1
|
Nutter M, Stone H, Shipman M, Roesner S. Stereoselective synthesis of ( R)- and ( S)-1,2-diazetidine-3-carboxylic acid derivatives for peptidomimetics. Org Biomol Chem 2024; 22:2974-2977. [PMID: 38533707 DOI: 10.1039/d4ob00278d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The stereoselective synthesis of both enantiomers of N-protected 1,2-diazetidine-3-carboxylic acid (aAze) from homochiral glycidol is described. Orthogonal protection of this novel cyclic α-hydrazino acid allows for selective functionalisation at either Nγ or Nδ. This novel peptidomimetic building block was incorporated into the pseudotripeptides Gly-γaAze-Ala and Gly-δaAze-Ala.
Collapse
Affiliation(s)
- Matthew Nutter
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Henry Stone
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Michael Shipman
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Stefan Roesner
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| |
Collapse
|
2
|
El-Hawary SS, Hassan MHA, Hudhud AO, Al-Karmalawy AA, Mustafa M, Hamed EAE, Abdelmohsen UR, Mohammed R. LC-HRMS Profiling and Cytotoxic Potential of Actinomycetes Associated with the Red Sea Soft Coral Sarcophyton glaucum: In vitro and In silico Studies. Chem Biodivers 2024; 21:e202301617. [PMID: 38193652 DOI: 10.1002/cbdv.202301617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
In the current study, the actinomycetes associated with the red sea-derived soft coral Sarcophyton glaucum were investigated in terms of biological and chemical diversity. Four different media, M1, ISP2, Marine Agar (MA), and Actinomycete isolation agar (AIA) were used for the isolation of three strains of actinomycetes that were identified as Streptomyces sp. UR 25, Micromonospora sp. UR32 and Saccharomonospora sp. UR 19. LC-HRMS analysis was used to investigate the chemical diversity of the isolated actinobacteria. The LC-HRMS data were statistically processed using MetaboAnalyst 5.0 viz to differentiate the extract groups and determine the optimal growth culturing conditions. Multivariate data statistical analysis revealed that the Micromonospora sp. extract cultured on (MA) medium is the most distinctive extract in terms of chemical composition. While, the Streptomyces sp. UR 25 extracts are differ significantly from Micromonospora sp. UR32 and Saccharomonospora sp. UR 19. Biological investigation using in vitro cytotoxic assay for actinobacteria extracts revealed the prominent potentiality of the Streptomyces sp. UR 25 cultured on oligotrophic medium against human hepatoma (HepG2), human breast adenocarcinoma (MCF-7) and human colon adenocarcinoma (CACO2) cell lines (IC50 =3.3, 4.2 and 6.8 μg/mL, respectively). SwissTarget Prediction speculated that among the identified compounds, 16-deethyl, indanomycin (8) could have reasonable affinity on HDM2 active site. In this respect, molecular docking study was performed for compound (8) to reveal a substantial affinity on HDM2 active site. In addition, molecular dynamics simulations were carried out at 200 ns for the most active compound (8) compared to the co-crystallized inhibitor DIZ giving deeper information regarding their thermodynamic and dynamic properties as well.
Collapse
Affiliation(s)
- Seham S El-Hawary
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11511, Egypt
| | - Marwa H A Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ahmed O Hudhud
- Department of Pharmacognosy, Faculty of Pharmacy, Merit University, Sohag, 82511, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt
| | - Muhamad Mustafa
- IBMM, CNRS, ENSCM, Université de Montpellier, Montpellier, 34095, France
- Department of Medicinal Chemistry, Faculty of Pharmacy, Deraya University, Minia, 61111, Egypt
| | - Elsayed A E Hamed
- National institute of oceanography and Fisheries, Hurghada-Red Sea (NIOF), 84511, Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia, 61111, Egypt
| | - Rabab Mohammed
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
3
|
Shin D, Byun WS, Kang S, Kang I, Bae ES, An JS, Im JH, Park J, Kim E, Ko K, Hwang S, Lee H, Kwon Y, Ko YJ, Hong S, Nam SJ, Kim SB, Fenical W, Yoon YJ, Cho JC, Lee SK, Oh DC. Targeted and Logical Discovery of Piperazic Acid-Bearing Natural Products Based on Genomic and Spectroscopic Signatures. J Am Chem Soc 2023; 145:19676-19690. [PMID: 37642383 DOI: 10.1021/jacs.3c04699] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
A targeted and logical discovery method was devised for natural products containing piperazic acid (Piz), which is biosynthesized from ornithine by l-ornithine N-hydroxylase (KtzI) and N-N bond formation enzyme (KtzT). Genomic signature-based screening of a bacterial DNA library (2020 strains) using polymerase chain reaction (PCR) primers targeting ktzT identified 62 strains (3.1%). The PCR amplicons of KtzT-encoding genes were phylogenetically analyzed to classify the 23 clades into two monophyletic groups, I and II. Cultivating hit strains in media supplemented with 15NH4Cl and applying 1H-15N heteronuclear multiple bond correlation (HMBC) along with 1H-15N heteronuclear single quantum coherence (HSQC) and 1H-15N HSQC-total correlation spectroscopy (HSQC-TOCSY) NMR experiments detected the spectroscopic signatures of Piz and modified Piz. Chemical investigation of the hit strains prioritized by genomic and spectroscopic signatures led to the identification of a new azinothricin congener, polyoxyperuin B seco acid (1), previously reported chloptosin (2) in group I, depsidomycin D (3) incorporating two dehydropiperazic acids (Dpz), and lenziamides A and B (4 and 5), structurally novel 31-membered cyclic decapeptides in group II. By consolidating the phylogenetic and chemical analyses, clade-structure relationships were elucidated for 19 of the 23 clades. Lenziamide A (4) inhibited STAT3 activation and induced G2/M cell cycle arrest, apoptotic cell death, and tumor growth suppression in human colorectal cancer cells. Moreover, lenziamide A (4) resensitized 5-fluorouracil (5-FU) activity in both in vitro cell cultures and the in vivo 5-FU-resistant tumor xenograft mouse model. This work demonstrates that the genomic and spectroscopic signature-based searches provide an efficient and general strategy for new bioactive natural products containing specific structural motifs.
Collapse
Affiliation(s)
- Daniel Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Woong Sub Byun
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangwook Kang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ilnam Kang
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Eun Seo Bae
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Joon Soo An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Hyeon Im
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiyoon Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Eunji Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Keebeom Ko
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sunghoon Hwang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Honghui Lee
- Natural Products Research Institute and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yun Kwon
- Research Institute of Pharmaceutical Science, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yoon-Joo Ko
- Laboratory of Nuclear Magnetic Resonance, National Center for Inter-University Research Facilities (NCIRF), Seoul National University, Seoul 08826, Republic of Korea
| | - Suckchang Hong
- Natural Products Research Institute and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seung Bum Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Yeo Joon Yoon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- MolGenBio Co., Ltd., Seoul 08826, Republic of Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
4
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
5
|
Zhao S, Xia Y, Liu H, Cui T, Fu P, Zhu W. A Cyclohexapeptide and Its Rare Glycosides from Marine Sponge-Derived Streptomyces sp. OUCMDZ-4539. Org Lett 2022; 24:6750-6754. [PMID: 36073973 DOI: 10.1021/acs.orglett.2c02520] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pyridapeptide A (1), a cyclohexapeptide containing hexahydropyridazine-3-carboxylic acid (HPDA), 5-hydroxytetrahydropyridazine-3-carboxylic acid (γ-OH-TPDA), and (2S,3R,4E,6E)-2-amino-3-hydroxy-8-methylnona-4,6-dienoic acid residues, and its four glycopeptides, pyridapeptides B-E (2-5, respectively), were isolated from the fermentation broth of the marine sponge-derived Streptomyces sp. OUCMDZ-4539. Their structures were determined on the basis of spectroscopic analysis and chemical methods. Pyridapeptides B-E have one or more 2,3,6-trideoxyhexose sugar units glycosylated at the γ-OH-TPDA residue. The biosynthetic pathways were proposed on the basis of gene cluster analysis. Compounds 4 and 5, containing four sugar groups, displayed significant antiproliferative activity against five human cancer cell lines (PC9, MKN45, HepG2, HCT-116, and K562).
Collapse
Affiliation(s)
- Shuige Zhao
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yuwei Xia
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Haishan Liu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Tongxu Cui
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Peng Fu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
6
|
Bahrami Y, Bouk S, Kakaei E, Taheri M. Natural Products from Actinobacteria as a Potential Source of New Therapies Against Colorectal Cancer: A Review. Front Pharmacol 2022; 13:929161. [PMID: 35899111 PMCID: PMC9310018 DOI: 10.3389/fphar.2022.929161] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a common, and deadly disease. Despite the improved knowledge on CRC heterogeneity and advances in the medical sciences, there is still an urgent need to cope with the challenges and side effects of common treatments for the disease. Natural products (NPs) have always been of interest for the development of new medicines. Actinobacteria are known to be prolific producers of a wide range of bioactive NPs, and scientific evidence highlights their important protective role against CRC. This review is a holistic picture on actinobacter-derived cytotoxic compounds against CRC that provides a good perspective for drug development and design in near future. This review also describes the chemical structure of 232 NPs presenting anti-CRC activity with the being majority of quinones, lactones, alkaloids, peptides, and glycosides. The study reveals that most of these NPs are derived from marine actinobacteria followed by terrestrial and endophytic actinobacteria, respectively. They are predominantly produced by Streptomyces, Micromonospors, Saliniospors and Actinomadura, respectively, in which Streptomyces, as the predominant contributor generating over 76% of compounds exclusively. Besides it provides a valuable snapshot of the chemical structure-activity relationship of compounds, highlighting the presence or absence of some specific atoms and chemical units in the structure of compounds can greatly influence their biological activities. To the best of our knowledge, this is the first comprehensive review on natural actinobacterial compounds affecting different types of CRC. Our study reveals that the high diversity of actinobacterial strains and their NPs derivatives, described here provides a new perspective and direction for the production of new anti-CRC drugs and paves the way to innovation for drugs discovery in the future. The knowledge obtain from this review can help us to understand the pivotal application of actinobacteria in future drugs development.
Collapse
Affiliation(s)
- Yadollah Bahrami
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Pharmaceutical Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Medical Biotechnology, School of Medicine, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- *Correspondence: Yadollah Bahrami, ; Mohammad Taheri,
| | - Sasan Bouk
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Kakaei
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Yadollah Bahrami, ; Mohammad Taheri,
| |
Collapse
|
7
|
Tian HZ, Wu SF, Lin GQ, Sun XW. Asymmetric synthesis of pyrrolo[2,3–b]indole scaffolds by organocatalytic [3 + 2] dearomative annulation. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Qiu Z, Wu Y, Lan K, Wang S, Yu H, Wang Y, Wang C, Cao S. Cytotoxic compounds from marine actinomycetes: Sources, Structures and Bioactivity. ACTA MATERIA MEDICA 2022; 1:445-475. [PMID: 36588746 PMCID: PMC9802659 DOI: 10.15212/amm-2022-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Marine actinomycetes produce a substantial number of natural products with cytotoxic activity. The strains of actinomycetes were isolated from different sources like fishes, coral, sponges, seaweeds, mangroves, sediments etc. These cytotoxic compounds can be categorized briefly into four classes: polyketides, non-ribosomal peptides and hybrids, isoprenoids and hybrids, and others, among which majority are polyketides (146). Twenty two out of the 254 compounds showed potent cytotoxicity with IC50 values at ng/mL or nM level. This review highlights the sources, structures and antitumor activity of 254 natural products isolated from marine actinomycetes, which were new when they were reported from 1989 to 2020.
Collapse
Affiliation(s)
- Ziyan Qiu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Yinshuang Wu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Kunyan Lan
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Shiyi Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Huilin Yu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Yufei Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Cong Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China,Correspondence: (C.W.); (S.C.)
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, 200 W. Kawili St., Hilo, HI 96720, USA,Correspondence: (C.W.); (S.C.)
| |
Collapse
|
9
|
Tian HZ, Tang QG, Lin GQ, Sun XW. Asymmetric synthesis of chiral 1,2-oxazinane and hexahydropyridazin spirocyclic scaffolds by organocatalytic [4 + 2] cycloaddition. RSC Adv 2022; 12:15713-15717. [PMID: 35685709 PMCID: PMC9128346 DOI: 10.1039/d2ra02759c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/16/2022] [Indexed: 11/21/2022] Open
Abstract
A novel approach to synthesize chiral 1,2-oxazinane spirocyclic scaffolds by organocatalytic [4 + 2] cycloaddition reaction between methyleneindolinones and γ-aminooxy-α,β-unsaturated ester has been disclosed. Furthermore, a hydrazide 1,4-synthon is designed and synthesized to construct chiral hexahydropyridazin spirocyclic scaffolds with methyleneindolinones via [4 + 2] cycloaddition reaction. Both reactions give corresponding products in good to excellent yield, excellent diastereoselectivity and good enantioselectivity. Chiral 1,2-oxazinane spiro-oxindole and chiral hexahydropyridazin spiro-oxindole skeletons are made through asymmetric organocatalytic reactions. Corresponding products were produced in good to excellent yield, excellent diastereoselectivity and good enantioselectivity.![]()
Collapse
Affiliation(s)
- Heng-Zhi Tian
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Qing-Gang Tang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Guo-Qiang Lin
- Department of Chemistry, Fudan University, Shanghai 200433, China
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xing-Wen Sun
- Department of Chemistry, Fudan University, Shanghai 200433, China
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
10
|
Del Valle JR, Gerrein TA, Elbatrawi YM. Diastereoselective Synthesis of (3R,5R)-γ-Hydroxypiperazic Acid. Synlett 2021. [DOI: 10.1055/s-0040-1719824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractWe report an asymmetric synthesis of the (3R,5R)-γ-hydroxypiperazic acid (γ-OHPiz) residue encountered in several bioactive nonribosomal peptides. Our strategy relies on a diastereoselective enolate hydroxylation reaction and electrophilic N-amination to provide the acyclic γ-OHPiz precursor. This orthogonally protected α-hydrazino acid intermediate is amenable to late-stage diazinane ring formation following incorporation into a peptide chain. We determined the N-terminal amide rotamer propensity of the γ-OHPiz residue and showed that the γ-OH substituent enhances trans-amide bias relative to piperazic acid.
Collapse
|
11
|
Liu Y, Peng X, She R, Zhou X, Peng Y. Catalytic Asymmetric (3 + 3) Cycloaddition of Oxyallyl Zwitterions with α-Diazomethylphosphonates. Org Lett 2021; 23:7295-7300. [PMID: 34494440 DOI: 10.1021/acs.orglett.1c02809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The unique structure of oxyallyls represents a significant challenge for their catalytic asymmetric applications. Herein, an unprecedented chiral imidodiphosphoric acid-catalytic enantioselective (3 + 3) cycloaddition between oxyallyl zwitterions generated in situ from α-haloketones and α-diazomethylphosphonates was developed. Pharmaceutically interesting chiral pyridazine-4(1H)-ones were obtained in up to 98% yields with excellent stereoselectivities (up to 99% ee, > 99:1 dr).
Collapse
Affiliation(s)
- Yan Liu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xian Peng
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Rui She
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xin Zhou
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yungui Peng
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
12
|
Bioactive Secondary Metabolites from Marine Streptomyces griseorubens f8: Isolation, Identification and Biological Activity Assay. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9090978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Marine actinomycetes are a potential source of a wide variety of bioactive natural products. Herein, four cyclic dipeptides, namely, cyclo(L-Val-L-Pro) (compound 1), cyclo(L-Pro-L-Leu) (compound 2), cyclo(L-Pro-L-Tyr) (compound 3) and cyclo(L-Pro-L-Phe) (compound 5), and an N-acetyltyramine (compound 4) were first isolated and identified as products of the marine Streptomyces griseorubens f8. Compounds 3 and 5 exhibit antibacterial activity against Staphylococcus aureus, Klebsiella aerogenes and Proteus vulgaris. The minimum inhibitory concentrations (MICs) against Staphylococcus aureus, Klebsiella aerogenes and Proteus vulgaris are 160 µg/mL, 100 µg/mL, 120 µg/mL for the compound 3 and 180 µg/mL, 130 µg/mL 150 µg/mL for the compound 5, respectively. In addition, compounds 1, 2, 3 and 5 was first found to have the ability to inhibit the invasion and migration of A549 cells (lung cancer cells), which exhibited the potentiality for these compounds to be used as novel anticancer drugs. This study provides a novel production strain for compounds 1, 2, 3 and 5, and four potential promising anticancer agents.
Collapse
|
13
|
Stonik VA, Makarieva TN, Shubina LK. Antibiotics from Marine Bacteria. BIOCHEMISTRY (MOSCOW) 2021; 85:1362-1373. [PMID: 33280579 DOI: 10.1134/s0006297920110073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This review discusses main directions and results of the studies on antibiotics produced by bacteria living in the marine environment. In recent years many obligate marine species and strains were studied, diverse metabolites were isolated, and their chemical structures were elucidated. Among them here were natural compounds toxic against tumor cells, pathogenic bacteria, viruses, and malaria plasmodial species; these compounds often had no analogues among the natural products of terrestrial origin. Some isolated compounds form a basis of active ingredients in medicinal preparations used in clinic practice, while others are under different stages of preclinical or clinical studies. Much attention has been paid in recent years to producers of marine-derived antibiotics isolated from the deep-sea habitats, from the surface of marine invertebrates and algae, as well as from symbiotic microorganisms.
Collapse
Affiliation(s)
- V A Stonik
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences (PIBOC), Vladivostok, 690022, Russia.
| | - T N Makarieva
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences (PIBOC), Vladivostok, 690022, Russia
| | - L K Shubina
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences (PIBOC), Vladivostok, 690022, Russia
| |
Collapse
|
14
|
Wang C, Du W, Lu H, Lan J, Liang K, Cao S. A Review: Halogenated Compounds from Marine Actinomycetes. Molecules 2021; 26:2754. [PMID: 34067123 PMCID: PMC8125187 DOI: 10.3390/molecules26092754] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 11/17/2022] Open
Abstract
Marine actinomycetes, Streptomyces species, produce a variety of halogenated compounds with diverse structures and a range of biological activities owing to their unique metabolic pathways. These halogenated compounds could be classified as polyketides, alkaloids (nitrogen-containing compounds) and terpenoids. Halogenated compounds from marine actinomycetes possess important biological properties such as antibacterial and anticancer activities. This review reports the sources, chemical structures and biological activities of 127 new halogenated compounds originated mainly from Streptomyces reported from 1992 to 2020.
Collapse
Affiliation(s)
- Cong Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China; (W.D.); (H.L.); (J.L.); (K.L.)
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo, HI 96720, USA
| | - Weisheng Du
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China; (W.D.); (H.L.); (J.L.); (K.L.)
| | - Huanyun Lu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China; (W.D.); (H.L.); (J.L.); (K.L.)
| | - Jianzhou Lan
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China; (W.D.); (H.L.); (J.L.); (K.L.)
| | - Kailin Liang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China; (W.D.); (H.L.); (J.L.); (K.L.)
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo, HI 96720, USA
| |
Collapse
|
15
|
Zhang JN, Xia YX, Zhang HJ. Natural Cyclopeptides as Anticancer Agents in the Last 20 Years. Int J Mol Sci 2021; 22:3973. [PMID: 33921480 PMCID: PMC8068844 DOI: 10.3390/ijms22083973] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/24/2022] Open
Abstract
Cyclopeptides or cyclic peptides are polypeptides formed by ring closing of terminal amino acids. A large number of natural cyclopeptides have been reported to be highly effective against different cancer cells, some of which are renowned for their clinical uses. Compared to linear peptides, cyclopeptides have absolute advantages of structural rigidity, biochemical stability, binding affinity as well as membrane permeability, which contribute greatly to their anticancer potency. Therefore, the discovery and development of natural cyclopeptides as anticancer agents remains attractive to academic researchers and pharmaceutical companies. Herein, we provide an overview of anticancer cyclopeptides that were discovered in the past 20 years. The present review mainly focuses on the anticancer efficacies, mechanisms of action and chemical structures of cyclopeptides with natural origins. Additionally, studies of the structure-activity relationship, total synthetic strategies as well as bioactivities of natural cyclopeptides are also included in this article. In conclusion, due to their characteristic structural features, natural cyclopeptides have great potential to be developed as anticancer agents. Indeed, they can also serve as excellent scaffolds for the synthesis of novel derivatives for combating cancerous pathologies.
Collapse
Affiliation(s)
| | | | - Hong-Jie Zhang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China; (J.-N.Z.); (Y.-X.X.)
| |
Collapse
|
16
|
Girija A, Vijayanathan M, Sreekumar S, Basheer J, Menon TG, Krishnankutty RE, Soniya EV. Harnessing the natural pool of polyketide and non-ribosomal peptide family: A route map towards novel drug development. Curr Mol Pharmacol 2021; 15:265-291. [PMID: 33745440 DOI: 10.2174/1874467214666210319145816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/10/2020] [Accepted: 12/31/2020] [Indexed: 11/22/2022]
Abstract
Emergence of communicable and non-communicable diseases possess health challenge to millions of people worldwide and is a major threat to the economic and social development in the coming century. The occurrence of recent pandemic, SARS-CoV-2 caused by lethal severe acute respiratory syndrome coronavirus 2 is one such example. Rapid research and development of drugs for the treatment and management of these diseases has been an incredibly challenging task for the pharmaceutical industry. Although, substantial focus has been made in the discovery of therapeutic compounds from natural sources having significant medicinal potential, their synthesis has shown a slow progress. Hence, the discovery of new targets by the application of the latest biotechnological and synthetic biology approaches is very much the need of the hour. Polyketides (PKs) and non-ribosomal peptides (NRPs) found in bacteria, fungi and plants are a large diverse family of natural products synthesized by two classes of enzymes: polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS). These enzymes possess immense biomedical potential due to their simple architecture, catalytic capacity, as well as diversity. With the advent of latest in-silico and in-vitro strategies, these enzymes and their related metabolic pathways, if targeted, can contribute highly towards the biosynthesis of an array of potentially natural drug leads that have antagonist effects on biopolymers associated with various human diseases. In the face of the rising threat from the multidrug-resistant pathogens, this will further open new avenues for the discovery of novel and improved drugs by combining the natural and the synthetic approaches. This review discusses the relevance of polyketides and non-ribosomal peptides and the improvement strategies for the development of their derivatives and scaffolds, and how they will be beneficial to the future bioprospecting and drug discovery.
Collapse
Affiliation(s)
- Aiswarya Girija
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.,Institute of Biological Environmental Rural Sciences (IBERS), Aberystwyth University, United Kingdom
| | - Mallika Vijayanathan
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.,Biology Centre - Institute of Plant Molecular Biology, Czech Academy of Sciences, České Budějovice, 370 05, Czech Republic
| | - Sweda Sreekumar
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.,Research Centre, University of Kerala, India
| | - Jasim Basheer
- School of Biosciences, Mahatma Gandhi University, PD Hills, Kottayam, Kerala, India.,Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacky University, Olomouc, Czech Republic
| | - Tara G Menon
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| | | | - Eppurathu Vasudevan Soniya
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| |
Collapse
|
17
|
Antiangiogenic molecules from marine actinomycetes and the importance of using zebrafish model in cancer research. Heliyon 2020; 6:e05662. [PMID: 33319107 PMCID: PMC7725737 DOI: 10.1016/j.heliyon.2020.e05662] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/11/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
Blood vessel sprouting from pre-existing vessels or angiogenesis plays a significant role in tumour progression. Development of novel biomolecules from marine natural sources has a promising role in drug discovery specifically in the area of antiangiogenic chemotherapeutics. Symbiotic actinomycetes from marine origin proved to be potent and valuable sources of antiangiogenic compounds. Zebrafish represent a well-established model for small molecular screening and employed to study tumour angiogenesis over the last decade. Use of zebrafish has increased in the laboratory due to its various advantages like rapid embryo development, optically transparent embryos, large clutch size of embryos and most importantly high genetic conservation comparable to humans. Zebrafish also shares similar physiopathology of tumour angiogenesis with humans and with these advantages, zebrafish has become a popular model in the past decade to study on angiogenesis related disorders like diabetic retinopathy and cancer. This review focuses on the importance of antiangiogenic compounds from marine actinomycetes and utility of zebrafish in cancer angiogenesis research.
Collapse
|
18
|
Baindara P, Mandal SM. Bacteria and bacterial anticancer agents as a promising alternative for cancer therapeutics. Biochimie 2020; 177:164-189. [PMID: 32827604 DOI: 10.1016/j.biochi.2020.07.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/04/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
Abstract
Cancer is the leading cause of deaths worldwide, though significant advances have occurred in its diagnosis and treatment. The development of resistance against chemotherapeutic agents, their side effects, and non-specific toxicity urge to screen for the novel anticancer agent. Hence, the development of novel anticancer agents with a new mechanism of action has become a major scientific challenge. Bacteria and bacterially produced bioactive compounds have recently emerged as a promising alternative for cancer therapeutics. Bacterial anticancer agents such as antibiotics, bacteriocins, non-ribosomal peptides, polyketides, toxins, etc. These are adopted different mechanisms of actions such as apoptosis, necrosis, reduced angiogenesis, inhibition of translation and splicing, and obstructing essential signaling pathways to kill cancer cells. Also, live tumor-targeting bacteria provided a unique therapeutic alternative for cancer treatment. This review summarizes the anticancer properties and mechanism of actions of the anticancer agents of bacterial origin and antitumor bacteria along with their possible future applications in cancer therapeutics.
Collapse
Affiliation(s)
- Piyush Baindara
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, 65212, USA.
| | - Santi M Mandal
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India.
| |
Collapse
|
19
|
Mügge C, Heine T, Baraibar AG, van Berkel WJH, Paul CE, Tischler D. Flavin-dependent N-hydroxylating enzymes: distribution and application. Appl Microbiol Biotechnol 2020; 104:6481-6499. [PMID: 32504128 PMCID: PMC7347517 DOI: 10.1007/s00253-020-10705-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/18/2020] [Accepted: 05/24/2020] [Indexed: 02/06/2023]
Abstract
Amino groups derived from naturally abundant amino acids or (di)amines can be used as "shuttles" in nature for oxygen transfer to provide intermediates or products comprising N-O functional groups such as N-hydroxy, oxazine, isoxazolidine, nitro, nitrone, oxime, C-, S-, or N-nitroso, and azoxy units. To this end, molecular oxygen is activated by flavin, heme, or metal cofactor-containing enzymes and transferred to initially obtain N-hydroxy compounds, which can be further functionalized. In this review, we focus on flavin-dependent N-hydroxylating enzymes, which play a major role in the production of secondary metabolites, such as siderophores or antimicrobial agents. Flavoprotein monooxygenases of higher organisms (among others, in humans) can interact with nitrogen-bearing secondary metabolites or are relevant with respect to detoxification metabolism and are thus of importance to understand potential medical applications. Many enzymes that catalyze N-hydroxylation reactions have specific substrate scopes and others are rather relaxed. The subsequent conversion towards various N-O or N-N comprising molecules is also described. Overall, flavin-dependent N-hydroxylating enzymes can accept amines, diamines, amino acids, amino sugars, and amino aromatic compounds and thus provide access to versatile families of compounds containing the N-O motif. Natural roles as well as synthetic applications are highlighted. Key points • N-O and N-N comprising natural and (semi)synthetic products are highlighted. • Flavin-based NMOs with respect to mechanism, structure, and phylogeny are reviewed. • Applications in natural product formation and synthetic approaches are provided. Graphical abstract .
Collapse
Affiliation(s)
- Carolin Mügge
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Thomas Heine
- Environmental Microbiology, Faculty of Chemistry and Physics, TU Bergakademie Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany
| | - Alvaro Gomez Baraibar
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany
- Rottendorf Pharma GmbH, Ostenfelder Str. 51-61, 59320, Ennigerloh, Germany
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Caroline E Paul
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, HZ 2629, Delft, The Netherlands
| | - Dirk Tischler
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany.
| |
Collapse
|
20
|
Varrella S, Tangherlini M, Corinaldesi C. Deep Hypersaline Anoxic Basins as Untapped Reservoir of Polyextremophilic Prokaryotes of Biotechnological Interest. Mar Drugs 2020; 18:md18020091. [PMID: 32019162 PMCID: PMC7074082 DOI: 10.3390/md18020091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/18/2022] Open
Abstract
Deep-sea hypersaline anoxic basins (DHABs) are considered to be among the most extreme ecosystems on our planet, allowing only the life of polyextremophilic organisms. DHABs’ prokaryotes exhibit extraordinary metabolic capabilities, representing a hot topic for microbiologists and biotechnologists. These are a source of enzymes and new secondary metabolites with valuable applications in different biotechnological fields. Here, we review the current knowledge on prokaryotic diversity in DHABs, highlighting the biotechnological applications of identified taxa and isolated species. The discovery of new species and molecules from these ecosystems is expanding our understanding of life limits and is expected to have a strong impact on biotechnological applications.
Collapse
Affiliation(s)
- Stefano Varrella
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, 60131 Ancona, Italy;
| | | | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, 60131 Ancona, Italy;
- Correspondence:
| |
Collapse
|
21
|
Bekiesch P, Oberhofer M, Sykora C, Urban E, Zotchev SB. Piperazic acid containing peptides produced by an endophytic Streptomyces sp. isolated from the medicinal plant Atropa belladonna. Nat Prod Res 2019; 35:1090-1096. [PMID: 31303055 DOI: 10.1080/14786419.2019.1639174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The culture broth of endophytic Streptomyces sp. AB100, isolated from the shoots of medicinal plant Atropa belladonna (L.) was investigated for the presence of antibacterial compounds. After initial testing followed by bioactivity-guided fractionation, six new piperazic acid (PA)-containing congeners of two known peptides, JBIR-39 and JBIR-40, were identified by HR-MS/MS and NMR analyses. Only the dehydroxylated hexapeptidic derivatives with unusual incorporation of four PA moieties exhibited weak antibacterial activity against Gram-positive test organism Bacillus subtilis. A 16S rDNA-based phylogenetic tree of known Streptomyces spp. producing PA-containing hexapeptides isolated from different habitats and endophyte Streptomyces AB100 showed considerable diversity, suggesting that these metabolites may play an important environmental role beyond their antibacterial activity.
Collapse
Affiliation(s)
- Paulina Bekiesch
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | | | - Christina Sykora
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Ernst Urban
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Sergey B Zotchev
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Vicente Dos Reis G, Abraham WR, Grigoletto DF, de Campos JB, Marcon J, da Silva JA, Quecine MC, de Azevedo JL, Ferreira AG, de Lira SP. Gloeosporiocide, a new antifungal cyclic peptide from Streptomyces morookaense AM25 isolated from the Amazon bulk soil. FEMS Microbiol Lett 2019; 366:5544763. [PMID: 31390020 DOI: 10.1093/femsle/fnz175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/06/2019] [Indexed: 11/14/2022] Open
Abstract
Actinobacteria are known by their ability to produce several antimicrobial compounds of biotechnological interest. Thus, in this study, we isolated and identified by partial 16S RNA sequencing ∼100 actinobacteria isolates from guarana (Paullinia cupana) bulk soil. Besides, we isolated from the actinobacteria Streptomyces morookaense AM25 a novel cyclic peptide, named gloeosporiocide, molecular formula C44H48N11O7S3 (calculated 938.2901), and characterized by the presence of cyclized cysteins to form three thiazols. The novel compound had activity against the plant pathogen Colletotrichum gloeosporioides, assayed by the paper disk diffusion method (42.7% inhibition, 0.1 mg disk-1) and by the microdilution assay (1.25 g L-1). Our results reveal the potential of the actinobacteria from the Amazon rhizospheric soils as biocontrol agents as well as producers of new compounds with antifungal activity. Thus, this work constitutes a step forward in the development of the biotechnology of actinobacteria in the production of compounds of agronomic interest.
Collapse
Affiliation(s)
- Gislâine Vicente Dos Reis
- College of Agriculture 'Luiz de Queiroz', Department of Exact Sciences, University of São Paulo, 13418-900 Piracicaba, SP, Brazil
| | - Wolf-Rainer Abraham
- Chemical Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, DEU
| | - Diana Fortkamp Grigoletto
- College of Agriculture 'Luiz de Queiroz', Department of Exact Sciences, University of São Paulo, 13418-900 Piracicaba, SP, Brazil.,Chemical Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, DEU
| | - Jessica Bueno de Campos
- College of Agriculture 'Luiz de Queiroz', Department of Genetics, University of São Paulo, 13418-900 Piracicaba, SP, Brazil
| | - Joelma Marcon
- College of Agriculture 'Luiz de Queiroz', Department of Genetics, University of São Paulo, 13418-900 Piracicaba, SP, Brazil
| | - Jose Antonio da Silva
- College of Agriculture 'Luiz de Queiroz', Department of Genetics, University of São Paulo, 13418-900 Piracicaba, SP, Brazil
| | - Maria Carolina Quecine
- College of Agriculture 'Luiz de Queiroz', Department of Genetics, University of São Paulo, 13418-900 Piracicaba, SP, Brazil
| | - João Lúcio de Azevedo
- College of Agriculture 'Luiz de Queiroz', Department of Genetics, University of São Paulo, 13418-900 Piracicaba, SP, Brazil
| | | | - Simone Possedente de Lira
- College of Agriculture 'Luiz de Queiroz', Department of Exact Sciences, University of São Paulo, 13418-900 Piracicaba, SP, Brazil
| |
Collapse
|
23
|
Kasanah N, Triyanto T. Bioactivities of Halometabolites from Marine Actinobacteria. Biomolecules 2019; 9:E225. [PMID: 31212626 PMCID: PMC6627970 DOI: 10.3390/biom9060225] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/16/2022] Open
Abstract
Natural halogenated compounds (halometabolites) are produced mainly by marine organisms, including marine Actinobacteria. Many commercially important compounds for pharmaceuticals contain halogen, and the halogen is responsible for the physical and chemical properties as well as bioactivities and toxicities. In the exploration of marine environment that is supported by advanced structure elucidation, varied panel bioassays and high-throughput screening have accelerated number of halometabolites isolated from marine Actinobacteria to date. The metabolites exhibited unique structures and promising bioactivities. This review focuses on the chemodiversity and bioactivities of marine halometabolites from marine Actinobacteria reported in the last 15 years (2003-2018).
Collapse
Affiliation(s)
- Noer Kasanah
- Integrated Laboratory, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
- Department of Fisheries, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Triyanto Triyanto
- Integrated Laboratory, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
- Department of Fisheries, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| |
Collapse
|
24
|
Yamamoto K, Ishimaru S, Oyama T, Tanigawa S, Kuriyama M, Onomura O. Enantioselective Synthesis of α-Substituted Serine Derivatives via Cu-Catalyzed Oxidative Desymmetrization of 2-Amino-1,3-diols. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.8b00407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kosuke Yamamoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Shota Ishimaru
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Tatsuya Oyama
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Satoko Tanigawa
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Masami Kuriyama
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Osamu Onomura
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
25
|
Tan LTH, Chan KG, Pusparajah P, Yin WF, Khan TM, Lee LH, Goh BH. Mangrove derived Streptomyces sp. MUM265 as a potential source of antioxidant and anticolon-cancer agents. BMC Microbiol 2019; 19:38. [PMID: 30760201 PMCID: PMC6375222 DOI: 10.1186/s12866-019-1409-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 01/31/2019] [Indexed: 01/11/2023] Open
Abstract
Background Colon cancer is the third most commonly diagnosed cancer worldwide, with a commensurately high mortality rate. The search for novel antioxidants and specific anticancer agents which may inhibit, delay or reverse the development of colon cancer is thus an area of great interest; Streptomyces bacteria have been demonstrated to be a source of such agents. Results The extract from Streptomyces sp. MUM265— a strain which was isolated and identified from Kuala Selangor mangrove forest, Selangor, Malaysia— was analyzed and found to exhibit antioxidant properties as demonstrated via metal-chelating ability as well as superoxide anion, DPPH and ABTS radical scavenging activities. This study also showed that MUM265 extract demonstrated cytotoxicity against colon cancer cells as evidenced by the reduced cell viability of Caco-2 cell line. Treatment with MUM265 extract induced depolarization of mitochondrial membrane potential and accumulation of subG1 cells in cell cycle analysis, suggesting that MUM265 exerted apoptosis-inducing effects on Caco-2 cells. Conclusion These findings indicate that mangrove derived Streptomyces sp. MUM265 represents a valuable bioresource of bioactive compounds for the future development of chemopreventive agents, with particular promise suggested for treatment of colon cancer. Electronic supplementary material The online version of this article (10.1186/s12866-019-1409-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Loh Teng-Hern Tan
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.,Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.,Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Kok-Gan Chan
- International Genome Centre, Jiangsu University, Zhenjiang, China. .,Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia.
| | - Priyia Pusparajah
- Medical Health and Translational Research Group, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Tahir Mehmood Khan
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.,Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.,Medical Health and Translational Research Group, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia. .,Institute of Pharmaceutical Science, University of Veterinary and Animal Science, Lahore, Pakistan. .,Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand.
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia. .,Institute of Pharmaceutical Science, University of Veterinary and Animal Science, Lahore, Pakistan. .,Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand.
| |
Collapse
|
26
|
Li Y, Zhang Z. Mechanisms of phosphine-catalyzed [3+3] cycloaddition of ynones and azomethine imines: a DFT study. NEW J CHEM 2019. [DOI: 10.1039/c9nj01943j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mechanisms of PPh3-catalyzed [3+3] cycloaddition between a ynone and an azomethine imine.
Collapse
Affiliation(s)
- Yan Li
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan 114051
- P. R. China
| | - Zhiqiang Zhang
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan 114051
- P. R. China
| |
Collapse
|
27
|
Morgan KD, Andersen RJ, Ryan KS. Piperazic acid-containing natural products: structures and biosynthesis. Nat Prod Rep 2019; 36:1628-1653. [DOI: 10.1039/c8np00076j] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Piperazic acid is a cyclic hydrazine and a non-proteinogenic amino acid found in diverse non-ribosomal peptide (NRP) and hybrid NRP–polyketide (PK) structures.
Collapse
Affiliation(s)
- Kalindi D. Morgan
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | | | - Katherine S. Ryan
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
28
|
Castro-Falcón G, Millán-Aguiñaga N, Roullier C, Jensen PR, Hughes CC. Nitrosopyridine Probe To Detect Polyketide Natural Products with Conjugated Alkenes: Discovery of Novodaryamide and Nocarditriene. ACS Chem Biol 2018; 13:3097-3106. [PMID: 30272441 DOI: 10.1021/acschembio.8b00598] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An optimized nitroso-based probe that facilitates the discovery of conjugated alkene-containing natural products in unprocessed extracts was developed. It chemoselectively reacts with conjugated olefins via a nitroso-Diels-Alder cyclization to yield derivatives with a distinct chromophore and an isotopically unique bromine atom that can be rapidly identified using liquid chromatography/mass spectrometry and a bioinformatics tool called MeHaloCoA (Marine Halogenated Compound Analysis). The probe is ideally employed when genome-mining techniques identify strains containing polyketide gene clusters with two or more repeating KS-AT-DH-KR-ACP domain sequences, which are required for the biosynthesis of conjugated alkenes. Comparing the reactivity and spectral properties of five brominated arylnitroso reagents with model compounds spiramycin, bufalin, rapamycin, and rifampicin led to the identification of 5-bromo-2-nitrosopyridine as the most suitable probe structure. The utility of the dienophile probe was then demonstrated in bacterial extracts. Tylactone, novodaryamide and daryamide A, piperazimycin A, and the saccharamonopyrones A and B were cleanly labeled in extracts from their respective bacterial producers, in high regioselectivity but with varying degrees of diastereoselectivity. Further application of the method led to the discovery of a new natural product called nocarditriene, containing an unprecedented epoxy-2,3,4,5-tetrahydropyridine structure, from marine-derived Nocardiopsis strain CNY-503.
Collapse
Affiliation(s)
- Gabriel Castro-Falcón
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Natalie Millán-Aguiñaga
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Catherine Roullier
- Mer Molécules Santé - EA2160, Université de Nantes, 44035 Nantes-cedex 1, France
| | - Paul R. Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Chambers C. Hughes
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
29
|
Anticancer Activity of Bacterial Proteins and Peptides. Pharmaceutics 2018; 10:pharmaceutics10020054. [PMID: 29710857 PMCID: PMC6027124 DOI: 10.3390/pharmaceutics10020054] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 12/12/2022] Open
Abstract
Despite much progress in the diagnosis and treatment of cancer, tumour diseases constitute one of the main reasons of deaths worldwide. The side effects of chemotherapy and drug resistance of some cancer types belong to the significant current therapeutic problems. Hence, searching for new anticancer substances and medicines are very important. Among them, bacterial proteins and peptides are a promising group of bioactive compounds and potential anticancer drugs. Some of them, including anticancer antibiotics (actinomycin D, bleomycin, doxorubicin, mitomycin C) and diphtheria toxin, are already used in the cancer treatment, while other substances are in clinical trials (e.g., p28, arginine deiminase ADI) or tested in in vitro research. This review shows the current literature data regarding the anticancer activity of proteins and peptides originated from bacteria: antibiotics, bacteriocins, enzymes, nonribosomal peptides (NRPs), toxins and others such as azurin, p28, Entap and Pep27anal2. The special attention was paid to the still poorly understood active substances obtained from the marine sediment bacteria. In total, 37 chemical compounds or groups of compounds with antitumor properties have been described in the present article.
Collapse
|
30
|
Phyo YZ, Ribeiro J, Fernandes C, Kijjoa A, Pinto MMM. Marine Natural Peptides: Determination of Absolute Configuration Using Liquid Chromatography Methods and Evaluation of Bioactivities. Molecules 2018; 23:E306. [PMID: 29385101 PMCID: PMC6017543 DOI: 10.3390/molecules23020306] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/22/2018] [Accepted: 01/27/2018] [Indexed: 12/21/2022] Open
Abstract
Over the last decades, many naturally occurring peptides have attracted the attention of medicinal chemists due to their promising applicability as pharmaceuticals or as models for drugs used in therapeutics. Marine peptides are chiral molecules comprising different amino acid residues. Therefore, it is essential to establish the configuration of the stereogenic carbon of their amino acid constituents for a total characterization and further synthesis to obtain higher amount of the bioactive marine peptides or as a basis for structural modifications for more potent derivatives. Moreover, it is also a crucial issue taking into account the mechanisms of molecular recognition and the influence of molecular three-dimensionality in this process. In this review, a literature survey covering the report on the determination of absolute configuration of the amino acid residues of diverse marine peptides by chromatographic methodologies is presented. A brief summary of their biological activities was also included emphasizing to the most promising marine peptides. A case study describing an experience of our group was also included.
Collapse
Affiliation(s)
- Ye' Zaw Phyo
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
| | - João Ribeiro
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Carla Fernandes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Anake Kijjoa
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
| | - Madalena M M Pinto
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
31
|
Fan WT, Li NK, Xu L, Qiao C, Wang XW. Organo-Catalyzed Asymmetric Michael-Hemiketalization-Oxa-Pictet-Spengler Cyclization for Bridged and Spiro Heterocyclic Skeletons: Oxocarbenium Ion as a Key Intermediate. Org Lett 2017; 19:6626-6629. [PMID: 29192792 DOI: 10.1021/acs.orglett.7b03341] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A Michael-hemiketalization-oxa-Pictet-Spengler cyclization has been developed for the construction of chiral bridged and spiro heterocyclic skeletons with one spiro stereogenic carbon center and two bridgehead carbon centers, utilizing cooperative catalysts of a Takemoto thiourea catalyst and a triflimide. In particular, an oxocarbenium ion acts as a key intermediate for this cyclization reaction. Additionally, biological evaluation of this type of novel structure has revealed obvious antiproliferative activity against some cancer cell lines.
Collapse
Affiliation(s)
- Wei-Tai Fan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, and ‡College of Pharmaceutical Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Nai-Kai Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, and ‡College of Pharmaceutical Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Lumei Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, and ‡College of Pharmaceutical Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Chunhua Qiao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, and ‡College of Pharmaceutical Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Xing-Wang Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, and ‡College of Pharmaceutical Science, Soochow University , Suzhou 215123, People's Republic of China
| |
Collapse
|
32
|
Agrawal S, Acharya D, Adholeya A, Barrow CJ, Deshmukh SK. Nonribosomal Peptides from Marine Microbes and Their Antimicrobial and Anticancer Potential. Front Pharmacol 2017; 8:828. [PMID: 29209209 PMCID: PMC5702503 DOI: 10.3389/fphar.2017.00828] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/31/2017] [Indexed: 11/13/2022] Open
Abstract
Marine environments are largely unexplored and can be a source of new molecules for the treatment of many diseases such as malaria, cancer, tuberculosis, HIV etc. The Marine environment is one of the untapped bioresource of getting pharmacologically active nonribosomal peptides (NRPs). Bioprospecting of marine microbes have achieved many remarkable milestones in pharmaceutics. Till date, more than 50% of drugs which are in clinical use belong to the nonribosomal peptide or mixed polyketide-nonribosomal peptide families of natural products isolated from marine bacteria, cyanobacteria and fungi. In recent years large numbers of nonribosomal have been discovered from marine microbes using multi-disciplinary approaches. The present review covers the NRPs discovered from marine microbes and their pharmacological potential along with role of genomics, proteomics and bioinformatics in discovery and development of nonribosomal peptides drugs.
Collapse
Affiliation(s)
- Shivankar Agrawal
- Biotechnology and Management of Bioresources Division, TERI-Deakin Nano Biotechnology Centre, Energy and Resources Institute, New Delhi, India.,Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Debabrata Acharya
- Biotechnology and Management of Bioresources Division, TERI-Deakin Nano Biotechnology Centre, Energy and Resources Institute, New Delhi, India
| | - Alok Adholeya
- Biotechnology and Management of Bioresources Division, TERI-Deakin Nano Biotechnology Centre, Energy and Resources Institute, New Delhi, India
| | - Colin J Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Sunil K Deshmukh
- Biotechnology and Management of Bioresources Division, TERI-Deakin Nano Biotechnology Centre, Energy and Resources Institute, New Delhi, India
| |
Collapse
|
33
|
Managamuri U, Vijayalakshmi M, Ganduri VSRK, Rajulapati SB, Bonigala B, Kalyani BS, Poda S. Isolation, identification, optimization, and metabolite profiling of Streptomyces sparsus VSM-30. 3 Biotech 2017; 7:217. [PMID: 28669076 DOI: 10.1007/s13205-017-0835-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/22/2017] [Indexed: 01/24/2023] Open
Abstract
Deep sea sediment samples of Bay of Bengal (Visakhapatnam) have been analyzed for actinomycetes as an elite source to screen for the production of bioactive metabolites. The actinomycetes strain VSM-30 has an exciting bioactivity profile and was isolated during our systemic screening of marine actinomycetes. It was identified as Streptomyces sparsus based on morphological, physiological, biochemical, and molecular approaches. Response surface methodology regression analysis was carried out to fit the experimental data of each response by the second-order polynomial. The results have proven right interaction among process variables at optimized values of incubation time at 12 days, pH at 8, temperature at 30 °C, concentrations of starch at 1%, and tryptone at 1% and the data have been adequately fitted into the second-order polynomial models. Under these conditions, the responses (zones of inhibition) of plant pathogenic fungi Aspergillus niger, Aspergillus flavus, Fusarium oxysporum, Fusarium solani, and Penicillium citrinum were also matched with experimental and predicted results. Chemotypic analysis of ethyl acetate extract of the strain was done using LC-Q-TOF-MS revealed the presence of bioactive compounds including tryptophan dehydrobutyrine diketopiperazine, maculosin, 7-o-demethyl albocycline, albocycline M-2, and 7-o-demethoxy-7-oxo albocycline in a negative ion mode. The ethyl acetate extract of actinobacterium has been subjected to gas chromatography and mass spectroscopy (GC-MS) revealed the presence of diverse compounds such as dotriacontane, tetracosane 11-decyl-, diheptyl phthalate, 1-hexadecanesulfonyl chloride, L-alanyl-L-tryptophan, phthalic acid ethyl pentyl ester, 4-trifluoroacetoxyhexadecane, and 1H-imidazole 4,5-dihydro-2,4-dimethyl. Hence, the ethyl acetate extract of Streptomyces sparsus VSM-30 may have antibacterial, antifungal, and antioxidant activities due to the presence of secondary metabolites in ethyl acetate extract. The study also supports marine sediment samples of Bay of Bengal, a promising marine ecosystem remained to be explored for new bioactive compounds.
Collapse
|
34
|
Dardić D, Lauro G, Bifulco G, Laboudie P, Sakhaii P, Bauer A, Vilcinskas A, Hammann PE, Plaza A. Svetamycins A-G, Unusual Piperazic Acid-Containing Peptides from Streptomyces sp. J Org Chem 2017; 82:6032-6043. [PMID: 28489377 DOI: 10.1021/acs.joc.7b00228] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Seven new halogenated peptides termed svetamycins A-G (1-7) have been isolated from laboratory cultures of a Streptomyces sp. Svetamycins A-D, F, and G are cyclic depsipeptides, whereas svetamycin E is a linear analogue of svetamycin C. Their structures were determined using extensive spectroscopic analysis, and their stereochemical configuration was established by a combination of NMR data, quantum mechanical calculations, and chemical derivatizations. Svetamycins are characterized by the presence of a hydroxyl acetic acid and five amino acids including a rare 4,5-dihydroxy-2,3,4,5-tetrahydropyridazine-3-carboxylic acid, a γ-halogenated piperazic acid, and a novel δ-methylated piperazic acid in svetamycins B-C, E, and G. Moreover, isotope-labeled substrate feeding experiments demonstrated ornithine as the precursor of piperazic acid and that methylation at the δ position of the piperazyl scaffold is S-adenosyl-l-methionine (SAM)-dependent. Svetamycin G, the most potent antimicrobial of this suite of compounds, inhibited the growth of Mycobacterium smegmatis with an MIC80 value of 2 μg/mL.
Collapse
Affiliation(s)
- Denis Dardić
- Sanofi-Fraunhofer Natural Product Center of Excellence, Fraunhofer IME , Industriepark Höchst Bldg. G878, 65926 Frankfurt am Main, Germany
| | - Gianluigi Lauro
- Dipartimento di Farmacia, Università di Salerno , Via Giovanni Paolo II 132, 84084 Fisciano SA, Italy
| | - Giuseppe Bifulco
- Dipartimento di Farmacia, Università di Salerno , Via Giovanni Paolo II 132, 84084 Fisciano SA, Italy
| | - Patricia Laboudie
- Infectious Diseases Therapeutic Area, Sanofi R&D, Campus Mérieux , 1541 avenue Marcel Mérieux, XNord 315, 69280 Marcy L'Etoile, France
| | - Peyman Sakhaii
- NMR Laboratory, Chemistry & Biotechnology Development Frankfurt Chemistry, Sanofi-Aventis Deutschland GmbH , Industriepark Hoechst, Bldg. G849, 65926 Frankfurt am Main, Germany
| | - Armin Bauer
- R&D Infectious Diseases Therapeutic Area, Sanofi-Aventis Deutschland GmbH , Industriepark Höchst Bldg. G878, 65926 Frankfurt am Main, Germany
| | - Andreas Vilcinskas
- Sanofi-Fraunhofer Natural Product Center of Excellence, Fraunhofer IME , Industriepark Höchst Bldg. G878, 65926 Frankfurt am Main, Germany
| | - Peter E Hammann
- R&D Infectious Diseases Therapeutic Area, Sanofi-Aventis Deutschland GmbH , Industriepark Höchst Bldg. G878, 65926 Frankfurt am Main, Germany
| | - Alberto Plaza
- Sanofi-Fraunhofer Natural Product Center of Excellence, Fraunhofer IME , Industriepark Höchst Bldg. G878, 65926 Frankfurt am Main, Germany
| |
Collapse
|
35
|
Waldman AJ, Ng TL, Wang P, Balskus EP. Heteroatom-Heteroatom Bond Formation in Natural Product Biosynthesis. Chem Rev 2017; 117:5784-5863. [PMID: 28375000 PMCID: PMC5534343 DOI: 10.1021/acs.chemrev.6b00621] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Natural products that contain functional groups with heteroatom-heteroatom linkages (X-X, where X = N, O, S, and P) are a small yet intriguing group of metabolites. The reactivity and diversity of these structural motifs has captured the interest of synthetic and biological chemists alike. Functional groups containing X-X bonds are found in all major classes of natural products and often impart significant biological activity. This review presents our current understanding of the biosynthetic logic and enzymatic chemistry involved in the construction of X-X bond containing functional groups within natural products. Elucidating and characterizing biosynthetic pathways that generate X-X bonds could both provide tools for biocatalysis and synthetic biology, as well as guide efforts to uncover new natural products containing these structural features.
Collapse
Affiliation(s)
- Abraham J. Waldman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Tai L. Ng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Peng Wang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| |
Collapse
|
36
|
Wyche TP, Ruzzini AC, Beemelmanns C, Kim KH, Klassen JL, Cao S, Poulsen M, Bugni TS, Currie CR, Clardy J. Linear Peptides Are the Major Products of a Biosynthetic Pathway That Encodes for Cyclic Depsipeptides. Org Lett 2017; 19:1772-1775. [PMID: 28326787 DOI: 10.1021/acs.orglett.7b00545] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Three new dentigerumycin analogues are produced by Streptomyces sp. M41, a bacterium isolated from a South African termite, Macrotermes natalensis. The structures of the complex nonribosomal peptide synthetase-polyketide synthase (NRPS/PKS) hybrid compounds were determined by 1D- and 2D-NMR spectroscopy, high-resolution mass spectrometry, and circular dichroism (CD) spectroscopy. Both cyclic and linear peptides are reported, and the genetic organization of the NRPS modules within the biosynthetic gene cluster accounts for the observed structural diversity.
Collapse
Affiliation(s)
- Thomas P Wyche
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School , Boston, Massachusetts 02115, United States.,Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin , Madison, Wisconsin 53705, United States
| | - Antonio C Ruzzini
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Christine Beemelmanns
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Ki Hyun Kim
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Jonathan L Klassen
- Department of Bacteriology, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - Shugeng Cao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Michael Poulsen
- Department of Bacteriology, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - Tim S Bugni
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin , Madison, Wisconsin 53705, United States
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin , Madison, Wisconsin 53706, United States
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School , Boston, Massachusetts 02115, United States
| |
Collapse
|
37
|
Hassan SSU, Anjum K, Abbas SQ, Akhter N, Shagufta BI, Shah SAA, Tasneem U. Emerging biopharmaceuticals from marine actinobacteria. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 49:34-47. [PMID: 27898308 DOI: 10.1016/j.etap.2016.11.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/11/2016] [Accepted: 11/20/2016] [Indexed: 05/10/2023]
Abstract
Actinobacteria are quotidian microorganisms in the marine world, playing a crucial ecological role in the recycling of refractory biomaterials and producing novel secondary metabolites with pharmaceutical applications. Actinobacteria have been isolated from the huge area of marine organisms including sponges, tunicates, corals, mollusks, crabs, mangroves and seaweeds. Natural products investigation of the marine actinobacteria revealed that they can synthesize numerous natural products including alkaloids, polyketides, peptides, isoprenoids, phenazines, sterols, and others. These natural products have a potential to provide future drugs against crucial diseases like cancer, HIV, microbial and protozoal infections and severe inflammations. Therefore, marine actinobacteria portray as a pivotal resource for marine drugs. It is an upcoming field of research to probe a novel and pharmaceutically important secondary metabolites from marine actinobacteria. In this review, we attempt to summarize the present knowledge on the diversity, chemistry and mechanism of action of marine actinobacteria-derived secondary metabolites from 2007 to 2016.
Collapse
Affiliation(s)
| | - Komal Anjum
- Ocean College, Zhejiang University, Hangzhou 310058, China
| | - Syed Qamar Abbas
- Faculty of Pharmacy, Gomal University D.I. Khan, K.P.K 29050, Pakistan
| | - Najeeb Akhter
- Ocean College, Zhejiang University, Hangzhou 310058, China
| | - Bibi Ibtesam Shagufta
- Department of Zoology, Kohat University of Science and Technology (KUST), K.P.K 26000, Pakistan
| | | | - Umber Tasneem
- Department of Microbiology, Kohat University of Science and Technology (KUST), K.P.K 26000, Pakistan
| |
Collapse
|
38
|
Shima Y, Matsuo JI. Formal [4+2] cycloaddition of 3-ethoxycyclobutanones with azo compounds. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.07.087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Henke MT, Soukup AA, Goering AW, McClure RA, Thomson RJ, Keller NP, Kelleher NL. New Aspercryptins, Lipopeptide Natural Products, Revealed by HDAC Inhibition in Aspergillus nidulans. ACS Chem Biol 2016; 11:2117-23. [PMID: 27310134 PMCID: PMC5119465 DOI: 10.1021/acschembio.6b00398] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Unlocking the biochemical stores of fungi is key for developing future pharmaceuticals. Through reduced expression of a critical histone deacetylase in Aspergillus nidulans, increases of up to 100-fold were observed in the levels of 15 new aspercryptins, recently described lipopeptides with two noncanonical amino acids derived from octanoic and dodecanoic acids. In addition to two NMR-verified structures, MS/MS networking helped uncover an additional 13 aspercryptins. The aspercryptins break the conventional structural orientation of lipopeptides and appear "backward" when compared to known compounds of this class. We have also confirmed the 14-gene aspercryptin biosynthetic gene cluster, which encodes two fatty acid synthases and several enzymes to convert saturated octanoic and dodecanoic acid to α-amino acids.
Collapse
Affiliation(s)
- Matthew T. Henke
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Alexandra A. Soukup
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Anthony W. Goering
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Ryan A. McClure
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Regan J. Thomson
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Nancy P. Keller
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706, United States
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, United States
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Neil L. Kelleher
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
40
|
Goering A, McClure RA, Doroghazi JR, Albright JC, Haverland NA, Zhang Y, Ju KS, Thomson RJ, Metcalf WW, Kelleher NL. Metabologenomics: Correlation of Microbial Gene Clusters with Metabolites Drives Discovery of a Nonribosomal Peptide with an Unusual Amino Acid Monomer. ACS CENTRAL SCIENCE 2016; 2:99-108. [PMID: 27163034 PMCID: PMC4827660 DOI: 10.1021/acscentsci.5b00331] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Indexed: 05/31/2023]
Abstract
For more than half a century the pharmaceutical industry has sifted through natural products produced by microbes, uncovering new scaffolds and fashioning them into a broad range of vital drugs. We sought a strategy to reinvigorate the discovery of natural products with distinctive structures using bacterial genome sequencing combined with metabolomics. By correlating genetic content from 178 actinomycete genomes with mass spectrometry-enabled analyses of their exported metabolomes, we paired new secondary metabolites with their biosynthetic gene clusters. We report the use of this new approach to isolate and characterize tambromycin, a new chlorinated natural product, composed of several nonstandard amino acid monomeric units, including a unique pyrrolidine-containing amino acid we name tambroline. Tambromycin shows antiproliferative activity against cancerous human B- and T-cell lines. The discovery of tambromycin via large-scale correlation of gene clusters with metabolites (a.k.a. metabologenomics) illuminates a path for structure-based discovery of natural products at a sharply increased rate.
Collapse
Affiliation(s)
- Anthony
W. Goering
- Departments
of Chemistry, Molecular Biosciences, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Ryan A. McClure
- Departments
of Chemistry, Molecular Biosciences, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - James R. Doroghazi
- Department
of Microbiology and the Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jessica C. Albright
- Departments
of Chemistry, Molecular Biosciences, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Nicole A. Haverland
- Departments
of Chemistry, Molecular Biosciences, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Yongbo Zhang
- Integrated
Molecular Structure Education and Research Center, Weinberg College
of Arts and Sciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Kou-San Ju
- Department
of Microbiology and the Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Regan J. Thomson
- Departments
of Chemistry, Molecular Biosciences, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - William W. Metcalf
- Department
of Microbiology and the Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Neil L. Kelleher
- Departments
of Chemistry, Molecular Biosciences, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
41
|
Variable genetic architectures produce virtually identical molecules in bacterial symbionts of fungus-growing ants. Proc Natl Acad Sci U S A 2015; 112:13150-4. [PMID: 26438860 DOI: 10.1073/pnas.1515348112] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Small molecules produced by Actinobacteria have played a prominent role in both drug discovery and organic chemistry. As part of a larger study of the actinobacterial symbionts of fungus-growing ants, we discovered a small family of three previously unreported piperazic acid-containing cyclic depsipeptides, gerumycins A-C. The gerumycins are slightly smaller versions of dentigerumycin, a cyclic depsipeptide that selectively inhibits a common fungal pathogen, Escovopsis. We had previously identified this molecule from a Pseudonocardia associated with Apterostigma dentigerum, and now we report the molecule from an associate of the more highly derived ant Trachymyrmex cornetzi. The three previously unidentified compounds, gerumycins A-C, have essentially identical structures and were produced by two different symbiotic Pseudonocardia spp. from ants in the genus Apterostigma found in both Panama and Costa Rica. To understand the similarities and differences in the biosynthetic pathways that produced these closely related molecules, the genomes of the three producing Pseudonocardia were sequenced and the biosynthetic gene clusters identified. This analysis revealed that dramatically different biosynthetic architectures, including genomic islands, a plasmid, and the use of spatially separated genetic loci, can lead to molecules with virtually identical core structures. A plausible evolutionary model that unifies these disparate architectures is presented.
Collapse
|
42
|
Manaviazar S, Stevenson PJ, Hale KJ. On the halogenation of N (1), N (2)-di- t -Boc-5-hydroxy-piperazic acid esters and the conformational preferences of their 5-halo-piperazic acid products. The importance of A 1,3 rotameric-strain in determining N (2)-acyl piperazic acid ring conformation. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.04.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Moon K, Chung B, Shin Y, Rheingold AL, Moore CE, Park SJ, Park S, Lee SK, Oh KB, Shin J, Oh DC. Pentacyclic antibiotics from a tidal mud flat-derived actinomycete. JOURNAL OF NATURAL PRODUCTS 2015; 78:524-529. [PMID: 25495422 DOI: 10.1021/np500736b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The combination of investigating a unique source of chemically prolific bacterium with an LC/MS-based bacterial strain selection approach resulted in the discovery of two new secondary metabolites, buanmycin (1) and buanquinone (2), from the culture of a marine Streptomyces strain, which was isolated from a tidal mudflat in Buan, Republic of Korea. The carbon backbone of buanmycin (1), comprising 20 quaternary carbons out of 30 total carbons, was determined via (13)C-(13)C COSY NMR analysis after labeling 1 with (13)C by culturing the bacterium with (13)C-glucose. The complete structure of 1 was confidently elucidated, primarily based on 1D and 2D NMR spectroscopic and X-ray crystallographic analysis, as that of a new pentacyclic xanthone. The absolute configuration of the α-methyl serine unit in 1 was established by applying the advanced Marfey's method. The structure of buanquinone (2) was determined to be a new pentacyclic quinone based on NMR and MS spectroscopic data. Buanmycin exhibited potent cytotoxicity against colorectal carcinoma cells (HCT-116) and gastric carcinoma cells (SNU-638) with submicromolar IC50 values and strongly inhibited the pathogenic Gram-negative bacterium Salmonella enterica (MIC = 0.7 μM). In particular, buanmycin demonstrated inhibition of sortase A, which is a promising target for antibiotic discovery.
Collapse
Affiliation(s)
- Kyuho Moon
- †Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Beomkoo Chung
- ‡Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-921, Republic of Korea
| | - Yoonho Shin
- †Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Arnold L Rheingold
- §Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Curtis E Moore
- §Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Sung Jean Park
- ⊥College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 406-799, Republic of Korea
| | - Sunghyouk Park
- †Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Sang Kook Lee
- †Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Ki-Bong Oh
- ‡Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-921, Republic of Korea
| | - Jongheon Shin
- †Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Dong-Chan Oh
- †Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| |
Collapse
|
44
|
Structure and Synthesis of Conformationally Constrained Molecules Containing Piperazic Acid. TOPICS IN HETEROCYCLIC CHEMISTRY 2015. [DOI: 10.1007/7081_2015_185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
45
|
Hamedi J, Mohammadipanah F, Panahi HKS. Biotechnological Exploitation of Actinobacterial Members. SUSTAINABLE DEVELOPMENT AND BIODIVERSITY 2015. [DOI: 10.1007/978-3-319-14595-2_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
46
|
Yoshida M, Sekioka N, Izumikawa M, Kozone I, Takagi M, Shin-ya K, Doi T. Total Synthesis and Structure Elucidation of JBIR-39: A Linear Hexapeptide Possessing Piperazic Acid and γ-Hydroxypiperazic Acid Residues. Chemistry 2014; 21:3031-41. [DOI: 10.1002/chem.201406020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Indexed: 11/08/2022]
|
47
|
Duraipandiyan V, Al-Dhabi NA, Balachandran C, Raj MK, Arasu MV, Ignacimuthu S. Novel 1,5,7-trihydroxy-3-hydroxy methyl anthraquinone isolated from terrestrial Streptomyces sp. (eri-26) with antimicrobial and molecular docking studies. Appl Biochem Biotechnol 2014; 174:1784-94. [PMID: 25149455 DOI: 10.1007/s12010-014-1157-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 08/15/2014] [Indexed: 11/24/2022]
Abstract
Streptomyces sp. isolate ERI-26 was obtained from the Nilgiris forest soil of Western Ghats, Tamil Nadu, India. Novel anthraquinone compound was isolated from the active fraction 5; it was identified by spectroscopical data using UV, IR, NMR and MASS. The isolated compound 1,5,7-trihydroxy-3-hydroxy methyl anthraquinone was tested against bacteria and fungi at minimum inhibitory concentration level. The compound showed significant antimicrobial activity against bacteria, Staphylococcus aureus at 125 μg/ml, Staphylococcus epidermidis at 62.5 μg/m, Bacillus subtilis at 31.25 μg/ml, fungi; Epidermophyton floccosum at 62.5 μg/ml, Aspergillus niger at 31.25 μg/ml, Aspergiller flavus at 31.25 μg/ml, Trichophyton rubrum at 62.5 μg/ml and Botrytis cinerea at 62.5 μg/ml. The isolated compound was subjected to molecular docking studies for the inhibition of TtgR, topoisomerase IV and AmpC β-lactamase enzymes which are targets for antimicrobials. Docking studies of the compound showed low docking energy indicating its usefulness as antimicrobial agent. 1,5,7-Trihydroxy-3-hydroxy methyl anthraquinone is new, and its antimicrobial and molecular docking properties are reported for the first time.
Collapse
Affiliation(s)
- V Duraipandiyan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh-11451, Saudi Arabia,
| | | | | | | | | | | |
Collapse
|
48
|
Muliandi A, Katsuyama Y, Sone K, Izumikawa M, Moriya T, Hashimoto J, Kozone I, Takagi M, Shin-ya K, Ohnishi Y. Biosynthesis of the 4-methyloxazoline-containing nonribosomal peptides, JBIR-34 and -35, in Streptomyces sp. Sp080513GE-23. ACTA ACUST UNITED AC 2014; 21:923-34. [PMID: 25041948 DOI: 10.1016/j.chembiol.2014.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 01/19/2023]
Abstract
JBIR-34 and -35 produced by Streptomyces sp. Sp080513GE-23 are nonribosomal peptides that possess an unusual 4-methyloxazoline moiety. Through draft genome sequencing, cosmid cloning, and gene disruption, the JBIR-34 and -35 biosynthesis gene cluster (fmo cluster) was identified; it encodes 20 proteins including five nonribosomal peptide synthetases (NRPSs). Disruption of one of these NRPS genes (fmoA3) resulted in no JBIR-34 and -35 production and accumulation of 6-chloro-4-hydroxyindole-3-carboxylic acid. Stable isotope-feeding experiments indicated that the methyl group of the methyloxazoline ring is derived from alanine rather than methionine. A recombinant FmoH protein, a glycine/serine hydroxymethyltransferase homolog, catalyzed conversion of α-methyl-l-serine into d-alanine (the reverse reaction of α-methyl-l-serine synthesis catalyzed by FmoH in vivo). Taken together, we concluded that α-methyl-l-serine synthesized from d-alanine is incorporated into JBIR-34 and -35 to form the 4-methyloxazoline moiety. We also propose the biosynthesis pathway of JBIR-34 and -35.
Collapse
Affiliation(s)
- Adeline Muliandi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yohei Katsuyama
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kaoru Sone
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Miho Izumikawa
- Japan Biological Informatics Consortium (JBIC), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Tomohiro Moriya
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Junko Hashimoto
- Japan Biological Informatics Consortium (JBIC), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Ikuko Kozone
- Japan Biological Informatics Consortium (JBIC), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Motoki Takagi
- Japan Biological Informatics Consortium (JBIC), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Kazuo Shin-ya
- National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
49
|
Manivasagan P, Kang KH, Sivakumar K, Li-Chan ECY, Oh HM, Kim SK. Marine actinobacteria: an important source of bioactive natural products. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:172-188. [PMID: 24959957 DOI: 10.1016/j.etap.2014.05.014] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/21/2014] [Accepted: 05/26/2014] [Indexed: 06/03/2023]
Abstract
Marine environment is largely an untapped source for deriving actinobacteria, having potential to produce novel, bioactive natural products. Actinobacteria are the prolific producers of pharmaceutically active secondary metabolites, accounting for about 70% of the naturally derived compounds that are currently in clinical use. Among the various actinobacterial genera, Actinomadura, Actinoplanes, Amycolatopsis, Marinispora, Micromonospora, Nocardiopsis, Saccharopolyspora, Salinispora, Streptomyces and Verrucosispora are the major potential producers of commercially important bioactive natural products. In this respect, Streptomyces ranks first with a large number of bioactive natural products. Marine actinobacteria are unique enhancing quite different biological properties including antimicrobial, anticancer, antiviral, insecticidal and enzyme inhibitory activities. They have attracted global in the last ten years for their ability to produce pharmaceutically active compounds. In this review, we have focused attention on the bioactive natural products isolated from marine actinobacteria, possessing unique chemical structures that may form the basis for synthesis of novel drugs that could be used to combat resistant pathogenic microorganisms.
Collapse
Affiliation(s)
- Panchanathan Manivasagan
- Specialized Graduate School Science & Technology Convergence, Department of Marine-Bio. Convergence Science and Marine Bioprocess Research Center, Pukyong National University, Busan 608-739, Republic of Korea
| | - Kyong-Hwa Kang
- Specialized Graduate School Science & Technology Convergence, Department of Marine-Bio. Convergence Science and Marine Bioprocess Research Center, Pukyong National University, Busan 608-739, Republic of Korea
| | - Kannan Sivakumar
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608 502, Tamil Nadu, India
| | - Eunice C Y Li-Chan
- The University of British Columbia, Faculty of Land and Food Systems, Food Nutrition and Health Program, 2205 East Mall, Vancouver, British Columbia, Canada V6T 1Z4
| | - Hyun-Myung Oh
- Specialized Graduate School Science & Technology Convergence, Department of Marine-Bio. Convergence Science and Marine Bioprocess Research Center, Pukyong National University, Busan 608-739, Republic of Korea
| | - Se-Kwon Kim
- Specialized Graduate School Science & Technology Convergence, Department of Marine-Bio. Convergence Science and Marine Bioprocess Research Center, Pukyong National University, Busan 608-739, Republic of Korea.
| |
Collapse
|
50
|
Du Y, Wang Y, Huang T, Tao M, Deng Z, Lin S. Identification and characterization of the biosynthetic gene cluster of polyoxypeptin A, a potent apoptosis inducer. BMC Microbiol 2014; 14:30. [PMID: 24506891 PMCID: PMC3943440 DOI: 10.1186/1471-2180-14-30] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 02/04/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Polyoxypeptin A was isolated from a culture broth of Streptomyces sp. MK498-98 F14, which has a potent apoptosis-inducing activity towards human pancreatic carcinoma AsPC-1 cells. Structurally, polyoxypeptin A is composed of a C₁₅ acyl side chain and a nineteen-membered cyclodepsipeptide core that consists of six unusual nonproteinogenic amino acid residues (N-hydroxyvaline, 3-hydroxy-3-methylproline, 5-hydroxypiperazic acid, N-hydroxyalanine, piperazic acid, and 3-hydroxyleucine) at high oxidation states. RESULTS A gene cluster containing 37 open reading frames (ORFs) has been sequenced and analyzed for the biosynthesis of polyoxypeptin A. We constructed 12 specific gene inactivation mutants, most of which abolished the production of polyoxypeptin A and only ΔplyM mutant accumulated a dehydroxylated analogue polyoxypeptin B. Based on bioinformatics analysis and genetic data, we proposed the biosynthetic pathway of polyoxypeptin A and biosynthetic models of six unusual amino acid building blocks and a PKS extender unit. CONCLUSIONS The identified gene cluster and proposed pathway for the biosynthesis of polyoxypeptin A will pave a way to understand the biosynthetic mechanism of the azinothricin family natural products and provide opportunities to apply combinatorial biosynthesis strategy to create more useful compounds.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|