1
|
Spirandelli da Costa M, Borges BC, Marques IT, de Oliveira RC, Teixeira TL, de Gouveia Santos J, Silva CVD. Pentachloropseudilin treatment impairs host cell invasion by Trypanosoma cruzi. Chembiochem 2022; 23:e202200349. [PMID: 35839379 DOI: 10.1002/cbic.202200349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/14/2022] [Indexed: 11/08/2022]
Abstract
Pentachloropseudilin (PClP) is a reversible and allosteric inhibitor of type 1 myosin. Here, we addressed the impact of PClP treatment of Trypanosoma cruzi and mammalian host cell on the parasite migration, cell adhesion and invasion. We observed that PClP was not toxic to either T. cruzi or host cell. Moreover, treatment of T. cruzi with PClP inhbited parasite motility, host cell adhesion and invasion. Treatment of host cell with PClP also impaired parasite invasion probably by decreasing lysosome migration to the entry site of the parasite. Therefore, PClP treatment impaired fundamental processes necessary for a successful T. cruzi infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Claudio Vieira da Silva
- Universidade Federal de Uberlândia, Imunologia, Rua Piauí, Bloco 2B sala 200, 38400096, Uberlândia, BRAZIL
| |
Collapse
|
2
|
Topoisomerase I inhibitors: Challenges, progress and the road ahead. Eur J Med Chem 2022; 236:114304. [DOI: 10.1016/j.ejmech.2022.114304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022]
|
3
|
Zenkov RG, Vlasova OA, Maksimova VP, Fetisov TI, Karpechenko NY, Ektova LV, Eremina VA, Popova VG, Usalka OG, Lesovaya EA, Belitsky GA, Yakubovskaya MG, Kirsanov KI. Molecular Mechanisms of Anticancer Activity of N-Glycosides of Indolocarbazoles LCS-1208 and LCS-1269. Molecules 2021; 26:molecules26237329. [PMID: 34885910 PMCID: PMC8658795 DOI: 10.3390/molecules26237329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Novel indolocarbazole derivatives named LCS were synthesized by our research group. Two of them were selected as the most active anticancer agents in vivo. We studied the mechanisms of anticancer activity in accordance with the previously described effects of indolocarbazoles. Cytotoxicity was estimated by MTT assay. We analyzed LCS-DNA interactions by circular dichroism in cholesteric liquid crystals and fluorescent indicator displacement assay. The effect on the activity of topoisomerases I and II was studied by DNA relaxation assay. Expression of interferon signaling target genes was estimated by RT-PCR. Chromatin remodeling was analyzed–the effect on histone H1 localization and reactivation of epigenetically silenced genes. LCS-induced change in the expression of a wide gene set was counted by means of PCR array. Our study revealed the cytotoxic activity of the compounds against 11 cancer cell lines and it was higher than in immortalized cells. Both compounds bind DNA; binding constants were estimated—LCS-1208 demonstrated higher affinity than LCS-1269; it was shown that LCS-1208 intercalates into DNA that is typical for rebeccamycin derivatives. LCS-1208 also inhibits topoisomerases I and IIα. Being a strong intercalator and topoisomerase inhibitor, LCS-1208 upregulates the expression of interferon-induced genes. In view of LCSs binding to DNA we analyzed their influence on chromatin stability and revealed that LCS-1269 displaces histone H1. Our analysis of chromatin remodeling also included a wide set of epigenetic experiments in which LCS-1269 demonstrated complex epigenetic activity. Finally, we revealed that the antitumor effect of the compounds is based not only on binding to DNA and chromatin remodeling but also on alternative mechanisms. Both compounds induce expression changes in genes involved in neoplastic transformation and target genes of the signaling pathways in cancer cells. Despite of being structurally similar, each compound has unique biological activities. The effects of LCS-1208 are associated with intercalation. The mechanisms of LCS-1269 include influence on higher levels such as chromatin remodeling and epigenetic effects.
Collapse
Affiliation(s)
- Roman G. Zenkov
- N. N. Blokhin Russian Cancer Research Center, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (O.A.V.); (V.P.M.); (T.I.F.); (N.Y.K.); (L.V.E.); (V.A.E.); (V.G.P.); (O.G.U.); (E.A.L.); (G.A.B.); (M.G.Y.); (K.I.K.)
- Correspondence:
| | - Olga A. Vlasova
- N. N. Blokhin Russian Cancer Research Center, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (O.A.V.); (V.P.M.); (T.I.F.); (N.Y.K.); (L.V.E.); (V.A.E.); (V.G.P.); (O.G.U.); (E.A.L.); (G.A.B.); (M.G.Y.); (K.I.K.)
| | - Varvara P. Maksimova
- N. N. Blokhin Russian Cancer Research Center, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (O.A.V.); (V.P.M.); (T.I.F.); (N.Y.K.); (L.V.E.); (V.A.E.); (V.G.P.); (O.G.U.); (E.A.L.); (G.A.B.); (M.G.Y.); (K.I.K.)
| | - Timur I. Fetisov
- N. N. Blokhin Russian Cancer Research Center, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (O.A.V.); (V.P.M.); (T.I.F.); (N.Y.K.); (L.V.E.); (V.A.E.); (V.G.P.); (O.G.U.); (E.A.L.); (G.A.B.); (M.G.Y.); (K.I.K.)
| | - Natalia Y. Karpechenko
- N. N. Blokhin Russian Cancer Research Center, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (O.A.V.); (V.P.M.); (T.I.F.); (N.Y.K.); (L.V.E.); (V.A.E.); (V.G.P.); (O.G.U.); (E.A.L.); (G.A.B.); (M.G.Y.); (K.I.K.)
| | - Lidiya V. Ektova
- N. N. Blokhin Russian Cancer Research Center, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (O.A.V.); (V.P.M.); (T.I.F.); (N.Y.K.); (L.V.E.); (V.A.E.); (V.G.P.); (O.G.U.); (E.A.L.); (G.A.B.); (M.G.Y.); (K.I.K.)
| | - Vera A. Eremina
- N. N. Blokhin Russian Cancer Research Center, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (O.A.V.); (V.P.M.); (T.I.F.); (N.Y.K.); (L.V.E.); (V.A.E.); (V.G.P.); (O.G.U.); (E.A.L.); (G.A.B.); (M.G.Y.); (K.I.K.)
| | - Valeriia G. Popova
- N. N. Blokhin Russian Cancer Research Center, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (O.A.V.); (V.P.M.); (T.I.F.); (N.Y.K.); (L.V.E.); (V.A.E.); (V.G.P.); (O.G.U.); (E.A.L.); (G.A.B.); (M.G.Y.); (K.I.K.)
- Faculty of Biotechnology and Industrial Ecology, Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Ploshchad, 125047 Moscow, Russia
| | - Olga G. Usalka
- N. N. Blokhin Russian Cancer Research Center, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (O.A.V.); (V.P.M.); (T.I.F.); (N.Y.K.); (L.V.E.); (V.A.E.); (V.G.P.); (O.G.U.); (E.A.L.); (G.A.B.); (M.G.Y.); (K.I.K.)
- International School “Medicine of the Future”, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., 119991 Moscow, Russia
| | - Ekaterina A. Lesovaya
- N. N. Blokhin Russian Cancer Research Center, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (O.A.V.); (V.P.M.); (T.I.F.); (N.Y.K.); (L.V.E.); (V.A.E.); (V.G.P.); (O.G.U.); (E.A.L.); (G.A.B.); (M.G.Y.); (K.I.K.)
- Department of Oncology, I.P. Pavlov Ryazan State Medical University, 9 Vysokovoltnaya St., 390026 Ryazan, Russia
| | - Gennady A. Belitsky
- N. N. Blokhin Russian Cancer Research Center, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (O.A.V.); (V.P.M.); (T.I.F.); (N.Y.K.); (L.V.E.); (V.A.E.); (V.G.P.); (O.G.U.); (E.A.L.); (G.A.B.); (M.G.Y.); (K.I.K.)
| | - Marianna G. Yakubovskaya
- N. N. Blokhin Russian Cancer Research Center, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (O.A.V.); (V.P.M.); (T.I.F.); (N.Y.K.); (L.V.E.); (V.A.E.); (V.G.P.); (O.G.U.); (E.A.L.); (G.A.B.); (M.G.Y.); (K.I.K.)
| | - Kirill I. Kirsanov
- N. N. Blokhin Russian Cancer Research Center, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (O.A.V.); (V.P.M.); (T.I.F.); (N.Y.K.); (L.V.E.); (V.A.E.); (V.G.P.); (O.G.U.); (E.A.L.); (G.A.B.); (M.G.Y.); (K.I.K.)
- Institute of Medicine, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| |
Collapse
|
4
|
Sana B, Ho T, Kannan S, Ke D, Li EHY, Seayad J, Verma CS, Duong HA, Ghadessy FJ. Engineered RebH Halogenase Variants Demonstrating a Specificity Switch from Tryptophan towards Novel Indole Compounds. Chembiochem 2021; 22:2791-2798. [PMID: 34240527 PMCID: PMC8518859 DOI: 10.1002/cbic.202100210] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/06/2021] [Indexed: 01/21/2023]
Abstract
Activating industrially important aromatic hydrocarbons by installing halogen atoms is extremely important in organic synthesis and often improves the pharmacological properties of drug molecules. To this end, tryptophan halogenase enzymes are potentially valuable tools for regioselective halogenation of arenes, including various industrially important indole derivatives and similar scaffolds. Although endogenous enzymes show reasonable substrate scope towards indole compounds, their efficacy can often be improved by engineering. Using a structure-guided semi-rational mutagenesis approach, we have developed two RebH variants with expanded biocatalytic repertoires that can efficiently halogenate several novel indole substrates and produce important pharmaceutical intermediates. Interestingly, the engineered enzymes are completely inactive towards their natural substrate tryptophan in spite of their high tolerance to various functional groups in the indole ring. Computational modelling and molecular dynamics simulations provide mechanistic insights into the role of gatekeeper residues in the substrate binding site and the dramatic switch in substrate specificity when these are mutated.
Collapse
Affiliation(s)
- Barindra Sana
- Disease Intervention Technology LaboratoryInstitute of Molecular and Cell BiologyAgency for Science Technology and Research (A*STAR)8 A Biomedical Grove, #06-04/05 Neuros/ImmunosSingapore138648Singapore
| | - Timothy Ho
- Institute of Chemical and Engineering SciencesAgency for Science Technology And Research (A*STAR)8 Biomedical Grove, Neuros, #07-01Singapore138665Singapore
| | - Srinivasaraghavan Kannan
- Bioinformatics InstituteAgency for Science Technology And Research (A*STAR)30 Biopolis Street, #07-01 MatrixSingapore138671Singapore
| | - Ding Ke
- Disease Intervention Technology LaboratoryInstitute of Molecular and Cell BiologyAgency for Science Technology and Research (A*STAR)8 A Biomedical Grove, #06-04/05 Neuros/ImmunosSingapore138648Singapore
| | - Eunice H. Y. Li
- Institute of Chemical and Engineering SciencesAgency for Science Technology And Research (A*STAR)8 Biomedical Grove, Neuros, #07-01Singapore138665Singapore
| | - Jayasree Seayad
- Institute of Chemical and Engineering SciencesAgency for Science Technology And Research (A*STAR)8 Biomedical Grove, Neuros, #07-01Singapore138665Singapore
| | - Chandra S. Verma
- Bioinformatics InstituteAgency for Science Technology And Research (A*STAR)30 Biopolis Street, #07-01 MatrixSingapore138671Singapore
- School of Biological SciencesNanyang Technological University60 Nanyang DriveSingapore637551Singapore
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117558Singapore
| | - Hung A. Duong
- Institute of Chemical and Engineering SciencesAgency for Science Technology And Research (A*STAR)8 Biomedical Grove, Neuros, #07-01Singapore138665Singapore
| | - Farid J. Ghadessy
- Disease Intervention Technology LaboratoryInstitute of Molecular and Cell BiologyAgency for Science Technology and Research (A*STAR)8 A Biomedical Grove, #06-04/05 Neuros/ImmunosSingapore138648Singapore
| |
Collapse
|
5
|
Genomic Determinants Encode the Reactivity and Regioselectivity of Flavin-Dependent Halogenases in Bacterial Genomes and Metagenomes. mSystems 2021; 6:e0005321. [PMID: 34042468 PMCID: PMC8269204 DOI: 10.1128/msystems.00053-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Halogenases create diverse natural products by utilizing halide ions and are of great interest in the synthesis of potential pharmaceuticals and agrochemicals. An increasing number of halogenases discovered in microorganisms are annotated as flavin-dependent halogenases (FDHs), but their chemical reactivities are markedly different and the genomic contents associated with such functional distinction have not been revealed yet. Even though the reactivity and regioselectivity of FDHs are essential in the halogenation activity, these FDHs are annotated inaccurately in the protein sequence repositories without characterizing their functional activities. We carried out a comprehensive sequence analysis and biochemical characterization of FDHs. Using a probabilistic model that we built in this study, FDHs were discovered from 2,787 bacterial genomes and 17 sediment metagenomes. We analyzed the essential genomic determinants that are responsible for substrate binding and subsequent reactions: four flavin adenine dinucleotide-binding, one halide-binding, and four tryptophan-binding sites. Compared with previous studies, our study utilizes large-scale genomic information to propose a comprehensive set of sequence motifs that are related to the active sites and regioselectivity. We reveal that the genomic patterns and phylogenetic locations of the FDHs determine the enzymatic reactivities, which was experimentally validated in terms of the substrate scope and regioselectivity. A large portion of publicly available FDHs needs to be reevaluated to designate their correct functions. Our genomic models establish comprehensive links among genotypic information, reactivity, and regioselectivity of FDHs, thereby laying an important foundation for future discovery and classification of novel FDHs. IMPORTANCE Halogenases are playing an important role as tailoring enzymes in biosynthetic pathways. Flavin-dependent tryptophan halogenases (Trp-FDHs) are among the enzymes that have broad substrate scope and high selectivity. From bacterial genomes and metagenomes, we found highly diverse halogenase sequences by using a well-trained profile hidden Markov model built from the experimentally validated halogenases. The characterization of genotype, steady-state activity, substrate scope, and regioselectivity has established comprehensive links between the information encoded in the genomic sequence and reactivity of FDHs reported here. By constructing models for accurate and detailed sequence markers, our work should guide future discovery and classification of novel FDHs.
Collapse
|
6
|
Lantsova A, Golubeva I, Borisova L, Nikolaeva L, Ektova L, Dmitrieva M, Orlova O. A new indolocarbazole derivative in melanoma and carcinoma lung in vivo treatment. BMC Complement Med Ther 2021; 21:117. [PMID: 33838683 PMCID: PMC8037905 DOI: 10.1186/s12906-021-03294-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/31/2021] [Indexed: 11/23/2022] Open
Abstract
Objective The current scientific research direction is development of drugs with a targeted effect on malignant tumors. One of the promising groups is indolocarbazoles and their derivatives, which can initiate various tumor cell death pathways. Russian scientists from N. N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russian Federation has developed a new experimental drug form of the original compound LCS 1269 with cytotoxic and antiangiogenic properties, blocking vasculogenic mimicry in tumor. The study aim is the experimental drug form LCS 1269 antitumor activity on models of transplantable mouse tumors B-16 melanoma and Lewis epidermoid lung carcinoma (LLC) with different routes and modes of administration. Material and methods Female F1 hybrid mice (C57Bl/6 x DBA/2) and male and female linear mice C57BL/6 were used for management of tumor strains. Mice were obtained from N. N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russian Federation vivarium. The antitumor effect was assessed by tumor growth inhibition (TGI) and increase of treated animal’s life span (ILS) compared to the control. Results The experimental drug form showed high antitumor activity when administered intravenously once at doses of 100 and 120 mg/kg (TGI = 98–82% and TGI = 95–77%, respectively, ILS = 24%, p < 0.05) on melanoma B-16 mice. On LLC mice, the experimental drug form showed that the intravenous administration route was effective in the range of doses from 60 to 80 mg/kg with a 5 day administration regimen with an interval of 24 h. A dose of 70 mg/kg had maximum effect at the level of TGI = 96–77% (p < 0.05) with its retention for 20 days after the end of treatment. Conclusion The studies have shown that the new compound LCS 1269 in the original drug form, has a pronounced antitumor activity and significantly reduces the volume of tumor mass both on melanoma B-16 and on LLC. It allows us to recommend continue the search for sensitivity of animal transplantable tumors to LCS 1269.
Collapse
Affiliation(s)
- Anna Lantsova
- Research Institute of Experimental Diagnostics and Therapy of Tumors, N. N. Blokhin National Medical Research Center of Oncology, Kashirskoe shosse, 24, 115478, Moscow, Russia
| | - Irina Golubeva
- Research Institute of Experimental Diagnostics and Therapy of Tumors, N. N. Blokhin National Medical Research Center of Oncology, Kashirskoe shosse, 24, 115478, Moscow, Russia
| | - Larisa Borisova
- Research Institute of Experimental Diagnostics and Therapy of Tumors, N. N. Blokhin National Medical Research Center of Oncology, Kashirskoe shosse, 24, 115478, Moscow, Russia
| | - Lyudmila Nikolaeva
- Research Institute of Experimental Diagnostics and Therapy of Tumors, N. N. Blokhin National Medical Research Center of Oncology, Kashirskoe shosse, 24, 115478, Moscow, Russia. .,Department of Pharmaceutical Technology and Pharmacology, Sechenov University, 8/2 Trubeckaya str., 119991, Moscow, Russia.
| | - Lydia Ektova
- Research Institute of Experimental Diagnostics and Therapy of Tumors, N. N. Blokhin National Medical Research Center of Oncology, Kashirskoe shosse, 24, 115478, Moscow, Russia
| | - Maria Dmitrieva
- Research Institute of Experimental Diagnostics and Therapy of Tumors, N. N. Blokhin National Medical Research Center of Oncology, Kashirskoe shosse, 24, 115478, Moscow, Russia
| | - Olga Orlova
- Research Institute of Experimental Diagnostics and Therapy of Tumors, N. N. Blokhin National Medical Research Center of Oncology, Kashirskoe shosse, 24, 115478, Moscow, Russia
| |
Collapse
|
7
|
Damiani E, Duran MN, Mohan N, Rajendran P, Dashwood RH. Targeting Epigenetic 'Readers' with Natural Compounds for Cancer Interception. J Cancer Prev 2020; 25:189-203. [PMID: 33409252 PMCID: PMC7783241 DOI: 10.15430/jcp.2020.25.4.189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 12/14/2022] Open
Abstract
Natural compounds from diverse sources, including botanicals and commonly consumed foods and beverages, exert beneficial health effects via mechanisms that impact the epigenome and gene expression during disease pathogenesis. By targeting the so-called epigenetic 'readers', 'writers', and 'erasers', dietary phytochemicals can reverse abnormal epigenome signatures in cancer cells and preneoplastic stages. Thus, such agents provide avenues for cancer interception via prevention or treatment/therapeutic strategies. To date, much of the focus on dietary agents has been directed towards writers (e.g., histone acetyltransferases) and erasers (e.g., histone deacetylases), with less attention given to epigenetic readers (e.g., BRD proteins). The drug JQ1 was developed as a prototype epigenetic reader inhibitor, selectively targeting members of the bromodomain and extraterminal domain (BET) family, such as BRD4. Clinical trials with JQ1 as a single agent, or in combination with standard of care therapy, revealed antitumor efficacy but not without toxicity or resistance. In pursuit of second-generation epigenetic reader inhibitors, attention has shifted to natural sources, including dietary agents that might be repurposed as 'JQ1-like' bioactives. This review summarizes the current status of nascent research activity focused on natural compounds as inhibitors of BET and other epigenetic 'reader' proteins, with a perspective on future directions and opportunities.
Collapse
Affiliation(s)
- Elisabetta Damiani
- Department of Life and Environmental Sciences, Polytechnic University of the Marche, Ancona, Italy
| | - Munevver N. Duran
- Center for Epigenetics & Disease Prevention, Texas A&M Health Science Center, TX, USA
| | - Nivedhitha Mohan
- Center for Epigenetics & Disease Prevention, Texas A&M Health Science Center, TX, USA
| | - Praveen Rajendran
- Center for Epigenetics & Disease Prevention, Texas A&M Health Science Center, TX, USA
| | - Roderick H. Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M Health Science Center, TX, USA
- Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX, USA
| |
Collapse
|
8
|
Syngaevsky V, Karkhut A, Polovkovych S, Gzella A, Lesyk R, Novikov V. Study of 1,3-dipolar cycloaddition of amino-acid azomethines and Juglone. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1795880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Vadym Syngaevsky
- Department of Technology of Biologically Active Substances, Pharmacy and Biotechnology, Lviv Polytechnic National University, Lviv, Ukraine
| | - Andrew Karkhut
- Department of Technology of Biologically Active Substances, Pharmacy and Biotechnology, Lviv Polytechnic National University, Lviv, Ukraine
| | - Sviatoslav Polovkovych
- Department of Technology of Biologically Active Substances, Pharmacy and Biotechnology, Lviv Polytechnic National University, Lviv, Ukraine
| | - Andrzej Gzella
- Department of Organic Chemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- Department of Public Health, Dietetics and Lifestyle Disorders, Faculty of Medicine, University of Information Technology and Management in Rzeszow, Rzeszow, Poland
| | - Volodymyr Novikov
- Department of Technology of Biologically Active Substances, Pharmacy and Biotechnology, Lviv Polytechnic National University, Lviv, Ukraine
| |
Collapse
|
9
|
Natsume N, Ozaki K, Nakajima D, Yokoshima S, Teruya T. Structure-Activity Relationship Study of Majusculamides A and B and Their Analogues on Osteogenic Activity. JOURNAL OF NATURAL PRODUCTS 2020; 83:2477-2482. [PMID: 32786886 DOI: 10.1021/acs.jnatprod.0c00441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We discovered that majusculamide A (1) and majusculamide B (2), isolated from a marine cyanobacterium collected in Okinawa, induced osteoblast differentiation in MC3T3-E1 cells. Although majusculamide A (1) has a different configuration only at the C-19 stereocenter, bearing a methyl group, compared to majusculamide B (2), the effect of 1 was stronger than that of 2. We synthesized some analogues of the majusculamides (3-15) and evaluated osteogenic activities of these analogues. The structure-activity relationship study of majusculamide analogues suggested that the number of methyls and configuration at C-19 and the nature of the substituent at C-20 of majusculamide A (1) may be important for the osteoblast differentiation-inducing effect of 1.
Collapse
Affiliation(s)
- Noriyuki Natsume
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Kaori Ozaki
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Daisuke Nakajima
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Satoshi Yokoshima
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Toshiaki Teruya
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
- Faculty of Education, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
10
|
Chilczuk T, Schäberle TF, Vahdati S, Mettal U, El Omari M, Enke H, Wiese M, König GM, Niedermeyer THJ. Halogenation-Guided Chemical Screening Provides Insight into Tjipanazole Biosynthesis by the Cyanobacterium Fischerella ambigua. Chembiochem 2020; 21:2170-2177. [PMID: 32182403 PMCID: PMC7497240 DOI: 10.1002/cbic.202000025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/21/2020] [Indexed: 12/19/2022]
Abstract
Halogenated natural products (HNPs) show a wide range of interesting biological activities. Chemistry-guided screening with a software tool dedicated to identifying halogenated compounds in HPLC-MS data indicated the presence of several uncharacterised HNPs in an extract of the cyanobacterium Fischerella ambigua (Näg.) Gomont 108b. Three new natural products, tjipanazoles K, L, and M, were isolated from this strain together with the known tjipanazoles D and I. Taking into account the structures of all tjipanazole derivatives detected in this strain, reanalysis of the tjipanazole biosynthetic gene cluster allowed us to propose a biosynthetic pathway for the tjipanazoles. As the isolated tjipanazoles show structural similarity to arcyriaflavin A, an inhibitor of the clinically relevant multidrug-transporter ABCG2 overexpressed by different cancer cell lines, the isolated compounds were tested for ABCG2 inhibitory activity. Only tjipanazole K showed appreciable transporter inhibition, whereas the compounds lacking the pyrrolo[3,4-c] ring or featuring additional chloro substituents were found to be much less active.
Collapse
Affiliation(s)
- Tomasz Chilczuk
- Department of Pharmaceutical Biology/Pharmacognosy Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Till F Schäberle
- Institute for Insect Biotechnology, Justus-Liebig-University Gießen, Heinrich-Buff-Ring 26-32, 35392, Gießen, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstrasse 2, 35394, Gießen, Germany
| | - Sahel Vahdati
- Department of Pharmaceutical and Cell Biological Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Ute Mettal
- Institute for Insect Biotechnology, Justus-Liebig-University Gießen, Heinrich-Buff-Ring 26-32, 35392, Gießen, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstrasse 2, 35394, Gießen, Germany
| | - Mustafa El Omari
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Heike Enke
- Cyano Biotech GmbH, Magnusstraße 11, 12489, Berlin, Germany
| | - Michael Wiese
- Department of Pharmaceutical and Cell Biological Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Gabriele M König
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Timo H J Niedermeyer
- Department of Pharmaceutical Biology/Pharmacognosy Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| |
Collapse
|
11
|
Synthesis and Cytotoxic Activity of Indolo[2,3-a]Pyrrolo[3,4-c]Carbazole-5,7-Dione N-Glycosides Substituted on the Maleimide Nitrogen Atom. Pharm Chem J 2020. [DOI: 10.1007/s11094-020-02222-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Zenkov RG, Ektova LV, Vlasova OА, Belitskiy GА, Yakubovskaya MG, Kirsanov KI. Indolo[2,3-a]carbazoles: diversity, biological properties, application in antitumor therapy. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02714-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Rizo-Liendo A, Sifaoui I, Cartuche L, Arberas-Jiménez I, Reyes-Batlle M, Fernández JJ, Piñero JE, Díaz-Marrero AR, Lorenzo-Morales J. Evaluation of Indolocarbazoles from Streptomyces sanyensis as a Novel Source of Therapeutic Agents against the Brain-Eating Amoeba Naegleria fowleri. Microorganisms 2020; 8:microorganisms8050789. [PMID: 32466301 PMCID: PMC7285321 DOI: 10.3390/microorganisms8050789] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/16/2020] [Accepted: 05/22/2020] [Indexed: 12/20/2022] Open
Abstract
Naegleria fowleri is an opportunistic pathogenic free-living amoeba which is able to rapidly colonize the central nervous system (CNS) and causes a lethal infection known as primary amoebic meningoencephalitis (PAM). Furthermore, more than 98% of the known cases of PAM are fatal and affect mainly children under 12 and young adults. Until now, no fully effective therapeutic agents against N. fowleri are available and hence the urgent need to find novel agents to treat PAM. At present, PAM therapy is based on the combination of amphotericin B, miltefosine, among others, with unwanted toxic effects. Recently, our team isolated various indolocarbazoles (ICZs) from the culture of a mangrove strain of Streptomyces sanyensis which showed activity against kinetoplastids and the Acanthamoeba genus. Hence, in this study, the activity of the previously isolated ICZs, staurosporine (STS), 7-oxostaurosporine (7OSTS), 4′-demethylamino-4′-oxostaurosporine, and streptocarbazole B, was evaluated against two type strains of N. fowleri. Furthermore, the performed activity assays revealed that STS was the most active ICZ presenting an inhibitory concentration 50 (IC50) of 0.08 ± 0.02 µM (SI 109.3). Moreover, STS induced programmed cell death (PCD) in the treated amoebae by triggering DNA condensation, mitochondrial disfunction, cell membrane disruption, and reactive oxygen species (ROS) generation. Therefore, STS could be a promising therapeutic agent against PAM.
Collapse
Affiliation(s)
- Aitor Rizo-Liendo
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n, 38203 La Laguna, Tenerife, Spain; (A.R.-L.); (I.S.); (I.A.-J.); (M.R.-B.)
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad De La Laguna, 38203 La Laguna, Tenerife, Spain
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n, 38203 La Laguna, Tenerife, Spain; (A.R.-L.); (I.S.); (I.A.-J.); (M.R.-B.)
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad De La Laguna, 38203 La Laguna, Tenerife, Spain
| | - Luis Cartuche
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez 2, 38206 La Laguna, Tenerife, Spain; (L.C.); (J.J.F.); (A.R.D.-M.)
- Departamento de Química y Ciencias Exactas, Sección Química Básica y Aplicada, Universidad Técnica Particular de Loja (UTPL), San Cayetano alto s/n, 1101608 Loja, Ecuador
| | - Iñigo Arberas-Jiménez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n, 38203 La Laguna, Tenerife, Spain; (A.R.-L.); (I.S.); (I.A.-J.); (M.R.-B.)
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad De La Laguna, 38203 La Laguna, Tenerife, Spain
| | - María Reyes-Batlle
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n, 38203 La Laguna, Tenerife, Spain; (A.R.-L.); (I.S.); (I.A.-J.); (M.R.-B.)
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad De La Laguna, 38203 La Laguna, Tenerife, Spain
| | - José J. Fernández
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez 2, 38206 La Laguna, Tenerife, Spain; (L.C.); (J.J.F.); (A.R.D.-M.)
- Departamento de Química Orgánica, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n, 38206 La Laguna, Tenerife, Spain
| | - José E. Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n, 38203 La Laguna, Tenerife, Spain; (A.R.-L.); (I.S.); (I.A.-J.); (M.R.-B.)
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad De La Laguna, 38203 La Laguna, Tenerife, Spain
- Correspondence: (J.E.P.); (J.L.-M.)
| | - Ana R. Díaz-Marrero
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez 2, 38206 La Laguna, Tenerife, Spain; (L.C.); (J.J.F.); (A.R.D.-M.)
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n, 38203 La Laguna, Tenerife, Spain; (A.R.-L.); (I.S.); (I.A.-J.); (M.R.-B.)
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad De La Laguna, 38203 La Laguna, Tenerife, Spain
- Correspondence: (J.E.P.); (J.L.-M.)
| |
Collapse
|
14
|
Nieto-Domínguez M, Nikel PI. Intersecting Xenobiology and Neometabolism To Bring Novel Chemistries to Life. Chembiochem 2020; 21:2551-2571. [PMID: 32274875 DOI: 10.1002/cbic.202000091] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/09/2020] [Indexed: 12/19/2022]
Abstract
The diversity of life relies on a handful of chemical elements (carbon, oxygen, hydrogen, nitrogen, sulfur and phosphorus) as part of essential building blocks; some other atoms are needed to a lesser extent, but most of the remaining elements are excluded from biology. This circumstance limits the scope of biochemical reactions in extant metabolism - yet it offers a phenomenal playground for synthetic biology. Xenobiology aims to bring novel bricks to life that could be exploited for (xeno)metabolite synthesis. In particular, the assembly of novel pathways engineered to handle nonbiological elements (neometabolism) will broaden chemical space beyond the reach of natural evolution. In this review, xeno-elements that could be blended into nature's biosynthetic portfolio are discussed together with their physicochemical properties and tools and strategies to incorporate them into biochemistry. We argue that current bioproduction methods can be revolutionized by bridging xenobiology and neometabolism for the synthesis of new-to-nature molecules, such as organohalides.
Collapse
Affiliation(s)
- Manuel Nieto-Domínguez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
15
|
Cartuche L, Sifaoui I, López-Arencibia A, Bethencourt-Estrella CJ, San Nicolás-Hernández D, Lorenzo-Morales J, Piñero JE, Díaz-Marrero AR, Fernández JJ. Antikinetoplastid Activity of Indolocarbazoles from Streptomyces sanyensis. Biomolecules 2020; 10:biom10040657. [PMID: 32344693 PMCID: PMC7226613 DOI: 10.3390/biom10040657] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022] Open
Abstract
Chagas disease and leishmaniasis are neglected tropical diseases caused by kinetoplastid parasites of Trypanosoma and Leishmania genera that affect poor and remote populations in developing countries. These parasites share similar complex life cycles and modes of infection. It has been demonstrated that the particular group of phosphorylating enzymes, protein kinases (PKs), are essential for the infective mechanisms and for parasite survival. The natural indolocarbazole staurosporine (STS, 1) has been extensively used as a PKC inhibitor and its antiparasitic effects described. In this research, we analyze the antikinetoplastid activities of three indolocarbazole (ICZs) alkaloids of the family of staurosporine STS, 2-4, and the commercial ICZs rebeccamycin (5), K252a (6), K252b (7), K252c (8), and arcyriaflavin A (9) in order to establish a plausive approach to the mode of action and to provide a preliminary qualitative structure-activity analysis. The most active compound was 7-oxostaurosporine (7OSTS, 2) that showed IC50 values of 3.58 ± 1.10; 0.56 ± 0.06 and 1.58 ± 0.52 µM against L. amazonensis; L. donovani and T. cruzi, and a Selectivity Index (CC50/IC50) of 52 against amastigotes of L. amazonensis compared to the J774A.1 cell line of mouse macrophages.
Collapse
Affiliation(s)
- Luis Cartuche
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez 2, 38206 La Laguna, Tenerife, Spain
- Departamento de Química y Ciencias Exactas, Sección Química Básica y Aplicada, Universidad Técnica Particular de Loja (UTPL), San Cayetano alto s/n, A.P. 1101608, Loja, Ecuador
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez s/n, 38206 La Laguna, Tenerife, Spain
| | - Atteneri López-Arencibia
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez s/n, 38206 La Laguna, Tenerife, Spain
| | - Carlos J. Bethencourt-Estrella
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez s/n, 38206 La Laguna, Tenerife, Spain
| | - Desirée San Nicolás-Hernández
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez s/n, 38206 La Laguna, Tenerife, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez s/n, 38206 La Laguna, Tenerife, Spain
| | - José E. Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez s/n, 38206 La Laguna, Tenerife, Spain
- Correspondence: (J.E.P.); (A.R.D.-M.); (J.J.F.)
| | - Ana R. Díaz-Marrero
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez 2, 38206 La Laguna, Tenerife, Spain
- Correspondence: (J.E.P.); (A.R.D.-M.); (J.J.F.)
| | - José J. Fernández
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez 2, 38206 La Laguna, Tenerife, Spain
- Departamento de Química Orgánica, Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez, 2, 38206 La Laguna, Tenerife, Spain
- Correspondence: (J.E.P.); (A.R.D.-M.); (J.J.F.)
| |
Collapse
|
16
|
Cartuche L, Reyes-Batlle M, Sifaoui I, Arberas-Jiménez I, Piñero JE, Fernández JJ, Lorenzo-Morales J, Díaz-Marrero AR. Antiamoebic Activities of Indolocarbazole Metabolites Isolated from Streptomyces sanyensis Cultures. Mar Drugs 2019; 17:md17100588. [PMID: 31627366 PMCID: PMC6836125 DOI: 10.3390/md17100588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 12/19/2022] Open
Abstract
Indolocarbazoles are a family of natural alkaloids characterized by their potent protein kinase and topoisomerase I inhibitory activity. Among them, staurosporine (1) has exhibited promising inhibitory activity against parasites. Based on new insights on the activity and mechanism of action of STS in Acanthamoeba parasites, this work reports the isolation, identification, and the anti-Acanthamoeba activity of the minor metabolites 7-oxostaurosporine (2), 4′-demethylamino-4′-oxostaurosporine (3), and streptocarbazole B (4), isolated from cultures of the mangrove strain Streptomyces sanyensis. A clear correlation between the antiparasitic activities and the structural elements and conformations of the indolocarbazoles 1–4 was observed. Also, the study reveals that 7-oxostaurosporine (2) affects membrane permeability and causes mitochondrial damages on trophozoites of A. castellanii Neff.
Collapse
Affiliation(s)
- Luis Cartuche
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez 2, 38206 La Laguna, Tenerife, Spain.
- Departamento de Química y Ciencias Exactas, Sección Química Básica y Aplicada, Universidad Técnica Particular de Loja (UTPL), San Cayetano alto s/n, A.P. 1101608 Loja, Ecuador.
| | - María Reyes-Batlle
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Islas Canarias, Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez s/n, 38206 La Laguna, Tenerife, Spain.
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Islas Canarias, Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez s/n, 38206 La Laguna, Tenerife, Spain.
| | - Iñigo Arberas-Jiménez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Islas Canarias, Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez s/n, 38206 La Laguna, Tenerife, Spain.
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Islas Canarias, Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez s/n, 38206 La Laguna, Tenerife, Spain.
| | - José J Fernández
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez 2, 38206 La Laguna, Tenerife, Spain.
- Departamento de Química Orgánica, Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez, 2, 38206 La Laguna, Tenerife, Spain.
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Islas Canarias, Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez s/n, 38206 La Laguna, Tenerife, Spain.
| | - Ana R Díaz-Marrero
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna (ULL), Avda. Astrofísico F. Sánchez 2, 38206 La Laguna, Tenerife, Spain.
| |
Collapse
|
17
|
Cota Teixeira S, Silva Lopes D, Santos da Silva M, Cordero da Luz FA, Cirilo Gimenes SN, Borges BC, Alves da Silva A, Alves Martins F, Alves Dos Santos M, Teixeira TL, Oliveira RA, de Melo Rodrigues Ávila V, Barbosa Silva MJ, Elias MC, Martin R, Vieira da Silva C, Knölker HJ. Pentachloropseudilin Impairs Angiogenesis by Disrupting the Actin Cytoskeleton, Integrin Trafficking and the Cell Cycle. Chembiochem 2019; 20:2390-2401. [PMID: 31026110 DOI: 10.1002/cbic.201900203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Indexed: 12/21/2022]
Abstract
Class 1 myosins (Myo1s) were the first unconventional myosins identified and humans have eight known Myo1 isoforms. The Myo1 family is involved in the regulation of gene expression, cytoskeletal rearrangements, delivery of proteins to the cell surface, cell migration and spreading. Thus, the important role of Myo1s in different biological processes is evident. In this study, we have investigated the effects of pentachloropseudilin (PClP), a reversible and allosteric potent inhibitor of Myo1s, on angiogenesis. We demonstrated that treatment of cells with PClP promoted a decrease in the number of vessels. The observed inhibition of angiogenesis is likely to be related to the inhibition of cell proliferation, migration and adhesion, as well as to alteration of the actin cytoskeleton pattern, as shown on a PClP-treated HUVEC cell line. Moreover, we also demonstrated that PClP treatment partially prevented the delivery of integrins to the plasma membrane. Finally, we showed that PClP caused DNA strand breaks, which are probably repaired during the cell cycle arrest in the G1 phase. Taken together, our results suggest that Myo1s participate directly in the angiogenesis process.
Collapse
Affiliation(s)
- Samuel Cota Teixeira
- Department of Immunology, Biomedical Sciences Institute, Federal University of Uberlândia, Rua Piauí, Bloco 2B, sala 200, Campus Umuarama, Uberlândia, 38400-902, MG, Brazil
| | - Daiana Silva Lopes
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia, Rua Hormindo Barros, 58, Candeias, Vitória da Conquista, 45029-094, BA, Brazil
| | - Marcelo Santos da Silva
- Special Laboratory of Cell Cycle (LECC), Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, Av. Vital Brasil, 1500 - Butantã, São Paulo, 05503-900, SP, Brazil.,The Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Felipe Andrés Cordero da Luz
- Department of Immunology, Biomedical Sciences Institute, Federal University of Uberlândia, Rua Piauí, Bloco 2B, sala 200, Campus Umuarama, Uberlândia, 38400-902, MG, Brazil
| | - Sarah Natalie Cirilo Gimenes
- Imunopathology Laboratory, Butantan Institute, Av. Vital Brasil, 1500 - Butantã, São Paulo, 05503-900, SP, Brazil
| | - Bruna Cristina Borges
- Department of Immunology, Biomedical Sciences Institute, Federal University of Uberlândia, Rua Piauí, Bloco 2B, sala 200, Campus Umuarama, Uberlândia, 38400-902, MG, Brazil
| | - Aline Alves da Silva
- Department of Immunology, Biomedical Sciences Institute, Federal University of Uberlândia, Rua Piauí, Bloco 2B, sala 200, Campus Umuarama, Uberlândia, 38400-902, MG, Brazil
| | - Flávia Alves Martins
- Department of Immunology, Biomedical Sciences Institute, Federal University of Uberlândia, Rua Piauí, Bloco 2B, sala 200, Campus Umuarama, Uberlândia, 38400-902, MG, Brazil
| | - Marlus Alves Dos Santos
- Department of Immunology, Biomedical Sciences Institute, Federal University of Uberlândia, Rua Piauí, Bloco 2B, sala 200, Campus Umuarama, Uberlândia, 38400-902, MG, Brazil
| | - Thaise Lara Teixeira
- Department of Immunology, Biomedical Sciences Institute, Federal University of Uberlândia, Rua Piauí, Bloco 2B, sala 200, Campus Umuarama, Uberlândia, 38400-902, MG, Brazil
| | - Ricardo A Oliveira
- Medical School, Federal University of Uberlândia, Av. Pará, Bloco 2u, 1720 - Umuarama, Uberlândia, 38400-902, MG, Brazil
| | - Veridiana de Melo Rodrigues Ávila
- Institute of Biotechnology, Federal University of Uberlândia, Av. Pará, 1720 - Bloco 2E - Sala(s) 246 - Campus Umuarama, Uberlândia, 38405-320, MG, Brazil
| | - Marcelo José Barbosa Silva
- Department of Immunology, Biomedical Sciences Institute, Federal University of Uberlândia, Rua Piauí, Bloco 2B, sala 200, Campus Umuarama, Uberlândia, 38400-902, MG, Brazil
| | - Maria Carolina Elias
- Special Laboratory of Cell Cycle (LECC), Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, Av. Vital Brasil, 1500 - Butantã, São Paulo, 05503-900, SP, Brazil
| | - René Martin
- Fakultät Chemie, Technische Universität Dresden, Bergstraße 66, 01069, Dresden, Germany
| | - Claudio Vieira da Silva
- Department of Immunology, Biomedical Sciences Institute, Federal University of Uberlândia, Rua Piauí, Bloco 2B, sala 200, Campus Umuarama, Uberlândia, 38400-902, MG, Brazil
| | - Hans-Joachim Knölker
- Fakultät Chemie, Technische Universität Dresden, Bergstraße 66, 01069, Dresden, Germany
| |
Collapse
|
18
|
Abstract
Heterocycles are very common substructures in a number of pharmaceuticals. Over the past several years, the use of palladium-catalyzed oxidative cyclization for heterocyclic synthesis has become much more prevalent. This review collects recent reports using palladium catalysis to synthesize a wide variety of heterocyclic scaffolds. Many of these reactions use oxygen as the terminal oxidant. Some salient mechanistic features are discussed.
Collapse
Affiliation(s)
- John C. Hershberger
- Department of Chemistry and Physics, Arkansas State University, State University, AR, United States
| |
Collapse
|
19
|
DBU-promoted tandem Michael-addition/cyclization for the synthesis of polysubstituted pyrroles. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.02.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Affiliation(s)
- Jia Zeng
- Department of Molecular BioscienceUniversity of Texas at Austin Austin, Texas 89812 United States
| | - Jixun Zhan
- Department of Biological EngineeringUtah State University Logan, Utah 84321 United States
| |
Collapse
|
21
|
Iqbal Z, Han LC, Soares-Sello AM, Nofiani R, Thormann G, Zeeck A, Cox RJ, Willis CL, Simpson TJ. Investigations into the biosynthesis of the antifungal strobilurins. Org Biomol Chem 2018; 16:5524-5532. [PMID: 30027987 PMCID: PMC6085771 DOI: 10.1039/c8ob00608c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/22/2018] [Indexed: 11/21/2022]
Abstract
The strobilurins are important antifungal metabolites isolated from a number of basidiomycetes and have been valuable leads for the development of commercially important fungicides. Isotopic labelling studies with early and advanced intermediates confirm for the first time that they are produced via a linear tetraketide, primed with the rare benzoate starter unit, itself derived from phenylalanine via cinnamate. Isolation of a novel biphenyl metabolite, pseudostrobilurin B, provides evidence for the involvement of an epoxide in the key rearrangement to form the β-methoxyacrylate moiety essential for biological activity. Formation of two bolineol related metabolites, strobilurins Y and Z, also probably involves epoxide intermediates. Time course studies indicate a likely biosynthetic pathway from strobilurin A, with the simplest non-subsubstituted benzoate ring, to strobilurin G with a complex dioxepin terpenoid-derived substituent. Precursor-directed biosynthetic studies allow production of a number of novel ring-halogenated analogues as well as a new pyridyl strobilurin. These studies also provide evidence for a non-linear biosynthetic relationship between strobilurin A and strobilurin B.
Collapse
Affiliation(s)
- Zafar Iqbal
- School of Chemistry
, University of Bristol
,
Cantocks Close
, Bristol
, BS8 1TS
, UK
.
;
| | - Li-Chen Han
- School of Chemistry
, University of Bristol
,
Cantocks Close
, Bristol
, BS8 1TS
, UK
.
;
| | - Anna M. Soares-Sello
- School of Chemistry
, University of Bristol
,
Cantocks Close
, Bristol
, BS8 1TS
, UK
.
;
| | - Risa Nofiani
- School of Chemistry
, University of Bristol
,
Cantocks Close
, Bristol
, BS8 1TS
, UK
.
;
| | - Gerald Thormann
- Institut für Organische und Biomolekulare Chemie
, Georg-August Universität
,
Tammannstraße 2
, 37077 Göttingen
, Germany
| | - Axel Zeeck
- Institut für Organische und Biomolekulare Chemie
, Georg-August Universität
,
Tammannstraße 2
, 37077 Göttingen
, Germany
| | - Russell J. Cox
- Institut für Organische Chemie Chemistry
, Schneiderberg 1B, Leibniz Universität
,
30167 Hannover
, Germany
| | - Christine L. Willis
- School of Chemistry
, University of Bristol
,
Cantocks Close
, Bristol
, BS8 1TS
, UK
.
;
| | - Thomas J. Simpson
- School of Chemistry
, University of Bristol
,
Cantocks Close
, Bristol
, BS8 1TS
, UK
.
;
| |
Collapse
|
22
|
Neubauer PR, Widmann C, Wibberg D, Schröder L, Frese M, Kottke T, Kalinowski J, Niemann HH, Sewald N. A flavin-dependent halogenase from metagenomic analysis prefers bromination over chlorination. PLoS One 2018; 13:e0196797. [PMID: 29746521 PMCID: PMC5945002 DOI: 10.1371/journal.pone.0196797] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/19/2018] [Indexed: 12/04/2022] Open
Abstract
Flavin-dependent halogenases catalyse halogenation of aromatic compounds. In most cases, this reaction proceeds with high regioselectivity and requires only the presence of FADH2, oxygen, and halide salts. Since marine habitats contain high concentrations of halides, organisms populating the oceans might be valuable sources of yet undiscovered halogenases. A new Hidden-Markov-Model (HMM) based on the PFAM tryptophan halogenase model was used for the analysis of marine metagenomes. Eleven metagenomes were screened leading to the identification of 254 complete or partial putative flavin-dependent halogenase genes. One predicted halogenase gene (brvH) was selected, codon optimised for E. coli, and overexpressed. Substrate screening revealed that this enzyme represents an active flavin-dependent halogenase able to convert indole to 3-bromoindole. Remarkably, bromination prevails also in a large excess of chloride. The BrvH crystal structure is very similar to that of tryptophan halogenases but reveals a substrate binding site that is open to the solvent instead of being covered by a loop.
Collapse
Affiliation(s)
- Pia R. Neubauer
- Organic and Bioorganic Chemistry (OCIII), Bielefeld University, Bielefeld, Germany
| | - Christiane Widmann
- Structural Biochemistry (BCIV), Bielefeld University, Bielefeld, Germany
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Lea Schröder
- Physical Chemistry (PCIII), Bielefeld University, Bielefeld, Germany
| | - Marcel Frese
- Organic and Bioorganic Chemistry (OCIII), Bielefeld University, Bielefeld, Germany
| | - Tilman Kottke
- Physical Chemistry (PCIII), Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Hartmut H. Niemann
- Structural Biochemistry (BCIV), Bielefeld University, Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry (OCIII), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
23
|
Andorfer MC, Lewis JC. Understanding and Improving the Activity of Flavin-Dependent Halogenases via Random and Targeted Mutagenesis. Annu Rev Biochem 2018; 87:159-185. [PMID: 29589959 DOI: 10.1146/annurev-biochem-062917-012042] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Flavin-dependent halogenases (FDHs) catalyze the halogenation of organic substrates by coordinating reactions of reduced flavin, molecular oxygen, and chloride. Targeted and random mutagenesis of these enzymes have been used to both understand and alter their reactivity. These studies have led to insights into residues essential for catalysis and FDH variants with improved stability, expanded substrate scope, and altered site selectivity. Mutations throughout FDH structures have contributed to all of these advances. More recent studies have sought to rationalize the impact of these mutations on FDH function and to identify new FDHs to deepen our understanding of this enzyme class and to expand their utility for biocatalytic applications.
Collapse
Affiliation(s)
- Mary C Andorfer
- Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Jared C Lewis
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA;
| |
Collapse
|
24
|
Sathiyachandran P, Manogaran P, Nesterov VN, Padma VV, Rajendra Prasad KJ. Design and synthesis of novel pyrrolo[2,3-a]carbazoles: 7-Chloro-2-oxo-3a-(2'-oxo-2',3'-dihydro-1'H-indol-3'-yl)-2,3,3a,4,5,10-hexahydro-pyrrolo[3,2-a]carbazole-1-carbonitrile as an efficient anticancer agent. Eur J Med Chem 2018; 150:851-863. [PMID: 29597168 DOI: 10.1016/j.ejmech.2018.03.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/17/2018] [Accepted: 03/19/2018] [Indexed: 12/28/2022]
Abstract
Highly efficient poly functionalized pyrrolo[3,2-a]carbazoles via ring contraction through rearrangement and intramolecular Michael addition reaction using one pot multicomponent reaction (MCR) is reported for the first time. Free radical scavenging and anticancer activities were determined by DPPH and MTT assays respectively. Of these, compound 8d exhibited most potent activity against HCT-15 human colon cancer cell lines with an IC50 value of 9.9 μM and low toxicity toward normal human red blood cells. The morphological changes were visualized using scanning electron microscopy (SEM) technique, intracellular ROS generation measured by spectrofluorometer and gene expression levels of caspase-3, caspase-9 and Bcl-2 were determined using Semi quantitates PCR analysis for the target compound. Further, the structure activity relationships were also carried out. The results of the present study revealed that among pyrrolo[3,2-a]carbazole compounds, 7-chloro-2-oxo-3a-(2'-oxo-2',3'-dihydro-1'H-indol-3'-yl)-2,3,3a,4,5,10-hexahydro-pyrrolo[3,2-a]carbazole-1-carbonitrile could be exploited as an excellent anticancer agent against colon cancer cells.
Collapse
Affiliation(s)
| | - Prasath Manogaran
- Translational Research Lab, Department of Biotechnology, Bharathiar University, Coimbatore, 641 046, India
| | - Vladimir N Nesterov
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX, 76203, United States
| | - Viswanadha Vijaya Padma
- Translational Research Lab, Department of Biotechnology, Bharathiar University, Coimbatore, 641 046, India
| | | |
Collapse
|
25
|
Li X, Ma H, Li L, Chen Y, Sun X, Dong Z, Liu JY, Zhu W, Zhang JT. Novel synthetic bisindolylmaleimide alkaloids inhibit STAT3 activation by binding to the SH2 domain and suppress breast xenograft tumor growth. Oncogene 2018; 37:2469-2480. [PMID: 29456240 PMCID: PMC5934316 DOI: 10.1038/s41388-017-0076-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 11/19/2017] [Indexed: 11/10/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is constitutively activated in malignant tumors and plays important roles in multiple aspects of cancer aggressiveness. Thus, targeting STAT3 promises to be an attractive strategy for treatment of advanced metastatic tumors. Bisindolylmaleimide alkaloid (BMA) has been shown to have anti-cancer activities and was thought to suppress tumor cell growth by inhibiting protein kinase C. In this study, we show that a newly synthesized BMA analogue, BMA097, is effective in suppressing tumor cell and xenograft growth and in inducing spontaneous apoptosis. We also provide evidence that BMA097 binds directly to the SH2 domain of STAT3 and inhibits STAT3 phosphorylation and activation, leading to reduced expression of STAT3 downstream target genes. Structure activity relationship analysis revealed that the hydroxymethyl group in the 2,5-dihydropyrrole-2,5-dione prohibits STAT3-inhibitory activity of BMA analogues. Together, we conclude that the synthetic BMA analogues may be developed as anticancer drugs by targeting and binding to the SH2 domain of STAT3 and inhibiting the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Xia Li
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA. .,School of Ocean, Shandong University, Weihai, China.
| | - Hongguang Ma
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Lin Li
- School of Ocean, Shandong University, Weihai, China
| | - Yifan Chen
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiao Sun
- School of Ocean, Shandong University, Weihai, China
| | - Zizheng Dong
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jing-Yuan Liu
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA. .,Department of Computer and Information Science, Indiana University-Purdue University, Indianapolis, IN, USA.
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.
| | - Jian-Ting Zhang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA. .,IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
26
|
|
27
|
Cheng X, Zhou B, Liu H, Huo C, Ding W. One new indolocarbazole alkaloid from the Streptomyces sp. A22. Nat Prod Res 2018; 32:2583-2588. [DOI: 10.1080/14786419.2018.1428595] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xiangwei Cheng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
- Zhejiang Police College, Hangzhou, China
| | - Biao Zhou
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan, China
| | - Huazhang Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Chao Huo
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Wanjing Ding
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan, China
| |
Collapse
|
28
|
Boshkow J, Fischer S, Bailey AM, Wolfrum S, Carreira EM. Stereochemistry and biological activity of chlorinated lipids: a study of danicalipin A and selected diastereomers. Chem Sci 2017; 8:6904-6910. [PMID: 29147515 PMCID: PMC5632803 DOI: 10.1039/c7sc03124f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/07/2017] [Indexed: 11/21/2022] Open
Abstract
The syntheses of (+)-16-epi- and (+)-11,15-di-epi-danicalipin A (2 and 3) are reported. The conformations of the parent diols 5 and 6 as well as the corresponding disulfates 2 and 3 were determined on the basis of J-based configuration analysis and supported by calculations. The impact of configuration on membrane permeability in Gram-negative bacteria and mammalian cell lines was assessed as well as cytotoxicity. Although diastereomer 2 showed similar behavior to natural (+)-danicalipin A (1), strikingly, the more flexible C11,C15-epimer 3 had no effect on permeability and proved equally or more toxic towards multiple cell lines.
Collapse
Affiliation(s)
- J Boshkow
- Laboratorium für Organische Chemie , ETH Zürich , HCI H335, Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland .
| | - S Fischer
- Laboratorium für Organische Chemie , ETH Zürich , HCI H335, Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland .
| | - A M Bailey
- Laboratorium für Organische Chemie , ETH Zürich , HCI H335, Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland .
| | - S Wolfrum
- Laboratorium für Organische Chemie , ETH Zürich , HCI H335, Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland .
| | - E M Carreira
- Laboratorium für Organische Chemie , ETH Zürich , HCI H335, Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland .
| |
Collapse
|
29
|
An efficient synthesis of pyrrole and fluorescent isoquinoline derivatives using NaN3/NH4Cl promoted intramolecular aza-annulation. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Van Arnam EB, Ruzzini AC, Sit CS, Currie CR, Clardy J. A Rebeccamycin Analog Provides Plasmid-Encoded Niche Defense. J Am Chem Soc 2015; 137:14272-4. [PMID: 26535611 DOI: 10.1021/jacs.5b09794] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Bacterial symbionts of fungus-growing ants occupy a highly specialized ecological niche and face the constant existential threat of displacement by another strain of ant-adapted bacteria. As part of a systematic study of the small molecules underlying this fraternal competition, we discovered an analog of the antitumor agent rebeccamycin, a member of the increasingly important indolocarbazole family. While several gene clusters consistent with this molecule's newly reported modification had previously been identified in metagenomic studies, the metabolite itself has been cryptic. The biosynthetic gene cluster for 9-methoxyrebeccamycin is encoded on a plasmid in a manner reminiscent of plasmid-derived peptide antimicrobials that commonly mediate antagonism among closely related Gram-negative bacteria.
Collapse
Affiliation(s)
- Ethan B Van Arnam
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School , 240 Longwood Ave., Boston, Massachusetts 02115, United States
| | - Antonio C Ruzzini
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School , 240 Longwood Ave., Boston, Massachusetts 02115, United States
| | - Clarissa S Sit
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School , 240 Longwood Ave., Boston, Massachusetts 02115, United States
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin-Madison , 1550 Linden Dr., Madison, Wisconsin 53706, United States
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School , 240 Longwood Ave., Boston, Massachusetts 02115, United States
| |
Collapse
|
31
|
Pang AH, Garneau-Tsodikova S, Tsodikov OV. Crystal structure of halogenase PltA from the pyoluteorin biosynthetic pathway. J Struct Biol 2015; 192:349-357. [PMID: 26416533 DOI: 10.1016/j.jsb.2015.09.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 10/23/2022]
Abstract
Pyoluteorin is an antifungal agent composed of a 4,5-dichlorinated pyrrole group linked to a resorcinol moiety. The pyoluteorin biosynthetic gene cluster in Pseudomonas fluorescens Pf-5 encodes the halogenase PltA, which has been previously demonstrated to perform both chlorinations in vitro. PltA selectively accepts as a substrate a pyrrole moiety covalently tethered to a nonribosomal peptide thiolation domain PltL (pyrrolyl-S-PltL) for FAD-dependent di-chlorination, yielding 4,5-dichloropyrrolyl-S-PltL. We report a 2.75 Å-resolution crystal structure of PltA in complex with FAD and chloride. PltA is a dimeric enzyme, containing a flavin-binding fold conserved in flavin-dependent halogenases and monooxygenases, and an additional unique helical region at the C-terminus. This C-terminal region blocks a putative substrate-binding cleft, suggesting that a conformational change involving repositioning of this region is necessary to allow binding of the pyrrolyl-S-PltL substrate for its dichlorination by PltA.
Collapse
Affiliation(s)
- Allan H Pang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536-0596, USA
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536-0596, USA
| | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536-0596, USA.
| |
Collapse
|
32
|
Zhao Y, Yan B, Yang T, Jiang J, Wei H, Zhu X. Purification and crystallographic analysis of a FAD-dependent halogenase from Streptomyces sp. JCM9888. Acta Crystallogr F Struct Biol Commun 2015; 71:972-6. [PMID: 26249684 PMCID: PMC4528926 DOI: 10.1107/s2053230x15009929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 05/22/2015] [Indexed: 11/10/2022] Open
Abstract
A new FAD (flavin adenine dinucleotide)-dependent halogenase HalY from Streptomyces sp. JCM9888 was reported to be involved in the regioselective halogenation of adenine. HalY is a variant B FAD-dependent halogenase that is most similar to the halogenase PltA involved in pyoluteorin biosynthesis. This study reports the overexpression and purification of HalY with an N-terminal hexahistidine tag, followed by crystallization experiments and X-ray crystallographic analysis. HalY was purified as a monomer in solution and crystallized to give X-ray diffraction to a resolution of 1.7 Å. The crystal belonged to the monoclinic space group P21, with unit-cell parameters a = 41.4, b = 113.4, c = 47.6 Å, α = γ = 90, β = 107.4°, and contained one monomer of HalY in the asymmetric unit, with a calculated Matthews coefficient of 2.3 Å(3) Da(-1) and a solvent content of 46%. The structure of the halogenase CndH was used as a search model in molecular replacement to obtain the initial model of HalY. Manual model building and structure refinement of HalY are in progress.
Collapse
Affiliation(s)
- Yanqun Zhao
- College of Life Science, Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, Center for Growth, Metabolism and Aging, Sichuan University, Chengdu 610064, People’s Republic of China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Baohua Yan
- College of Life Science, Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, Center for Growth, Metabolism and Aging, Sichuan University, Chengdu 610064, People’s Republic of China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Ting Yang
- College of Life Science, Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, Center for Growth, Metabolism and Aging, Sichuan University, Chengdu 610064, People’s Republic of China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Jian Jiang
- College of Life Science, Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, Center for Growth, Metabolism and Aging, Sichuan University, Chengdu 610064, People’s Republic of China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Heng Wei
- College of Life Science, Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, Center for Growth, Metabolism and Aging, Sichuan University, Chengdu 610064, People’s Republic of China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Xiaofeng Zhu
- College of Life Science, Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, Center for Growth, Metabolism and Aging, Sichuan University, Chengdu 610064, People’s Republic of China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People’s Republic of China
- Collaborative Innovation Centre for Biotherapy, People’s Republic of China
| |
Collapse
|
33
|
Shaaban KA, Elshahawi SI, Wang X, Horn J, Kharel MK, Leggas M, Thorson JS. Cytotoxic Indolocarbazoles from Actinomadura melliaura ATCC 39691. JOURNAL OF NATURAL PRODUCTS 2015; 78:1723-9. [PMID: 26091285 PMCID: PMC4515175 DOI: 10.1021/acs.jnatprod.5b00429] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Actinomadura melliaura ATCC 39691, a strain isolated from a soil sample collected in Bristol Cove, California, is a known producer of the disaccharide-substituted AT2433 indolocarbazoles (6-9). Reinvestigation of this strain using new media conditions led to >40-fold improvement in the production of previously reported AT2433 metabolites and the isolation and structure elucidation of the four new analogues, AT2433-A3, A4, A5, and B3 (1-4). The availability of this broader set of compounds enabled a subsequent small antibacterial/fungal/cancer SAR study that revealed disaccharyl substitution, N-6 methylation, and C-11 chlorination as key modulators of bioactivity. The slightly improved anticancer potency of the newly reported N-6-desmethyl 1 (compared to 6) contrasts extensive SAR of monoglycosylated rebeccamycin-type topoisomerase I inhibitors where N-6 alkylation has contributed to improved potency and ADME. Complete 2D NMR assignments for the known metabolite BMY-41219 (5) and (13)C NMR spectroscopic data for the known analogue AT2433-B1 (7) are also provided for the first time.
Collapse
Affiliation(s)
- Khaled A. Shaaban
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Sherif I. Elshahawi
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Xiachang Wang
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Jamie Horn
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Madan K. Kharel
- School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, Maryland 21853, United States
| | - Markos Leggas
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Jon S. Thorson
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Corresponding Author:
| |
Collapse
|
34
|
Kolli SK, Prasad B, Babu PV, Ashfaq MA, Ehtesham NZ, Raju RR, Pal M. TFAA/H3PO4 mediated unprecedented N-acylation of carbazoles leading to small molecules possessing anti-proliferative activities against cancer cells. Org Biomol Chem 2014; 12:6080-4. [PMID: 25006860 DOI: 10.1039/c4ob00686k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For the first time TFAA/H3PO4 has facilitated the direct and metal-free N-acylation of carbazoles leading to a number of N-acylated derivatives. Several of these compounds were found to be promising when tested for their anti-proliferative properties against oral cancer cell lines.
Collapse
Affiliation(s)
- Sunder Kumar Kolli
- Department of Chemistry, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522510, A.P., India
| | | | | | | | | | | | | |
Collapse
|
35
|
Pan X, Wang K, Guan BH, Liu ZZ. Synthesis of Indolo[2,3-a]pyrrolo[3,4-c]carbazoles via the Oxidative Cyclization of Bisindolylmaleimides with Pd(TFA)2/Cu(OAc)2. J Heterocycl Chem 2014. [DOI: 10.1002/jhet.2134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xuan Pan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines; Institute of Materia Medica; Peking Union Medical College and Chinese Academy of Medical Sciences; Beijing 100050 People's Republic of China
| | - Ke Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines; Institute of Materia Medica; Peking Union Medical College and Chinese Academy of Medical Sciences; Beijing 100050 People's Republic of China
| | - Bao He Guan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines; Institute of Materia Medica; Peking Union Medical College and Chinese Academy of Medical Sciences; Beijing 100050 People's Republic of China
| | - Zhan Zhu Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines; Institute of Materia Medica; Peking Union Medical College and Chinese Academy of Medical Sciences; Beijing 100050 People's Republic of China
| |
Collapse
|
36
|
Frese M, Guzowska PH, Voß H, Sewald N. Regioselective Enzymatic Halogenation of Substituted Tryptophan Derivatives using the FAD-Dependent Halogenase RebH. ChemCatChem 2014. [DOI: 10.1002/cctc.201301090] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Beck DE, Agama K, Marchand C, Chergui A, Pommier Y, Cushman M. Synthesis and biological evaluation of new carbohydrate-substituted indenoisoquinoline topoisomerase I inhibitors and improved syntheses of the experimental anticancer agents indotecan (LMP400) and indimitecan (LMP776). J Med Chem 2014; 57:1495-512. [PMID: 24517248 PMCID: PMC3983348 DOI: 10.1021/jm401814y] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
![]()
Carbohydrate moieties were strategically
transported from the indolocarbazole
topoisomerase I (Top1) inhibitor class to the indenoisoquinoline system
in search of structurally novel and potent Top1 inhibitors. The syntheses
and biological evaluation of 20 new indenoisoquinolines glycosylated
with linear and cyclic sugar moieties are reported. Aromatic ring
substitution with 2,3-dimethoxy-8,9-methylenedioxy or 3-nitro groups
exerted strong effects on antiproliferative and Top1 inhibitory activities.
While the length of the carbohydrate side chain clearly correlated
with antiproliferative activity, the relationship between stereochemistry
and biological activity was less clearly defined. Twelve of the new
indenoisoquinolines exhibit Top1 inhibitory activity equal to or better
than that of camptothecin. An advanced synthetic intermediate from
this study was also used to efficiently prepare indotecan (LMP400)
and indimitecan (LMP776), two anticancer agents currently under investigation
in a Phase I clinical trial at the National Institutes of Health.
Collapse
Affiliation(s)
- Daniel E Beck
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and the Purdue Center for Cancer Research, Purdue University , West Lafayette, Indiana 47907, United States
| | | | | | | | | | | |
Collapse
|
38
|
Uvarani C, Sankaran M, Jaivel N, Chandraprakash K, Ata A, Mohan PS. Bioactive dimeric carbazole alkaloids from Murraya koenigii. JOURNAL OF NATURAL PRODUCTS 2013; 76:993-1000. [PMID: 23691929 DOI: 10.1021/np300464t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Phytochemical studies on the CHCl3 extract of the fruit pulp of Murraya koenigii afforded three new dimeric carbazole alkaloids, bisgerayafolines A-C (1-3). Bisgerayafolines A-C (1-3) are structurally unique dimeric carbazole alkaloids comprising geranyl moieties incorporated in their structures. Compounds 1-3 exhibited various levels of antioxidant, anti-α-glucosidase, DNA binding, and cytotoxic activities and protein interactions.
Collapse
Affiliation(s)
- Chokkalingam Uvarani
- Department of Chemistry, School of Chemical Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | | | | | | | | | | |
Collapse
|
39
|
Lee SE, Jo TM, Lee HY, Lee J, Jung KH. β-galactosidase-catalyzed synthesis of galactosyl chlorphenesin and its characterization. Appl Biochem Biotechnol 2013; 171:1299-312. [PMID: 23564435 DOI: 10.1007/s12010-013-0213-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 03/21/2013] [Indexed: 10/27/2022]
Abstract
We synthesized galactosyl chlorphenesin (CPN-G) using β-gal-containing Escherichia coli (E. coli) cells in which the conversion yield of chlorphenesin (CPN) to CPN-G reached about 64 % during 12 h. CPN-G was identified and characterized using high-performance liquid chromatography, liquid chromatography-mass spectrometry, Fourier transform-infrared spectrometry, and nuclear magnetic resonance analysis ((1)H and (13)C). We verified that a galactose was covalently bound to a CPN alcohol group during CPN-G synthesis throughout these analyses. In particular, by the hydrolysis of CPN-G using β-gal, it was confirmed that a galactose was bound to CPN. The minimal inhibitory concentration (MIC) results showed that the CPN-G MICs were fairly similar to those of CPN. HACAT cell viability was significantly higher in CPN-G-treated cells than in CPN-treated cells at concentrations of 0.0-20.0 mM. Finally, we accomplished the synthesis of less toxic CPN-G, compared with CPN, using β-gal-containing E. coli cells as whole cells without changes in the MICs against microorganisms.
Collapse
Affiliation(s)
- Sang-Eun Lee
- Department of Biotechnology, Korea National University of Transportation, Jeungpyung, Chungbuk, 368-701, Republic of Korea
| | | | | | | | | |
Collapse
|
40
|
Shou KJ, Li J, Jin Y, Lv YW. Design, Synthesis, Biological Evaluation, and Molecular Docking Studies of Quinolone Derivatives as Potential Antitumor Topoisomerase I Inhibitors. Chem Pharm Bull (Tokyo) 2013; 61:631-6. [DOI: 10.1248/cpb.c13-00040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Jie Li
- College of Chemistry and Materials Engineering, Quzhou University
| | - Yi Jin
- College of Chemistry and Materials Engineering, Quzhou University
| | - Yan-wen Lv
- College of Chemistry and Materials Engineering, Quzhou University
- Key Laboratory of Pharmaceutical Engineering of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology
| |
Collapse
|
41
|
Fu P, Zhuang Y, Wang Y, Liu P, Qi X, Gu K, Zhang D, Zhu W. New Indolocarbazoles from a Mutant Strain of the Marine-Derived Actinomycete Streptomyces fradiae 007M135. Org Lett 2012; 14:6194-7. [DOI: 10.1021/ol302940y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peng Fu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China, and State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yibin Zhuang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China, and State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yi Wang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China, and State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Peipei Liu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China, and State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xin Qi
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China, and State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Kangbo Gu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China, and State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Daojing Zhang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China, and State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China, and State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
42
|
Fu P, Yang C, Wang Y, Liu P, Ma Y, Xu L, Su M, Hong K, Zhu W. Streptocarbazoles A and B, Two Novel Indolocarbazoles from the Marine-Derived Actinomycete Strain Streptomyces sp. FMA. Org Lett 2012; 14:2422-5. [DOI: 10.1021/ol3008638] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peng Fu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Chunli Yang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Yi Wang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Peipei Liu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Yiming Ma
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Lei Xu
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Mingbo Su
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Kui Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education of China, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. China
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| |
Collapse
|
43
|
Wang ZJ, Yang F, Lv X, Bao W. Synthesis of Unsymmetrical 2,2′-Biindolyl Derivatives by a Cu-Catalyzed N-Arylation/Pd-Catalyzed Direct Arylation Sequential Process. J Org Chem 2011; 76:967-70. [DOI: 10.1021/jo101899a] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zhi-Jing Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| | - Fan Yang
- Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| | - Xin Lv
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Weiliang Bao
- Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| |
Collapse
|
44
|
Paul C, Pohnert G. Production and role of volatile halogenated compounds from marine algae. Nat Prod Rep 2010; 28:186-95. [PMID: 21125112 DOI: 10.1039/c0np00043d] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Carsten Paul
- Friedrich Schiller University Jena, Department for Bioorganic Analytics, Lessingstraße 8, 07743, Jena, Germany
| | | |
Collapse
|
45
|
Alizadeh A, Rostamnia S, Zhu LG. A novel pseudo-seven-component diastereoselective synthesis of λ5-phosphanylidene bis(2,5-dioxotetrahydro-1H-pyrrole-3-carboxylates) via binucleophilic systems. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.07.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Ayerbe N, Routier S, Gillaizeau I, Maiereanu C, Caignard DH, Pierré A, Léonce S, Coudert G. Synthesis and biological evaluation of novel benzodioxinocarbazoles (BDCZs) as potential anticancer agents. Bioorg Med Chem Lett 2010; 20:4670-4. [DOI: 10.1016/j.bmcl.2010.05.088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Revised: 05/20/2010] [Accepted: 05/20/2010] [Indexed: 11/26/2022]
|
47
|
Deslandes S, Chassaing S, Delfourne E. Marine pyrrolocarbazoles and analogues: synthesis and kinase inhibition. Mar Drugs 2009; 7:754-86. [PMID: 20098609 PMCID: PMC2810226 DOI: 10.3390/md7040754] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 11/18/2009] [Accepted: 11/27/2009] [Indexed: 12/15/2022] Open
Abstract
Granulatimide and isogranulatimide are alkaloids obtained from marine sources which have been shown to inhibit cell-cycle G2-checkpoint, targeting more particularly checkpoint 1 kinase (Chk1). At a structural level, they possess a characteristic pyrrolocarbazole framework also shared by the well-known rebeccamycin and staurosporine microbial metabolites which have been described to inhibit topoisomerase I and diverse kinases, respectively. This review reports precisely on the synthesis and kinase inhibitory activities of pyrrolocarbazole-based analogues of granulatimide.
Collapse
Affiliation(s)
- Sébastien Deslandes
- Laboratoire de Synthèse et Physicochimie de Molécules d’Intérêt Biologique, UMR CNRS 5068, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cédex 9, France; E-Mails:
(S.D.);
(S.C.)
| | - Stefan Chassaing
- Laboratoire de Synthèse et Physicochimie de Molécules d’Intérêt Biologique, UMR CNRS 5068, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cédex 9, France; E-Mails:
(S.D.);
(S.C.)
| | - Evelyne Delfourne
- Laboratoire de Synthèse et Physicochimie de Molécules d’Intérêt Biologique, UMR CNRS 5068, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cédex 9, France; E-Mails:
(S.D.);
(S.C.)
| |
Collapse
|
48
|
Mahboobi S, Dechant I, Reindl H, Pongratz H, Popp A, Schollmeyer D. Synthesis of bis(indolylmaleimide) macrocycles. J Heterocycl Chem 2009. [DOI: 10.1002/jhet.5570370215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
49
|
Chiu HT, Lin YC, Lee MN, Chen YL, Wang MS, Lai CC. Biochemical characterization and substrate specificity of the gene cluster for biosyntheses of K-252a and its analogs by in vitro heterologous expression system of Escherichia coli. MOLECULAR BIOSYSTEMS 2009; 5:1192-203. [DOI: 10.1039/b912395b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Radwan MAA, Abbas EMH. Synthesis of some pyridine, thiopyrimidine, and isoxazoline derivatives based on the pyrrole moiety. MONATSHEFTE FUR CHEMIE 2008. [DOI: 10.1007/s00706-008-0061-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|