1
|
Humpert S, Schneider D, Bier D, Schulze A, Neumaier F, Neumaier B, Holschbach M. 8-Bicycloalkyl-CPFPX derivatives as potent and selective tools for in vivo imaging of the A 1 adenosine receptor. Eur J Med Chem 2024; 271:116380. [PMID: 38615410 DOI: 10.1016/j.ejmech.2024.116380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/16/2024]
Abstract
Imaging of the A1 adenosine receptor (A1R) by positron emission tomography (PET) with 8-cyclopentyl-3-(3-[18F]fluoropropyl)-1-propyl-xanthine ([18F]CPFPX) has been widely used in preclinical and clinical studies. However, this radioligand suffers from rapid peripheral metabolism and subsequent accumulation of radiometabolites in the vascular compartment. In the present work, we prepared four derivatives of CPFPX by replacement of the cyclopentyl group with norbornane moieties. These derivatives were evaluated by competition binding studies, microsomal stability assays and LC-MS analysis of microsomal metabolites. In addition, the 18F-labeled isotopologue of 8-(1-norbornyl)-3-(3-fluoropropyl)-1-propylxanthine (1-NBX) as the most promising candidate was prepared by radiofluorination of the corresponding tosylate precursor and the resulting radioligand ([18F]1-NBX) was evaluated by permeability assays with Caco-2 cells and in vitro autoradiography in rat brain slices. Our results demonstrate that 1-NBX exhibits significantly improved A1R affinity and selectivity when compared to CPFPX and that it does not give rise to lipophilic metabolites expected to cross the blood-brain-barrier in microsomal assays. Furthermore, [18F]1-NBX showed a high passive permeability (Pc = 6.9 ± 2.9 × 10-5 cm/s) and in vitro autoradiography with this radioligand resulted in a distribution pattern matching A1R expression in the brain. Moreover, a low degree of non-specific binding (5%) was observed. Taken together, these findings identify [18F]1-NBX as a promising candidate for further preclinical evaluation as potential PET tracer for A1R imaging.
Collapse
Affiliation(s)
- Swen Humpert
- Forschungszentrum Jülich GmbH, Institute of Neurosciences and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428, Jülich, Germany
| | - Daniela Schneider
- Forschungszentrum Jülich GmbH, Institute of Neurosciences and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428, Jülich, Germany
| | - Dirk Bier
- Forschungszentrum Jülich GmbH, Institute of Neurosciences and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428, Jülich, Germany
| | - Annette Schulze
- Forschungszentrum Jülich GmbH, Institute of Neurosciences and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428, Jülich, Germany
| | - Felix Neumaier
- Forschungszentrum Jülich GmbH, Institute of Neurosciences and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428, Jülich, Germany; Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Bernd Neumaier
- Forschungszentrum Jülich GmbH, Institute of Neurosciences and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428, Jülich, Germany; Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany; Max Planck Institute for Metabolism Research, Gleueler Straße 50, 50931, Cologne, Germany.
| | - Marcus Holschbach
- Forschungszentrum Jülich GmbH, Institute of Neurosciences and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428, Jülich, Germany
| |
Collapse
|
2
|
Beerkens BLH, Wang X, Avgeropoulou M, Adistia LN, van Veldhoven JPD, Jespers W, Liu R, Heitman LH, IJzerman AP, van der Es D. Development of subtype-selective covalent ligands for the adenosine A 2B receptor by tuning the reactive group. RSC Med Chem 2022; 13:850-856. [PMID: 35923720 PMCID: PMC9298184 DOI: 10.1039/d2md00132b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/18/2022] [Indexed: 01/15/2024] Open
Abstract
Signalling through the adenosine receptors (ARs), in particular through the adenosine A2B receptor (A2BAR), has been shown to play a role in a variety of pathological conditions, ranging from immune disorders to cancer. Covalent ligands for the A2BAR have the potential to irreversibly block the receptor, as well as inhibit all A2BAR-induced signalling pathways. This will allow a thorough investigation of the pathophysiological role of the receptor. In this study, we synthesized and evaluated a set of potential covalent ligands for the A2BAR. The ligands all contain a core scaffold consisting of a substituted xanthine, varying in type and orientation of electrophilic group (warhead). Here, we find that the right combination of these variables is necessary for a high affinity, irreversible mode of binding and selectivity towards the A2BAR. Altogether, this is the case for sulfonyl fluoride 24 (LUF7982), a covalent ligand that allows for novel ways to interrogate the A2BAR.
Collapse
Affiliation(s)
- Bert L H Beerkens
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Xuesong Wang
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Maria Avgeropoulou
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Lisa N Adistia
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Jacobus P D van Veldhoven
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Willem Jespers
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Rongfang Liu
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Adriaan P IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Daan van der Es
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
3
|
Borowiecki P, Młynek M, Dranka M. Chemoenzymatic synthesis of enantiomerically enriched diprophylline and xanthinol nicotinate. Bioorg Chem 2020; 106:104448. [PMID: 33229120 DOI: 10.1016/j.bioorg.2020.104448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 01/01/2023]
Abstract
A concise chemoenzymatic route toward enantiomerically enriched active pharmaceutical ingredients (API) - diprophylline and xanthinol nicotinate - is reported for the first time. The decisive step is an enantioselective lipase-mediated methanolysis of racemic chlorohydrin-synthon acetate, namely 1-chloro-3-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)propan-2-yl acetate, performed under kinetically-controlled conditions on a preparative 500 mg-scale. The best results in terms of reaction enantioselectivity (E = 14) were obtained for the enantiomers resolution performed with lipase type B from Candida antarctica immobilized on acrylic resin (CAL-B, Novozym 435) suspended in homophasic acetonitrile-methanol mixture. The elaborated biocatalytic system furnished the key chlorohydrin intermediate (in 71% ee and 38% yield), which was then smoothly converted into enantioenriched active agents: (R)-(-)-diprophylline (57% ee) and (S)-(+)-xanthinol nicotinate (65% ee). To support the assignment of absolute configurations of EKR-products as well as to confirm the stereochemical outcome of the remaining reaction steps, docking studies toward the prediction of enantiomers binding selectivity in CAL-B active site as well as the respective chemical correlations with enantiomerically enriched analytical standards obtained from commercially available (R)-(-)-epichlorohydrin, were applied. In addition, single-crystal X-ray diffraction (XRD) analyses were performed for the synthesized optically active APIs furnishing by this manner a first crystal structures of nicotinic acid salt of xanthinol.
Collapse
Affiliation(s)
- Paweł Borowiecki
- Warsaw University of Technology, Department of Drugs Technology and Biotechnology, Laboratory of Biocatalysis and Biotransformations, Koszykowa St. 75, 00-662 Warsaw, Poland.
| | - Mateusz Młynek
- Warsaw University of Technology, Department of Drugs Technology and Biotechnology, Laboratory of Biocatalysis and Biotransformations, Koszykowa St. 75, 00-662 Warsaw, Poland
| | - Maciej Dranka
- Warsaw University of Technology, Faculty of Chemistry, Department of Inorganic Chemistry and Solid State Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
4
|
Lambertucci C, Marucci G, Dal Ben D, Buccioni M, Spinaci A, Kachler S, Klotz KN, Volpini R. New potent and selective A 1 adenosine receptor antagonists as potential tools for the treatment of gastrointestinal diseases. Eur J Med Chem 2018; 151:199-213. [PMID: 29614417 DOI: 10.1016/j.ejmech.2018.03.067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 01/31/2023]
Abstract
The synthesis of 9-alkyl substituted adenine derivatives presenting aromatic groups and cycloalkyl rings in 8- and N6-position, respectively, is reported. The compounds were tested with radioligand binding studies showing, in some cases, a low nanomolar A1 adenosine receptor affinity and a very good selectivity versus the other adenosine receptor subtypes. Functional assays at human adenosine receptors and at a mouse ileum tissue preparation clearly demonstrate the antagonist profile of these molecules, with inhibitory potency at nanomolar level. A molecular modeling study, consisting in docking analysis at the recently reported A1 adenosine receptor crystal structure, was performed for the interpretation of the obtained pharmacological results. The N6-cyclopentyl-9-methyl-8-phenyladenine (17), resulting the most active derivative of the series (Ki = 2.8 nM and IC50 = 14 nM), was also very efficacious in counteracting the effect of the agonist CCPA on mouse ileum contractility. This new compound represents a tool for the development of new agents for the treatment of intestinal diseases as constipation and postoperative ileus.
Collapse
Affiliation(s)
- Catia Lambertucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, MC, Italy
| | - Gabriella Marucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, MC, Italy
| | - Diego Dal Ben
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, MC, Italy
| | - Michela Buccioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, MC, Italy
| | - Andrea Spinaci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, MC, Italy
| | - Sonja Kachler
- Institut für Pharmakologie und Toxikologie, Universität Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany
| | - Karl-Norbert Klotz
- Institut für Pharmakologie und Toxikologie, Universität Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany
| | - Rosaria Volpini
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, MC, Italy.
| |
Collapse
|
5
|
Structures of Human A 1 and A 2A Adenosine Receptors with Xanthines Reveal Determinants of Selectivity. Structure 2017; 25:1275-1285.e4. [DOI: 10.1016/j.str.2017.06.012] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/13/2017] [Accepted: 06/15/2017] [Indexed: 01/06/2023]
|
6
|
Hickey SM, Ashton TD, White JM, Li J, Nation RL, Yu HY, Elliott AG, Butler MS, Huang JX, Cooper MA, Pfeffer FM. Synthesis of Norbornane Bisether Antibiotics via Silver-mediated Alkylation. RSC Adv 2015; 5:28582-28596. [PMID: 26251697 PMCID: PMC4523246 DOI: 10.1039/c5ra03321g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A small series of norbornane bisether diguanidines have been synthesized and evaluated as antibacterial agents. The key transformation-bisalkylation of norbornane diol 6-was not successful using Williamson methodology but has been accomplished using Ag2O mediated alkylation. Further functionalization to incorporate two guanidinium groups gave rise to a series of structurally rigid cationic amphiphiles; several of which (16d, 16g and 16h) exhibited antibiotic activity. For example, compound 16d was active against a broad range of bacteria including Pseudomonas aeruginosa (MIC = 8 µg/mL), Escherichia coli (MIC = 8 µg/mL) and methicillin-resistant Staphylococcus aureus (MIC = 8 µg/mL).
Collapse
Affiliation(s)
- Shane M. Hickey
- Research Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Trent D. Ashton
- Research Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Jonathan M. White
- Bio21 Institute, School of Chemistry, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Jian Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Science, Royal Parade, Parkville, Victoria, 3052, Australia
| | - Roger L. Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Science, Royal Parade, Parkville, Victoria, 3052, Australia
| | - Heidi Y. Yu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Science, Royal Parade, Parkville, Victoria, 3052, Australia
| | - Alysha G. Elliott
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Mark S. Butler
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Johnny X. Huang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Matthew A. Cooper
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Frederick M. Pfeffer
- Research Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| |
Collapse
|
7
|
Biosensor-based affinities and binding kinetics of small molecule antagonists to the adenosine A(2A) receptor reconstituted in HDL like particles. FEBS Lett 2015; 589:1399-405. [PMID: 25935416 DOI: 10.1016/j.febslet.2015.04.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/14/2015] [Accepted: 04/17/2015] [Indexed: 11/23/2022]
Abstract
The options for investigating solubilised G protein-coupled receptors (GPCRs) by biophysical techniques have long been hampered by their instability. A thermostabilised adenosine A2A receptor expressed in insect cells, purified in detergent and reconstituted into high-density lipoprotein (HDL) particles was immobilised onto a Surface Plasmon Resonance sensor chip. This allowed measurement of affinities and kinetics for A2A antagonists with affinities ranging from 50 pM to almost 2 μM. Compared with other formats, reproduction of affinities, and dissociation and association rate constants are good, reasonable and poor respectively, indicating stabilised receptors in HDL particles are useful for investigating specific aspects of GPCR-ligand interactions.
Collapse
|
8
|
Welch WJ. Adenosine, type 1 receptors: role in proximal tubule Na+ reabsorption. Acta Physiol (Oxf) 2015; 213:242-8. [PMID: 25345761 DOI: 10.1111/apha.12413] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 11/29/2022]
Abstract
Adenosine type 1 receptor (A1 -AR) antagonists induce diuresis and natriuresis in experimental animals and humans. Much of this effect is due to inhibition of A1 -ARs in the proximal tubule, which is responsible for 60-70% of the reabsorption of filtered Na(+) and fluid. Intratubular application of receptor antagonists indicates that A1 -AR mediates a portion of Na(+) uptake in PT and PT cells, via multiple transport systems, including Na(+) /H(+) exchanger-3 (NHE3), Na(+) /PO4(-) co-transporter and Na(+) -dependent glucose transporter, SGLT. Renal microperfusion and recollection studies have shown that fluid reabsorption is reduced by A1 -AR antagonists and is lower in A1 -AR KO mice, compared to WT mice. Absolute proximal reabsorption (APR) measured by free-flow micropuncture is equivocal, with studies that show either lower APR or similar APR in A1 -AR KO mice, compared to WT mice. Inhibition of A1 -ARs lowers elevated blood pressure in models of salt-sensitive hypertension, partially due to their effects in the proximal tubule.
Collapse
Affiliation(s)
- W. J. Welch
- Department of Medicine; Georgetown University; Washington DC USA
| |
Collapse
|
9
|
He W, Wilder T, Cronstein BN. Rolofylline, an adenosine A1 receptor antagonist, inhibits osteoclast differentiation as an inverse agonist. Br J Pharmacol 2014; 170:1167-76. [PMID: 23962057 DOI: 10.1111/bph.12342] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 06/07/2013] [Accepted: 06/19/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Adenosine may be generated by hydrolysis of extracellular nucleotides by ectonucleotidases, including ectonucleoside triphosphate diphosphohydrolase 1 (CD39), ecto-5'-nucleotidase (CD73), nucleotide pyrophosphatase phosphodiesterase 1 (NPP-1) and tissue non-specific alkaline phosphatase (TNAP). Previous work from our laboratory has uncovered a critical role for adenosine A1 receptors (A1 R) in osteoclastogenesis; blockade or deletion of these receptors diminishes osteoclast differentiation. Interestingly, selective A1 R agonists neither affect basal osteoclastogenesis nor do they reverse A1 R antagonist-mediated inhibition of osteoclastogenesis. In this study, we determined whether ectonucleotidase-mediated adenosine production was required for A1 R antagonist-mediated inhibition, and, when we saw no effect, determined whether A1 R was constitutively activated and the antagonist was acting as an inverse agonist to diminish osteoclast differentiation. EXPERIMENTAL APPROACH Osteoclast formation derived from wild-type, CD39 knockout (KO), CD73 KO, NPP-1 KO and TNAP KO mice was examined by tartrate-resistant acid phosphatase staining of receptor activator of NF-κB ligand-macrophage colony-stimulating factor-stimulated osteoclasts and osteoclast gene expression (Ctsk, Acp5, MMP-9 and NFATc1). Intracellular cAMP concentration was determined by elisa. KEY RESULTS Rolofylline inhibited osteoclast formation in a dose-dependent manner (IC50 = 20-70 nM) in mice lacking all four of these phosphatases, although baseline osteoclast formation was significantly less in precursors from CD73 KO mice. Rolofylline (1 μM) stimulates cAMP production in bone marrow macrophages by 10.23 ± 0.89-fold. CONCLUSIONS AND IMPLICATIONS Based on these findings, we hypothesize that the A1 R is constitutively activated in osteoclast precursors, thereby diminishing basal AC activity, and that A1 R antagonists act as inverse agonists to release A1 R-mediated inhibition of basal AC activity and permit osteoclast differentiation. The constitutive activity of A1 R promotes osteoclast formation and down-regulation of this activity blocks osteoclast formation.
Collapse
Affiliation(s)
- Wenjie He
- New York University School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
10
|
Baraldi PG, Fruttarolo F, Tabrizi MA, Romagnoli R, Preti D. Novel 8-heterocyclyl xanthine derivatives in drug development - an update. Expert Opin Drug Discov 2013; 2:1161-83. [PMID: 23496127 DOI: 10.1517/17460441.2.9.1161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Naturally occurring methyl xanthines, especially caffeine and theophylline, have been widely investigated for their pharmacological properties as cognition enhancers, bronchodilator agents and mild diuretics. The xanthine core (3,7-dihydro-1H-purine-2,6-dione) has been largely manipulated in the search for selective ligands for different pharmacological targets, proving to be a versatile scaffold for the development of lead compounds in multiple therapeutic areas. The introduction of a heterocycle at the 8-position of some xanthine derivatives demonstrated to be a successful strategy for the identification of potent and selective A1 or A2B adenosine receptors antagonists as potential agents for the treatment of Alzheimer's disease and asthma, respectively. Interesting examples of 8-heterocyclyl-xanthines as dipeptidyl peptidase IV inhibitors and liver X receptor agonists have been claimed for their possible therapeutic use in the treatment of Type 2 diabetes and atherosclerosis.
Collapse
Affiliation(s)
- Pier G Baraldi
- Università di Ferrara, Dipartimento di Scienze Farmaceutiche, 44100 Ferrara, Italy +39 0532 455921 ; +39 0532 455953 ;
| | | | | | | | | |
Collapse
|
11
|
|
12
|
Funel JA, Abele S. Industrial Applications of the Diels-Alder Reaction. Angew Chem Int Ed Engl 2013; 52:3822-63. [DOI: 10.1002/anie.201201636] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/25/2012] [Indexed: 11/09/2022]
|
13
|
Liubchak K, Tolmachev A, Grygorenko OO, Nazarenko K. An approach to alicyclic ring-fused xanthines. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
14
|
Müller CE, Jacobson KA. Recent developments in adenosine receptor ligands and their potential as novel drugs. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1808:1290-308. [PMID: 21185259 PMCID: PMC3437328 DOI: 10.1016/j.bbamem.2010.12.017] [Citation(s) in RCA: 332] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 12/14/2010] [Accepted: 12/15/2010] [Indexed: 01/16/2023]
Abstract
Medicinal chemical approaches have been applied to all four of the adenosine receptor (AR) subtypes (A(1), A(2A), A(2B), and A(3)) to create selective agonists and antagonists for each. The most recent class of selective AR ligands to be reported is the class of A(2B)AR agonists. The availability of these selective ligands has facilitated research on therapeutic applications of modulating the ARs and in some cases has provided clinical candidates. Prodrug approaches have been developed which improve the bioavailability of the drugs, reduce side-effects, and/or may lead to site-selective effects. The A(2A) agonist regadenoson (Lexiscan®), a diagnostic drug for myocardial perfusion imaging, is the first selective AR agonist to be approved. Other selective agonists and antagonists are or were undergoing clinical trials for a broad range of indications, including capadenoson and tecadenoson (A(1) agonists) for atrial fibrillation, or paroxysmal supraventricular tachycardia, respectively, apadenoson and binodenoson (A(2A) agonists) for myocardial perfusion imaging, preladenant (A(2A) antagonist) for the treatment of Parkinson's disease, and CF101 and CF102 (A(3) agonists) for inflammatory diseases and cancer, respectively.
Collapse
|
15
|
Fredholm BB, IJzerman AP, Jacobson KA, Linden J, Müller CE. International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors--an update. Pharmacol Rev 2011; 63:1-34. [PMID: 21303899 PMCID: PMC3061413 DOI: 10.1124/pr.110.003285] [Citation(s) in RCA: 1032] [Impact Index Per Article: 79.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In the 10 years since our previous International Union of Basic and Clinical Pharmacology report on the nomenclature and classification of adenosine receptors, no developments have led to major changes in the recommendations. However, there have been so many other developments that an update is needed. The fact that the structure of one of the adenosine receptors has recently been solved has already led to new ways of in silico screening of ligands. The evidence that adenosine receptors can form homo- and heteromultimers has accumulated, but the functional significance of such complexes remains unclear. The availability of mice with genetic modification of all the adenosine receptors has led to a clarification of the functional roles of adenosine, and to excellent means to study the specificity of drugs. There are also interesting associations between disease and structural variants in one or more of the adenosine receptors. Several new selective agonists and antagonists have become available. They provide improved possibilities for receptor classification. There are also developments hinting at the usefulness of allosteric modulators. Many drugs targeting adenosine receptors are in clinical trials, but the established therapeutic use is still very limited.
Collapse
Affiliation(s)
- Bertil B Fredholm
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
16
|
Tuccinardi T, Zizzari AT, Brullo C, Daniele S, Musumeci F, Schenone S, Trincavelli ML, Martini C, Martinelli A, Giorgi G, Botta M. Substituted pyrazolo[3,4-b]pyridines as human A1 adenosine antagonists: Developments in understanding the receptor stereoselectivity. Org Biomol Chem 2011; 9:4448-55. [DOI: 10.1039/c0ob01064b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
17
|
Abstract
The natural plant alkaloids caffeine and theophylline were the first adenosine receptor (AR) antagonists described in the literature. They exhibit micromolar affinities and are non-selective. A large number of derivatives and analogues were subsequently synthesized and evaluated as AR antagonists. Very potent antagonists have thus been developed with selectivity for each of the four AR subtypes.
Collapse
Affiliation(s)
- Christa Müller
- PharmaCenter Bonn, Pharmaceutical Sciences Bonn (PSB), University of Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, An der Immenburg 4, D-53121 Bonn, Germany, Phone +49-228-73-2301, Fax +49-228-73-2567
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8A, Rm. B1A-19, NIH, NIDDK, LBC, Bethesda, MD 20892, United States of America, Phone +1-301-496-9024, Fax +1-301-480-8422
| |
Collapse
|
18
|
Calvin AD, Misra S, Pflueger A. Contrast-induced acute kidney injury and diabetic nephropathy. Nat Rev Nephrol 2010; 6:679-88. [PMID: 20877303 DOI: 10.1038/nrneph.2010.116] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Contrast-induced acute kidney injury (CIAKI) is a leading cause of iatrogenic renal failure. Multiple studies have shown that patients with diabetic nephropathy are at high risk of CIAKI. This Review presents an overview of the pathogenesis of CIAKI in patients with diabetic nephropathy and discusses the currently available and potential future strategies for CIAKI prevention.
Collapse
Affiliation(s)
- Andrew D Calvin
- Department of Medicine, Mayo Clinic College of Medicine, SW, Rochester, MN 55905, USA
| | | | | |
Collapse
|
19
|
Ensor CR, Russell SD. Tonapofylline: a selective adenosine-1 receptor antagonist for the treatment of heart failure. Expert Opin Pharmacother 2010; 11:2405-15. [DOI: 10.1517/14656566.2010.514605] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Slawsky MT, Givertz MM. Rolofylline: a selective adenosine 1 receptor antagonist for the treatment of heart failure. Expert Opin Pharmacother 2009; 10:311-22. [PMID: 19236201 DOI: 10.1517/14656560802682213] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Co-existent cardiac and renal dysfunction is increasingly recognized as both a predictor and mediator of poor outcomes in patients with advanced heart failure. Novel therapies, including adenosine receptor antagonists, are currently under development for the treatment of 'cardiorenal syndrome'. OBJECTIVES To review the pathophysiologic rationale for using rolofylline, a selective adenosine 1 receptor antagonist, in patients with cardiorenal syndrome; and to provide a critical overview of safety and efficacy data from clinical studies. METHODS We reviewed published data on the pharmacology of rolofylline, and used this to inform a comprehensive summary of preclinical and clinical trials. Cardiac and renal effects, and safety data with a particular reference to seizures, are highlighted. RESULTS/CONCLUSION Rolofylline facilitates diuresis and preserves renal function in patients with acute decompensated heart failure and renal dysfunction. Pilot data also suggest beneficial effects on symptoms and short-term outcomes. The risk of seizures may be minimized by excluding high-risk patients.
Collapse
Affiliation(s)
- Mara T Slawsky
- Tufts University School of Medicine, Baystate Medical Center, Division of Cardiology, Springfield, MA (MTS), USA
| | | |
Collapse
|
21
|
Auchampach JA, Kreckler LM, Wan TC, Maas JE, van der Hoeven D, Gizewski E, Narayanan J, Maas GE. Characterization of the A2B adenosine receptor from mouse, rabbit, and dog. J Pharmacol Exp Ther 2009; 329:2-13. [PMID: 19141710 DOI: 10.1124/jpet.108.148270] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have cloned and pharmacologically characterized the A(2B) adenosine receptor (AR) from the dog, rabbit, and mouse. The full coding regions of the dog and mouse A(2B)AR were obtained by reverse transcriptase-polymerase chain reaction, and the rabbit A(2B)AR cDNA was obtained by screening a rabbit brain cDNA library. It is noteworthy that an additional clone was isolated by library screening that was identical in sequence to the full-length rabbit A(2B)AR, with the exception of a 27-base pair deletion in the region encoding amino acids 103 to 111 (A(2B)AR(103-111)). This 9 amino acid deletion is located in the second intracellular loop at the only known splice junction of the A(2B)AR and seems to result from the use of an additional 5' donor site found in the rabbit and dog but not in the human, rat, or mouse sequences. [(3)H]3-Isobutyl-8-pyrrolidinoxanthine and 8-[4-[((4-cyano-[2,6-(3)H]-phenyl)carbamoylmethyl)oxy]phenyl]-1,3-di(n-propyl)xanthine ([(3)H]MRS 1754) bound with high affinity to membranes prepared from human embryonic kidney (HEK) 293 cells expressing mouse, rabbit, and dog A(2B)ARs. Competition binding studies performed with a panel of agonist (adenosine and 2-amino-3,5-dicyano-4-phenylpyridine analogs) and antagonist ligands identified similar potency orders for the A(2B)AR orthologs, although most xanthine antagonists displayed lower binding affinity for the dog A(2B)AR compared with A(2B)ARs from rabbit and mouse. No specific binding could be detected with membranes prepared from HEK 293 cells expressing the rabbit A(2B)AR(103-111) variant. Furthermore, the variant failed to stimulate adenylyl cyclase or calcium mobilization. We conclude that significant differences in antagonist pharmacology of the A(2B)AR exist between species and that some species express nonfunctional variants of the A(2B)AR due to "leaky" splicing.
Collapse
Affiliation(s)
- John A Auchampach
- Department of Pharmacology and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kiesman WF, Elzein E, Zablocki J. A1 adenosine receptor antagonists, agonists, and allosteric enhancers. Handb Exp Pharmacol 2009:25-58. [PMID: 19639278 DOI: 10.1007/978-3-540-89615-9_2] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Intense efforts of many pharmaceutical companies and academicians in the A(1) adenosine receptor (AR) field have led to the discovery of clinical candidates that are antagonists, agonists, and allosteric enhancers. The A(1)AR antagonists currently in clinical development are KW3902, BG9928, and SLV320. All three have high affinity for the human (h) A(1)AR subtype (hA(1) K (i) < 10 nM), > 200-fold selectivity over the hA(2A) subtype, and demonstrate renal protective effects in multiple animal models of disease and pharmacologic effects in human subjects. In the A(1)AR agonist area, clinical candidates have been discovered for the following conditions: atrial arrhythmias (tecadenoson, selodenoson and PJ-875); Type II diabetes and insulin sensitizing agents (GR79236, ARA, RPR-749, and CVT-3619); and angina (BAY 68-4986). The challenges associated with the development of any A(1)AR agonist are to obtain tissue-specific effects but avoid off-target tissue side effects and A(1)AR desensitization leading to tachyphylaxis. For the IV antiarrhythmic agents that act as ventricular rate control agents, a selective response can be accomplished by careful IV dosing paradigms. The treatment of type II diabetes using A(1)AR agonists in the clinic has met with limited success due to cardiovascular side effects and a well-defined desensitization of full agonists in human trials (GR79236, ARA, and RPR 749). However, new partial A(1)AR agonists are in development, including CVT-3619 hA(1) AR K(i) = 55nM, hA(2A:hA2B:hA(3))1,000:20, CV Therapeutics), which have the potential to provide enhanced insulin sensitivity without cardiovascular side effects and tachyphylaxis. The nonnucleosidic A(1)AR agonist BAY 68-4986 (capadenoson) represents a novel approach to angina wherein both animal studies and early human studies are promising. T-62 is an A(1)AR allosteric enhancer that is currently being evaluated in clinical trials as a potential treatment for neuropathic pain. The challenges associated with developing A(1)AR antagonists, agonists, or allosteric enhancers for therapeutic intervention are now well defined in humans. Significant progress has been made in identifying A(1)AR antagonists for the treatment of edema associated with congestive heart failure (CHF), A(1)AR agonists for the treatment of atrial arrhythmias, type II diabetes and angina, and A(1)AR allosteric enhancers for the treatment of neuropathic pain.
Collapse
|
23
|
Baraldi PG, Tabrizi MA, Gessi S, Borea PA. Adenosine Receptor Antagonists: Translating Medicinal Chemistry and Pharmacology into Clinical Utility. Chem Rev 2008; 108:238-63. [DOI: 10.1021/cr0682195] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Pier Giovanni Baraldi
- Departments of Pharmaceutical Sciences and Clinical and Experimental Medicine, Pharmacology Unit and Interdisciplinary Center for the Study of Inflammation, University of Ferrara, Italy
| | - Mojgan Aghazadeh Tabrizi
- Departments of Pharmaceutical Sciences and Clinical and Experimental Medicine, Pharmacology Unit and Interdisciplinary Center for the Study of Inflammation, University of Ferrara, Italy
| | - Stefania Gessi
- Departments of Pharmaceutical Sciences and Clinical and Experimental Medicine, Pharmacology Unit and Interdisciplinary Center for the Study of Inflammation, University of Ferrara, Italy
| | - Pier Andrea Borea
- Departments of Pharmaceutical Sciences and Clinical and Experimental Medicine, Pharmacology Unit and Interdisciplinary Center for the Study of Inflammation, University of Ferrara, Italy
| |
Collapse
|
24
|
González MP, Terán C, Teijeira M. Search for new antagonist ligands for adenosine receptors from QSAR point of view. How close are we? Med Res Rev 2008; 28:329-71. [PMID: 17668454 DOI: 10.1002/med.20108] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In view of the large libraries of nucleoside analogues that are now being handled in organic synthesis, the identification of drug biological activity is advisable prior to synthesis and this can be achieved by employing predictive biological property methods. In this sense, Quantitative Structure-Activity Relationships (QSAR) or docking approaches have emerged as promising tools. Although a large number of in silico approaches have been described in the literature for the prediction of different biological activities, the use of QSAR applications to develop adenosine receptor (AR) antagonists is not common as for the case of the antibiotics and anticancer compounds for instance. The intention of this review is to summarize the present knowledge concerning computational predictions of new molecules as adenosine receptor antagonists.
Collapse
|
25
|
Sharma BK, Sarbhai K, Singh P, Sharma S. Quantitative structure-activity relationship study on affinity profile of a series of 1,8-naphthyridine antagonists toward bovine adenosine receptors. J Enzyme Inhib Med Chem 2008; 23:437-43. [DOI: 10.1080/14756360701655073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- B. K. Sharma
- Department of Chemistry, S. K. Government College, Sikar, 332 001
| | - Kirti Sarbhai
- Department of Chemistry, S. K. Government College, Sikar, 332 001
| | - P. Singh
- Department of Chemistry, S. K. Government College, Sikar, 332 001
| | - Susheela Sharma
- Department of Engineering Chemistry, Sobhasaria Engineering College, Sikar, 332 021, INDIA
| |
Collapse
|
26
|
Kiesman WF, Zhao J, Conlon PR, Dowling JE, Petter RC, Lutterodt F, Jin X, Smits G, Fure M, Jayaraj A, Kim J, Sullivan G, Linden J. Potent and orally bioavailable 8-bicyclo[2.2.2]octylxanthines as adenosine A1 receptor antagonists. J Med Chem 2007; 49:7119-31. [PMID: 17125264 DOI: 10.1021/jm0605381] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the search for a selective adenosine A1 receptor antagonist with greater aqueous solubility than the compounds currently in clinical trials as diuretics, a series of 1,4-substituted 8-cyclohexyl and 8-bicyclo[2.2.2]octylxanthines were investigated. The binding affinities of a variety of cyclohexyl and bicyclo[2.2.2]octylxanthines for the rat and human adenosine A1, A2A, A2B, and A3 receptors are presented. Bicyclo[2.2.2]octylxanthine 16 exhibited good pharmaceutical properties and in vivo activity in a rat diuresis model (ED50=0.3 mg/kg po). Optimization of the bridgehead substituent led to propionic acid 29 (BG9928), which retained high potency (hA1, Ki=7 nM) and selectivity for the adenosine A1 receptor (915-fold versus adenosine A2A receptor; 12-fold versus adenosine A2B receptor) with improved oral efficacy in the rat diuresis model (ED50=0.01 mg/kg) as well as high oral bioavailability in rat, dog, and cynomolgus monkey.
Collapse
Affiliation(s)
- William F Kiesman
- Department of Chemistry, Biogen Idec, Inc., 14 Cambridge Center, Cambridge, Massachusetts 02142, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Weyler S, Fülle F, Diekmann M, Schumacher B, Hinz S, Klotz KN, Müller CE. Improving Potency, Selectivity, and Water Solubility of Adenosine A1 Receptor Antagonists: Xanthines Modified at Position 3 and Related Pyrimido[1,2,3-cd]purinediones. ChemMedChem 2006; 1:891-902. [PMID: 16902942 DOI: 10.1002/cmdc.200600066] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The structure-activity relationships of xanthine derivatives related to the adenosine A(1) receptor antagonists 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and 1,3-dipropyl-8-(3-noradamantyl)xanthine (KW3902) were investigated by focusing on variations of the 3-substituent. Aromatic residues were well tolerated by the A(1) receptor in that position. A moderate effect of stereochemistry was found for the 3-(1-phenylethyl)-substituted analogue of DPCPX (S>R) at A(1) and A(3) receptors, whereas the opposite stereoselectivity was observed at the A(2) receptor subtypes. A 3-hydroxypropyl substituent was found to be optimal for high A(1) affinity and selectivity. The most potent compound of the present series was 1-butyl-3-(3-hydroxypropyl)-8-(3-noradamantyl)xanthine (10 c), which exhibits a K(i) value of 0.124 nM at rat, and 0.7 nM at human adenosine A(1) receptors, combined with high selectivity (>>200-fold) versus the other receptor subtypes. The similarly potent 8-cyclopentyl-3-(3-hydroxypropyl)-1-propylxanthine was converted into a water-soluble phosphate prodrug, which may become a useful pharmacological tool for in vivo studies. 8-Alkyl-2-(3-noradamantyl)pyrimido[1,2,3-cd]purine-8,10-diones, which can be envisaged as xanthine analogues with a fixed 3-propyl substituent, were identified as a new class of potent, selective adenosine A(1) receptor antagonists. For example, compound 14 (8-butyl-substituted) exhibits a K(i) value of 13.8 nM at human A(1) receptors. A selection of the most potent compounds was investigated in [(35)S]GTPgammaS binding assays and showed inverse agonistic activity. Their efficacy was generally lower than that of the full inverse agonist DPCPX, and depended on subtle structural changes. Some of the new compounds belong to the most potent and selective A(1) antagonists described to date.
Collapse
Affiliation(s)
- Stefanie Weyler
- University of Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry Poppelsdorf, Kreuzbergweg 26, 53115 Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Moro S, Gao ZG, Jacobson KA, Spalluto G. Progress in the pursuit of therapeutic adenosine receptor antagonists. Med Res Rev 2006; 26:131-59. [PMID: 16380972 PMCID: PMC9194718 DOI: 10.1002/med.20048] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ever since the discovery of the hypotensive and bradycardiac effects of adenosine, adenosine receptors continue to represent promising drug targets. First, this is due to the fact that the receptors are expressed in a large variety of tissues. In particular, the actions of adenosine (or methylxanthine antagonists) in the central nervous system, in the circulation, on immune cells, and on other tissues can be beneficial in certain disorders. Second, there exists a large number of ligands, which have been generated by introducing several modifications in the structure of the lead compounds (adenosine and methylxanthine), some of them highly specific. Four adenosine receptor subtypes (A1, A2A, A2B, and A3) have been cloned and pharmacologically characterized, all of which are G protein-coupled receptors. Adenosine receptors can be distinguished according to their preferred mechanism of signal transduction: A1 and A3 receptors interact with pertussis toxin-sensitive G proteins of the Gi and Go family; the canonical signaling mechanism of the A2A and of the A2B receptors is stimulation of adenylyl cyclase via Gs proteins. In addition to the coupling to adenylyl cyclase, all four subtypes may positively couple to phospholipase C via different G protein subunits. The development of new ligands, in particular, potent and selective antagonists, for all subtypes of adenosine receptors has so far been directed by traditional medicinal chemistry. The availability of genetic information promises to facilitate understanding of the drug-receptor interaction leading to the rational design of a potentially therapeutically important class of drugs. Moreover, molecular modeling may further rationalize observed interactions between the receptors and their ligands. In this review, we will summarize the most relevant progress in developing new therapeutic adenosine receptor antagonists.
Collapse
Affiliation(s)
- Stefano Moro
- Molecular Modeling Section, Dipartimento di Scienze Farmaceutiche, Università di Padova, Via Marzolo 5, I-35131 Padova, Italy.
| | | | | | | |
Collapse
|
29
|
Kiesman WF, Zhao J, Conlon PR, Petter RC, Jin X, Smits G, Lutterodt F, Sullivan GW, Linden J. Norbornyllactone-substituted xanthines as adenosine A(1) receptor antagonists. Bioorg Med Chem 2006; 14:3654-61. [PMID: 16458010 DOI: 10.1016/j.bmc.2006.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 01/09/2006] [Accepted: 01/10/2006] [Indexed: 11/19/2022]
Abstract
During the search for second-generation adenosine A(1) receptor antagonist alternatives to the clinical candidate 8-(3-oxa-tricyclo[3.2.1.0(2,4)]oct-6-yl)-1,3-dipropyl-3,7-dihydro-purine-2,6-dione (BG9719), we developed a series of novel xanthines substituted with norbornyl-lactones that possessed high binding affinities for adenosine A(1) receptors and in vivo activity.
Collapse
Affiliation(s)
- William F Kiesman
- Department of Medicinal Chemistry, Biogen Idec, Inc., 14 Cambridge Center, Cambridge, MA 02142, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gao E, Kaplan JL, Victain MS, Dalsey WC, de Garavilla L. Adenosine A1 antagonism attenuates beta-adrenergic-resistant sudden hypoxic cardiac insufficiency. Acad Emerg Med 2005; 12:389-95. [PMID: 15860691 DOI: 10.1197/j.aem.2005.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVES In states such as hypoxia, shock, and cardiac arrest, compromised systemic oxygenation or perfusion appears to induce cardiac insufficiency that can be resistant to beta-adrenergic drugs. Elevated levels of adenosine may mediate such beta-adrenergic-resistant cardiac insufficiency via the adenosine A(1) receptor (A(1)AdoR). The objective of this study was to test the hypothesis that selective A(1)AdoR antagonism attenuates hypoxic cardiac insufficiency more efficaciously than beta(1)-adrenergic agonism or nonselective adenosine antagonism. METHODS Rats were paralyzed and ventilated to a pCO(2) level of 35-40 mm Hg. Ten minutes before hypoxia (inspired o(2) concentration = 5%), rats were treated intravenously with one of the following: 0.1 mg/kg BG-9719 (n = 9), 10 mg/kg NPC-205 (n = 10; BG-9719 and NPC-205 are selective A(1)AdoR antagonists, with durations of action of 30-60 minutes and 60-90 minutes, respectively), 10 mg/kg aminophylline (n = 12), 5 microg/kg/min dobutamine (n = 11), or control solutions. These drug doses maximized survival duration in dose-response studies. RESULTS Before hypoxia, cardiac work was increased more by aminophylline and dobutamine than by BG-9719. Mean (+/-SEM) duration of survival (in minutes) after hypoxia increased from <13 (control solutions) to 13.8 (+/-1.4) (dobutamine), 20.0 (+/-1.6) (aminophylline), 31.7 (+/-4.6) (BG-9719), and 40.5 (+/-7.5) (NPC-205) (p < 0.0001). Heart rate and dP/dt decreased rapidly after hypoxia, but decreases were attenuated with BG-9719 and NPC-205 compared with dobutamine (p < 0.05) and tended toward attenuation with aminophylline. CONCLUSIONS BG-9719 and NPC-205 improved survival duration, heart rate, and left ventricular contractility during hypoxia more efficaciously than dobutamine and possibly aminophylline. Selective A(1)AdoR antagonists warrant further study as alternatives to beta-adrenergic agonists in hypoxia, shock, and cardiac arrest, in which compromised systemic perfusion or oxygenation impairs cardiac output.
Collapse
Affiliation(s)
- Erhe Gao
- Merck Manuals, UN-D100, Merck & Co., Inc., 785 Jolly Road, Blue Bell, PA 19422, USA
| | | | | | | | | |
Collapse
|
31
|
Gao E, Kaplan JL, Victain MS, Dalsey WC, Garavilla L. Adenosine A 1Antagonism Attenuates β-adrenergic–resistant Sudden Hypoxic Cardiac Insufficiency. Acad Emerg Med 2005. [DOI: 10.1111/j.1553-2712.2005.tb01536.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Hutchinson SA, Baker SP, Linden J, Scammells PJ. New potent and selective A1 adenosine receptor agonists. Bioorg Med Chem 2004; 12:4877-84. [PMID: 15336267 DOI: 10.1016/j.bmc.2004.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 07/02/2004] [Accepted: 07/02/2004] [Indexed: 11/25/2022]
Abstract
Thiirane analogs of ENAdo have been synthesised and found to be extremely potent and selective A(1) adenosine receptor agonists.
Collapse
Affiliation(s)
- Sally A Hutchinson
- School of Biological and Chemical Sciences, Deakin University, Geelong, VIC 3217, Australia
| | | | | | | |
Collapse
|
33
|
Ferrarini PL, Betti L, Cavallini T, Giannaccini G, Lucacchini A, Manera C, Martinelli A, Ortore G, Saccomanni G, Tuccinardi T. Study on Affinity Profile toward Native Human and Bovine Adenosine Receptors of a Series of 1,8-Naphthyridine Derivatives. J Med Chem 2004; 47:3019-31. [PMID: 15163184 DOI: 10.1021/jm030977p] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new series of 1,8-naphthyridine derivatives (29-44 and 46-52) bearing various substituents in different positions on the heterocyclic nucleus were synthesized in order to analyze the effects produced on the affinity toward the bovine adenosine receptors. These derivatives represent an extension of our previous work on this class of compounds with high affinity toward A(1) adenosine receptors.(19) The results of radioligand binding assays indicate that a large number of the 1,8-naphthyridine derivatives proved to be A(1) selective, with a high affinity toward bovine adenosine receptors in the low nanomolar range, and one (29) in the subnanomolar range. Furthermore, the new series of 1,8-naphthyridine derivatives (29-44 and 46-52), together with the analogous derivatives 1-28 previously studied,(19) were tested to evaluate their affinity toward human cortical A(1) receptors and human striatal A(2A) receptors. The results indicate that all the 1,8-naphthyridine compounds generally possess a higher affinity toward the bovine A(1) receptor compared with the human A(1) receptor. As regards the affinity toward the A(2A) bovine receptor, only a few compounds possess a moderate affinity, which for some compounds remained approximately the same toward the A(2A) human receptor. A molecular modeling study of the docking of the 1,8-naphthyridine compounds with both the bovine and the human A(1) adenosine receptors was carried out with the aim of explaining the marked decrease in the affinity toward human A(1) adenosine receptors in comparison with bovine A(1) adenosine receptors. This study indicated that the structural differences, albeit small, of the active sites of the two receptors make differences in the dimensions of the site and this influenced the ability of the title compounds to interact with the two A(1) receptors.
Collapse
Affiliation(s)
- Pier Luigi Ferrarini
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Auchampach JA, Jin X, Moore J, Wan TC, Kreckler LM, Ge ZD, Narayanan J, Whalley E, Kiesman W, Ticho B, Smits G, Gross GJ. Comparison of three different A1 adenosine receptor antagonists on infarct size and multiple cycle ischemic preconditioning in anesthetized dogs. J Pharmacol Exp Ther 2003; 308:846-56. [PMID: 14634049 DOI: 10.1124/jpet.103.057943] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A(1) adenosine receptor (AR) antagonists are effective diuretic agents that may be useful for treating fluid retention disorders including congestive heart failure. However, antagonism of A(1)ARs is potentially a concern when using these agents in patients with ischemic heart disease. To address this concern, the present study was designed to compare the actions of the A(1)AR antagonists CPX (1,3-dipropyl-8-cyclopentylxanthine), BG 9719 (1,3-dipropyl-8-[2-(5,6-epoxynorbornyl)]xanthine), and BG 9928 (1,3-dipropyl-8-[1-(4-propionate)-bicyclo-[2,2,2]octyl]xanthine) on acute myocardial ischemia/reperfusion injury and ischemic preconditioning (IPC) in an in vivo dog model of infarction. Barbital-anesthetized dogs were subjected to 60 min of left anterior descending coronary artery occlusion followed by 3 h of reperfusion, after which infarct size was assessed by staining with triphenyltetrazolium chloride. IPC was elicited by four 5-min occlusion/5-min reperfusion cycles produced 10 min before the 60-min occlusion. Multiple-cycle IPC produced a robust reduction ( approximately 65%) in infarct size; this effect of IPC on infarct size was not abrogated in dogs pretreated with any of the three AR antagonists. Surprisingly, in the absence of IPC, pretreatment with CPX or BG 9928 before occlusion or immediately before reperfusion resulted in significant reductions ( approximately 40-50%) in myocardial infarct size. However, treatment with an equivalent dose of BG 9719 had no similar effect. We conclude that the A(1)AR antagonists BG 9719, BG 9928, and CPX do not exacerbate cardiac injury and do not interfere with IPC induced by multiple ischemia/reperfusion cycles. We discuss the possibility that the cardioprotective actions of CPX and BG 9928 may be related to antagonism of A(2B)ARs.
Collapse
Affiliation(s)
- John A Auchampach
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kiesman WF, Petter RC. Lewis-acid catalysis of the asymmetric Diels–Alder reaction of dimenthyl fumarate and cyclopentadiene. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0957-4166(02)00213-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Lucas DG, Hendrick JW, Sample JA, Mukherjee R, Escobar GP, Smits GJ, Crawford FA, Spinale FG. Cardiorenal effects of adenosine subtype 1 (A1) receptor inhibition in an experimental model of heart failure. J Am Coll Surg 2002; 194:603-9. [PMID: 12022600 DOI: 10.1016/s1072-7515(02)01136-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Elaboration of a number of bioactive substances, including adenosine, occurs in heart failure (HF). Adenosine, through the adenosine subtype 1 (A1) receptor, can reduce renal perfusion pressure and glomerular filtration rate and increase tubular sodium reabsorption, which can affect natriuresis and aquaresis. Accordingly, the present study examined the acute effects of selective A1 receptor blockade on hemodynamics and renal function in a model of HF. STUDY DESIGN HF was induced in adult pigs (n = 19) by chronic pacing (240 beats/min for 3 weeks). The pigs were then instrumented for hemodynamic and renal function measurements. After baseline measurements were taken, pigs received either A1 block [ 1 mg/kg BG9719 (1,3-dipropyl-8-[2(5,6-epoxynorbornyl)]xanthine; n = 9)] or infusion of vehicle (n = 10), and measurements were repeated at intervals for up to 2 hours. Normal controls (n = 7) were included for comparison. RESULTS Cardiac output remained unchanged between the A1 block and vehicle groups throughout the study. Pulmonary vascular resistance fell 38% from baseline at 10 minutes post-A1 block in the HF group (p < 0.05) with no change in the vehicle group. At 10 minutes post-A1 block, urine flow increased sixfold and sodium excretion increased over 10-fold (for both, p < 0.05) with no change in the vehicle group. At 10 minutes post-A1 block, creatinine clearance increased with no change in the vehicle group. At 10 minutes post-A1 block, plasma renin activity had increased over threefold (p <0.05), and it returned to baseline levels by 30 minutes post-A1 block. CONCLUSIONS The unique findings from this study were threefold. First, increased A1 receptor activation contributes to renal mediated fluid retention in HF. Second, selective A1 blockade can induce diuresis without hemodynamic compromise and with possible benefit to pulmonary resistance in a model of HF. A1 blockade transiently increased plasma renin activity with no change in hemodynamics. These unique results suggest that selective A1 blockade can be a useful adjunctive diuretic in the setting of HF.
Collapse
Affiliation(s)
- David G Lucas
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston 29425, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Hutchinson SA, Baker SP, Scammells PJ. New 2,N6-disubstituted adenosines: potent and selective A1 adenosine receptor agonists. Bioorg Med Chem 2002; 10:1115-22. [PMID: 11836122 DOI: 10.1016/s0968-0896(01)00384-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A number of adenosine analogues substituted in the 2- and N6-positions were synthesized and evaluated for affinity, functional potency and intrinsic activity at the A1 and A2A adenosine receptors (AR). Three classes of N6-substituents were tested; norbornen-2-yl (series 1), norborn-2-yl (series 2) and 5,6-epoxynorborn-2-yl (series 3). The halogens; fluoro, bromo, and iodo were evaluated as C-2 substituents. All compounds showed relatively high affinity (nanomolar) for the A1AR and high potency for inhibiting (-)isoproterenol-stimulated cAMP accumulation in hamster smooth muscle DDT1 MF-2 cells with the 2-fluoro derivatives from each series having the highest affinity. All of the derivatives showed the same intrinsic activity as CPA. At the A2AAR, all of the derivatives showed relatively low affinity and potency (micromolar) for stimulating cAMP accumulation in rat pheochromocytoma PC-12 cells. The intrinsic activity of the derivatives compared to CGS 21680 was dependent upon the halogen substituent in the C-2 position with most showing partial agonist activity. Of particular interest is 2-iodo-N6-(2S-endo-norborn-2-yl)adenosine (5e), which is over 100-fold selective for the A1AR, is a full agonist at this receptor subtype and has no detectable agonist activity at the A2AAR.
Collapse
Affiliation(s)
- Sally A Hutchinson
- Centre for Chiral & Molecular Technologies, Deakin University, VIC 3217, Geelong, Australia
| | | | | |
Collapse
|
38
|
Herr RJ, Vogt PF, Meckler H, Trova MP, Schow SR, Petter RC. Preparation of 8-substituted xanthine CVT-124 precursor by late stage pyrimidine ring closure. J Org Chem 2002; 67:188-93. [PMID: 11777458 DOI: 10.1021/jo015925r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To develop a novel route for the scaleable synthesis of the chiral xanthine CVT-124 (1, aka. BG9719), a method for the late stage pyrimidine ring closure of the nitrogen-protected endo 2-norbornenyl imidazole 3 was developed. The three-component coupling of benzylamine, 2-cyanoglycine ethyl ester (4), and methyl 5-norbornene-2-carboximidate hydrochloride (5) was demonstrated to achieve 3 in 23-46% isolated yields. The imidazole 3 was then elaborated to construct the N-benzyl xanthine 2 as a 1:1 mixture of exo and endo isomers, which were separable at this stage by chromatography. The nitrogen-protected endo xanthine 2 is a key intermediate in the synthesis of CVT-124.
Collapse
Affiliation(s)
- R Jason Herr
- Medicinal Chemistry Department, Albany Molecular Research, Inc., Albany, New York 12212-5098, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Lucas DG, Patterson T, Hendrick JW, Holder J, Sample JA, Joffs C, Davis J, Goldberg A, Mukherjee R, Smits GJ, Spinale FG. Effects of adenosine receptor subtype A1 on ventricular and renal function. J Cardiovasc Pharmacol 2001; 38:618-24. [PMID: 11588532 DOI: 10.1097/00005344-200110000-00014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The adenosine subtype 1 (A1) receptor, which may influence cardiac function and modulate renal function, may have particular relevance in congestive heart failure (CHF). However, the effects of A1 receptor inhibition in the setting of CHF are poorly defined. Systemic hemodynamics and indices of renal function were measured in pigs with pacing-induced CHF at 240 bpm for 3 weeks (n = 10) before and after A1 receptor blockade with 100 microg of BG9719 (1,3-dipropyl-8-[2-(5,6-epoxynorbornyl)]xanthene) or in CHF pigs after infusion of vehicle only (n = 10). Heart rate, mean aortic pressure, and left ventricular peak pressure increased following A1 blockade in the CHF group, consistent with an adenosine inhibitory effect. However, cardiac output and global measures of vascular resistance did not significantly change following A1 blockade. Urine output increased twofold and sodium clearance increased threefold following A1 blockade (p < 0.05). Creatinine clearance increased following A1 blockade (127 +/- 17 vs. 62 +/- 7 ml/min, p < 0.05). Selective A1 receptor blockade improved glomerular filtration rate and induced a natriuresis and diuresis in a model of CHF without adverse effects on cardiac function. These unique results suggest that renal A1 receptor activation may contribute to the reduced renal function associated with CHF.
Collapse
Affiliation(s)
- D G Lucas
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
van Tilburg EW, van der Klein PA, de Groote M, Beukers MW, IJzerman AP. Substituted 4-phenyl-2-(phenylcarboxamido)-1,3-thiazole derivatives as antagonists for the adenosine A(1) receptor. Bioorg Med Chem Lett 2001; 11:2017-9. [PMID: 11454470 DOI: 10.1016/s0960-894x(01)00356-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis and receptor binding of novel adenosine receptor antagonists is described. We found that non-xanthine 4-phenyl-2-(phenylcarboxamido)-1,3-thiazole derivatives may have high affinity and substantial selectivity for the adenosine A(1) receptor.
Collapse
Affiliation(s)
- E W van Tilburg
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, PO Box 9502, 2300 RA, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
41
|
Liang BT, Stewart D, Jacobson KA. Adenosine A1 and A3 receptors: Distinct cardioprotection. Drug Dev Res 2001. [DOI: 10.1002/ddr.1136] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
42
|
Pflueger A, Larson TS, Nath KA, King BF, Gross JM, Knox FG. Role of adenosine in contrast media-induced acute renal failure in diabetes mellitus. Mayo Clin Proc 2000; 75:1275-83. [PMID: 11126837 DOI: 10.4065/75.12.1275] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Increased release of renal adenosine and stimulation of renal adenosine receptors have been proposed to be major mechanisms in the development of contrast media-induced acute renal failure (CM-ARF). Patients with diabetes mellitus or preexisting renal disease who have reduced renal function have a markedly increased risk to develop CM-ARF. This increased risk to develop CM-ARF in patients with diabetes mellitus is linked to a higher sensitivity of the renal vasculature to adenosine, since experimental studies have shown increased adenosine-induced vasoconstriction in the kidneys of diabetic animals. Furthermore, recent evidence suggests that administration of adenosine receptor antagonists reduces the risk of development of CM-ARF in both diabetic and nondiabetic patients. The purpose of this review is to discuss the role of adenosine in the development of CM-ARF, particularly in the kidneys of diabetic patients, and to evaluate the therapeutic potential of adenosine receptor antagonists in the prevention of CM-ARF. Selective adenosine A1 receptor antagonists may provide a therapeutic tool to prevent CM-ARF in patients with diabetes mellitus and reduced renal function.
Collapse
Affiliation(s)
- A Pflueger
- Department of Physiology and Biophysics, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
43
|
Campbell RM, Cartwright C, Chen W, Chen Y, Duzic E, Fu JM, Loveland M, Manning R, McKibben B, Pleiman CM, Silverman L, Trueheart J, Webb DR, Wilkinson V, Witter DJ, Xie X, Castelhano AL. Selective A1-adenosine receptor antagonists identified using yeast Saccharomyces cerevisiae functional assays. Bioorg Med Chem Lett 1999; 9:2413-8. [PMID: 10476879 DOI: 10.1016/s0960-894x(99)00398-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Evaluation of a biased "library" of pyrrolo[2,3-d]pyrimidines using yeast-based functional assays expressing human A1- and A2a-adenosine receptors, led to the A1 selective antagonist 4b. A direct correlation between yeast functional activity and binding data was established. Practical compounds with polar residues at C-4 of the pyrrolopyrimidine system required H-bond donor functionality for high potency.
Collapse
Affiliation(s)
- R M Campbell
- Cadus Pharmaceutical Corporation, Tarrytown, NY 10591, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hutchinson SA, Baker SP, Scammells PJ. Adenosine receptor ligands with oxygenated N6-substituents. Bioorg Med Chem Lett 1999; 9:933-6. [PMID: 10230614 DOI: 10.1016/s0960-894x(99)00109-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A number of novel adenosine analogs bearing oxygenated substituents in the N6-position have been prepared and evaluated as A1 adenosine agonists. Improved conditions for the synthesis of N6-substituted adenosines and a new one pot procedure for the synthesis of 2-amino-7-oxabicyclo[2.2.1]hept-5-ene are also reported.
Collapse
Affiliation(s)
- S A Hutchinson
- School of Biological & Chemical Sciences, Deakin University, Geelong, Vic, Australia
| | | | | |
Collapse
|
45
|
Wilcox CS, Welch WJ, Schreiner GF, Belardinelli L. Natriuretic and diuretic actions of a highly selective adenosine A1 receptor antagonist. J Am Soc Nephrol 1999; 10:714-20. [PMID: 10203354 DOI: 10.1681/asn.v104714] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The natriuretic and diuretic action of a highly selective adenosine A1 receptor (A1AdoR) antagonist, 1,3-dipropyl-8-[2-(5,6-epoxy)norbornyl]xanthine (CVT-124), was investigated in anesthetized rats. CVT-124 (0.1 to 1 mg/kg) caused dose-dependent increases in urine flow and fractional and absolute sodium excretion of by six- to 10-fold and, at 0.1 mg/kg, increased the GFR (1.6+/-0.1 to 2.5+/-0.2 ml/min; P<0.01). There were no changes in BP or heart rate. CVT-124 reduced absolute proximal reabsorption (26+/-3 to 20+/-2 nl/min; P<0.05) despite unchanged proximally measured, single-nephron GFR (SNGFR) (42+/-5 to 44+/-4 nl/min; NS) and thereby decreased fractional proximal reabsorption (60+/-3 to 46+/-4%; P<0.05). Despite increasing distal tubular fluid flow rate (5.4+/-0.7 to 9.7+/-0.9 nl/min; P<0.001), it reduced the proximal-distal difference in SNGFR (before: 9.4+/-1.0 versus during CVT-124: 4.6+/-1.5 nl/min; P<0.01), suggesting that it had blunted the effects of the macula densa on SNGFR. Direct measurements of maximal tubuloglomerular feedback (TGF) responses were made from proximal stop flow pressure (PSF) during orthograde loop perfusion from the proximal tubule with artificial tubular fluid at 40 nl/min. TGF was blunted by intravenous CVT-124 (0.5 mg/kg; deltaPSF with vehicle: 8.3+/-0.6 versus CVT-124: 6.5+/-0.3 mm Hg; n = 9; P<0.01). In conclusion, A1AdoR blockade reduces proximal reabsorption and uncouples it from glomerular filtration. It increases distal delivery of fluid yet does not activate a macula densa-dependent fall in SNGFR because it blunts the TGF response. Natriuresis accompanied by blockade of proximal glomerulotubular balance and TGF characterizes a new class of diuretic drugs.
Collapse
Affiliation(s)
- C S Wilcox
- Division of Nephrology and Hypertension, Georgetown University Medical Center, Washington, DC 20007, USA.
| | | | | | | |
Collapse
|
46
|
Akahane A, Katayama H, Mitsunaga T, Kato T, Kinoshita T, Kita Y, Kusunoki T, Terai T, Yoshida K, Shiokawa Y. Discovery of 6-oxo-3-(2-phenylpyrazolo[1,5-a]pyridin-3-yl)-1(6H)- pyridazinebutanoic acid (FK 838): a novel non-xanthine adenosine A1 receptor antagonist with potent diuretic activity. J Med Chem 1999; 42:779-83. [PMID: 10072675 DOI: 10.1021/jm980671w] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- A Akahane
- Medicinal Chemistry Research Laboratories, Fujisawa Pharmaceutical Company, Ltd., 1-6, 2-chome, Kashima, Yodogawa-ku, Osaka 532-8514, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ceccarelli S, D'Alessandro A, Prinzivalli M, Zanarella S. Imidazo[1,2-a]quinoxalin-4-amines: A novel class of nonxanthine A1-adenosine receptor antagonists. Eur J Med Chem 1998. [DOI: 10.1016/s0223-5234(99)80019-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
48
|
Wolff AA, Skettino SL, Beckman E, Belardinelli L. Renal effects of BG9719, a specific A1 adenosine receptor antagonist, in congestive heart failure. Drug Dev Res 1998. [DOI: 10.1002/(sici)1098-2299(199811/12)45:3/4<166::aid-ddr12>3.0.co;2-p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
Molecular Biology and Pharmacology of Recombinant Adenosine Receptors. DEVELOPMENTS IN CARDIOVASCULAR MEDICINE 1998. [DOI: 10.1007/978-1-4615-5603-9_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
50
|
Adenosine. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1998. [DOI: 10.1016/s0065-7743(08)61076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|