1
|
Shah D, Patel A. Eco-friendly approaches to 1,3,4-oxadiazole derivatives: A comprehensive review of green synthetic strategies. Arch Pharm (Weinheim) 2024; 357:e2400185. [PMID: 38877614 DOI: 10.1002/ardp.202400185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/16/2024]
Abstract
This review article offers an environmentally benign synthesis of 1,3,4-oxadiazole derivatives, with a focus on sustainable methodologies that have minimal impact on the environment. These derivatives, known for their diverse applications, have conventionally been associated with synthesis methods that utilize hazardous reagents and produce significant waste, thereby raising environmental concerns. The green synthesis of 1,3,4-oxadiazole derivatives employs renewable substrates, nontoxic catalysts, and mild reaction conditions, aiming to minimize the environmental impact. Innovative techniques such as catalyst-based, catalyst-free, electrochemical synthesis, green-solvent-mediated synthesis, grinding, microwave-mediated synthesis, and photosynthesis are implemented, providing benefits in terms of scalability, cost-effectiveness, and ease of purification. This review emphasizes the significance of sustainable methodologies in the synthesis of 1,3,4-oxadiazole and boots for continued exploration in this research domain.
Collapse
Affiliation(s)
- Drashti Shah
- Department of Pharmaceutical Chemistry, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Anand, Gujarat, India
- Department of Pharmaceutical Chemistry, L. J. Institute of Pharmacy, L J University, Ahmedabad, India
| | - Ashish Patel
- Department of Pharmaceutical Chemistry, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Anand, Gujarat, India
| |
Collapse
|
2
|
Jiang S, Zhuang D, Liu P, Xu Q, Luo X, Wang T, Zhang C, Yan R. Synthesis of isothiocyanato alkyl sulfides from alkenes using KSCN and DMTSM. Org Biomol Chem 2024; 22:4472-4477. [PMID: 38775306 DOI: 10.1039/d4ob00487f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
A method for the synthesis of isothiocyanato alkyl sulfides from KSCN and DMTSM under metal-free conditions has been developed. The features of this reaction are low-cost, readily accessible starting materials and the use of KSCN as nucleophiles for C-NCS bond formation. Alkenes with various substituted groups react smoothly and the desired products are obtained in moderate to good yields.
Collapse
Affiliation(s)
- Shixuan Jiang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 73000, Gansu, China.
| | - Daijiao Zhuang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 73000, Gansu, China.
| | - Peihua Liu
- Research Institute of Oil and Gas Technology of Changqing Oilfield Company, Xian 710018, Shanxi, China
| | - Qiyang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 73000, Gansu, China.
| | - Xiaofeng Luo
- Chengdu Guibao Science and Technology Co., Ltd, Chengdu 610041, Sichuan, China
| | - Tianqiang Wang
- Chengdu Guibao Science and Technology Co., Ltd, Chengdu 610041, Sichuan, China
| | - Chengcheng Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 73000, Gansu, China.
| | - Rulong Yan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 73000, Gansu, China.
| |
Collapse
|
3
|
Sharma U, Kumar R, Mazumder A, Salahuddin, Kukreti N, Mishra R, Chaitanya MVNL. Substrate-based synthetic strategies and biological activities of 1,3,4-oxadiazole: A review. Chem Biol Drug Des 2024; 103:e14552. [PMID: 38825735 DOI: 10.1111/cbdd.14552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 06/04/2024]
Abstract
The five-membered 1,3,4-oxadiazole heterocyclic ring has received considerable attention because of its unique bio-isosteric properties and an unusually wide spectrum of biological activities. After a century since 1,3,4-oxadiazole was discovered, its uncommon potential attracted medicinal chemist's attention, leading to the discovery of a few presently accessible drugs containing 1,3,4-oxadiazole units, and a large number of patents have been granted on research related to 1,3,4-oxadiazole. It is worth noting that interest in 1,3,4-oxadiazoles' biological applications has doubled in the last few years. Herein, this review presents a comprehensive overview of the recent achievements in the synthesis of 1,3,4-oxadiazole-based compounds and highlights the major advances in their biological applications in the last 10 years, as well as brief remarks on prospects for further development. We hope that researchers across the scientific streams will benefit from the presented review articles for designing their work related to 1,3,4-oxadiazoles.
Collapse
Affiliation(s)
- Upasana Sharma
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Rajnish Kumar
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Salahuddin
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| | - Rashmi Mishra
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, India
| | - M V N L Chaitanya
- School of Pharmaceutical Science, Lovely Professional University, Phagwara, India
| |
Collapse
|
4
|
Çapan İ, Hawash M, Qaoud MT, Gülüm L, Tunoglu ENY, Çifci KU, Çevrimli BS, Sert Y, Servi S, Koca İ, Tutar Y. Synthesis of novel carbazole hydrazine-carbothioamide scaffold as potent antioxidant, anticancer and antimicrobial agents. BMC Chem 2024; 18:102. [PMID: 38773663 PMCID: PMC11110238 DOI: 10.1186/s13065-024-01207-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/13/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Carbazole-based molecules containing thiosemicarbazide functional groups are recognized for their diverse biological activities, particularly in enhancing therapeutic anticancer effects through inhibiting crucial pathways. These derivatives also exhibit noteworthy antioxidant properties. OBJECTIVES This study aims to synthesize, characterize, and evaluate the antioxidant and anticancer activities of 18 novel carbazole derivatives. METHODS The radical scavenging capabilities of the compounds were assessed using the 2,2-diphenyl-1-picrylhydrazyl assay. Antiproliferative activities were evaluated on MCF-7 cancer cell lines through viability assays. Additionally, the modulation of the PI3K/Akt/mTOR pathway, apoptosis/necrosis induction, and cell cycle analysis were conducted for the most promising anticancer agents. RESULTS nine compounds showed potent antioxidant activities with IC50 values lower than the positive control acarbose, with compounds 4 h and 4y exhibiting the highest potency (IC50 values of 0.73 and 0.38 µM, respectively). Furthermore, compounds 4o and 4r displayed significant anticancer effects, with IC50 values of 2.02 and 4.99 µM, respectively. Compound 4o, in particular, exhibited promising activity by targeting the PI3K/Akt/mTOR signaling pathway, inhibiting tumor survival, inducing apoptosis, and causing cell cycle arrest in MCF-7 cell lines. Furthermore, compound 4o was showed significant antimicrobial activities against S. aureus and E. coli, and antifungal effect against C. albicans. Its potential to overcome drug resistance through this pathway inhibition highlights its promise as an anticancer agent. Molecular docking simulations supported these findings, revealing favorable binding profiles and interactions within the active sites of the enzymes PI3K, AKT1, and mTOR. Moreover, assessing the druggability of the newly synthesized thiosemicarbazide derivatives demonstrated optimal physicochemical properties, further endorsing their potential as drug candidates.
Collapse
Affiliation(s)
- İrfan Çapan
- Department of Pharmaceutical Basic Sciences, Faculty of Pharmacy, Gazi University, 06330, Ankara, Türkiye.
- Sente Kimya Research and Development Inc., 06200, Ankara, Türkiye.
| | - Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Mohammed T Qaoud
- Department of Pharmacy, Faculty of Pharmacy, Cyprus International University, Northern Cyprus, Mersin 10, 99258, Nicosia, Türkiye
| | - Levent Gülüm
- Department of Plant and Animal Production, Mudurnu Süreyya Astarcı Vocational College, Bolu Abant İzzet Baysal University, Bolu, Türkiye
| | - Ezgi Nurdan Yenilmez Tunoglu
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Demiroğlu Bilim University, Istanbul, Türkiye
| | - Kezban Uçar Çifci
- Department of Molecular Medicine, Faculty of Health Sciences, University of Health Sciences, Istanbul, Türkiye
- Division of Basic Sciences and Health, Hemp Research Institute, Yozgat Bozok University, Yozgat, Türkiye
| | - Bekir Sıtkı Çevrimli
- Department of Chemistry and Chemical Processing Technologies, Technical Sciences Vocational College, Gazi University, Ankara, Türkiye
| | - Yusuf Sert
- Sorgun Vocational College, Yozgat Bozok University, Yozgat, Türkiye
| | - Süleyman Servi
- Department of Chemistry, Faculty of Science, Fırat University, Elazığ, Türkiye
| | - İrfan Koca
- Department of Chemistry, Faculty of Art & Sciences, Yozgat Bozok University, Yozgat, Türkiye
| | - Yusuf Tutar
- Medical School, Division of Biochemistry, Recep Tayyip Erdogan University, Rize, Türkiye
- Faculty of Pharmacy, Division of Biochemistry, University of Health Sciences, Istanbul, Türkiye
| |
Collapse
|
5
|
Khwaza V, Mlala S, Aderibigbe BA. Advancements in Synthetic Strategies and Biological Effects of Ciprofloxacin Derivatives: A Review. Int J Mol Sci 2024; 25:4919. [PMID: 38732134 PMCID: PMC11084713 DOI: 10.3390/ijms25094919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Ciprofloxacin is a widely used antibiotic in the fluoroquinolone class. It is widely acknowledged by various researchers worldwide, and it has been documented to have a broad range of other pharmacological activities, such as anticancer, antiviral, antimalarial activities, etc. Researchers have been exploring the synthesis of ciprofloxacin derivatives with enhanced biological activities or tailored capability to target specific pathogens. The various biological activities of some of the most potent and promising ciprofloxacin derivatives, as well as the synthetic strategies used to develop them, are thoroughly reviewed in this paper. Modification of ciprofloxacin via 4-oxo-3-carboxylic acid resulted in derivatives with reduced efficacy against bacterial strains. Hybrid molecules containing ciprofloxacin scaffolds displayed promising biological effects. The current review paper provides reported findings on the development of novel ciprofloxacin-based molecules with enhanced potency and intended therapeutic activities which will be of great interest to medicinal chemists.
Collapse
Affiliation(s)
- Vuyolwethu Khwaza
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, South Africa;
| | | | - Blessing A. Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, South Africa;
| |
Collapse
|
6
|
Dingiş Birgül Sİ, Kumari J, Tamhaev R, Mourey L, Lherbet C, Sriram D, Akdemir A, Küçükgüzel İ. In silico design, synthesis and antitubercular activity of novel 2-acylhydrazono-5-arylmethylene-4-thiazolidinones as enoyl-acyl carrier protein reductase inhibitors. J Biomol Struct Dyn 2024:1-19. [PMID: 38450660 DOI: 10.1080/07391102.2024.2319678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/12/2024] [Indexed: 03/08/2024]
Abstract
Mycobacteria regulate the synthesis of mycolic acid through the fatty acid synthase system type 1 (FAS I) and the fatty acid synthase system type-2 (FAS-II). Because mammalian cells exclusively utilize the FAS-I enzyme system for fatty acid production, targeting the FAS-II enzyme system could serve as a specific approach for developing selective antimycobacterial drugs. Enoyl-acyl carrier protein reductase enzyme (MtInhA), part of the FAS-II enzyme system, contains the NADH cofactor in its active site and reduces the intermediate. Molecular docking studies were performed on an in-house database (∼2200 compounds). For this study, five different crystal structures of MtInhA (PDB Code: 4TZK, 4BQP, 4D0S, 4BGE, 4BII) were used due to rotamer difference, mutation and the presence of cofactors. Molecular dynamics simulations (250 ns) were performed for the novel 2-acylhydrazono-5-arylmethylene-4-thiazolidinones derivatives selected by molecular docking studies. Twenty-three compounds selected by in silico methods were synthesized. Antitubercular activity and MtInhA enzyme inhibition studies were performed for compounds whose structures were elucidated by IR,1H-NMR,13C-NMR, HSQC, HMBC, MS and elemental analysis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Serap İpek Dingiş Birgül
- Institute of Health Sciences, Department of Pharmaceutical Chemistry, Marmara University, Istanbul, Türkiye
- Computer-Aided Drug Discovery Laboratory, Department of Pharmacology, Bezmialem Vakif University, Istanbul, Türkiye
| | - Jyothi Kumari
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, India
| | - Rasoul Tamhaev
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, Université Toulouse III - Paul Sabatier, Toulouse Cedex 09, France
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lionel Mourey
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Christian Lherbet
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, Université Toulouse III - Paul Sabatier, Toulouse Cedex 09, France
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, India
| | - Atilla Akdemir
- Faculty of Pharmacy, Department of Pharmacology, Istinye University, Istanbul, Türkiye
| | - İlkay Küçükgüzel
- Institute of Health Sciences, Department of Pharmaceutical Chemistry, Marmara University, Istanbul, Türkiye
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Fenerbahçe University, Istanbul, Türkiye
| |
Collapse
|
7
|
Yakkala PA, Khan IA, Dannarm SR, Aboti J, Sonti R, Shafi S, Kamal A. Multicomponent Domino Reaction for Concise Access to 2-Amino-Substituted 1,3,4 Oxadiazoles via Smiles Rearrangement. J Org Chem 2023; 88:12216-12223. [PMID: 37563100 DOI: 10.1021/acs.joc.3c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
A multicomponent domino reaction has been developed for the preparation of N-substituted 2-amino-1,3,4-oxadiazoles directly from various hydrazides (32 examples). The formation of 2-amino-1,3,4-oxadiazole involves the Smiles rearrangement of thiazolidinone, which results in the formation of carbodiimide intermediate that concomitantly undergoes amide-imidic acid tautomerism followed by cyclization. The protocol developed has wide applicability and provides the desired 2-amino-1,3,4-oxadiazole in excellent yields. The GSD studies of NMR spectra of aliphatic substrates (4di, 4dh) revealed the formation of three products, whereas, in the case of allylic and benzylic substrates, thiazolidinones were obtained as the sole products. Furthermore, to elucidate the plausible mechanism, DFT studies were performed affirming carbodiimide as the crucial intermediate for the interconversion of thiazolidinone to oxadiazole.
Collapse
Affiliation(s)
- Prasanna Anjaneyulu Yakkala
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Imran A Khan
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Srinivas Reddy Dannarm
- Department of Pharmaceutical analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Hyderabad, Telangana 500037, India
| | - Jyoti Aboti
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Rajesh Sonti
- Department of Pharmaceutical analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Hyderabad, Telangana 500037, India
| | - Syed Shafi
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Ahmed Kamal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| |
Collapse
|
8
|
Santhosh C, Singh KR, Sheela K, Swaroop TR, Sadashiva MP. Regioselective Synthesis of 2,5-Disubstituted-1,3,4-thiadiazoles and 1,3,4-Oxadiazoles via Alkyl 2-(Methylthio)-2-thioxoacetates and Alkyl 2-Amino-2-thioxoacetates. J Org Chem 2023; 88:11486-11496. [PMID: 37523659 DOI: 10.1021/acs.joc.3c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
An acid-catalyzed regioselective cyclization reaction of 2,5-disubstituted-1,3,4-thiadiazoles and 1,3,4-oxadiazoles has been developed. The synthetic precursors alkyl 2-(methylthio)-2-thioxoacetates/alkyl 2-amino-2-thioxoacetates react efficiently with acyl hydrazides, which transformed into a series of dehydrative and desulfurative products with employment of p-TSA and AcOH through a regioselective cyclization process. The alkyl 2-amino-2-thioxoacetate pathway generates excellent yield among the mentioned procedures. The reported methods are operationally simplistic and highly efficient with metal-free conditions and demonstrate significant functional group compatibility. Regioselective cyclized products were confirmed by single-crystal X-ray diffraction studies.
Collapse
Affiliation(s)
| | - Krishna Ravi Singh
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India
| | - Kalleshappa Sheela
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India
| | - Toreshettahally R Swaroop
- Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India
| | | |
Collapse
|
9
|
Teng QH, Lu FL, Wang K, Zhou LY, Li DP. Chemodivergent Photocatalyzed Heterocyclization of Hydrazones and Isothiocyanates for the Selectivity Synthesis of 2-Amino-1,3,4-thiadiazoles and 1,2,4-Triazole-3-thiones. J Org Chem 2023. [PMID: 37141629 DOI: 10.1021/acs.joc.3c00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A photocatalytic chemodivergent reaction for the selectivity formation of C-S and C-N bonds in a controlled manner was proposed. The reaction medium, either neutral or acidic, is critical to dictate the formation of 2-amino-1,3,4-thiadiazoles and 1,2,4-triazole-3-thiones from isothiocyanates and hydrazones. This is a practical protocol to achieve the chemoselectivity under mild and metal-free conditions.
Collapse
Affiliation(s)
- Qing-Hu Teng
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, P. R. China
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Feng-Lai Lu
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, P. R. China
| | - Kai Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Li-Ya Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Dian-Peng Li
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, P. R. China
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| |
Collapse
|
10
|
Kumar D, Aggarwal N, Deep A, Kumar H, Chopra H, Marwaha RK, Cavalu S. An Understanding of Mechanism-Based Approaches for 1,3,4-Oxadiazole Scaffolds as Cytotoxic Agents and Enzyme Inhibitors. Pharmaceuticals (Basel) 2023; 16:254. [PMID: 37259401 PMCID: PMC9963071 DOI: 10.3390/ph16020254] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 07/30/2023] Open
Abstract
The world's health system is plagued by cancer and a worldwide effort is underway to find new drugs to treat cancer. There has been a significant improvement in understanding the pathogenesis of cancer, but it remains one of the leading causes of death. The imperative 1,3,4-oxadiazole scaffold possesses a wide variety of biological activities, particularly for cancer treatment. In the development of novel 1,3,4-oxadiazole-based drugs, structural modifications are important to ensure high cytotoxicity towards malignant cells. These structural modification strategies have shown promising results when combined with outstanding oxadiazole scaffolds, which selectively interact with nucleic acids, enzymes, and globular proteins. A variety of mechanisms, such as the inhibition of growth factors, enzymes, and kinases, contribute to their antiproliferative effects. The activity of different 1,3,4-oxadiazole conjugates were tested on the different cell lines of different types of cancer. It is demonstrated that 1,3,4-oxadiazole hybridization with other anticancer pharmacophores have different mechanisms of action by targeting various enzymes (thymidylate synthase, HDAC, topoisomerase II, telomerase, thymidine phosphorylase) and many of the proteins that contribute to cancer cell proliferation. The focus of this review is to highlight the anticancer potential, molecular docking, and SAR studies of 1,3,4-oxadiazole derivatives by inhibiting specific cancer biological targets, such as inhibiting telomerase activity, HDAC, thymidylate synthase, and the thymidine phosphorylase enzyme. The purpose of this review is to summarize recent developments and discoveries in the field of anticancer drugs using 1,3,4-oxadiazoles.
Collapse
Affiliation(s)
- Davinder Kumar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Navidha Aggarwal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India
| | - Aakash Deep
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani 127021, India
| | - Harsh Kumar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
| | - Rakesh Kumar Marwaha
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
11
|
Mn(II) assisted synthesis of N-phenyl-5-(pyridin-3-yl)-1,3,4-oxadiazol-2-amine and evaluation of its Antiproliferative activity. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Zhong Y, Li ZN, Jiang XY, Tian X, Deng MH, Cheng MS, Yang HL, Liu Y. Identification of Novel Artemisinin Hybrids Induce Apoptosis and Ferroptosis in MCF-7 Cells. Int J Mol Sci 2022; 23:15768. [PMID: 36555409 PMCID: PMC9779727 DOI: 10.3390/ijms232415768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/24/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
A series of novel 1,3,4-oxadiazole-artemisinin hybrids have been designed and synthesized. An MTT assay revealed that most of tested hybrids showed more enhanced anti-proliferative activities than artemisinin, among which A8 had the superior potency with IC50 values ranging from 4.07 μM to 9.71 μM against five tested cancer cell lines. Cell colony formation assays showed that A8 could inhibit significantly more cell proliferation than artemisinin and 5-fluorouracil. Further mechanism studies reveal that A8 induces apoptosis and ferroptosis in MCF-7 cells in a dose-dependent manner, and CYPs inhibition assays reveal that A8 has a moderate inhibitory effect on CYP1A2 and CYP3A4 in the human body at 10 μM. The present work indicates that hybrid A8 may merit further investigation as a potential therapeutic agent.
Collapse
Affiliation(s)
- Ye Zhong
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhi-Ning Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin-Yue Jiang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xing Tian
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ming-Hui Deng
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mao-Sheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hua-Li Yang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yang Liu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
13
|
Lim JH, Baek SE, Lad BS, Kim J. Synthesis of 2-Imino-1,3,4-oxadiazolines from Acylhydrazides and Isothiocyanates via Aerobic Oxidation and a DMAP-Mediated Annulation Sequence. ACS OMEGA 2022; 7:28148-28159. [PMID: 35990423 PMCID: PMC9386851 DOI: 10.1021/acsomega.2c02323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/18/2022] [Indexed: 05/27/2023]
Abstract
In this work, an efficient synthesis of 2-imino-1,3,4-oxadiazolines from acylhydrazides and isothiocyanates is described. In the presence of 4-dimethylaminopyridine (DMAP) and molecular oxygen, various 2-imino-1,3,4-oxadiazolines were produced in good to high yields. The developed method showed a broad substrate scope and was effective on the gram scale. On the basis of the mechanistic studies and previous literature, it was proposed that the mechanism consists of an aerobic oxidation of acylhydrazides facilitated by DMAP and isothiocyanates, followed by a DMAP-mediated annulation of the in situ generated acyldiazenes with isothiocyanates.
Collapse
|
14
|
Hawryluk N, Robinson D, Shen Y, Kyne G, Bedore M, Menon S, Canan S, von Geldern T, Townson S, Gokool S, Ehrens A, Koschel M, Lhermitte-Vallarino N, Martin C, Hoerauf A, Hernandez G, Dalvie D, Specht S, Hübner MP, Scandale I. Discovery of Substituted Di(pyridin-2-yl)-1,2,4-thiadiazol-5-amines as Novel Macrofilaricidal Compounds for the Treatment of Human Filarial Infections. J Med Chem 2022; 65:11388-11403. [PMID: 35972896 PMCID: PMC9421654 DOI: 10.1021/acs.jmedchem.2c00960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Filarial diseases, including lymphatic filariasis and onchocerciasis, are considered among the most devastating of all tropical diseases, affecting about 145 million people worldwide. Efforts to control and eliminate onchocerciasis are impeded by a lack of effective treatments that target the adult filarial stage. Herein, we describe the discovery of a series of substituted di(pyridin-2-yl)-1,2,4-thiadiazol-5-amines as novel macrofilaricides for the treatment of human filarial infections.
Collapse
Affiliation(s)
- Natalie Hawryluk
- Bristol Myers Squibb, San Diego, California 92121, United States
| | - Dale Robinson
- Bristol Myers Squibb, San Diego, California 92121, United States
| | - Yixing Shen
- Bristol Myers Squibb, San Diego, California 92121, United States
| | - Graham Kyne
- Zoetis, Kalamazoo, Michigan 49001, United States
| | | | - Sanjay Menon
- Zoetis, Kalamazoo, Michigan 49001, United States
| | - Stacie Canan
- Bristol Myers Squibb, San Diego, California 92121, United States
| | | | - Simon Townson
- Northwick Park Institute for Medical Research, London HA1 3UJ, UK
| | - Suzanne Gokool
- Northwick Park Institute for Medical Research, London HA1 3UJ, UK
| | - Alexandra Ehrens
- Institute for Medical Microbiology, Immunology & Parasitology, University Hospital Bonn, 53127 Bonn, Germany.,German Center for Infection Research (DZIF), partner site Bonn-Cologne, 53127 Bonn, Germany
| | - Marianne Koschel
- Institute for Medical Microbiology, Immunology & Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Nathaly Lhermitte-Vallarino
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum national d'Histoire Naturelle, Paris 75005, France
| | - Coralie Martin
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum national d'Histoire Naturelle, Paris 75005, France
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology & Parasitology, University Hospital Bonn, 53127 Bonn, Germany.,German Center for Infection Research (DZIF), partner site Bonn-Cologne, 53127 Bonn, Germany
| | | | - Deepak Dalvie
- Bristol Myers Squibb, San Diego, California 92121, United States
| | - Sabine Specht
- Institute for Medical Microbiology, Immunology & Parasitology, University Hospital Bonn, 53127 Bonn, Germany.,Drugs for Neglected Diseases Initiative, Geneva 1204, Switzerland
| | - Marc Peter Hübner
- Institute for Medical Microbiology, Immunology & Parasitology, University Hospital Bonn, 53127 Bonn, Germany.,German Center for Infection Research (DZIF), partner site Bonn-Cologne, 53127 Bonn, Germany
| | - Ivan Scandale
- Drugs for Neglected Diseases Initiative, Geneva 1204, Switzerland
| |
Collapse
|
15
|
Mao K, Ma Y, Lv L, Li Z. [4+1] Cyclization of α‐CF3 Carbonyls with Hydrazides: Synthesis of 1,3,4‐Oxadiazoles under Ambient Conditions. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kuantao Mao
- Renmin University of China Chemistry Beijing CHINA
| | - Yangyang Ma
- Renmin University of China Chemistry Beijing CHINA
| | - Leiyang Lv
- Renmin University of China Chemistry Beijing CHINA
| | - Zhiping Li
- Renmin University of China Department of Chemistry Zhongguancun Street No.59 100872 Beijing CHINA
| |
Collapse
|
16
|
Comparative Study of the Synthetic Approaches and Biological Activities of the Bioisosteres of 1,3,4-Oxadiazoles and 1,3,4-Thiadiazoles over the Past Decade. Molecules 2022; 27:molecules27092709. [PMID: 35566059 PMCID: PMC9102899 DOI: 10.3390/molecules27092709] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023] Open
Abstract
The bioisosteres of 1,3,4-oxadiazoles and 1,3,4-thiadiazoles are well-known pharmacophores for many medicinally important drugs. Throughout the past 10 years, 1,3,4-oxa-/thiadiazole nuclei have been very attractive to researchers for drug design, synthesis, and the study of their potential activity towards a variety of diseases, including microbial and viral infections, cancer, diabetes, pain, and inflammation. This work is an up-to-date comparative study that identifies the differences between 1,3,4-thiadiazoles and 1,3,4-oxadiazoles concerning their methods of synthesis from different classes of starting compounds under various reaction conditions, as well as their biological activities and structure–activity relationship.
Collapse
|
17
|
Design and Synthesis of a Novel 4-aryl-N-(2-alkoxythieno [2,3-b]pyrazine-3-yl)-4-arylpiperazine-1-carboxamide DGG200064 Showed Therapeutic Effect on Colon Cancer through G2/M Arrest. Pharmaceuticals (Basel) 2022; 15:ph15050502. [PMID: 35631329 PMCID: PMC9143821 DOI: 10.3390/ph15050502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
Cancer cells are characterized by an abnormal cell cycle. Therefore, the cell cycle has been a potential target for cancer therapeutic agents. We developed a new lead compound, DGG200064 (7c) with a 2-alkoxythieno [2,3-b]pyrazine-3-yl)-4-arylpiperazine-1-carboxamide core skeleton. To evaluate its properties, compound DGG200064 was tested in vivo through a xenograft mouse model of colorectal cancer using HCT116 cells. The in vivo results showed high cell growth inhibition efficacy. Our results confirmed that the newly synthesized DGG200064 inhibits the growth of colorectal cancer cells by inducing G2/M arrest. Unlike the known cell cycle inhibitors, DGG200064 (GI50 = 12 nM in an HCT116 cell-based assay) induced G2/M arrest by selectively inhibiting the interaction of FBXW7 and c-Jun proteins. Additionally, the physicochemical properties of the lead compounds were analyzed. Based on the results of the study, we suggested further development of DGG200064 as a novel oral anti-colorectal cancer drug.
Collapse
|
18
|
Optimized POCl3-assisted synthesis of 2-amino-1,3,4-thiadiazole/1,3,4-oxadiazole derivatives as anti-influenza agents. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
19
|
Çapan İ. Methimazole Analogs as Urease Inhibitors: Synthesis,
In Silico
and
In Vitro
Evaluation. ChemistrySelect 2022. [DOI: 10.1002/slct.202104076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- İrfan Çapan
- Technical Sciences Vocational College Department of Material and Material Processing Technologies Gazi University 06560 Ankara Turkey
- Faculty of Pharmacy Department of Pharmaceutical Chemistry Gazi University 06560 Ankara Turkey
| |
Collapse
|
20
|
Kumari S, Kumar R, Mazumder A, Salahuddin, Saxena S, Sharma D, Joshi S, Abdullah MM. Recent updates on Synthetic Strategies and Biological Potential of 1,3,4-oxadiazole: Review. LETT ORG CHEM 2021. [DOI: 10.2174/1570178619666211231110106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Among the large variety of nitrogen and oxygen-containing heterocycles, 1,3,4-oxadiazole, the scaffold, has attracted considerable attention owing to its ability to show an extensive range of pharmacological actions. According to literature investigations, prepared 1,3,4-oxadiazole and its derivative are pharmacologically significant and consist of a variety of activities, such as anticonvulsant, anticancer, antioxidant, anti-inflammatory, antibacterial, antidiabetic, etc. These heterocyclics are formed mainly by the cyclization reactions of various reactants under diverse reaction circumstances. Therefore, significant efforts of organic chemists have been directed towards the synthesis of new drug candidates containing 1,3,4-oxadiazole subunits connected to an established potential pharmacophore to improve the efficacy and potency. This article aims to highlight recent publications on the various synthesis techniques of 1,3,4-oxadiazole and related compounds over the previous ten years (2011–2021). The purpose of this review is to help researchers by summarizing several synthetic strategies for synthesizing oxadiazole.
Collapse
Affiliation(s)
- Sunita Kumari
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology, (Pharmacy Institute), Greater Noida, India
| | - Rajnish Kumar
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology, (Pharmacy Institute), Greater Noida, India
| | - Avijit Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology, (Pharmacy Institute), Greater Noida, India
| | - Salahuddin
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology, (Pharmacy Institute), Greater Noida, India
| | - Shivani Saxena
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology, (Pharmacy Institute), Greater Noida, India
| | - Divya Sharma
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology, (Pharmacy Institute), Greater Noida, India
| | - Sagar Joshi
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology, (Pharmacy Institute), Greater Noida, India
| | | |
Collapse
|
21
|
Guo W, Mei W, Liu G, Deng L, Zou X, Zhong Y, Zhuo X, Fan X, Zheng L. Base‐Promoted Three‐Component Cyclization and Coupling Strategy for the Synthesis of Substituted 3‐Aryl‐5‐thio‐1,3,4‐thiadiazole‐2‐thiones. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wei Guo
- Gannan Normal University Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province Economic & Technological Development Zone 341000 Ganzhou CHINA
| | - Weijie Mei
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| | - Gongping Liu
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| | - Ling Deng
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| | - Xiaoying Zou
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| | - Yumei Zhong
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| | - Xiaoya Zhuo
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| | - Xiaolin Fan
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| | - Lvyin Zheng
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| |
Collapse
|
22
|
Hassanzadeh F, Jafari E, Shojaei F, Sadeghi-Aliabadi H. Synthesis and cytotoxic activity evaluation of some new 1, 3, 4-oxadiazole, 1, 3, 4-thiadiazole and 1, 2, 4- triazole derivatives attached to phthalimide. Res Pharm Sci 2021; 16:634-642. [PMID: 34760011 PMCID: PMC8562411 DOI: 10.4103/1735-5362.327509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/26/2021] [Accepted: 08/23/2021] [Indexed: 11/04/2022] Open
Abstract
Background and purpose In the last few decades, nitrogen-rich heterocyclic compounds such as 1, 3, 4-thiadiazoles, 1, 2, 4-triazoles and 1, 3, 4-oxadiazoles have received considerable attention because of their notable biological properties, especially cytotoxic effects. The small molecules of mentioned azole derivatives revealed very intensive antitumor activity. In addition, phthalimide-thiadiazole and naphthalimide-triazole hybrid derivatives have shown remarkable cytotoxic effects. According to these observations, some of the hybrid derivatives containing the phthalimide-five-membered azoles were prepared in three steps in this research. Experimental approach The thiol group of azoles was treated with ethyl chloroacetate which was followed by a reaction with hydrazine hydrate to provide acid hydrazide derivatives. Subsequently, the corresponding acid hydrazides were utilized to prepare the final derivatives through the reaction with phthalic anhydride. Cytotoxic activity of final compounds was evaluated against MCF-7 and HeLa cell lines using MTT assay. Findings/Results Compound 3d containing two phthalimide moieties in its structure showed a significant improvement in cytotoxic activity with an IC50 value of 29 μM against HeLa cell line. Compounds 3a-3c showed less cytotoxic effects against both cell lines. Conclusion and implications The combination of the thiadiazole nucleus with two phthalimide structures increased the cytotoxic activity against the HeLa cell line. This increase in cytotoxic activity is probably due to its being more lipophilic characteristic and interaction of this derivative with the biological targets of two directions.
Collapse
Affiliation(s)
- Farshid Hassanzadeh
- Department of Medicinal Chemistry and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Elham Jafari
- Department of Medicinal Chemistry and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Faezeh Shojaei
- Department of Medicinal Chemistry and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Hojjat Sadeghi-Aliabadi
- Department of Medicinal Chemistry and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
23
|
Long B, Tian B, Tang Q, Hu X, Han L, Wang Z, Wang C, Wu Y, Yu Y, Gan Z. A KHSO4 mediated facile synthesis of 2-amino-1,3,4-oxadiazole derivatives. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Obakachi VA, Kushwaha B, Kushwaha ND, Mokoena S, Ganai AM, Pathan TK, van Zyl WE, Karpoormath R. Synthetic and anti-cancer activity aspects of 1, 3, 4-thiadiazole containing bioactive molecules: A concise review. J Sulphur Chem 2021. [DOI: 10.1080/17415993.2021.1963441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Vincent A. Obakachi
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Babita Kushwaha
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Narva Deshwar Kushwaha
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sithabile Mokoena
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ab Majeed Ganai
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Tabasum Khan Pathan
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Werner E. van Zyl
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
25
|
Pham EC, Truong TN, Dong NH, Vo DD, Hong Do TT. Synthesis of a Series of Novel 2-Amino-5-Substituted 1,3,4-oxadiazole and 1,3,4-thiadiazole Derivatives as Potential Anticancer, Antifungal and Antibacterial Agents. Med Chem 2021; 18:558-573. [PMID: 34344293 DOI: 10.2174/1573406417666210803170637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Many compounds containing a five-membered heterocyclic ring display exceptional chemical properties and versatile biological activities. OBJECTIVE The objective of the present study was the desire to prepare the 5-substituted 2-amino-1,3,4-oxadiazole and 2-amino-1,3,4-thiadiazole derivatives and evaluate their potential anticancer, antibacterial and antifungal activities. METHODS Twenty-seven derivatives were synthesized by iodine-mediated cyclization of semicarbazones or thiosemicarbazones obtained from condensation of semicarbazide or thiosemicarbazide and aldehydes. The structures were confirmed by 1H-NMR, 13C-NMR and MS spectra. The antibacterial and antifungal activities were evaluated by diffusion method and the anticancer activities were evaluated by MTT assay. RESULTS Twenty-seven derivatives have been synthesized in moderate to good yields. A number of derivatives exhibited potential antibacterial, antifungal and anticancer activities. CONCLUSION Compounds (1b, 1e and 1g) showed antibacterial activity against Streptococcus faecalis, MSSA and MRSA with MIC ranging between 4 to 64 µg/mL. Compound (2g) showed antifungal activity against Candida albicans (8 µg/mL) and Aspergillus niger (64 µg/mL). Compound (1o) exhibited high cytotoxic activity against HepG2 cell line (IC50 value 8.6 µM), which is comparable to the activity of paclitaxel, and is non-toxic on LLC-PK1 normal cell line. The structure activity relationship and molecular docking study of the synthesized compounds are also reported.
Collapse
Affiliation(s)
- Em Canh Pham
- Department of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh city, 700000 Ho Chi Minh city. Vietnam
| | - Tuyen Ngoc Truong
- Department of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh city, 700000 Ho Chi Minh city. Vietnam
| | - Nguyen Hanh Dong
- Department of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh city, 700000 Ho Chi Minh city. Vietnam
| | - Duy Duc Vo
- Department of Chemistry, and Department of Cell and Molecular Biology, Uppsala University, Uppsala city. Sweden
| | - Tuoi Thi Hong Do
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh city, 700000 Ho Chi Minh city. Vietnam
| |
Collapse
|
26
|
Çapan İ, Servi S, Yıldırım İ, Sert Y. Synthesis, DFT Study, Molecular Docking and Drug‐Likeness Analysis of the New Hydrazine‐1‐Carbothioamide, Triazole and Thiadiazole Derivatives: Potential Inhibitors of HSP90. ChemistrySelect 2021. [DOI: 10.1002/slct.202101086] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- İrfan Çapan
- Technical Sciences Vocational College Department of Material and Material Processing Technologies Gazi University 06560 Ankara TURKEY
- Faculty of Pharmacy Department of Pharmaceutical Chemistry Gazi University 06560 Ankara TURKEY
| | - Süleyman Servi
- Department of Chemistry Faculty of Science Fırat University 23169 Elazığ TURKEY
| | - İsmail Yıldırım
- Department of Chemistry Faculty of Science Erciyes University 38100 Kayseri TURKEY
| | - Yusuf Sert
- Sorgun Vocational High School Yozgat Bozok University 66700 Yozgat TURKEY
| |
Collapse
|
27
|
Kadagathur M, Shaikh AS, Jadhav GS, Sigalapalli DK, Shankaraiah N, Tangellamudi ND. Cyclodesulfurization: An Enabling Protocol for Synthesis of Various Heterocycles. ChemistrySelect 2021. [DOI: 10.1002/slct.202100201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Manasa Kadagathur
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Arbaz Sujat Shaikh
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Govinda Shivaji Jadhav
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Dilep Kumar Sigalapalli
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Neelima D. Tangellamudi
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| |
Collapse
|
28
|
Ma Z, Hu X, Li Y, Liang D, Dong Y, Wang B, Li W. Electrochemical oxidative synthesis of 1,3,4-thiadiazoles from isothiocyanates and hydrazones. Org Chem Front 2021. [DOI: 10.1039/d1qo00168j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A metal- and oxidant-free electrosynthesis of 2-amino-1,3,4-thiadiazoles through tandem addition/chemoselective C–S coupling.
Collapse
Affiliation(s)
- Zhongxiao Ma
- School of Chemistry and Chemical Engineering
- Kunming University
- Kunming 650214
- China
| | - Xiao Hu
- School of Chemistry and Chemical Engineering
- Kunming University
- Kunming 650214
- China
| | - Yanni Li
- School of Chemistry and Chemical Engineering
- Kunming University
- Kunming 650214
- China
| | - Deqiang Liang
- School of Chemistry and Chemical Engineering
- Kunming University
- Kunming 650214
- China
| | - Ying Dong
- College of Chemistry
- Chemical Engineering and Materials Science
- Shandong Normal University
- Jinan 250014
- China
| | - Baoling Wang
- School of Chemistry and Chemical Engineering
- Kunming University
- Kunming 650214
- China
| | - Weili Li
- School of Chemistry and Chemical Engineering
- Kunming University
- Kunming 650214
- China
| |
Collapse
|
29
|
Kumar Sigalapalli D, Kadagathur M, Sujat Shaikh A, Jadhav GS, Bakchi B, Nagendra Babu B, Tangellamudi ND. Microwave‐Assisted TBHP‐Mediated Synthesis of 2‐Amino‐1,3,4‐oxadiazoles in Water. ChemistrySelect 2020. [DOI: 10.1002/slct.202003516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dilep Kumar Sigalapalli
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Manasa Kadagathur
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Arbaz Sujat Shaikh
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Govinda S. Jadhav
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Bulti Bakchi
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Bathini Nagendra Babu
- Department of Fluoro-Agrochemicals CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Neelima D. Tangellamudi
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| |
Collapse
|
30
|
Synthesis, antimicrobial and antioxidant evaluation, and molecular docking study of 4,5-disubstituted 1,2,4-triazole-3-thiones. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128273] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
A KHSO4 promoted tandem synthesis of 1,3,4-thiadiazoles from thiohydrazides and DMF derivatives. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Muhammad Athar Abbasi, Ramzan MS, Aziz-ur-Rehman, Siddiqui SZ, Shah SAA, Lodhi MA, Khan FA, Mirza B. Synthesis of Novel Bi-Heterocycles as Valuable Anti-Diabetic Agents: 2-({5-((2-Amino-1,3-Thiazol-4-yl)methyl)-1,3,4-Oxadiazol-2-yl}sulfanyl)-N-(Substituted)acetamides. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020040020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Zhang S, Zhao Q, Zhao Y, Yu W, Chang J. Synthesis of 2‐Amino Substituted Oxazoles from α‐Amino Ketones and Isothiocyanates
via
Sequential Addition and I
2
‐Mediated Desulfurative Cyclization. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shuangshuang Zhang
- College of ChemistryZhengzhou University Zhengzhou, Henan Province 450001 People's Republic of China
| | - Qiongli Zhao
- College of ChemistryZhengzhou University Zhengzhou, Henan Province 450001 People's Republic of China
| | - Yifei Zhao
- College of ChemistryZhengzhou University Zhengzhou, Henan Province 450001 People's Republic of China
| | - Wenquan Yu
- College of ChemistryZhengzhou University Zhengzhou, Henan Province 450001 People's Republic of China
| | - Junbiao Chang
- College of ChemistryZhengzhou University Zhengzhou, Henan Province 450001 People's Republic of China
| |
Collapse
|
34
|
Shaikh A, Mukherjee P, Ta S, Bhattacharyya A, Ghosh A, Das D. Oxidative cyclization of thiosemicarbazide: a chemodosimetric approach for the highly selective fluorescence detection of cerium(iv). NEW J CHEM 2020. [DOI: 10.1039/d0nj01100b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A simple thiosemicarbazide-based chemodosimeter was employed to detect Ce4+ ion through turn-on fluorescence.
Collapse
Affiliation(s)
- Ahad Shaikh
- Department of Chemistry
- The University of Burdwan
- Burdwan
- India
| | | | - Sabyasachi Ta
- Department of Chemistry
- The University of Burdwan
- Burdwan
- India
| | | | - Abhijit Ghosh
- Department of Chemistry
- The University of Burdwan
- Burdwan
- India
| | - Debasis Das
- Department of Chemistry
- The University of Burdwan
- Burdwan
- India
| |
Collapse
|
35
|
Ramzan A, Nazeer A, Irfan A, Al-Sehemi AG, Verpoort F, Khatak ZA, Ahmad A, Munawar MA, Khan MA, Basra MAR. Synthesis and Antiplatelet Potential Evaluation of 1,3,4-Oxadiazoles Derivatives. Z PHYS CHEM 2019. [DOI: 10.1515/zpch-2018-1316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Abstract
A novel series of 2-(3-methyl-1,6-diphenyl-1H-pyrazolo[3,4-b]pyridin-4-yl)-5-aryl-1,3,4-oxadiazoles (4a–4h) has been synthesized from corresponding hydrazones (3a–3h) and evaluated their antiplatelet aggregation effect induced by arachidonic acid and collagen. Spectral data and elemental evaluation were used to confirm the structure of the compounds while molecular docking against cyclooxygenase 1 and 2 (COX1 & COX2) and quantitative structure-activity relationship (QSAR) were performed in describing their antiplatelet potential. All synthesized compound exhibited more than 50% platelet aggregation inhibition against both arachidonic acid and collagen. Antiplatelet activities results showed that 4b and 4f compounds have highest % inhibition against arachidonic acid. High Egap and ionization potential values showed that the compound 4d, 4e and 4f were supposed to be more active and good electron donor while 4b, 4c, 4d, 4e, 4g and 4h might be more active due to more electrophilic sites. Interaction with more than one residues in the binding pocket of COX-1 in comparison with aspirin and ligand efficacy (LE) consequences showed that compounds have excellent action potential for COX-1. Computational evaluations are in good agreement with antiplatelet activities of the compounds. All compounds might be promising antiplatelet agents especially 4b, 4f and helpful in the synthesis of new drugs for the treatment of cardiovascular diseases (CVDs).
Collapse
Affiliation(s)
- Ayesha Ramzan
- Institute of Chemistry, University of the Punjab, Quaid-e-Azam (New) Campus , Lahore 54590 , Pakistan
| | - Areesha Nazeer
- Institute of Chemistry, University of the Punjab, Quaid-e-Azam (New) Campus , Lahore 54590 , Pakistan
| | - Ahmad Irfan
- Department of Chemistry, Faculty of Science , King Khalid University , P.O. Box 9004, Abha 61413 , Saudi Arabia
| | - Abdullah G. Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University , P.O. Box 9004, Abha 61413 , Saudi Arabia
| | - Francis Verpoort
- Laboratory of Organometallics , Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology , Wuhan 430070 , China
| | - Zafar A. Khatak
- Laboratory of Organometallics , Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology , Wuhan 430070 , China
| | - Aftab Ahmad
- Center of Excellence in Molecular Biology, University of the Punjab , Lahore , Pakistan
| | - Munawar A. Munawar
- Institute of Chemistry, University of the Punjab, Quaid-e-Azam (New) Campus , Lahore 54590 , Pakistan
| | - Misbahul A. Khan
- Institute of Chemistry, University of the Punjab, Quaid-e-Azam (New) Campus , Lahore 54590 , Pakistan
- Department of Chemistry , The Islamia University of Bahawalpur , Bahawalpur 63100 , Pakistan , Tel./Fax: +96-42-99230463 Ext. 839
| | - Muhammad Asim Raza Basra
- Institute of Chemistry, University of the Punjab, Quaid-e-Azam (New) Campus , Lahore 54590 , Pakistan , e-mail:
| |
Collapse
|
36
|
Zhang L, Yu Y, Tang Q, Yuan J, Ran D, Tian B, Pan T, Gan Z. TiCl4 mediated facile synthesis of 1,3,4-oxadiazoles and 1,3,4-thiadiazoles. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1700521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lin Zhang
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yu Yu
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Qiang Tang
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jianyong Yuan
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Dongzhi Ran
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Binghua Tian
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Tao Pan
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Zongjie Gan
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
37
|
Karabanovich G, Dušek J, Savková K, Pavliš O, Pávková I, Korábečný J, Kučera T, Kočová Vlčková H, Huszár S, Konyariková Z, Konečná K, Jand'ourek O, Stolaříková J, Korduláková J, Vávrová K, Pávek P, Klimešová V, Hrabálek A, Mikušová K, Roh J. Development of 3,5-Dinitrophenyl-Containing 1,2,4-Triazoles and Their Trifluoromethyl Analogues as Highly Efficient Antitubercular Agents Inhibiting Decaprenylphosphoryl-β-d-ribofuranose 2'-Oxidase. J Med Chem 2019; 62:8115-8139. [PMID: 31393122 DOI: 10.1021/acs.jmedchem.9b00912] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report herein the discovery of 3,5-dinitrophenyl 1,2,4-triazoles with excellent and selective antimycobacterial activities against Mycobacterium tuberculosis strains, including clinically isolated multidrug-resistant strains. Thorough structure-activity relationship studies of 3,5-dinitrophenyl-containing 1,2,4-triazoles and their trifluoromethyl analogues revealed the key role of the position of the 3,5-dinitrophenyl fragment in the antitubercular efficiency. Among the prepared compounds, the highest in vitro antimycobacterial activities against M. tuberculosis H37Rv and against seven clinically isolated multidrug-resistant strains of M. tuberculosis were found with S-substituted 4-alkyl-5-(3,5-dinitrophenyl)-4H-1,2,4-triazole-3-thiols and their 3-nitro-5-(trifluoromethyl)phenyl analogues. The minimum inhibitory concentrations of these compounds reached 0.03 μM, which is superior to all the current first-line anti-tuberculosis drugs. Furthermore, almost all compounds with excellent antimycobacterial activities exhibited very low in vitro cytotoxicities against two proliferating mammalian cell lines. The docking study indicated that these compounds acted as the inhibitors of decaprenylphosphoryl-β-d-ribofuranose 2'-oxidase enzyme, which was experimentally confirmed by two independent radiolabeling experiments.
Collapse
Affiliation(s)
- Galina Karabanovich
- Faculty of Pharmacy in Hradec Králové , Charles University , Akademika Heyrovského 1203 , 50005 Hradec Králové , Czech Republic
| | - Jan Dušek
- Faculty of Pharmacy in Hradec Králové , Charles University , Akademika Heyrovského 1203 , 50005 Hradec Králové , Czech Republic
| | - Karin Savková
- Faculty of Natural Sciences, Department of Biochemistry , Comenius University in Bratislava , Mlynská Dolina, Ilkovičova 6 , 842 15 Bratislava , Slovakia
| | - Oto Pavliš
- Biological Defense Department , Military Health Institute , 561 64 Techonin , Czech Republic
| | - Ivona Pávková
- Faculty of Military Health Sciences , University of Defence , Třebešská 1575 , 50005 Hradec Králové , Czech Republic
| | - Jan Korábečný
- Faculty of Military Health Sciences , University of Defence , Třebešská 1575 , 50005 Hradec Králové , Czech Republic.,Biomedical Research Center , University Hospital Hradec Králové , Sokolska 581 , 500 05 Hradec Králové , Czech Republic
| | - Tomáš Kučera
- Faculty of Military Health Sciences , University of Defence , Třebešská 1575 , 50005 Hradec Králové , Czech Republic
| | - Hana Kočová Vlčková
- Faculty of Pharmacy in Hradec Králové , Charles University , Akademika Heyrovského 1203 , 50005 Hradec Králové , Czech Republic
| | - Stanislav Huszár
- Faculty of Natural Sciences, Department of Biochemistry , Comenius University in Bratislava , Mlynská Dolina, Ilkovičova 6 , 842 15 Bratislava , Slovakia
| | - Zuzana Konyariková
- Faculty of Natural Sciences, Department of Biochemistry , Comenius University in Bratislava , Mlynská Dolina, Ilkovičova 6 , 842 15 Bratislava , Slovakia
| | - Klára Konečná
- Faculty of Pharmacy in Hradec Králové , Charles University , Akademika Heyrovského 1203 , 50005 Hradec Králové , Czech Republic
| | - Ondřej Jand'ourek
- Faculty of Pharmacy in Hradec Králové , Charles University , Akademika Heyrovského 1203 , 50005 Hradec Králové , Czech Republic
| | - Jiřina Stolaříková
- Department of Bacteriology and Mycology , Regional Institute of Public Health , Partyzánské náměstí 7 , 70200 Ostrava , Czech Republic
| | - Jana Korduláková
- Faculty of Natural Sciences, Department of Biochemistry , Comenius University in Bratislava , Mlynská Dolina, Ilkovičova 6 , 842 15 Bratislava , Slovakia
| | - Kateřina Vávrová
- Faculty of Pharmacy in Hradec Králové , Charles University , Akademika Heyrovského 1203 , 50005 Hradec Králové , Czech Republic
| | - Petr Pávek
- Faculty of Pharmacy in Hradec Králové , Charles University , Akademika Heyrovského 1203 , 50005 Hradec Králové , Czech Republic
| | - Věra Klimešová
- Faculty of Pharmacy in Hradec Králové , Charles University , Akademika Heyrovského 1203 , 50005 Hradec Králové , Czech Republic
| | - Alexandr Hrabálek
- Faculty of Pharmacy in Hradec Králové , Charles University , Akademika Heyrovského 1203 , 50005 Hradec Králové , Czech Republic
| | - Katarína Mikušová
- Faculty of Natural Sciences, Department of Biochemistry , Comenius University in Bratislava , Mlynská Dolina, Ilkovičova 6 , 842 15 Bratislava , Slovakia
| | - Jaroslav Roh
- Faculty of Pharmacy in Hradec Králové , Charles University , Akademika Heyrovského 1203 , 50005 Hradec Králové , Czech Republic
| |
Collapse
|
38
|
Chauhan J, Ravva MK, Sen S. Harnessing Autoxidation of Aldehydes: In Situ Iodoarene Catalyzed Synthesis of Substituted 1,3,4-Oxadiazole, in the Presence of Molecular Oxygen. Org Lett 2019; 21:6562-6565. [PMID: 31368711 DOI: 10.1021/acs.orglett.9b02542] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Isobutyraldehyde underwent auto-oxidation in the presence of molecular oxygen to generate an acyloxy radical under a "metal-free" environment. They were subsequently exploited in situ to afford hypervalent iodines with p-anisolyl iodide which generated substituted 1,3,4-oxadiazoles in moderate to excellent yields from N'-arylidene acetohydrazides. The reaction strategy tolerated diverse substitution on the hydrazide substrates. Control experiments and literature precedence supported the formation of an in situ iodosylarene complex that facilitates the formation of products.
Collapse
Affiliation(s)
- Jyoti Chauhan
- Department of Chemistry, School of Natural Sciences , Shiv Nadar University , Dadri, Chithera, Gautambudh Nagar , Uttar Pradesh 201314 , India
| | - Mahesh K Ravva
- Department of Chemistry , SRM University-AP , Amaravati , Andhra Pradesh 522502 , India
| | - Subhabrata Sen
- Department of Chemistry, School of Natural Sciences , Shiv Nadar University , Dadri, Chithera, Gautambudh Nagar , Uttar Pradesh 201314 , India
| |
Collapse
|
39
|
Design, synthesis and biological evaluation of 2,5-dimethylfuran-3-carboxylic acid derivatives as potential IDO1 inhibitors. Bioorg Med Chem 2019; 27:1605-1618. [DOI: 10.1016/j.bmc.2019.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/25/2019] [Accepted: 03/02/2019] [Indexed: 11/22/2022]
|
40
|
Mutchu BR, Kotra V, Onteddu SR, Boddapati SNM, Bollikolla HB. Synthesis, Cytotoxicity and Antimicrobial Evaluation of Some New 2-Aryl,5-Substituted 1,3,4-Oxadiazoles and 1,3,4-Thiadiazoles. CHEMISTRY AFRICA-A JOURNAL OF THE TUNISIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s42250-018-00034-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Park SW, Banskota S, Gurung P, Jin YJ, Kang HE, Chaudhary CL, Lee SY, Jeong BS, Kim JA, Nam TG. Synthesis and evaluation of 6-heteroarylamino-2,4,5-trimethylpyridin-3-ols as inhibitors of TNF-α-induced cell adhesion and inflammatory bowel disease. MEDCHEMCOMM 2018; 9:1305-1310. [PMID: 30151084 PMCID: PMC6096353 DOI: 10.1039/c8md00156a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/02/2018] [Indexed: 12/19/2022]
Abstract
Inflammatory bowel disease (IBD) is an inflammatory disease of the gastrointestinal tract with complex pathogenesis. Here, we synthesized 6-heteroarylamino analogues to inhibit TNF-α-induced adhesion of monocytes to colon epithelial cells which are implicated in the initial inflammation process of IBD. The best analogue, 16a, showed IC50 = 0.29 μM, which is about five orders of magnitude better than that of 5-aminosalicylic acid (5-ASA), a positive control. Oral administration of 6f and 16a dramatically ameliorated 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colon inflammation in rat. The ameliorating effects were accompanied by a high level of recovery in colon and body weights and in the myeloperoxidase (MPO) level. Consistently, the compounds suppressed the expression of intercellular adhesion molecule-1 (ICAM-1) and monocyte chemoattractant protein 1 (MCP-1). Moreover, they significantly suppressed the expression of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 while increasing the level of IL-10, an anti-inflammatory cytokine.
Collapse
Affiliation(s)
- Sang Won Park
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Gyeonggi-do 15588 , Republic of Korea . ; ; Tel: +82 31 400 5807
| | - Suhrid Banskota
- College of Pharmacy and Institute for Drug Research , Yeungnam University , Gyeongsan 38541 , Republic of Korea . ; ; ; Tel: +82 53 810 2814 ; Tel: +82 53 810 2816
| | - Pallavi Gurung
- College of Pharmacy and Institute for Drug Research , Yeungnam University , Gyeongsan 38541 , Republic of Korea . ; ; ; Tel: +82 53 810 2814 ; Tel: +82 53 810 2816
| | - You Jin Jin
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Gyeonggi-do 15588 , Republic of Korea . ; ; Tel: +82 31 400 5807
| | - Han-Eol Kang
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Gyeonggi-do 15588 , Republic of Korea . ; ; Tel: +82 31 400 5807
| | - Chhabi Lal Chaudhary
- College of Pharmacy and Institute for Drug Research , Yeungnam University , Gyeongsan 38541 , Republic of Korea . ; ; ; Tel: +82 53 810 2814 ; Tel: +82 53 810 2816
| | - Sang Yeul Lee
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Gyeonggi-do 15588 , Republic of Korea . ; ; Tel: +82 31 400 5807
| | - Byeong-Seon Jeong
- College of Pharmacy and Institute for Drug Research , Yeungnam University , Gyeongsan 38541 , Republic of Korea . ; ; ; Tel: +82 53 810 2814 ; Tel: +82 53 810 2816
| | - Jung-Ae Kim
- College of Pharmacy and Institute for Drug Research , Yeungnam University , Gyeongsan 38541 , Republic of Korea . ; ; ; Tel: +82 53 810 2814 ; Tel: +82 53 810 2816
| | - Tae-Gyu Nam
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Gyeonggi-do 15588 , Republic of Korea . ; ; Tel: +82 31 400 5807
| |
Collapse
|
42
|
Abdildinova A, Gong YD. Current Parallel Solid-Phase Synthesis of Drug-like Oxadiazole and Thiadiazole Derivatives for Combinatorial Chemistry. ACS COMBINATORIAL SCIENCE 2018; 20:309-329. [PMID: 29714475 DOI: 10.1021/acscombsci.8b00044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Solid-phase organic synthesis is a powerful tool in the synthesis of small organic molecules and building of libraries of compounds for drug discovery. Heterocyclic compounds are important components of the drug discovery field as well and serve as a core for hundreds of marketed drugs. In particular, oxadiazole and thiadiazole cores are compounds of great interest due to their comprehensive biological activities and structural features. Therefore, a plethora of oxadiazole and thiadiazole synthesis methodologies have been reported to date, including solution and solid-phase synthesis methodologies. In this review, we concentrate on and summarize solid-phase synthetic approaches of the oxadiazole and thiadiazole derivatives.
Collapse
Affiliation(s)
- Aizhan Abdildinova
- Innovative Drug Library Research Center, Department of Chemistry, College of Science, Dongguk University, 26, 3-ga, Pil-dong, Jung-gu, Seoul 04620, Korea
| | - Young-Dae Gong
- Innovative Drug Library Research Center, Department of Chemistry, College of Science, Dongguk University, 26, 3-ga, Pil-dong, Jung-gu, Seoul 04620, Korea
| |
Collapse
|
43
|
Ha JE, Yang SJ, Gong YD. Construction of 1,3,4-Oxadiazole and 1,3,4-Thiadiazole Library with a High Level of Skeletal Diversity Based on Branching Diversity-Oriented Synthesis on Solid-Phase Supports. ACS COMBINATORIAL SCIENCE 2018; 20:82-97. [PMID: 29309123 DOI: 10.1021/acscombsci.7b00174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An efficient solid-phase synthetic route for the construction of 1,3,4-oxadiazole and 1,3,4-thiadiazole libraries based on branching diversity-oriented synthesis (DOS) has been developed in this study. The core skeleton resins, 1,3,4-oxadiazole and 1,3,4-thiadiazole, were obtained through desulfurative and dehydrative cyclizations of thiosemicarbazide resin, respectively. Various functional groups have been introduced to the core skeleton resins, such as aryl, amine, amide, urea, thiourea, and an amino acid. Most of the libraries were purified by simple trituration without extraction or column chromatography after cleavage of the products from the solid-supported resin. As a result, we obtained high yields of pure 1,3,4-oxadiazole and 1,3,4-thiadiazole derivatives (total numbers = 128). Finally, we confirmed the drug-like properties of our library by calculation of physicochemical properties, displays of the skeletal diversities of the library in 3D-space, and occupation of a broad range of areas by their functional groups.
Collapse
Affiliation(s)
- Ji-Eun Ha
- Innovative Drug Library Research
Center, Department of Chemistry, College of Science, Dongguk University, 26, 3-ga, Pil-dong Jung-gu, Seoul 100-715, Korea
| | - Seung-Ju Yang
- Innovative Drug Library Research
Center, Department of Chemistry, College of Science, Dongguk University, 26, 3-ga, Pil-dong Jung-gu, Seoul 100-715, Korea
| | - Young-Dae Gong
- Innovative Drug Library Research
Center, Department of Chemistry, College of Science, Dongguk University, 26, 3-ga, Pil-dong Jung-gu, Seoul 100-715, Korea
| |
Collapse
|
44
|
Abdildinova A, Yang SJ, Gong YD. Solid-phase parallel synthesis of 1,3,4-oxadiazole based peptidomimetic library as a potential modulator of protein-protein interactions. Tetrahedron 2018. [DOI: 10.1016/j.tet.2017.12.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
45
|
Hatvate NT, Ghodse SM, Telvekar VN. Metal-free synthesis of 2-aminothiadiazoles via TBHP-Mediated oxidative C-S bond formation. SYNTHETIC COMMUN 2018. [DOI: 10.1080/00397911.2017.1398330] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Navnath T. Hatvate
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, India
| | - Shrikant M. Ghodse
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, India
| | - Vikas N. Telvekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, India
| |
Collapse
|
46
|
Jiang Q, Qi X, Zhang C, Ji X, Li J, Liu R. Oxidant- and hydrogen acceptor-free palladium catalyzed dehydrogenative cyclization of acylhydrazones to substituted oxadiazoles. Org Chem Front 2018. [DOI: 10.1039/c7qo00749c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
An efficient method for the synthesis of 2,5-disubstituted 1,3,4-oxadiazoles has been developed through palladium(0) catalyzed dehydrogenative cyclization ofN-arylidenearoylhydrazides without oxidants and hydrogen acceptors.
Collapse
Affiliation(s)
- Qiangqiang Jiang
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Xinghui Qi
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Chenyang Zhang
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Xuan Ji
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Jin Li
- China Catalyst Holding Co
- Ltd
- Dalian 116699
- China
| | - Renhua Liu
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
47
|
Golmohammadi F, Balalaie S, Hamdan F, Maghari S. Efficient synthesis of novel conjugated 1,3,4-oxadiazole–peptides. NEW J CHEM 2018. [DOI: 10.1039/c7nj04720g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this study, we developed an efficient approach for the synthesis of 2-amino-1,3,4-oxadiazoles that are bioisosteres of the amide functional group. The synthesized oxadiazoles were conjugated to octa- and nonapeptides through the C- or N-terminus as precursors of leuprolide acetate. The synthesized compounds are peptidomimetics of leuprolide acetate.
Collapse
Affiliation(s)
- Farhad Golmohammadi
- Peptide Chemistry Research Center
- K. N. Toosi University of Technology
- Tehran
- Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Center
- K. N. Toosi University of Technology
- Tehran
- Iran
- Medical Biology Research Center
| | - Fatima Hamdan
- Peptide Chemistry Research Center
- K. N. Toosi University of Technology
- Tehran
- Iran
| | - Shokoofeh Maghari
- Peptide Chemistry Research Center
- K. N. Toosi University of Technology
- Tehran
- Iran
| |
Collapse
|
48
|
Salahuddin, Mazumder A, Yar MS, Mazumder R, Chakraborthy GS, Ahsan MJ, Rahman MU. Updates on synthesis and biological activities of 1,3,4-oxadiazole: A review. SYNTHETIC COMMUN 2017. [DOI: 10.1080/00397911.2017.1360911] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Salahuddin
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, India
| | - A. Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, India
| | - M. Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi, India
| | - R. Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, India
| | - G. S. Chakraborthy
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, India
| | - Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur, Rajasthan, India
| | - Mujeeb Ur Rahman
- Department of Drug Discovery and Development, Alwar Pharmacy College MIA Alwar, Alwar, Rajasthan, India
| |
Collapse
|
49
|
Wos M, Miazga-Karska M, Kaczor AA, Klimek K, Karczmarzyk Z, Kowalczuk D, Wysocki W, Ginalska G, Urbanczyk-Lipkowska Z, Morawiak M, Pitucha M. Novel thiosemicarbazide derivatives with 4-nitrophenyl group as multi-target drugs: α-glucosidase inhibitors with antibacterial and antiproliferative activity. Biomed Pharmacother 2017; 93:1269-1276. [DOI: 10.1016/j.biopha.2017.07.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/12/2017] [Accepted: 07/11/2017] [Indexed: 10/19/2022] Open
|
50
|
Yan X, Lee G, Noh KT, Lee H, Kim H, Lee KH, Hur NH, Lee B, Park YJ. Highly Efficient One-Pot Solvent-Free Synthesis of 2,5-Disubstituted-1,3,4-Oxadiazole via BTI-mediated Oxidation of N-Acylhydrazone from Hydrazide and Aldehyde. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xinhao Yan
- Department of Applied Chemistry, Institute of Natural Science; Kyung Hee University; Gyeonggi-Do 17104 Korea
| | - Goeun Lee
- Department of Applied Chemistry, Institute of Natural Science; Kyung Hee University; Gyeonggi-Do 17104 Korea
| | - Kyung Tak Noh
- Department of Applied Chemistry, Institute of Natural Science; Kyung Hee University; Gyeonggi-Do 17104 Korea
| | - Hyeonjin Lee
- Department of Applied Chemistry, Institute of Natural Science; Kyung Hee University; Gyeonggi-Do 17104 Korea
| | - Hakwon Kim
- Department of Applied Chemistry, Institute of Natural Science; Kyung Hee University; Gyeonggi-Do 17104 Korea
| | - Kyu Hyung Lee
- Department of Chemistry; Sogang University; Seoul 04107 Korea
| | - Nam Hwi Hur
- Department of Chemistry; Sogang University; Seoul 04107 Korea
| | - Byeongno Lee
- Department of Chemistry; Sogang University; Seoul 04107 Korea
| | - Young Jun Park
- Department of Bioinspired Science, Department of Chemistry and Nano Science; Ewha Womans University; Seoul 03706 Korea
| |
Collapse
|