1
|
Hamdi A, Yaseen M, Ewes WA, Bhat MA, Ziedan NI, El-Shafey HW, Mohamed AAB, Elnagar MR, Haikal A, Othman DIA, Elgazar AA, Abusabaa AHA, Abdelrahman KS, Soltan OM, Elbadawi MM. Development of new thiazolidine-2,4-dione hybrids as aldose reductase inhibitors endowed with antihyperglycaemic activity: design, synthesis, biological investigations, and in silico insights. J Enzyme Inhib Med Chem 2023; 38:2231170. [PMID: 37470409 PMCID: PMC10361003 DOI: 10.1080/14756366.2023.2231170] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/21/2023] Open
Abstract
This research study describes the development of new small molecules based on 2,4-thiazolidinedione (2,4-TZD) and their aldose reductase (AR) inhibitory activities. The synthesis of 17 new derivatives of 2,4-TZDs hybrids was feasible by incorporating two known bioactive scaffolds, benzothiazole heterocycle, and nitro phenacyl moiety. The most active hybrid (8b) was found to inhibit AR in a non-competitive manner (0.16 µM), as confirmed by kinetic studies and molecular docking simulations. Furthermore, the in vivo experiments demonstrated that compound 8b had a significant hypoglycaemic effect in mice with hyperglycaemia induced by streptozotocin. Fifty milligrams per kilogram dose of 8b produced a marked decrease in blood glucose concentration, and a lower dose of 5 mg/kg demonstrated a noticeable antihyperglycaemic effect. These outcomes suggested that compound 8b may be used as a promising therapeutic agent for the treatment of diabetic complications.
Collapse
Affiliation(s)
- Abdelrahman Hamdi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Swat, Swat, Pakistan
| | - Wafaa A Ewes
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mashooq Ahmad Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Noha I Ziedan
- Department of physical, mathematical and Engineering science, Faculty of science, Business and Enterprise, University of Chester, Chester, UK
| | - Hamed W El-Shafey
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ahmed A B Mohamed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed R Elnagar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Department of Pharmacology, College of Pharmacy, The Islamic University, Najaf, Iraq
| | - Abdullah Haikal
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Dina I A Othman
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Abdullah A Elgazar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ahmed H A Abusabaa
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Kamal S Abdelrahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Osama M Soltan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Mostafa M Elbadawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
2
|
Lan CB, Auclair K. Ammonium Chloride‐Promoted Rapid Synthesis of Monosubstituted Ureas under Microwave Irradiation. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chunling Blue Lan
- Department of Chemistry McGill University 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| | - Karine Auclair
- Department of Chemistry McGill University 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| |
Collapse
|
3
|
Singh M, Kapoor A, Bhatnagar A. Physiological and Pathological Roles of Aldose Reductase. Metabolites 2021; 11:655. [PMID: 34677370 PMCID: PMC8541668 DOI: 10.3390/metabo11100655] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
Aldose reductase (AR) is an aldo-keto reductase that catalyzes the first step in the polyol pathway which converts glucose to sorbitol. Under normal glucose homeostasis the pathway represents a minor route of glucose metabolism that operates in parallel with glycolysis. However, during hyperglycemia the flux of glucose via the polyol pathway increases significantly, leading to excessive formation of sorbitol. The polyol pathway-driven accumulation of osmotically active sorbitol has been implicated in the development of secondary diabetic complications such as retinopathy, nephropathy, and neuropathy. Based on the notion that inhibition of AR could prevent these complications a range of AR inhibitors have been developed and tested; however, their clinical efficacy has been found to be marginal at best. Moreover, recent work has shown that AR participates in the detoxification of aldehydes that are derived from lipid peroxidation and their glutathione conjugates. Although in some contexts this antioxidant function of AR helps protect against tissue injury and dysfunction, the metabolic transformation of the glutathione conjugates of lipid peroxidation-derived aldehydes could also lead to the generation of reactive metabolites that can stimulate mitogenic or inflammatory signaling events. Thus, inhibition of AR could have both salutary and injurious outcomes. Nevertheless, accumulating evidence suggests that inhibition of AR could modify the effects of cardiovascular disease, asthma, neuropathy, sepsis, and cancer; therefore, additional work is required to selectively target AR inhibitors to specific disease states. Despite past challenges, we opine that a more gainful consideration of therapeutic modulation of AR activity awaits clearer identification of the specific role(s) of the AR enzyme in health and disease.
Collapse
Affiliation(s)
- Mahavir Singh
- Eye and Vision Science Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Aniruddh Kapoor
- Internal Medicine—Critical Care, School of Medicine, Saint Louis University, St. Louis, MO 63141, USA;
| | - Aruni Bhatnagar
- Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| |
Collapse
|
4
|
Saito R, Hoshi M, Kato A, Ishikawa C, Komatsu T. Green fluorescent protein chromophore derivatives as a new class of aldose reductase inhibitors. Eur J Med Chem 2017; 125:965-974. [DOI: 10.1016/j.ejmech.2016.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/14/2016] [Accepted: 10/07/2016] [Indexed: 10/20/2022]
|
5
|
Congiu C, Onnis V, Deplano A, Salvadori S, Marconi V, Maftei D, Negri L, Lattanzi R, Balboni G. A new convenient synthetic method and preliminary pharmacological characterization of triazinediones as prokineticin receptor antagonists. Eur J Med Chem 2014; 81:334-40. [PMID: 24852280 DOI: 10.1016/j.ejmech.2014.05.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/09/2014] [Accepted: 05/10/2014] [Indexed: 11/15/2022]
Abstract
A new efficient synthetic method to obtain prokineticin receptor antagonists based on the triazinedione scaffold is described. In this procedure the overall yield improves from 13% to about 54%, essentially for two factors: 1) N-(chlorocarbonyl) isocyanate is no more used, it represents the yield limiting step with an average yield not exceeding 30%. 2) The Mitsunobu reaction is not involved in the new synthetic scheme avoiding the use of time and solvent consuming column chromatography. All synthesized triazinediones were preliminary pharmacologically screened in vivo for their ability to reduce the Bv8-induced thermal hyperalgesia. In this assay all compounds displayed EC50 values in the picomolar-subpicomolar range, some triazinediones containing a 4-halogen substituted benzyl group in position 5 showed the best activity. The analogues containing a 4-fluorine atom (PC-7) and a 4-bromobenzyl group (PC-25) resulted 10 times more potent than the reference PC-1 that bears a 4-ethylbenzyl group. While the 4-trifluoromethylbenzyl substituted analog (PC-27) was 100 times more potent as compared to PC1.
Collapse
Affiliation(s)
- Cenzo Congiu
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, I-09124 Cagliari, Italy
| | - Valentina Onnis
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, I-09124 Cagliari, Italy.
| | - Alessandro Deplano
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, I-09124 Cagliari, Italy
| | - Severo Salvadori
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, I-44100 Ferrara, Italy
| | - Veronica Marconi
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, I-00185 Rome, Italy
| | - Daniela Maftei
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, I-00185 Rome, Italy
| | - Lucia Negri
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, I-00185 Rome, Italy
| | - Roberta Lattanzi
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, I-00185 Rome, Italy
| | - Gianfranco Balboni
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, I-09124 Cagliari, Italy.
| |
Collapse
|
6
|
Huang W, Xu ML. Synthesis of Imides and Benzoylureas by Direct Oxidation of N-methylenes of Amides and Benzylureas. JOURNAL OF CHEMICAL RESEARCH 2013. [DOI: 10.3184/174751912x13567968693695] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Some amides and benzylureas can be oxidised to imides and benzoylureas, respectively, using silver(I) nitrate (20 mol %), copper(II) sulfate pentahydrate (20 mol %), ammonium persulfate (3.0 equiv.), and potassium fluoride (20 equiv.) in water at room temperature.
Collapse
Affiliation(s)
- Wenhua Huang
- Department of Chemistry, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China
| | - Mei-Li Xu
- Department of Chemistry, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China
| |
Collapse
|
7
|
Gupta S, Varshney K, Srivastava R, Rahuja N, Rawat AK, Srivastava AK, Saxena AK. Identification of novel urea derivatives as PTP1B inhibitors: synthesis, biological evaluation and structure–activity relationships. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00138e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
8
|
Pejchal V, Stepankova S, Padelkova Z, Imramovsky A, Jampilek J. 1,3-substituted imidazolidine-2,4,5-triones: synthesis and inhibition of cholinergic enzymes. Molecules 2011; 16:7565-82. [PMID: 21894089 PMCID: PMC6264296 DOI: 10.3390/molecules16097565] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 08/30/2011] [Accepted: 08/31/2011] [Indexed: 11/20/2022] Open
Abstract
A series of novel and highly active acetylcholinesterase and butyrylcholinesterase inhibitors derived from substituted benzothiazoles containing an imidazolidine-2,4,5-trione moiety were synthesized and characterized. The molecular structure of 1-(2,6-diisopropyl-phenyl)-3-[(1R)-1-(6-fluoro-1,3-benzothiazol-2-yl)ethyl]-imidazolidine-2,4,5-trione (3g) was determined by single-crystal X-ray diffraction. Both optical isomers are present as two independent molecules in the triclinic crystal system. The lipophilicity of the compounds was determined as the partition coefficient log K(ow) using the traditional shake-flask method. The in vitro inhibitory activity on acetylcholinesterase from electric eel and butyrylcholinesterase isolated from equine serum was determined. The inhibitory activity on acetylcholinesterase was significantly higher than that of the standard drug rivastigmine. The discussed compounds are also promising inhibitors of butyrylcholinesterase, as some of the prepared compounds inhibit butyrylcholinesterase better than the internal standards rivastigmine and galanthamine. The highest inhibitory activity (IC₅₀ = 1.66 μmol/L) corresponds to the compound 1-(4-isopropylphenyl)-3-[(R)-1-(6-fluorobenzo[d]thiazol-2-yl)ethyl]imidazolidine-2,4,5-trione (3d). For all the studied compounds, the relationships between the lipophilicity and the chemical structure as well as their structure-activity relationships are discussed.
Collapse
Affiliation(s)
- Vladimir Pejchal
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic
| | - Sarka Stepankova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, Pardubice 53210, Czech Republic
| | - Zdenka Padelkova
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic
| | - Ales Imramovsky
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic
| | - Josef Jampilek
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1/3, 612 42 Brno, Czech Republic
| |
Collapse
|
9
|
Rajabi M, Mansell D, Freeman S, Bryce RA. Structure–activity relationship of 2,4,5-trioxoimidazolidines as inhibitors of thymidine phosphorylase. Eur J Med Chem 2011; 46:1165-71. [DOI: 10.1016/j.ejmech.2011.01.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/14/2010] [Accepted: 01/22/2011] [Indexed: 10/18/2022]
|
10
|
Kawarada H, Yoshikawa Y, Yasui H, Kuwahara S, Habata Y, Saito R. Synthesis and in vitro insulin-mimetic activities of zinc(ii) complexes of ethyl 2,5-dihydro-4-hydroxy-5-oxo-1H-pyrrole-3-carboxylates. Metallomics 2011; 3:675-9. [DOI: 10.1039/c1mt00009h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Saito R, Tokita M, Uda K, Ishikawa C, Satoh M. Synthesis and in vitro evaluation of botryllazine B analogues as a new class of inhibitor against human aldose reductase. Tetrahedron 2009. [DOI: 10.1016/j.tet.2009.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Cativiela C, Ordóñez M. Recent Progress on the Stereoselective Synthesis of Cyclic Quaternary alpha-Amino Acids. TETRAHEDRON, ASYMMETRY 2009; 20:1-63. [PMID: 20300486 PMCID: PMC2839256 DOI: 10.1016/j.tetasy.2009.01.002] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The most recent papers describing the stereoselective synthesis of cyclic quaternary alpha-amino acids are collected in this review. The diverse synthetic approaches are classified according to the size of the ring and taking into account the bond that is formed to complete the quaternary skeleton.
Collapse
Affiliation(s)
- Carlos Cativiela
- Departamento de Química Orgánica, ICMA, Universidad de Zaragoza-CSIC, 50009 Zaragoza (Spain)
| | - Mario Ordóñez
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, 62209 Cuernavaca, Morelos (México)
| |
Collapse
|
13
|
Land EJ, Perona A, Ramsden CA, Riley PA. Dopamine quinone chemistry: a study of the influence of amide, amidine and guanidine substituents [-NH-CX-Y] on the mode of reaction. Org Biomol Chem 2009; 7:944-50. [DOI: 10.1039/b819367c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Mashiko T, Kumagai N, Shibasaki M. An Improved Lanthanum Catalyst System for Asymmetric Amination: Toward a Practical Asymmetric Synthesis of AS-3201 (Ranirestat). Org Lett 2008; 10:2725-8. [DOI: 10.1021/ol8008446] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tomoyuki Mashiko
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Naoya Kumagai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masakatsu Shibasaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
15
|
Gleissner CA, Sanders JM, Nadler J, Ley K. Upregulation of aldose reductase during foam cell formation as possible link among diabetes, hyperlipidemia, and atherosclerosis. Arterioscler Thromb Vasc Biol 2008; 28:1137-43. [PMID: 18451330 PMCID: PMC2579797 DOI: 10.1161/atvbaha.107.158295] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Aldose reductase (AR) is the rate-limiting enzyme of the polyol pathway. In diabetes, it is related to microvascular complications. We discovered AR expression in foam cells by gene chip screening and hypothesized that it may be relevant in atherosclerosis. METHODS AND RESULTS AR gene expression and activity were found to be increased in human blood monocyte-derived macrophages during foam cell formation induced by oxidized LDL (oxLDL, 100 microg/mL). AR activity as photometrically determined by NADPH consumption was effectively inhibited by the AR inhibitor epalrestat. oxLDL-dependent AR upregulation was further increased under hyperglycemic conditions (30 mmol/L D-glucose) as compared to osmotic control, suggesting a synergistic effect of hyperlipidemia and hyperglycemia. AR was also upregulated by 4-hydroxynonenal, a constituent of oxLDL. Upregulation was blocked by an antibody to CD36. AR inhibition resulted in reduction of oxLDL-induced intracellular oxidative stress as determined by 2'7'-dichlorofluoresceine diacetate (H2DCFDA) fluorescence, indicating that proinflammatory effects of oxLDL are partly mediated by AR. Immunohistochemistry showed AR expression in CD68+ human atherosclerotic plaque macrophages. CONCLUSIONS These data show that oxLDL-induced upregulation of AR in human macrophages is proinflammatory in foam cells and may represent a potential link among hyperlipidemia, atherosclerosis, and diabetes mellitus.
Collapse
Affiliation(s)
- Christian A Gleissner
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
16
|
Mashiko T, Hara K, Tanaka D, Fujiwara Y, Kumagai N, Shibasaki M. En route to an efficient catalytic asymmetric synthesis of AS-3201. J Am Chem Soc 2007; 129:11342-3. [PMID: 17722933 DOI: 10.1021/ja0752585] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tomoyuki Mashiko
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Abstract
A number of aldose reductase inhibitors (ARIs) have been developed over the past few decades with the expectation of therapeutic effects for diabetic complications. Neuropathy is the complication that has been most intensively studied as a potential target for ARIs. Most ARIs have shown satisfactory effects in animal models. However, the clinical potential of ARIs in diabetic patients has been controversial due to the lack of conclusive evidence. The safety of this category of drugs is also uncertain. This article summarizes the results of clinical trials of ARIs for patients with diabetic neuropathy that have been performed to date. The efficacy and toxicity of each ARI will be briefly assessed by the clinical data. The theoretical background along with major issues in the evaluation of drug efficacy will also be discussed. Overall the observed efficacy varied among the compounds. A few ARIs showed favorable effects in multiple endpoints in the majority of trials, while the results from many ARIs seemed ambivalent. One drug barely exhibited positive effects on any endpoint. This discrepancy may be attributable at least in part to the different degree of inhibition of the polyol pathway in nerve tissues, which is determined not only by the pharmacokinetic properties of the drug but also by its penetration into nerve tissues. In addition to the uncertain potential of each ARI, the issues of design and analytical methods used for clinical trials may underlie the ambivalent outcomes. The power of analysis and the duration of trials were apparently inadequate in a large number of the studies. Various indices selected as endpoints are not necessarily sensitive or reproducible. Studies of longer duration, large-scale trials, better methods to assess neuropathy, and the selection of patients with a homogenous background would provide more conclusive evidence. The risk of serious adverse reactions, for example, hypersensitivity reactions and hepatic damage, has led to some ARIs being withdrawn from the market or from further development. These adverse effects, however, do not appear to result from the inhibition of aldose reductase activity per se but from specific reactions to each compound. In conclusion, sufficient inhibition of the nerve aldose reductase activity seems likely to prevent or ameliorate diabetic neuropathy, and further development of more potent and safe ARIs is necessary before extensive clinical application.
Collapse
Affiliation(s)
- Yoji Hamada
- Division of Metabolic Diseases, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | | |
Collapse
|
19
|
Nakamura J, Hamada Y, Chaya S, Nakashima E, Naruse K, Kato K, Yasuda Y, Kamiya H, Sakakibara F, Koh N, Hotta N. Transition metals and polyol pathway in the development of diabetic neuropathy in rats. Diabetes Metab Res Rev 2002; 18:395-402. [PMID: 12397582 DOI: 10.1002/dmrr.319] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND The transition metal-catalyzed reaction is a major source of oxygen free radicals, which play an important role in vascular dysfunction leading to ischemia in diabetic tissues. The inhibition of polyol pathway hyperactivity has been reported to ameliorate neurovascular abnormalities in diabetic rats and has been proposed to improve the oxygen free radical scavenging capacity. The present study was conducted to compare the effect of a transition metal chelating agent, trientine (TRI), on diabetic neuropathy with that of an aldose reductase inhibitor, NZ-314 (NZ). METHODS Diabetic rats were divided into three groups: (1). untreated, (2). TRI-treated, and (3). NZ-treated. TRI (20 mg/kg) or NZ (100 mg/kg) was administered by gavage or chow containing NZ, respectively, for 8 weeks. Motor nerve conduction velocity (MNCV), coefficient of variation of the R - R interval on electrocardiogram (CVr-r), sciatic nerve blood flow (SNBF), platelet aggregation activities, and serum concentrations of malondialdehyde were measured. RESULTS Untreated diabetic rats showed delayed MNCV, decreased CV(R-R), and reduced SNBF compared to normal rats. TRI or NZ completely prevented these deficits. Platelet hyperaggregation activities in diabetic rats were prevented by NZ, but not by TRI. Increased concentrations of malondialdehyde in diabetic rats were partially but significantly ameliorated by either TRI or NZ. CONCLUSIONS These observations suggest that increased free radical formation through the transition metal-catalyzed reaction plays an important role in the development of diabetic neuropathy and that the preventive effect of an aldose reductase inhibitor on diabetic neuropathy may also be mediated by decreasing oxygen free radicals.
Collapse
Affiliation(s)
- Jiro Nakamura
- The Third Department of Internal Medicine, Nagoya University School of Medicine, Nagoya, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Costantino L, Rastelli G, Vianello P, Cignarella G, Barlocco D. Diabetes complications and their potential prevention: aldose reductase inhibition and other approaches. Med Res Rev 1999; 19:3-23. [PMID: 9918192 DOI: 10.1002/(sici)1098-1128(199901)19:1<3::aid-med2>3.0.co;2-7] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Despite recent advances both in the chemistry and molecular pharmacology of antidiabetic drugs, diabetes still remains a life-threatening disease, which tends to spread all over the world. The clinical profile of diabetic subjects is often worsened by the presence of several long-term complications, namely neuropathy, nephropathy, retinopathy, and cataract. Several attempts have been made to prevent or at least to delay them. The most relevant are reported in this review, including the development of compounds acting as aldose reductase inhibitors, anti-advanced glycation end-product drugs, free radical scavengers, vasoactive agents, essential fatty acid supplementation, and neurotropic growth factors.
Collapse
Affiliation(s)
- L Costantino
- Dipartimento di Scienze Farmaceutiche, Modena, Italy
| | | | | | | | | |
Collapse
|
21
|
Negoro T, Murata M, Ueda S, Fujitani B, Ono Y, Kuromiya A, Komiya M, Suzuki K, Matsumoto J. Novel, highly potent aldose reductase inhibitors: (R)-(-)-2-(4-bromo-2-fluorobenzyl)-1,2,3,4- tetrahydropyrrolo[1,2-a]pyrazine -4-spiro-3'-pyrrolidine-1,2',3,5'-tetrone (AS-3201) and its congeners. J Med Chem 1998; 41:4118-29. [PMID: 9767647 DOI: 10.1021/jm9802968] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of novel tetrahydropyrrolo[1,2-a]pyrazine derivatives were synthesized and evaluated as aldose reductase inhibitors (ARIs) on the basis of their abilities to inhibit porcine lens aldose reductase (AR) in vitro and to inhibit sorbitol accumulation in the sciatic nerve of streptozotocin-induced diabetic rats in vivo. Of these compounds, spirosuccinimide-fused tetrahydropyrrolo[1, 2-a]pyrazine-1,3-dione derivatives showed significantly potent AR inhibitory activity. In the in vivo activity of these derivatives, 2-(4-bromo-2-fluorobenzyl)-1,2,3,4-tetrahydropyrrolo[1, 2-a]pyrazine-4-spiro-3'-pyrrolidine-1,2',3,5'-tetrone (23t) (SX-3030) showed the best oral activity. The enantiomers of 23t were synthesized, and the biological activities were evaluated. It was found that AR inhibitory activity resides in the (-)-enantiomer 43 (AS-3201), which was 10 times more potent in inhibition of the AR (IC50 = 1.5 x 10(-8) M) and 500 times more potent in the in vivo activity (ED50 = 0.18 mg/kg/day for 5 days) than the corresponding (+)-enantiomer 44 (SX-3202). From these results, AS-3201 was selected as the candidate for clinical development. The absolute configuration of AS-3201 was also established to be (R)-form by single-crystal X-ray analysis. In this article we report the preparation and structure-activity relationship (SAR) of tetrahydropyrrolopyrazine derivatives including a novel ARI, AS-3201.
Collapse
Affiliation(s)
- T Negoro
- Department of Chemistry I, Discovery Research Laboratories I, Dainippon Pharmaceutical Company, Ltd., Enoki 33-94, Suita/Osaka 564-0053, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Kinetic studies on the aldose reductase protein (AR2) have shown that it does not behave as a classical enzyme in relation to ring aldose sugars. These results have been confirmed by X-ray crystallography studies, which have pinpointed binding sites for pharmacological "aklose reductase inhibitors" (ARIs). As with non-enzymic glycation reactions, there is probably a free-radical element involved derived from monosaccharide autoxidation. In the case of AR2, there is free radical oxidation of NADPH by autoxidising monosaccharides, enhanced in the presence of the NADPH-binding protein. Whatever the behaviour of AR2, many studies have showed that sorbitol production is not an initiating aetiological factor in the development of diabetic complications in humans. Vitamin E (alpha-tocopherol), other antioxidants and high fat diets can delay or prevent cataract in diabetic animals even though sorbitol and fructose levels are not modified; vitamin C acts as an AR1 in humans. Protein post-translational modification by glyc-oxidation or other events is probably the key factor in the aetiology of diabetic complications. There is now no need to invoke AR2 in xylitol biosynthesis. Xylitol can be produced in the lens from glucose, via a pathway involving the enzymes myo-inositol-oxygen oxidoreductase, D-glucuronate reductase. L-gulonate NAD(+)-3-oxidoreductase and L-iditol-NAD(+)-5-oxidoreductase, all of which have recently been found in bovine and rat lens. This chapter investigates the molecular events underlying AR2 and its binding and kinetics. Induction of the protein by osmotic response elements is discussed, with detailed analysis of recent in vitro and in vivo experiments on numerous ARIs. These have a number of actions in the cell which are not specific, and which do not involve them binding to AR2. These include peroxy-radical scavenging and recently discovered effects of metal ion chelation. In controlled experiments, it has been found that incubation of rat lens homogenate with glucose and the copper chelator o-phenanthroline abolishes production of sorbitol. Taken together, these results suggest AR2 is a vestigial NADPH-binding protein, perhaps similar in function to a number of non-mammalian crystallins which have been recruited into the lens. There is mounting evidence for the binding of reactive aldehyde moieties to the protein, and the involvement of AR2 either as a 'housekeeping' protein, or in a free-radial-mediated 'catalytic' role. Interfering with the NADPH binding and flux levels--possibly involving free radicals and metal ions--has a deleterious effect. We have yet to determine whether aldose reductase is the black sheep of the aldehyde reductase family, or whether it is a skeleton in the cupboard, waiting to be clothed in the flesh of new revelations in the interactions between proteins, metal ions and redox metabolites.
Collapse
Affiliation(s)
- M J Crabbe
- Wolfson Laboratory, Division of Cell and Molecular Biology, School of Animal and Microbial Sciences, University of Reading, Whiteknights, Berks, UK.
| | | |
Collapse
|
23
|
Udovikova EA, Wojtczak L. Mitochondrial aldehyde reductase: identification and characterization in rat liver and kidney cortex. Int J Biochem Cell Biol 1998; 30:597-608. [PMID: 9693960 DOI: 10.1016/s1357-2725(97)00143-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Aldehyde reductase (EC 1.1.1.2) has been regarded so far as an exclusively cytosolic enzyme. The present investigation shows that mitochondria of rat liver, kidney cortex and, tentatively, heart also contain an enzyme catalyzing oxidation of NADPH by aldehydes, p-nitrobenzaldehyde, methylglyoxal and glyceraldehyde. Activity of the mitochondrial enzyme can only be measured after the organelles are disrupted by sonication or solubilized with nonionic detergents. Mitochondrial aldehyde reductase activity contributed to about 4.6% and 2.5% of the total cellular activity in liver and kidney cortex, respectively. However, the specific activity in liver mitochondria was about one third and in kidney cortex mitochondria one tenth of that in the cytosol of the corresponding organ. The mitochondrial enzyme resembled the cytosolic one by its absolute specificity towards NADPH as the electron donor, a similar profile of aldehydic electron acceptors and identical Km values. Mitochondrial aldehyde reductase differed from the cytosolic enzyme by low sensitivity to known inhibitors of cytosolic aldehyde reductase, AL-1576, AL-4114 and ONO-2235. In liver, about 60% of the mitochondrial activity was tightly bound to the membranes whereas about 40% was present in the mitochondrial matrix. The membrane-bound activity was inactivated by digestion of mitoplasts with trypsin, alpha-chymotrypsin or papain, thus pointing to exposition of the substrate-binding site at the external surface of the inner membrane. On the other hand, latency of the enzyme in intact mitochondria indicates that the NADPH-binding site is located at the inner surface. These data provide the first direct evidence for the existence of aldehyde reductase in mitochondria of some rat tissues.
Collapse
Affiliation(s)
- E A Udovikova
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | | |
Collapse
|
24
|
Aotsuka T, Abe N, Fukushima K, Ashizawa N, Yoshida M. Benzothiazol-2-ylcarboxylic acids with diverse spacers: A novel class of potent, orally active aldose reductase inhibitors. Bioorg Med Chem Lett 1997. [DOI: 10.1016/s0960-894x(97)00287-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Kotani T, Nagaki Y, Ishii A, Konishi Y, Yago H, Suehiro S, Okukado N, Okamoto K. Highly selective aldose reductase inhibitors. 3. Structural diversity of 3-(arylmethyl)-2,4,5-trioxoimidazolidine-1-acetic acids. J Med Chem 1997; 40:684-94. [PMID: 9057855 DOI: 10.1021/jm960594+] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Accumulation of intracellular sorbitol, the reduced product of glucose, catalyzed by aldose reductase (AR) (EC 1.1.1.21), is thought to be the cause of the development of diabetic complications. Our attention is focused on finding compounds which inhibit AR without significantly inhibiting aldehyde reductase (ALR) (EC 1.1.1.2). The uracil or 2,4-dioxoimidazolidine skeleton having the benzothiazolyl or 4-chloro-3-nitrophenyl group as an aryl part indicated not only extremely high AR inhibitory activity but also AR selectivity. The ratio of IC50(ALR)/IC50(AR) of 3-[(5-chlorobenzothiazol-2-yl)methyl]-1,2,3,4-tetrahydro-2,4- dioxopyrimidine-1-acetic acid (47d) was more than 17 500. The uracil skeleton with the benzothiazolyl moiety seemed to be the best combination for selective AR inhibition.
Collapse
Affiliation(s)
- T Kotani
- Institute of Bio-Active Science, Nippon Zoki Pharmaceutical Company Ltd., Hyogo, Japan
| | | | | | | | | | | | | | | |
Collapse
|