1
|
Lee YS. Peptidomimetics and Their Applications for Opioid Peptide Drug Discovery. Biomolecules 2022; 12:biom12091241. [PMID: 36139079 PMCID: PMC9496382 DOI: 10.3390/biom12091241] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Despite various advantages, opioid peptides have been limited in their therapeutic uses due to the main drawbacks in metabolic stability, blood-brain barrier permeability, and bioavailability. Therefore, extensive studies have focused on overcoming the problems and optimizing the therapeutic potential. Currently, numerous peptide-based drugs are being marketed thanks to new synthetic strategies for optimizing metabolism and alternative routes of administration. This tutorial review briefly introduces the history and role of natural opioid peptides and highlights the key findings on their structure-activity relationships for the opioid receptors. It discusses details on opioid peptidomimetics applied to develop therapeutic candidates for the treatment of pain from the pharmacological and structural points of view. The main focus is the current status of various mimetic tools and the successful applications summarized in tables and figures.
Collapse
Affiliation(s)
- Yeon Sun Lee
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
2
|
Apostol CR, Hay M, Polt R. Glycopeptide drugs: A pharmacological dimension between "Small Molecules" and "Biologics". Peptides 2020; 131:170369. [PMID: 32673700 PMCID: PMC7448947 DOI: 10.1016/j.peptides.2020.170369] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/12/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022]
Abstract
Peptides are an important class of molecules with diverse biological activities. Many endogenous peptides, especially neuropeptides and peptide hormones, play critical roles in development and regulating homeostasis. Furthermore, as drug candidates their high receptor selectivity and potent binding leads to reduced off-target interactions and potential negative side effects. However, the therapeutic potential of peptides is severely hampered by their poor stability in vivo and low permeability across biological membranes. Several strategies have been successfully employed over the decades to address these concerns, and one of the most promising strategies is glycosylation. It has been demonstrated in numerous cases that glycosylation is an effective synthetic approach to improve the pharmacokinetic profiles and membrane permeability of peptides. The effects of glycosylation on peptide stability and peptide-membrane interactions in the context of blood-brain barrier penetration will be explored. Numerous examples of glycosylated analogues of endogenous peptides targeting class A and B G-protein coupled receptors (GPCRs) with an emphasis on O-linked glycopeptides will be reviewed. Notable examples of N-, S-, and C-linked glycopeptides will also be discussed. A small section is devoted to synthetic methods for the preparation of glycopeptides and requisite amino acid glycoside building blocks.
Collapse
Affiliation(s)
- Christopher R Apostol
- Dept. of Chemistry & Biochemistry, BIO5, The University of Arizona, Tucson, AZ 85721, USA.
| | - Meredith Hay
- Evelyn F. McKnight Brain Institute, Dept. of Physiology, The University of Arizona, Tucson, AZ 85724, USA
| | - Robin Polt
- Dept. of Chemistry & Biochemistry, BIO5, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
3
|
Novel glycosylated endomorphin-2 analog produces potent centrally-mediated antinociception in mice after peripheral administration. Bioorg Med Chem Lett 2013; 23:6673-6. [PMID: 24220171 DOI: 10.1016/j.bmcl.2013.10.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/19/2013] [Accepted: 10/22/2013] [Indexed: 11/20/2022]
Abstract
We report the synthesis and pharmacological characterization of a novel glycosylated analog of a potent and selective endogenous μ-opioid receptor (MOP) agonist, endomorphin-2 (Tyr-Pro-Phe-Phe-NH2, EM-2), obtained by the introduction in position 3 of the tyrosine residue possessing the glucose moiety attached to the phenolic function via a β-glycosidic bond. The improved blood-brain barrier permeability and enhanced antinociceptive effect of the novel glycosylated analog suggest that it may be a promising template for design of potent analgesics. Furthermore, the described methodology may be useful for increasing the bioavailability and delivery of opioid peptides to the CNS.
Collapse
|
4
|
|
5
|
Chen YS, Toth I, Danesh-Meyer HV, Green CR, Rupenthal ID. Cytotoxicity and vitreous stability of chemically modified connexin43 mimetic peptides for the treatment of optic neuropathy. J Pharm Sci 2013; 102:2322-31. [PMID: 23696181 DOI: 10.1002/jps.23617] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/09/2013] [Accepted: 04/29/2013] [Indexed: 11/07/2022]
Abstract
Optic neuropathy is associated with retinal ganglion cell (RGC) loss leading to optic nerve damage and visual impairment. Unregulated connexin (Cx) hemichannel opening plays a role in RGC loss. Thus, inhibition via Cx43-specific mimetic peptides (MP) may prevent further cell death. However, the highly hydrophilic character and poor stability of native peptides prevent their efficient delivery across biological membranes. The present study aimed to improve the stability of Cx43 MP by conjugation to C12-lipoamino acid (C12-Laa) or sugar groups. Unmodified and modified Cx43 MP were synthesized using solid-phase peptide synthesis. Their functionality was assessed by propidium iodide (PI) uptake into NT2 cells, a human testicular carcinoma progenitor cell line able to differentiate into astrocytes, whereas the stability in ocular vitreous was measured by reversed-phase high-performance liquid chromatography. PI uptake studies showed inhibition of hemichannel opening for unmodified and modified Cx43 MP. Stability measurements revealed improved stability of modified Cx43 MP, with two Laa groups increasing the peptide half-life in bovine vitreous more than twofold. Conjugation to C12 -Laa or sugar did not affect the functionality of Cx43 MP, but addition of two C12-Laa groups significantly improved peptide stability. Laa-modifications may therefore offer improved stability and retinal delivery of peptides in vivo.
Collapse
Affiliation(s)
- Ying-Shan Chen
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand
| | | | | | | | | |
Collapse
|
6
|
Swami R, Shahiwala A. Impact of physiochemical properties on pharmacokinetics of protein therapeutics. Eur J Drug Metab Pharmacokinet 2013; 38:231-9. [PMID: 23584976 DOI: 10.1007/s13318-013-0126-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 03/20/2013] [Indexed: 01/15/2023]
Abstract
Physicochemical properties, such as molecular weight, size, partition coefficient, acid dissociation constant and solubility have a great impact on pharmacokinetics of traditional small molecule drugs and substantially used in development of small drugs. However, predicting pharmacokinetic fate (absorption, distribution, metabolism and elimination) of protein therapeutics from their physicochemical parameters is extremely difficult due to the macromolecular nature of therapeutic proteins and peptides. Their structural complexity and immunogenicity are other contributing factors that determine their biological fate. Therefore, to develop generalized strategies concerning development of therapeutic proteins and peptides are highly challenging. However, reviewing the literature, authors found that physiochemical properties, such as molecular weight, charge and structural modification are having great impact on pharmacokinetics of protein therapeutics and an attempt is made to provide the major findings in this manuscript. This manuscript will serve to provide some bases for developing protein therapeutics with desired pharmacokinetic profile.
Collapse
Affiliation(s)
- Rajan Swami
- , House no. 1089, Sector 20 B, Chandigarh, 160020, India,
| | | |
Collapse
|
7
|
Novel and emerging strategies in drug delivery for overcoming the blood-brain barrier. Future Med Chem 2011; 1:1623-41. [PMID: 21425983 DOI: 10.4155/fmc.09.137] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Two decades of molecular research have revealed the presence of transporters and receptors expressed in the brain vascular endothelium that provide potential novel targets for the rational design of blood-brain barrier-penetrating drugs. In this review, we briefly introduce the reader to the molecular characteristics of the blood-brain barrier that make this one of the most important obstacles towards the development of efficacious CNS drugs. We highlight recent attempts to rationally target influx and bidirectional transport systems expressed on the brain endothelial cell and avoid the important obstacle presented in the form of efflux transporters. Many of these approaches are highly innovative and show promise for future human application. Some of these approaches, however, have revealed significant limitations and are critiqued in this review. Nonetheless, these combined efforts have left the field of CNS drug delivery better positioned for developing novel approaches towards the rational design of CNS-penetrating drugs.
Collapse
|
8
|
Malakoutikhah M, Teixidó M, Giralt E. Schleuservermittelter Transport von Wirkstoffen ins Gehirn. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201006565] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Malakoutikhah M, Teixidó M, Giralt E. Shuttle-Mediated Drug Delivery to the Brain. Angew Chem Int Ed Engl 2011; 50:7998-8014. [DOI: 10.1002/anie.201006565] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 01/17/2011] [Indexed: 12/12/2022]
|
10
|
Davis MP. Opioid receptor targeting ligands for pain management: a review and update. Expert Opin Drug Discov 2010; 5:1007-22. [DOI: 10.1517/17460441.2010.511473] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
Yoon SH, Fulton DB, Robyt JF. Enzymatic synthesis of l-DOPA α-glycosides by reaction with sucrose catalyzed by four different glucansucrases from four strains of Leuconostoc mesenteroides. Carbohydr Res 2010; 345:1730-5. [DOI: 10.1016/j.carres.2010.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 04/30/2010] [Accepted: 05/06/2010] [Indexed: 12/23/2022]
|
12
|
(18)F-Fluoroglucosylation of peptides, exemplified on cyclo(RGDfK). Eur J Nucl Med Mol Imaging 2009; 36:1469-74. [PMID: 19350236 DOI: 10.1007/s00259-009-1122-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 03/10/2009] [Indexed: 02/08/2023]
Abstract
PURPOSE Oxime formation between an aminooxy-functionalized peptide and an (18)F-labelled aldehyde has recently been introduced as a powerful method for the rapid one-step chemoselective synthesis of radiofluorinated peptides. MATERIALS AND METHODS Here, the potential of using routinely produced and thus readily available [(18)F]fluorodeoxyglucose ([(18)F]FDG) as the aldehydic prosthetic group was investigated using an aminooxyacetyl-conjugated cyclic RGD peptide (cyclo(RGDfK(Aoa-(Boc)) as a model peptide. RESULTS The use of [(18)F]FDG from routine production ([(18)F]FDGTUM) containing an excess of D: -glucose did not allow the radiosynthesis of [(18)F]FDG-RGD in activities >37 MBq in reasonable yield, rendering the direct use of clinical grade [(18)F]FDG for the routine clinical synthesis of (18)F-labelled peptides impossible. Using no-carrier-added (n.c.a.) [(18)F]FDG obtained via HPLC separation of [(18)F]FDGTUM from excess glucose, however, afforded [(18)F]FDG-RGD in yields of 56-93% (decay corrected) and activities up to 37 MBq. Suitable reaction conditions were 20 min at 120 degrees C and pH 2.5, and a peptide concentration of 5 mM. In a preliminary in vivo biodistribution study in M21 melanoma-bearing nude mice, [(18)F]FDG-RGD showed increased tumour accumulation compared to the "gold standard" [(18)F]galacto-RGD (2.18 vs 1.49 %iD/g, respectively, at 120 min after injection), but also slightly increased uptake in non-target organs, leading to comparable tumour/organ ratios for both compounds. CONCLUSION These data demonstrate that chemoselective (18)F-labelling of aminooxy-functionalized peptides using n.c.a. [(18)F]FDG represents a radiofluorination/glycosylation strategy that allows preparation of (18)F-labelled peptides in high yield with suitable pharmacokinetics. As soon as the necessary n.c.a. preparation of [(18)F]FDG prior to reaction with the Aoa-peptide can be implemented in a fully automated [(18)F]FDG-synthesis, [(18)F]fluoroglucosylation of peptides may represent a promising alternative to currently used chemoselective one-step (18)F-labelling protocols.
Collapse
|
13
|
Polt R, Dhanasekaran M, Keyari CM. Glycosylated neuropeptides: a new vista for neuropsychopharmacology? Med Res Rev 2006; 25:557-85. [PMID: 16075406 DOI: 10.1002/med.20039] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The application of endogenous neuropeptides (e.g., enkephalins) as analgesics has been retarded by their poor stability in vivo and by their inability to effectively penetrate the blood-brain barrier (BBB). Effective BBB transport of glycosylated enkephalins has been demonstrated in several labs now. Analgesia (antinociception) levels greater than morphine, and with reduced side effects have been observed for several glycopeptides related to enkephalin. Somewhat paradoxically, enhanced BBB transport across this lipophilic barrier is achieved by attaching water-soluble carbohydrate groups to the peptide moieties to produce biousian glycopeptides that can be either water-soluble or membrane bound. Transport is believed to rely on an endocytotic mechanism (transcytosis), and allows for systemic delivery and transport of the water-soluble glycopeptides. Much larger endorphin/dynorphin glycopeptide analogs bearing amphipathic helix address regions also have been shown to penetrate the BBB in mice. This holds forth the possibility of transporting much larger neuropeptides across the BBB, which may encompass a wide variety of receptors beyond the opioid receptors.
Collapse
Affiliation(s)
- Robin Polt
- The Carl S. Marvel Laboratories, Department of Chemistry, The University of Arizona, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
14
|
Witt KA, Davis TP. CNS drug delivery: opioid peptides and the blood-brain barrier. AAPS JOURNAL 2006; 8:E76-88. [PMID: 16584136 PMCID: PMC2751425 DOI: 10.1208/aapsj080109] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Peptides are key regulators in cellular and intercellular physiological responses and possess enormous promise for the treatment of pathological conditions. Opioid peptide activity within the central nervous system (CNS) is of particular interest for the treatment of pain owing to the elevated potency of peptides and the centrally mediated actions of pain processes. Despite this potential, peptides have seen limited use as clinically viable drugs for the treatment of pain. Reasons for the limited use are primarily based in the physiochemical and biochemical nature of peptides. Numerous approaches have been devised in an attempt to improve peptide drug delivery to the brain, with variable results. This review describes different approaches to peptide design/modification and provides examples of the value of these strategies to CNS delivery of peptide drugs. The various modes of modification of therapeutic peptides may be amalgamated, creating more efficacious "hybrid" peptides, with synergistic delivery to the CNS. The ongoing development of these strategies provides promise that peptide drugs may be useful for the treatment of pain and other neurologically-based disease states in the future.
Collapse
Affiliation(s)
- Ken A. Witt
- />Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University, Edwardsville, 200 University Park Drive, 62026 Edwardsville, IL. USA
| | - Thomas P. Davis
- />Department of Medical Pharmacology, College of Medicine, The University of Arizona, LSN 542, 1501 N. Campbell Avenue, P.O. Box 245050, 85724 Tucson, Arizona
| |
Collapse
|
15
|
Mizuma T. Drug delivery system based on transport characteristics of biological membranes Drug delivery system utilizing sugar transporter. ACTA ACUST UNITED AC 2006. [DOI: 10.2745/dds.21.126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Guo X, Geng M, Du G. Glucose Transporter 1, Distribution in the Brain and in Neural Disorders: Its Relationship With Transport of Neuroactive Drugs Through the Blood-Brain Barrier. Biochem Genet 2005; 43:175-87. [PMID: 15932065 DOI: 10.1007/s10528-005-1510-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Facilitative glucose transport is mediated by one or more of the members of the closely related glucose transporter (GLUT) family. Thirteen members of the GLUT family have been described thus far. GLUT1 is a widely expressed isoform that provides many cells with their basic glucose requirement. It is also the primary transporter across the blood-brain barrier. This review describes the distribution and expression of GLUT1 in brain in different pathophysiological conditions including Alzheimer's disease, epilepsy, ischemia, or traumatic brain injury. Recent investigations show that GLUT1 mediates the transport of some neuroactive drugs, such as glycosylated neuropeptides, low molecular weight heparin, and D-glucose derivatives, across the blood-brain barrier as a delivery system. By utilizing such highly specific transport mechanisms, it should be possible to establish strategies to regulate the entry of candidate drugs.
Collapse
Affiliation(s)
- Xiuli Guo
- Department of Pharmacology, Marine Drug and Food Institute, Ocean University of China, Qingdao 266003, China
| | | | | |
Collapse
|
17
|
Maschauer S, Pischetsrieder M, Kuwert T, Prante O. Utility of 1,3,4,6-tetra-O-acetyl-2-deoxy-2-[18F]fluoro-glucopyranoside for no-carrier-added18F-glycosylation of amino acids. J Labelled Comp Radiopharm 2005. [DOI: 10.1002/jlcr.963] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
18
|
Ro??i? M, Eklund R, Nordmark EL, Horvat ?, Widmalm G. Stereochemical Assignment of Diastereomeric Imidazolidinone-Ring-Containing Bicyclic Sugar-Peptide Adducts: NMR Spectroscopy and Molecular Calculations. European J Org Chem 2004. [DOI: 10.1002/ejoc.200400391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Jinsmaa Y, Miyazaki A, Fujita Y, Li T, Fujisawa Y, Shiotani K, Tsuda Y, Yokoi T, Ambo A, Sasaki Y, Bryant SD, Lazarus LH, Okada Y. Oral Bioavailability of a New Class of μ-Opioid Receptor Agonists Containing 3,6-Bis[Dmt-NH(CH2)n]-2(1H)-pyrazinone with Central-Mediated Analgesia. J Med Chem 2004; 47:2599-610. [PMID: 15115401 DOI: 10.1021/jm0304616] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The inability of opioid peptides to be transported through epithelial membranes in the gastrointestinal tract and pass the blood-brain barrier limits their effectiveness for oral application in an antinociceptive treatment regime. To overcome this limitation, we enhanced the hydrophobicity while maintaining the aqueous solubility properties in a class of opioid-mimetic substances by inclusion of two identical N-termini consisting of Dmt (2',6'-dimethyl-l-tyrosine) coupled to a pyrazinone ring platform by means of alkyl chains to yield the class of 3,6-bis[Dmt-NH-(CH(2))(n)]-2(1H)-pyrazinones. These compounds displayed high micro-opioid receptor affinity (K(i)micro = 0.042-0.115 nM) and selectivity (K(i)delta/K(i)micro = 204-307) and functional micro-opioid receptor agonism (guinea-pig ileum, IC(50) = 1.3-1.9 nM) with little or undetectable bioactivity toward delta-opioid receptors (mouse vas deferens) and produced analgesia in mice in a naloxone reversible manner when administered centrally (intracerebroventricular, i.c.v.) or systemically (subcutaneously and orally). Furthermore, the most potent compound, 3,6-bis(3'-Dmt-aminopropyl)-5-methyl-2(1H)-pyrazinone (7'), lacked functional delta-opioid receptor bioactivity and was 50-63-fold and 18-21-fold more active than morphine by icv administration as measured analgesia using tail-flick (spinal involvement) and hot-plate (supraspinal effect) tests, respectively; the compound ranged from 16 to 63% as potent upon systemic injection. These analgesic effects are many times greater than unmodified opioid peptides. The data open new possibilities for the rational design of potential opioid-mimetic drugs that pass through the epithelium of the gastrointestinal tract and the blood-brain barrier to target brain receptors.
Collapse
Affiliation(s)
- Yunden Jinsmaa
- Medicinal Chemistry Group, LCBRA, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Palian MM, Boguslavsky VI, O'Brien DF, Polt R. Glycopeptide-membrane interactions: glycosyl enkephalin analogues adopt turn conformations by NMR and CD in amphipathic media. J Am Chem Soc 2003; 125:5823-31. [PMID: 12733923 DOI: 10.1021/ja0268635] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Four enkephalin analogues (Tyr-D-Thr-Gly-Phe-Leu-Ser-CONH(2), 1, and the related O-linked glycopeptides bearing the monosaccharide beta-glucose, 2, the disaccharide beta-maltose, 3, and the trisaccharide beta-maltotriose, 4) were synthesized, purified by HPLC, and biophysical studies were conducted to examine their interactions with membrane model systems. Glycopeptide 2 has been previously reported to penetrate the blood-brain barrier (BBB), and produce potent analgesia superior to morphine in mice (J. Med. Chem.2000, 43, 2586-90 and J. Pharm. Exp. Ther. 2001, 299, 967-972). The parent peptide and its three glycopeptide derivatives were studied in aqueous solution and in the presence of micelles using 2-D NMR, CD, and molecular mechanics (Monte Carlo studies). Consistent with previous conformational studies on cyclic opioid agonist glycopeptides, it was seen that glycosylation did not significantly perturb the peptide backbone in aqueous solution, but all four compounds strongly associated with 5-30 mM SDS or DPC micelles, and underwent profound membrane-induced conformational changes. Interaction was also observed with POPC:POPE:cholesterol lipid vesicles (LUV) in equilibrium dialysis experiments. Although the peptide backbones of 1-4 possessed random coil structures in water, in the presence of the lipid phase they each formed a nearly identical pair of structures, all with a stable beta-turn motif at the C-terminus. Use of spin labels (Mn(2+) and 5-DOXYL-stearic acid) allowed for the determination of the position and orientation of the compounds relative to the surface of the micelle.
Collapse
Affiliation(s)
- Michael M Palian
- Carl S. Marvel Laboratories, Department of Chemistry, The University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|
21
|
Biondi L, Giannini E, Filira F, Gobbo M, Marastoni M, Negri L, Scolaro B, Tomatisc R, Rocchi R. Synthesis, conformation and biological activity of dermorphin and deltorphin I analogues containingN-alkylglycine in place of residues in position 1, 3, 5 and 6. J Pept Sci 2003; 9:638-48. [PMID: 14620129 DOI: 10.1002/psc.487] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Syntheses are described of new dermorphin and [D-Ala2]deltorphin I analogues in which the phenylalanine, the tyrosine or the valine residues have been substituted by the corresponding N-alkylglycine residues. Structural investigations by CD measurements in different solvents and preliminary pharmacological experiments were carried out on the resulting peptide-peptoid hybrids. The contribution from aromatic side chain residues is prominent in the CD spectra of dermorphin analogues and the assignment of a prevailing secondary structure could be questionable. In the CD spectra of deltorphin analogues the aromatic contribution is lower and the dichroic curves indicate the predominance of random conformer populations. The disappearance of the aromatic contribution in the [Ntyr1,D-Ala2]-deltorphin spectrum could be explained in terms of high conformational freedom of the N-terminal residue. The kinetics of degradation of the synthetic peptoids digestion by rat and human plasma enzymes were compared with that of [Leu5]-enkephalin. The binding to opioid receptors was tested on crude membrane preparations from CHO cells stably transfected with the mu- and delta-opioid receptors. The biological potency of peptoids was compared with that of dermorphin in GPI preparations and with that of deltorphin I in MVD preparations. All the substitutions produced a dramatic decrease in the affinity of the peptide-peptoid hybrids for both the mu- and delta-opioid receptors. Nval5 and/or Nval6 containing hybrids behaved as mu-opioid receptor agonists and elicit a dose-dependent analgesia (tail-flick test) when injected i.c.v. in rats.
Collapse
MESH Headings
- Analgesics, Opioid/chemical synthesis
- Analgesics, Opioid/chemistry
- Analgesics, Opioid/pharmacology
- Animals
- CHO Cells
- Cricetinae
- Cricetulus
- Guinea Pigs
- Male
- Mice
- Muscle Contraction/drug effects
- Muscle, Smooth/drug effects
- Muscle, Smooth/metabolism
- Muscle, Smooth/physiology
- N-substituted Glycines/chemistry
- Oligopeptides/chemical synthesis
- Oligopeptides/chemistry
- Oligopeptides/pharmacology
- Opioid Peptides
- Pain/drug therapy
- Protein Conformation
- Rats
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- Laura Biondi
- Department of Organic Chemistry, University of Padova, Institute of Biomolecular Chemistry, C.N.R., Section of Padova, via Marzolo, 1-35131 Padova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Balboni G, Guerrini R, Salvadori S, Bianchi C, Rizzi D, Bryant SD, Lazarus LH. Evaluation of the Dmt-Tic pharmacophore: conversion of a potent delta-opioid receptor antagonist into a potent delta agonist and ligands with mixed properties. J Med Chem 2002; 45:713-20. [PMID: 11806723 DOI: 10.1021/jm010449i] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Analogues of the 2',6'-dimethyl-L-tyrosine (Dmt)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic) pharmacophore were prepared to test the hypothesis that a "spacer" and a third aromatic center in opioid peptides are required to convert a delta-antagonist into ligands with delta-agonist or with mixed delta-antagonist/mu-agonist properties. Potent delta-agonists and bifunctional compounds with high delta- and mu-opioid receptor affinities were obtained by varying the spacer length [none, NH-CH(2), NH-CH(2)-CH(2), Gly-NH-CH(2)] and C-terminal aromatic nucleus [1H-benzimidazole-2-yl, phenyl (Ph) and benzyl groups]. C-terminal modification primarily affected mu-opioid receptor affinities, which increased maximally 1700-fold relative to the prototype delta-antagonist H-Dmt-Tic-NH(2) and differentially modified bioactivity. In the absence of a spacer (1), the analogue exhibited dual delta-agonism (pEC(50), 7.28) and delta-antagonism (pA(2), 7.90). H-Dmt-Tic-NH-CH(2)-1H-benzimidazole-2-yl (Bid) (2) became a highly potent delta-agonist (pEC(50), 9.90), slightly greater than deltorphin C (pEC(50), 9.56), with mu-agonism (pE(50), 7.57), while H-Dmt-Tic-Gly-NH-CH(2)-Bid (4) retained potent delta-antagonism (pA(2), 9.0) but with an order of magnitude less mu-agonism. Similarly, H-Dmt-Tic-Gly-NH-Ph (5) had nearly equivalent high delta-agonism (pEC(50), 8.52) and mu-agonism (pEC(50), 8.59), while H-Dmt-Tic-Gly-NH-CH(2)-Ph (6) whose spacer was longer by a single methylene group exhibited potent delta-antagonism (pA(2), 9.25) and very high mu-agonism (pEC(50), 8.57). These data confirm that the distance between the Dmt-Tic pharmacophore and a third aromatic nucleus is an important criterion in converting Dmt-Tic from a highly potent delta-antagonist into a potent delta-agonist or into ligands with mixed delta- and mu-opioid properties.
Collapse
Affiliation(s)
- Gianfranco Balboni
- Department of Toxicology, University of Cagliary, I09126 Cagliary, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Witt KA, Gillespie TJ, Huber JD, Egleton RD, Davis TP. Peptide drug modifications to enhance bioavailability and blood-brain barrier permeability. Peptides 2001; 22:2329-43. [PMID: 11786210 DOI: 10.1016/s0196-9781(01)00537-x] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptides have the potential to be potent pharmaceutical agents for the treatment of many central nervous system derived maladies. Unfortunately peptides are generally water-soluble compounds that will not enter the central nervous system, via passive diffusion, due to the existence of the blood-brain barrier. Peptides can also undergo metabolic deactivation by peptidases, thus further reducing their therapeutic benefits. In targeting peptides to the central nervous system consideration must be focused both on increasing bioavailability and enhancing brain uptake. To date multiple strategies have been examined with this focus. However, each strategy comes with its own complications and considerations. In this review we assess the strengths and weaknesses of many of the methods currently being examined to enhance peptide entry into the central nervous system.
Collapse
Affiliation(s)
- K A Witt
- Department of Pharmacology, The University of Arizona, College of Medicine, LSN 542, 1501 N. Campbell Avenue, Tucson, Arizona 85724, USA
| | | | | | | | | |
Collapse
|
24
|
Mitchell SA, Pratt MR, Hruby VJ, Polt R. Solid-phase synthesis of O-linked glycopeptide analogues of enkephalin. J Org Chem 2001; 66:2327-42. [PMID: 11281773 DOI: 10.1021/jo005712m] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of 18 N-alpha-FMOC-amino acid glycosides for solid-phase glycopeptide assembly is reported. The glycosides were synthesized either from the corresponding O'Donnell Schiff bases or from N-alpha-FMOC-amino protected serine or threonine and the appropriate glycosyl bromide using Hanessian's modification of the Koenigs-Knorr reaction. Reaction rates of D-glycosyl bromides (e.g., acetobromoglucose) with the L- and D-forms of serine and threonine are distinctly different and can be rationalized in terms of the steric interactions within the two types of diastereomeric transition states for the D/L and D/D reactant pairs. The N-alpha-FMOC-protected glycosides [monosaccharides Xyl, Glc, Gal, Man, GlcNAc, and GalNAc; disaccharides Gal-beta(1-4)-Glc (lactose), Glc-beta(1-4)-Glc (cellobiose), and Gal-alpha(1-6)-Glc (melibiose)] were incorporated into 22 enkephalin glycopeptide analogues. These peptide opiates bearing the pharmacophore H-Tyr-c[DCys-Gly-Phe-DCys]- were designed to probe the significance of the glycoside moiety and the carbohydrate-peptide linkage region in blood-brain barrier (BBB) transport, opiate receptor binding, and analgesia.
Collapse
Affiliation(s)
- S A Mitchell
- Department of Chemistry, The University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|
25
|
Abstract
Despite the omnipresence of protein glycosylation in nature, little is known about how the attachment of carbohydrates affects peptide and protein activity. One reason is the lack of a straightforward method to access biologically relevant glycopeptides and glycoproteins. The isolation of homogeneous glycopeptides from natural sources is complicated by the heterogeneity of naturally occuring glycoproteins. It is chemical and chemoenzymatic synthesis that is meeting the challenge to solve this availability problem, thus playing a key role for the advancement of glycobiology. The current art of glycopeptide synthesis, albeit far from being routine, has reached a level of maturity that allows for the access to homogeneous and pure material for biological and medicinal research. Even the ambitious goal of the total synthesis of an entire glycoprotein is within reach. It is demonstrated that with the help of synthetic glycopeptides the effects of glycosylation on protein structure and function can be studied in molecular detail. For example, in immunology, synthetic (tumour-specific) glycopeptides can be used as immunogens to elicit a tumour-cell-specific immune response. Again, synthetic glycopeptides are an invaluable tool to determine the fine specificity of the immune response that can be mediated by both carbohydrate-specific B and T cells. Furthermore, selected examples for the use of synthetic glycopeptides as ligands of carbohydrate-binding proteins and as enzyme substrates or inhibitors are presented.
Collapse
Affiliation(s)
- O Seitz
- Department of Chemical Biology Max-Planck-Institut für molekulare Physiologie Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| |
Collapse
|
26
|
Balboni G, Marastoni M, Merighi S, Andrea Borea P, Tomatis R. Synthesis and activity of 3-pyridylamine ligands at central nicotinic receptors. Eur J Med Chem 2000; 35:979-88. [PMID: 11137226 DOI: 10.1016/s0223-5234(00)01177-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of thirty 2-(3-pyridylaminomethyl)azetidine, pyrrolidine and piperidine analogues as nicotinic acetylcholine receptor (nAChR) ligands was explored. In general, pyrrolidinyl and many azetidinyl compounds were found to bind with enhanced affinity relative to the piperidines. In the three series, the parallel structural changes (stereochemistry, N-methylation and/or chloro substitution) do not consistently lead to parallel shifts in affinity. The more active compounds (K(i) affinity values ranging from 8.9 to 90 nM) were about as analgesic as nicotine in a tail-flick assay in mice after subcutaneous injections.
Collapse
Affiliation(s)
- G Balboni
- Dipartimento di Tossicologia dell'Università di Cagliari, Ferrara, Italy
| | | | | | | | | |
Collapse
|
27
|
Egleton RD, Mitchell SA, Huber JD, Janders J, Stropova D, Polt R, Yamamura HI, Hruby VJ, Davis TP. Improved bioavailability to the brain of glycosylated Met-enkephalin analogs. Brain Res 2000; 881:37-46. [PMID: 11033091 DOI: 10.1016/s0006-8993(00)02794-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The blood-brain barrier prevents the entry of many potentially therapeutic peptide drugs to the brain. Glycosylation has shown potential as a methodology for improving delivery to the CNS. Previous studies have shown improved bioavailability and improved centrally mediated analgesia of glycosylated opioids. In this study we investigate the effect of glycosylation on the cyclic opioid peptide [D-Cys(2,5),Ser(6),Gly(7)] enkephalin. The peptide was glycosylated on the Ser(6) via an O-linkage with various sugar moieties and alignments. The peptides were then investigated for receptor binding, physiochemical attributes, in situ brain uptake in female Sprague-Dawley rats and antinociception in male ICR mice. Glycosylation resulted in a slight decrease in affinity to the delta-opioid receptor, and mixed effect on binding to the mu-opioid receptor. There was a significant decrease in lipophilicity resulting from glycosylation and a slight reduction in binding to bovine serum albumin. In situ perfusion showed that brain uptake was improved by up to 98% for several of the glycosylated peptides, and the nociceptive profiles of the peptides, in general, followed the rank order of peptide entry to the brain with up to a 39-fold increase in A.U.C.
Collapse
Affiliation(s)
- R D Egleton
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 N. Campbell Ave., P.O. Box 245050, Tucson, AZ 85724, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bilsky EJ, Egleton RD, Mitchell SA, Palian MM, Davis P, Huber JD, Jones H, Yamamura HI, Janders J, Davis TP, Porreca F, Hruby VJ, Polt R. Enkephalin glycopeptide analogues produce analgesia with reduced dependence liability. J Med Chem 2000; 43:2586-90. [PMID: 10891118 DOI: 10.1021/jm000077y] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Endogenous peptides (e.g. enkephalins) control many aspects of brain function, cognition, and perception. The use of these neuroactive peptides in diverse studies has led to an increased understanding of brain function. Unfortunately, the use of brain-derived peptides as pharmaceutical agents to alter brain chemistry in vivo has lagged because peptides do not readily penetrate the blood-brain barrier. Attachment of simple sugars to enkephalins increases their penetration of the blood-brain barrier and allows the resulting glycopeptide analogues to function effectively as drugs. The delta-selective glycosylated Leu-enkephalin amide 2, H(2)N-Tyr-D-Thr-Gly-Phe-Leu-Ser(beta-D-Glc)-CONH(2), produces analgesic effects similar to morphine, even when administered peripherally, yet possesses reduced dependence liability as indicated by naloxone-precipitated withdrawal studies. Similar glycopeptide-based pharmaceuticals hold forth the promise of pain relief with improved side-effect profiles over currently available opioid analgesics.
Collapse
MESH Headings
- Analgesics, Opioid/adverse effects
- Analgesics, Opioid/chemical synthesis
- Analgesics, Opioid/chemistry
- Analgesics, Opioid/pharmacology
- Animals
- Blood-Brain Barrier/drug effects
- Enkephalin, Leucine/analogs & derivatives
- Enkephalin, Leucine/chemical synthesis
- Enkephalin, Leucine/chemistry
- Enkephalin, Leucine/metabolism
- Enkephalin, Leucine/pharmacology
- Female
- Glycopeptides/adverse effects
- Glycopeptides/chemical synthesis
- Glycopeptides/chemistry
- Glycopeptides/pharmacology
- Injections, Intraventricular
- Pain Measurement
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/metabolism
- Substance Withdrawal Syndrome/etiology
Collapse
Affiliation(s)
- E J Bilsky
- Department of Biological Sciences, University of Northern Colorado, Greeley 80639, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kriss CT, Lou BS, Szabò LZ, Mitchell SA, Hruby VJ, Polt R. Enkephalin-based drug design: conformational analysis of O-linked glycopeptides by NMR and molecular modeling. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0957-4166(99)00544-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Negri L, Lattanzi R, Tabacco F, Orrù L, Severini C, Scolaro B, Rocchi R. Dermorphin and deltorphin glycosylated analogues: synthesis and antinociceptive activity after systemic administration. J Med Chem 1999; 42:400-4. [PMID: 9986710 DOI: 10.1021/jm9810699] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present paper we describe the synthesis of some dermorphin and deltorphin analogues beta-O- and alpha-C-glycosylated on the C-terminal amino acid residue and report their opioid receptor affinity and selectivity as well as their analgesic potency after subcutaneous injection in mice.
Collapse
Affiliation(s)
- L Negri
- Institute of Medical Pharmacology, University "La Sapienza" of Rome, P.le Aldo Moro, 5, I-00185 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The deltorphins are a class of highly selective delta-opioid heptapeptides from the skin of the Amazonian frogs Phyllomedusa sauvagei and P. bicolor. The first of these fascinating peptides came to light in 1987 by cloning of the cDNA of from frog skins, while the other members of this family were identified either by cDNA or isolation of the peptides. The distinctive feature of deltorphins is the presence of a naturally occurring D-enantiomer at the second position in their common N-terminal sequence, Tyr-D-Xaa-Phe, comparable to dermorphin, which is the prototype of a group of mu-selective opioids from the same source. The D-amino acid and the anionic residues, either Glu or Asp, as well as their unique amino acid compositions are responsible for the remarkable biostability, high delta-receptor affinity, bioactivity and peptide conformation. This review summarizes a decade of research from many laboratories that defined which residues and substituents in the deltorphins interact with the delta-receptor and characterized pharmacological and physiological activities in vitro and in vivo. It begins with a historical description of the topic and presents general schema for the synthesis of peptide analogues of deltorphins A, B and C as a means to document the methods employed in producing a myriad of analogues. Structure activity studies of the peptides and their pharmacological activities in vitro are detailed in abundantly tabulated data. A brief compendium of the current level of knowledge of the delta-receptor assists the reader to appreciate the rationale for the design of these analogues. Discussion of the conformation of these peptides addresses how structure leads to further hypotheses regarding ligand receptor interaction. The review ends with a broad discussion of the potential applications of these peptides in clinical and therapeutic settings.
Collapse
Affiliation(s)
- L H Lazarus
- Peptide Neurochemistry, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|