Benzodiazepine-sensitive GABAA receptors containing the α5-subunit are abundant in the neocortex, but their impact in controlling neuronal firing patterns is unknown. Here we studied how the discharge rates of cortical neurons are modified by a positive (SH-053-2'F-R-CH3) and a negative (L 655,708) α5-subunit-preferring allosteric modulator in comparison to diazepam, the classical non-selective benzodiazepine. Drug actions were characterized in slice cultures from wild-type and α5(H105R) knock-in mice by performing extracellular multi-unit-recordings. In knock-in mice, receptors containing the α5 subunit are insensitive to benzodiazepines. The non-selective positive allosteric modulator diazepam decreased the discharge rates of neocortical neurons during episodes of ongoing neuronal activity (up states). In contrast to diazepam, the α5-preferring positive modulator SH-053-2'F-R-CH3 accelerated action potential firing during up states. This promoting action was absent in slices from α5(H105R) mice, confirming that it is mediated by the α5-subunit. Consistent with these observations, the negative α5-selective modulator L 655,708 inhibited up state action potential activity in slices from wild-type mice. The opposing actions of diazepam and SH-053-2'F-R-CH3, which both enhance GABAA receptor function but differ in subtype-selectivity, uncovers contrasting roles of GABAA receptor subtypes in controlling the firing rates of cortical neurons. These findings may have important implications for the design of novel anaesthetic and anticonvulsant benzodiazepines displaying an improved efficacy and fewer side effects.
Collapse
Affiliation(s)
- Berthold Drexler
- Experimental Anaesthesiology Section, Department of Anaesthesiology and Intensive Care Medicine, Eberhard-Karls-University, 72072 Tuebingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
37
|
Palanisamy P, Jenniefer SJ, Muthiah PT, Kumaresan S. Synthesis, characterization, antimicrobial, anticancer, and antituberculosis activity of some new pyrazole, isoxazole, pyrimidine and benzodiazepine derivatives containing thiochromeno and benzothiepino moieties. RSC Adv 2013. [DOI: 10.1039/c3ra42283f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
38
|
|
39
|
Gallos G, Townsend E, Yim P, Virag L, Zhang Y, Xu D, Bacchetta M, Emala CW. Airway epithelium is a predominant source of endogenous airway GABA and contributes to relaxation of airway smooth muscle tone. Am J Physiol Lung Cell Mol Physiol 2012. [PMID: 23204068 DOI: 10.1152/ajplung.00274.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chronic obstructive pulmonary disease and asthma are characterized by hyperreactive airway responses that predispose patients to episodes of acute airway constriction. Recent studies suggest a complex paradigm of GABAergic signaling in airways that involves GABA-mediated relaxation of airway smooth muscle. However, the cellular source of airway GABA and mechanisms regulating its release remain unknown. We questioned whether epithelium is a major source of GABA in the airway and whether the absence of epithelium-derived GABA contributes to greater airway smooth muscle force. Messenger RNA encoding glutamic acid decarboxylase (GAD) 65/67 was quantitatively measured in human airway epithelium and smooth muscle. HPLC quantified GABA levels in guinea pig tracheal ring segments under basal or stimulated conditions with or without epithelium. The role of endogenous GABA in the maintenance of an acetylcholine contraction in human airway and guinea pig airway smooth muscle was assessed in organ baths. A 37.5-fold greater amount of mRNA encoding GAD 67 was detected in human epithelium vs. airway smooth muscle cells. HPLC confirmed that guinea pig airways with intact epithelium have a higher constitutive elution of GABA under basal or KCl-depolarized conditions compared with epithelium-denuded airway rings. Inhibition of GABA transporters significantly suppressed KCl-mediated release of GABA from epithelium-intact airways, but tetrodotoxin was without effect. The presence of intact epithelium had a significant GABAergic-mediated prorelaxant effect on the maintenance of contractile tone. Airway epithelium is a predominant cellular source of endogenous GABA in the airway and contributes significant prorelaxant GABA effects on airway smooth muscle force.
Collapse
Affiliation(s)
- George Gallos
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, 622 W. 168 St., P&S Box 46, New York, NY 10032, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Sieghart W, Ramerstorfer J, Sarto-Jackson I, Varagic Z, Ernst M. A novel GABA(A) receptor pharmacology: drugs interacting with the α(+) β(-) interface. Br J Pharmacol 2012; 166:476-85. [PMID: 22074382 DOI: 10.1111/j.1476-5381.2011.01779.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
GABA(A) receptors are ligand-gated chloride channels composed of five subunits that can belong to different subunit classes. The existence of 19 different subunits gives rise to a multiplicity of GABA(A) receptor subtypes with distinct subunit composition; regional, cellular and subcellular distribution; and pharmacology. Most of these receptors are composed of two α, two β and one γ2 subunits. GABA(A) receptors are the site of action of a variety of pharmacologically and clinically important drugs, such as benzodiazepines, barbiturates, neuroactive steroids, anaesthetics and convulsants. Whereas GABA acts at the two extracellular β(+) α(-) interfaces of GABA(A) receptors, the allosteric modulatory benzodiazepines interact with the extracellular α(+) γ2(-) interface. In contrast, barbiturates, neuroactive steroids and anaesthetics seem to interact with solvent accessible pockets in the transmembrane domain. Several benzodiazepine site ligands have been identified that selectively interact with GABA(A) receptor subtypes containing α2βγ2, α3βγ2 or α5βγ2 subunits. This indicates that the different α subunit types present in these receptors convey sufficient structural differences to the benzodiazepine binding site to allow specific interaction with certain benzodiazepine site ligands. Recently, a novel drug binding site was identified at the α(+) β(-) interface. This binding site is homologous to the benzodiazepine binding site at the α(+) γ2(-) interface and is thus also strongly influenced by the type of α subunit present in the receptor. Drugs interacting with this binding site cannot directly activate but only allosterically modulate GABA(A) receptors. The possible importance of such drugs addressing a spectrum of receptor subtypes completely different from that of benzodiazepines is discussed.
Collapse
Affiliation(s)
- Werner Sieghart
- Department of Biochemistry and Molecular Biology, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
41
|
Piao FY, Wei CX, Han RB, Zhang WB, Zhang W, Jiang RS. Synthesis and Anticonvulsant Activity of 9-Alkoxy-6,7-dihydro-2H-benzo[c][1,2,4]triazolo[4,3-a]azepin-3[5H]-ones. SYNTHETIC COMMUN 2012. [DOI: 10.1080/00397911.2011.553762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Feng-Yu Piao
- a Department of Chemistry, College of Science , Yanbian University , Yanji , Jilin , China
| | - Cheng-Xi Wei
- b Institute of Neurosurgery, Inner Mongolia Univercity for Nationalities , Tongliao , China
| | - Rong-Bi Han
- a Department of Chemistry, College of Science , Yanbian University , Yanji , Jilin , China
| | - Wen-Bin Zhang
- a Department of Chemistry, College of Science , Yanbian University , Yanji , Jilin , China
| | - Wei Zhang
- a Department of Chemistry, College of Science , Yanbian University , Yanji , Jilin , China
| | - Ri-Shan Jiang
- a Department of Chemistry, College of Science , Yanbian University , Yanji , Jilin , China
| |
Collapse
|
42
|
Chen Q, Yim PD, Yuan N, Johnson J, Cook JM, Smith S, Ionescu-Zanetti C, Wang ZJ, Arnold LA, Emala CW. Comparison of cell expression formats for the characterization of GABA(A) channels using a microfluidic patch clamp system. Assay Drug Dev Technol 2012; 10:325-35. [PMID: 22574655 DOI: 10.1089/adt.2011.415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ensemble recording and microfluidic perfusion are recently introduced techniques aimed at removing the laborious nature and low recording success rates of manual patch clamp. Here, we present assay characteristics for these features integrated into one automated electrophysiology platform as applied to the study of GABA(A) channels. A variety of cell types and methods of GABA(A) channel expression were successfully studied (defined as I(GABA)>500 pA), including stably transfected human embryonic kidney (HEK) cells expressing α(1)β(3)γ(2) GABA(A) channels, frozen ready-to-assay (RTA) HEK cells expressing α(1)β(3)γ(2) or α(3)β(3)γ(2) GABA(A) channels, transiently transfected HEK293T cells expressing α(1)β(3)γ(2) GABA(A) channels, and immortalized cultures of human airway smooth muscle cells endogenously expressing GABA(A) channels. Current measurements were successfully studied in multiple cell types with multiple modes of channel expression in response to several classic GABA(A) channel agonists, antagonists, and allosteric modulators. We obtained success rates above 95% for transiently or stably transfected HEK cells and frozen RTA HEK cells expressing GABA(A) channels. Tissue-derived immortalized cultures of airway smooth muscle cells exhibited a slightly lower recording success rate of 75% using automated patch, which was much higher than the 5% success rate using manual patch clamp technique by the same research group. Responses to agonists, antagonists, and allosteric modulators compared well to previously reported manual patch results. The data demonstrate that both the biophysics and pharmacologic characterization of GABA(A) channels in a wide variety of cell formats can be performed using this automated patch clamp system.
Collapse
Affiliation(s)
- Qin Chen
- Fluxion Biosciences, South San Francisco, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Zeilhofer HU, Benke D, Yevenes GE. Chronic pain states: pharmacological strategies to restore diminished inhibitory spinal pain control. Annu Rev Pharmacol Toxicol 2012; 52:111-33. [PMID: 21854227 DOI: 10.1146/annurev-pharmtox-010611-134636] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Potentially noxious stimuli are sensed by specialized nerve cells named nociceptors, which convey nociceptive signals from peripheral tissues to the central nervous system. The spinal dorsal horn and the trigeminal nucleus serve as first relay stations for incoming nociceptive signals. At these sites, nociceptor terminals contact a local neuronal network consisting of excitatory and inhibitory interneurons as well as of projection neurons. Blockade of neuronal inhibition in this network causes an increased sensitivity to noxious stimuli (hyperalgesia), painful sensations occurring after activation of non-nociceptive fibers (allodynia), and spontaneous pain felt in the absence of any sensory stimulation. It thus mimics the major characteristics of chronic pain states. Diminished inhibitory pain control in the spinal dorsal horn occurs naturally, e.g., through changes in the function of inhibitory neurotransmitter receptors or through altered chloride homeo-stasis in the course of inflammation or nerve damage. This review summarizes our current knowledge about endogenous mechanisms leading to diminished spinal pain control and discusses possible ways that could restore proper inhibition through facilitation of fast inhibitory neurotransmission.
Collapse
Affiliation(s)
- Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland.
| | | | | |
Collapse
|
44
|
|
45
|
Raker J, Wang Y, Pechulis AD, Haber JC, Lynch MA, Spring SL. Synthesis of novel benzo[b]pyrazolo[1,5]diazepines. J Heterocycl Chem 2011. [DOI: 10.1002/jhet.878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Zhang WB, Han RB, Zhang W, Jiang RS, Piao FY. Synthesis and anticonvulsant activity of 8-alkoxy-5,6-dihydro-4H-benzo[f][1,2,4]triazolo[4,3-a]azepine derivatives. Med Chem Res 2011. [DOI: 10.1007/s00044-011-9771-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
47
|
Piao FY, Han RB, Zhang W, Zhang WB, Jiang RS. Synthesis and anticonvulsant activity of 8-alkoxy-5,6-dihydro-4H-[1,2,4]triazolo[4,3-a][1]benzazepin-1-one derivatives. Eur J Med Chem 2011; 46:1050-5. [PMID: 21303724 DOI: 10.1016/j.ejmech.2011.01.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 01/01/2011] [Accepted: 01/12/2011] [Indexed: 01/18/2023]
Abstract
A series of novel 8-alkoxy-5,6-dihydro-4H-[1,2,4]triazolo[4,3-a][1]benzazepin-1-one derivatives were synthesized and screened for their anticonvulsant activities by the maximal electroshock (MES) test, subcutaneous pentylenetetrazol (scPTZ) test, and their neurotoxicity was evaluated by the rotarod neurotoxicity test (Tox). The results of these tests demonstrated that 8-heptyloxy-5,6-dihydro-4H-[1,2,4]triazolo[4,3-a][1]benzazepin-1-one (3f) and 8-hexyloxy -5,6-dihydro-4H-[1,2,4]triazolo[4,3-a][1]benzazepin-1-one (3e) were the most promising compounds, with median effective dose (ED(50)) of 17.6 and 17.9 mg/kg, and protective index (PI) of greater than 63.4 and 62.4 in the MES test, respectively. These PI values were higher than the PI value of the prototype antiepileptic drug carbamazepine. The scPTZ test showed that 8-pentyloxy-5,6-dihydro-4H-[1,2,4]triazolo[4,3-a][1]benzazepin-1-one (3d) was the most potent with ED(50) value of 38.0 mg/kg and PI value of greater than 29.4, which is much safer than marketed drug carbamazepine. The possible structure-activity relationship was discussed.
Collapse
Affiliation(s)
- Feng-Yu Piao
- Department of Chemistry, College of Science, Yanbian University, Yanji City, 133002 Jilin Province, PR China.
| | | | | | | | | |
Collapse
|
48
|
Smith JA, Molesworth PP, Hyland CJ, Ryan JH. Seven-Membered Rings. PROGRESS IN HETEROCYCLIC CHEMISTRY 2011. [DOI: 10.1016/s0959-6380(11)22016-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
49
|
Di Lio A, Benke D, Besson M, Desmeules J, Daali Y, Wang ZJ, Edwankar R, Cook JM, Zeilhofer HU. HZ166, a novel GABAA receptor subtype-selective benzodiazepine site ligand, is antihyperalgesic in mouse models of inflammatory and neuropathic pain. Neuropharmacology 2010; 60:626-32. [PMID: 21145329 DOI: 10.1016/j.neuropharm.2010.11.026] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 11/26/2010] [Accepted: 11/30/2010] [Indexed: 11/17/2022]
Abstract
Diminished GABAergic and glycinergic inhibition in the spinal dorsal horn contributes significantly to chronic pain of different origins. Accordingly, pharmacological facilitation of GABAergic inhibition by spinal benzodiazepines (BDZs) has been shown to reverse pathological pain in animals as well as in human patients. Previous studies in GABA(A) receptor point-mutated mice have demonstrated that the spinal anti-hyperalgesic effect of classical BDZs is mainly mediated by GABA(A) receptors containing the α2 subunit (α2-GABA(A) receptors), while α1-GABA(A) receptors, which mediate the sedative effects, do not contribute. Here, we investigated the potential analgesic profile of HZ166, a new partial BDZ-site agonist with preferential activity at α2- and α3-GABA(A) receptors. HZ166 showed a dose-dependent anti-hyperalgesic effect in mouse models of neuropathic and inflammatory pain, triggered by chronic constriction injury (CCI) of the sciatic nerve and by subcutaneous injection of the yeast extract zymosan A, respectively. This antihyperalgesic activity was antagonized by flumazenil and hence mediated via the BDZ-binding site of GABA(A) receptors. A central site of action of HZ166 was consistent with its pharmacokinetics in the CNS. When non-sedative doses of HZ166 and gabapentin, a drug widely used in the clinical management of neuropathic pain, were compared, the efficacies of both drugs against CCI-induced pain were similar. At doses producing already maximal antihyperalgesia, HZ166 was devoid of sedation and motor impairment, and showed no loss of analgesic activity during a 9-day chronic treatment period (i.e. no tolerance development). These findings provide further evidence that compounds selective for α2- and α3-GABA(A) receptors might constitute a novel class of analgesics suitable for the treatment of chronic pain.
Collapse
Affiliation(s)
- Alessandra Di Lio
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Fischer BD, Licata SC, Edwankar RV, Wang ZJ, Huang S, He X, Yu J, Zhou H, Johnson EM, Cook JM, Furtmüller R, Ramerstorfer J, Sieghart W, Roth BL, Majumder S, Rowlett JK. Anxiolytic-like effects of 8-acetylene imidazobenzodiazepines in a rhesus monkey conflict procedure. Neuropharmacology 2010; 59:612-8. [PMID: 20727364 PMCID: PMC2963662 DOI: 10.1016/j.neuropharm.2010.08.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 07/19/2010] [Accepted: 08/10/2010] [Indexed: 11/16/2022]
Abstract
Conflict procedures can be used to study the receptor mechanisms underlying the anxiolytic effects of benzodiazepines and other GABA(A) receptor modulators. In the present study, we first determined the efficacy and binding affinity of the benzodiazepine diazepam and recently synthesized GABA(A) receptor modulators JY-XHe-053, XHe-II-053, HZ-166, SH-053-2'F-S-CH₃ and SH-053-2'F-R-CH₃ at GABA(A) receptors containing α1, α2, α3 and α5 subunits. Results from these studies suggest that each compound displayed lower efficacy at GABA(A) receptors containing α1 subunits and varying degrees of efficacy and affinity at GABA(A) receptors containing α2, α3 and α5 subunits. Next, we assessed their anxiolytic effects using a rhesus monkey conflict procedure in which behavior was maintained under a fixed-ratio schedule of food delivery in the absence (non-suppressed responding) and presence (suppressed responding) of response-contingent electric shock. Relatively non-selective compounds, such as diazepam and JY-XHe-053 produced characteristic increases in rates of suppressed responding at low to intermediate doses and decreased the average rates of non-suppressed responding at higher doses. XHe-II-053 and HZ-166 also produced increases in suppressed responding at low to intermediate doses, but were ineffective at decreasing rates of non-suppressed responding, consistent with their relatively low efficacy at GABA(A) receptors containing α1 and α5 subunits. In contrast, SH-053-2'F-S-CH₃ and SH-053-2'F-R-CH₃ produced only partial increases in suppressed responding and were ineffective on non-suppressed responding, consistent with their profiles as partial agonists at GABA(A) receptors containing α2, α3 and α5 subunits. These behavioral effects suggest that the anxiolytic and rate-reducing effects of GABA(A) receptor positive modulators are dependent on their relative efficacy and affinity at different GABA(A) receptor subtypes.
Collapse
Affiliation(s)
- Bradford D Fischer
- Harvard Medical School, New England Primate Research Center, One Pine Hill Drive, P.O. Box 9102, Southborough, Massachusetts 01772-9102, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|