1
|
Xue J, Shao X, Li J, Li J, Trabelsi T, Francisco JS, Zeng X. Observation of the Water-HNSO 2 Complex. J Am Chem Soc 2024; 146:5455-5460. [PMID: 38359146 DOI: 10.1021/jacs.3c13127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Sulfamic acid (NH2SO3H, SFA) is supposed to play an important role in aerosol new particle formation (NPF) in the atmosphere, and its formation mainly arises from the SO3-NH3 reaction system in which weakly bonded donor-acceptor complexes such as SO3···NH3 and isomeric HNSO2···H2O have been proposed as the key intermediates. In this study, we reveal the first spectroscopic observation of HNSO2···H2O in two forms in a solid Ar matrix at 10 K. The major form consists of two intermolecular H bonds by forming a six-membered ring structure with a calculated dissociation energy of 7.6 kcal mol-1 at the CCSD(T)-F12a/aug-cc-pVTZ level of theory. The less stable form resembles SO3···H2O in containing a pure chalcogen bond (S···O) with a dissociation energy of 7.2 kcal mol-1. The characterization of HNSO2···H2O with matrix-isolation IR spectroscopy is supported by D- and 18O-isotope labeling and quantum chemical calculations.
Collapse
Affiliation(s)
- Junfei Xue
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Xin Shao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Jia Li
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Jun Li
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Tarek Trabelsi
- Department of Earth and Environment Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6243, United States
| | - Joseph S Francisco
- Department of Earth and Environment Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6243, United States
| | - Xiaoqing Zeng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
2
|
Mohamed A, Salah M, Tahoun M, Hawner M, Abdelsamie AS, Frotscher M. Dual Targeting of Steroid Sulfatase and 17β-Hydroxysteroid Dehydrogenase Type 1 by a Novel Drug-Prodrug Approach: A Potential Therapeutic Option for the Treatment of Endometriosis. J Med Chem 2022; 65:11726-11744. [PMID: 35993890 DOI: 10.1021/acs.jmedchem.2c00589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel approach for the dual inhibition of steroid sulfatase (STS) and 17β-hydroxysteroid dehydrogenase type 1(17β HSD1) by a single drug was explored, starting from in-house 17β HSD1 inhibitors via masking their phenolic OH group with a sulfamate ester. The sulfamates were intentionally designed as drugs for the inhibition of STS and, at the same time, prodrugs for 17β-HSD1 inhibition ("drug-prodrug approach"). The most promising sulfamates 13, 16, 18-20, 22-24, 36, and 37 showed nanomolar IC50 values for STS inhibition in a cellular assay and their corresponding phenols displayed potent 17β-HSD1 inhibition in cell-free and cellular assays, high selectivity over 17β-HSD2, reasonable metabolic stability, and low estrogen receptor α affinity. A close relationship was found between the liberation of the phenolic compound by sulfamate hydrolysis and 17β-HSD1 inactivation. These results showed that the envisaged drug-prodrug concept was successfully implemented. The novel compounds constitute a promising class of therapeutics for the treatment of endometriosis and other estrogen-dependent diseases.
Collapse
Affiliation(s)
- Abdelrahman Mohamed
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, Saarbrücken D-66123, Germany.,Pharmaceutical Organic Chemistry Department, Assiut University, Assiut 71526, Egypt
| | - Mohamed Salah
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, Saarbrücken D-66123, Germany.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts, Cairo 12451, Egypt
| | - Mariam Tahoun
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, Saarbrücken D-66123, Germany
| | - Manuel Hawner
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, Saarbrücken D-66123, Germany
| | - Ahmed S Abdelsamie
- Department of Chemistry of Natural and Microbial Products, Institute of Pharmaceutical and Drug Industries Research, National Research Centre, El-Buhouth St., Dokki, P.O. Box 12622 Cairo 12451, Egypt.,Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E81, Saarbrücken 66123, Germany
| | - Martin Frotscher
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, Saarbrücken D-66123, Germany
| |
Collapse
|
3
|
Rhein-Knudsen N, Meyer AS. Chemistry, gelation, and enzymatic modification of seaweed food hydrocolloids. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
4
|
Kolchina NV, Rychkov GN, Kulminskaya AA, Ibatullin FM, Petukhov MG, Bobrov KS. Structural Organization of the Active Center of Unmodified Recombinant Sulfatase from the Mycelial Fungi Fusarium proliferatum LE1. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020040081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Szeler K, Williams NH, Hengge AC, Kamerlin SCL. Modeling the Alkaline Hydrolysis of Diaryl Sulfate Diesters: A Mechanistic Study. J Org Chem 2020; 85:6489-6497. [PMID: 32309943 PMCID: PMC7304899 DOI: 10.1021/acs.joc.0c00441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Indexed: 12/11/2022]
Abstract
Phosphate and sulfate esters have important roles in regulating cellular processes. However, while there has been substantial experimental and computational investigation of the mechanisms and the transition states involved in phosphate ester hydrolysis, there is far less work on sulfate ester hydrolysis. Here, we report a detailed computational study of the alkaline hydrolysis of diaryl sulfate diesters, using different DFT functionals as well as mixed implicit/explicit solvation with varying numbers of explicit water molecules. We consider the impact of the computational model on computed linear free-energy relationships (LFER) and the nature of the transition states (TS) involved. We obtain good qualitative agreement with experimental LFER data when using a pure implicit solvent model and excellent agreement with experimental kinetic isotope effects for all models used. Our calculations suggest that sulfate diester hydrolysis proceeds through loose transition states, with minimal bond formation to the nucleophile and bond cleavage to the leaving group already initiated. Comparison to prior work indicates that these TS are similar in nature to those for the alkaline hydrolysis of neutral arylsulfonate monoesters or charged phosphate diesters and fluorophosphates. Obtaining more detailed insights into the transition states involved assists in understanding the selectivity of enzymes that hydrolyze these reactions.
Collapse
Affiliation(s)
- Klaudia Szeler
- Department
of Chemistry − BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | | | - Alvan C. Hengge
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322-0300, United States
| | - Shina C. L. Kamerlin
- Department
of Chemistry − BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| |
Collapse
|
6
|
Chen C, Wang L, Zhao X, Wu Z, Bernhardt B, Eckhardt AK, Schreiner PR, Zeng X. Photochemistry of HNSO 2 in cryogenic matrices: spectroscopic identification of the intermediates and mechanism. Phys Chem Chem Phys 2020; 22:7975-7983. [PMID: 32236270 DOI: 10.1039/d0cp00962h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small molecules solely consisting of H, N, O, and S are highly relevant intermediates in atmospheric chemistry and biology. Even though several isomers of [HNO2S] have been computationally predicted, only the IR spectra for the two lowest-energy isomers HNSO2 and syn-syn HONSO have been previously reported. Herein, the photochemistry (193 nm laser) of HNSO2 in N2-, Ne-, and Ar-matrices (≤15 K) has been studied. Aside from syn-syn HONSO, several new isomers including anti-syn HONSO, gauche-syn HOSNO, syn HOS(O)N, anti HOS(O)N, syn HS(O)NO, anti HN(O)SO, gauche-syn HSONO, and an elusive caged-radical pair HOS˙˙NO have been identified. Additionally, the formation of fragments HONO, HO˙, ˙NO, and ˙NO2 has also been observed. The characterization of these species with matrix-isolation IR and UV/Vis spectroscopy is supported by 15N-labeling and quantum chemical computations at the B3LYP/6-311++G(3df,3pd) level. Furthermore, the photo-induced isomerization reactions, including the conformational conversion of syn-syn HONSO → anti-syn HONSO and reversible isomerization of HOSNO ↔ anti-syn HONSO, syn-syn HONSO ↔ HN(O)SO, HSONO ↔ HS(O)NO, and HOS˙˙NO ↔ HOSNO have also been observed, and the underlying mechanism is discussed.
Collapse
Affiliation(s)
- Changyun Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China.
| | - Lina Wang
- Department of Chemistry, Fudan University, 200433 Shanghai, China
| | - Xiaofang Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China.
| | - Zhuang Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China.
| | - Bastian Bernhardt
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - André K Eckhardt
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Xiaoqing Zeng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China. and Department of Chemistry, Fudan University, 200433 Shanghai, China
| |
Collapse
|
7
|
Rapp PB, Murai K, Ichiishi N, Leahy DK, Miller SJ. Catalytic Sulfamoylation of Alcohols with Activated Aryl Sulfamates. Org Lett 2020; 22:168-174. [PMID: 31833780 DOI: 10.1021/acs.orglett.9b04119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a new catalytic method for alcohol sulfamoylation that deploys electron-deficient aryl sulfamates as activated group transfer reagents. The reaction utilizes the simple organic base N-methylimidazole, proceeds under mild conditions, and provides intrinsic selectivity for 1° over 2° alcohols (up to >40:1 for certain nucleosides). The requisite aryl sulfamate donors are stable crystalline solids that can be readily prepared on a large scale. Mechanistic considerations support the intermediacy of HNSO2 "aza-sulfene" in the transfer reaction.
Collapse
Affiliation(s)
- Peter B Rapp
- Department of Chemistry , Yale University , P.O. Box 208107, New Haven , Connecticut 06520-8107 , United States
| | - Koichi Murai
- Process Chemistry Development , Takeda Pharmaceuticals International Co. , Cambridge , Massachusetts 02139 , United States
| | - Naoko Ichiishi
- Process Chemistry Development , Takeda Pharmaceuticals International Co. , Cambridge , Massachusetts 02139 , United States
| | - David K Leahy
- Process Chemistry Development , Takeda Pharmaceuticals International Co. , Cambridge , Massachusetts 02139 , United States
| | - Scott J Miller
- Department of Chemistry , Yale University , P.O. Box 208107, New Haven , Connecticut 06520-8107 , United States
| |
Collapse
|
8
|
Kinetics and mechanism of sulfonylation of α-amino acids and dipeptides. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2489-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
van Loo B, Berry R, Boonyuen U, Mohamed MF, Golicnik M, Hengge AC, Hollfelder F. Transition-State Interactions in a Promiscuous Enzyme: Sulfate and Phosphate Monoester Hydrolysis by Pseudomonas aeruginosa Arylsulfatase. Biochemistry 2019; 58:1363-1378. [PMID: 30810299 PMCID: PMC11098524 DOI: 10.1021/acs.biochem.8b00996] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pseudomonas aeruginosa arylsulfatase (PAS) hydrolyzes sulfate and, promiscuously, phosphate monoesters. Enzyme-catalyzed sulfate transfer is crucial to a wide variety of biological processes, but detailed studies of the mechanistic contributions to its catalysis are lacking. We present linear free energy relationships (LFERs) and kinetic isotope effects (KIEs) of PAS and analyses of active site mutants that suggest a key role for leaving group (LG) stabilization. In LFERs PASWT has a much less negative Brønsted coefficient (βleaving groupobs-Enz = -0.33) than the uncatalyzed reaction (βleaving groupobs = -1.81). This situation is diminished when cationic active site groups are exchanged for alanine. The considerable degree of bond breaking during the transition state (TS) is evidenced by an 18Obridge KIE of 1.0088. LFER and KIE data for several active site mutants point to leaving group stabilization by active site K375, in cooperation with H211. 15N KIEs and the increased sensitivity to leaving group ability of the sulfatase activity in neat D2O (Δβleaving groupH-D = +0.06) suggest that the mechanism for S-Obridge bond fission shifts, with decreasing leaving group ability, from charge compensation via Lewis acid interactions toward direct proton donation. 18Ononbridge KIEs indicate that the TS for PAS-catalyzed sulfate monoester hydrolysis has a significantly more associative character compared to the uncatalyzed reaction, while PAS-catalyzed phosphate monoester hydrolysis does not show this shift. This difference in enzyme-catalyzed TSs appears to be the major factor favoring specificity toward sulfate over phosphate esters by this promiscuous hydrolase, since other features are either too similar (uncatalyzed TS) or inherently favor phosphate (charge).
Collapse
Affiliation(s)
- Bert van Loo
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Ryan Berry
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Usa Boonyuen
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Mark F. Mohamed
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Marko Golicnik
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Alvan C. Hengge
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
10
|
Uduwela DR, Pabis A, Stevenson BJ, Kamerlin SCL, McLeod MD. Enhancing the Steroid Sulfatase Activity of the Arylsulfatase from Pseudomonas aeruginosa. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02905] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dimanthi R. Uduwela
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Anna Pabis
- Department of Cell and Molecular Biology, Uppsala University, S-751 24 Uppsala, Sweden
| | - Bradley J. Stevenson
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Shina C. L. Kamerlin
- Department of Cell and Molecular Biology, Uppsala University, S-751 24 Uppsala, Sweden
| | - Malcolm D. McLeod
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
11
|
Potter BVL. SULFATION PATHWAYS: Steroid sulphatase inhibition via aryl sulphamates: clinical progress, mechanism and future prospects. J Mol Endocrinol 2018; 61:T233-T252. [PMID: 29618488 DOI: 10.1530/jme-18-0045] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/04/2018] [Indexed: 12/13/2022]
Abstract
Steroid sulphatase is an emerging drug target for the endocrine therapy of hormone-dependent diseases, catalysing oestrogen sulphate hydrolysis to oestrogen. Drug discovery, developing the core aryl O-sulphamate pharmacophore, has led to steroidal and non-steroidal drugs entering numerous clinical trials, with promising results in oncology and women's health. Steroidal oestrogen sulphamate derivatives were the first irreversible active-site-directed inhibitors and one was developed clinically as an oral oestradiol pro-drug and for endometriosis applications. This review summarizes work leading to the therapeutic concept of sulphatase inhibition, clinical trials executed to date and new insights into the mechanism of inhibition of steroid sulphatase. To date, the non-steroidal sulphatase inhibitor Irosustat has been evaluated clinically in breast cancer, alone and in combination, in endometrial cancer and in prostate cancer. The versatile core pharmacophore both imbues attractive pharmaceutical properties and functions via three distinct mechanisms of action, as a pro-drug, an enzyme active-site-modifying motif, likely through direct sulphamoyl group transfer, and as a structural component augmenting activity, for example by enhancing interactions at the colchicine binding site of tubulin. Preliminary new structural data on the Pseudomonas aeruginosa arylsulphatase enzyme suggest two possible sulphamate-based adducts with the active site formylglycine as candidates for the inhibition end product via sulphamoyl or sulphonylamine transfer, and a speculative choice is suggested. The clinical status of sulphatase inhibition is surveyed and how it might develop in the future. Also discussed are dual-targeting approaches, development of 2-substituted steroidal sulphamates and non-steroidal derivatives as multi-targeting agents for hormone-independent tumours, with other emerging directions.
Collapse
Affiliation(s)
- Barry V L Potter
- Medicinal Chemistry & Drug DiscoveryDepartment of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Abstract
Hydrolytic enzymes are a large class of biological catalysts that play a vital role in a plethora of critical biochemical processes required to maintain human health. However, the expression and/or activity of these important enzymes can change in many different diseases and therefore represent exciting targets for the development of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radiotracers. This review focuses on recently reported radiolabeled substrates, reversible inhibitors, and irreversible inhibitors investigated as PET and SPECT tracers for imaging hydrolytic enzymes. By learning from the most successful examples of tracer development for hydrolytic enzymes, it appears that an early focus on careful enzyme kinetics and cell-based studies are key factors for identifying potentially useful new molecular imaging agents.
Collapse
Affiliation(s)
- Brian P Rempel
- 1 Department of Science, Augustana Faculty, University of Alberta, Edmonton, Alberta, Canada
| | - Eric W Price
- 2 Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Christopher P Phenix
- 2 Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,3 Biomarker Discovery, Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada
| |
Collapse
|
13
|
Korban SA, Bobrov KS, Maynskova MA, Naryzhny SN, Vlasova OL, Eneyskaya EV, Kulminskaya AA. Heterologous expression in Pichia pastoris and biochemical characterization of the unmodified sulfatase from Fusarium proliferatum LE1. Protein Eng Des Sel 2017. [PMID: 28651356 DOI: 10.1093/protein/gzx033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Sulfatases are a family of enzymes (sulfuric ester hydrolases, EC 3.1.6.-) that catalyze the hydrolysis of a wide array of sulfate esters. To date, despite the discovery of many sulfatase genes and the accumulation of data on numerous sulfated molecules, the number of characterized enzymes that are key players in sulfur metabolism remains extremely limited. While mammalian sulfatases are well studied due to their involvement in a wide range of normal and pathological biological processes, lower eukaryotic sulfatases, especially fungal sulfatases, have not been thoroughly investigated at the biochemical and structural level. In this paper, we describe the molecular cloning of Fusarium proliferatum sulfatase (F.p.Sulf-6His), its recombinant expression in Pichia pastoris as a soluble and active cytosolic enzyme and its detailed characterization. Gel filtration and native electrophoretic experiments showed that this recombinant enzyme exists as a tetramer in solution. The enzyme is thermo-sensitive, with an optimal temperature of 25°C. The optimal pH value for the hydrolysis of sulfate esters and stability of the enzyme was 6.0. Despite the absence of the post-translational modification of cysteine into Cα-formylglycine, the recombinant F.p.Sulf-6His has remarkably stable catalytic activity against p-nitrophenol sulfate, with kcat = 0.28 s-1 and Km = 2.45 mM, which indicates potential use in the desulfating processes. The currently proposed enzymatic mechanisms of sulfate ester hydrolysis do not explain the appearance of catalytic activity for the unmodified enzyme. According to the available models, the unmodified enzyme is not able to perform multiple catalytic acts; therefore, the enzymatic mechanism of sulfate esters hydrolysis remains to be fully elucidated.
Collapse
Affiliation(s)
- Svetlana A Korban
- Laboratory of Enzymology, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center "Kurchatov Institute", PNPI, 1, Orlova roscha mcr., Gatchina, Leningrad Region 188300, Russia.,Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, Chlopina str. 11, 195251 St. Petersburg, Russia
| | - Kirill S Bobrov
- Laboratory of Enzymology, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center "Kurchatov Institute", PNPI, 1, Orlova roscha mcr., Gatchina, Leningrad Region 188300, Russia
| | - Maria A Maynskova
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences, Pogodinskaya 10, Moscow 119121, Russia
| | - Stanislav N Naryzhny
- Laboratory of Enzymology, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center "Kurchatov Institute", PNPI, 1, Orlova roscha mcr., Gatchina, Leningrad Region 188300, Russia.,Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences, Pogodinskaya 10, Moscow 119121, Russia
| | - Olga L Vlasova
- Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, Chlopina str. 11, 195251 St. Petersburg, Russia
| | - Elena V Eneyskaya
- Laboratory of Enzymology, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center "Kurchatov Institute", PNPI, 1, Orlova roscha mcr., Gatchina, Leningrad Region 188300, Russia
| | - Anna A Kulminskaya
- Laboratory of Enzymology, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center "Kurchatov Institute", PNPI, 1, Orlova roscha mcr., Gatchina, Leningrad Region 188300, Russia.,Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, Chlopina str. 11, 195251 St. Petersburg, Russia
| |
Collapse
|
14
|
Castronovo S, Wick A, Scheurer M, Nödler K, Schulz M, Ternes TA. Biodegradation of the artificial sweetener acesulfame in biological wastewater treatment and sandfilters. WATER RESEARCH 2017; 110:342-353. [PMID: 28063296 PMCID: PMC5292994 DOI: 10.1016/j.watres.2016.11.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/11/2016] [Accepted: 11/12/2016] [Indexed: 05/21/2023]
Abstract
A considerable removal of the artificial sweetener acesulfame (ACE) was observed during activated sludge processes at 13 wastewater treatment plants (WWTPs) as well as in a full-scale sand filter of a water works. A long-term sampling campaign over a period of almost two years revealed that ACE removal in WWTPs can be highly variable over time. Nitrifying/denitrifying sequencing batch reactors (SBR) as well as aerobic batch experiments with activated sludge and filter sand from a water works confirmed that both activated sludge as well as filter sand can efficiently remove ACE and that the removal can be attributed to biologically mediated degradation processes. The lab results strongly indicated that varying ACE removal in WWTPs is not associated with nitrification processes. Neither an enhancement of the nitrification rate nor the availability of ammonium or the inhibition of ammonium monooxygenase by N-allylthiourea (ATU) affected the degradation. Moreover, ACE was found to be also degradable by activated sludge under denitrifying conditions, while being persistent in the absence of both dissolved oxygen and nitrate. Using ion chromatography coupled with high resolution mass spectrometry, sulfamic acid (SA) was identified as the predominant transformation product (TP). Quantitative analysis of ACE and SA revealed a closed mass balance during the entire test period and confirmed that ACE was quantitatively transformed to SA. Measurements of dissolved organic carbon (DOC) revealed an almost complete removal of the carbon originating from ACE, thereby further confirming that SA is the only relevant final TP in the assumed degradation pathway of ACE. A first analysis of SA in three municipal WWTP revealed similar concentrations in influents and effluents with maximum concentrations of up to 2.3 mg/L. The high concentrations of SA in wastewater are in accordance with the extensive use of SA in acid cleaners, while the degradation of ACE in WWTPs adds only a very small portion of the total load of SA discharged into surface waters. No removal of SA was observed by the biological treatment applied at these WWTPs. Moreover, SA was also stable in the aerobic batch experiments conducted with the filter sand from a water works. Hence, SA might be a more appropriate wastewater tracer than ACE due to its chemical and microbiological persistence, the negligible sorbing affinity (high negative charge density) and its elevated concentrations in WWTP effluents.
Collapse
Affiliation(s)
- Sandro Castronovo
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Arne Wick
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Marco Scheurer
- DVGW Water Technology Center Karlsruhe (TZW), Department of Analyses and Water Quality, Karlsruher Str. 84, D-76139 Karlsruhe, Germany
| | - Karsten Nödler
- DVGW Water Technology Center Karlsruhe (TZW), Department of Analyses and Water Quality, Karlsruher Str. 84, D-76139 Karlsruhe, Germany
| | - Manoj Schulz
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Thomas A Ternes
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany.
| |
Collapse
|
15
|
Deng G, Wu Z, Li D, Linguerri R, Francisco JS, Zeng X. Simplest N-Sulfonylamine HNSO2. J Am Chem Soc 2016; 138:11509-12. [PMID: 27575523 DOI: 10.1021/jacs.6b07966] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Guohai Deng
- College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhuang Wu
- College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Dingqing Li
- College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Roberto Linguerri
- Laboratorie
de Modelisation et Simulation Multi Echelle, Universite Paris-Est, 77454 Marne La Vallee, France
| | - Joseph S. Francisco
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xiaoqing Zeng
- College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
16
|
Li B, Zhou S, Wang S, Sun X, Ge Z, Li R. Efficient synthesis of organic sulfonic acid derivatives containing dithiocarbamate side chains. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Pabis A, Duarte F, Kamerlin SCL. Promiscuity in the Enzymatic Catalysis of Phosphate and Sulfate Transfer. Biochemistry 2016; 55:3061-81. [PMID: 27187273 PMCID: PMC4899807 DOI: 10.1021/acs.biochem.6b00297] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
The
enzymes that facilitate phosphate and sulfate hydrolysis are
among the most proficient natural catalysts known to date. Interestingly,
a large number of these enzymes are promiscuous catalysts that exhibit
both phosphatase and sulfatase activities in the same active site
and, on top of that, have also been demonstrated to efficiently catalyze
the hydrolysis of other additional substrates with varying degrees
of efficiency. Understanding the factors that underlie such multifunctionality
is crucial both for understanding functional evolution in enzyme superfamilies
and for the development of artificial enzymes. In this Current Topic,
we have primarily focused on the structural and mechanistic basis
for catalytic promiscuity among enzymes that facilitate both phosphoryl
and sulfuryl transfer in the same active site, while comparing this
to how catalytic promiscuity manifests in other promiscuous phosphatases.
We have also drawn on the large number of experimental and computational
studies of selected model systems in the literature to explore the
different features driving the catalytic promiscuity of such enzymes.
Finally, on the basis of this comparative analysis, we probe the plausible
origins and determinants of catalytic promiscuity in enzymes that
catalyze phosphoryl and sulfuryl transfer.
Collapse
Affiliation(s)
- Anna Pabis
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University , BMC Box 596, S-751 24 Uppsala, Sweden
| | - Fernanda Duarte
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, U.K.,Physical and Theoretical Chemistry Laboratory, University of Oxford , South Parks Road, Oxford OX1 3QZ, U.K
| | - Shina C L Kamerlin
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University , BMC Box 596, S-751 24 Uppsala, Sweden
| |
Collapse
|
18
|
Bayissa LD, Hojo M. Specific salt effects on the hydrolysis reaction rate of tropolone tosylate in binary MeCN–H2O media containing n-Bu4NOH. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2015.12.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Thomas MP, Potter BVL. Discovery and Development of the Aryl O-Sulfamate Pharmacophore for Oncology and Women's Health. J Med Chem 2015; 58:7634-58. [PMID: 25992880 PMCID: PMC5159624 DOI: 10.1021/acs.jmedchem.5b00386] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In 1994, following work from this laboratory, it was reported that estrone-3-O-sulfamate irreversibly inhibits a new potential hormone-dependent cancer target steroid sulfatase (STS). Subsequent drug discovery projects were initiated to develop the core aryl O-sulfamate pharmacophore that, over some 20 years, have led to steroidal and nonsteroidal drugs in numerous preclinical and clinical trials, with promising results in oncology and women's health, including endometriosis. Drugs have been designed to inhibit STS, e.g., Irosustat, as innovative dual-targeting aromatase-steroid sulfatase inhibitors (DASIs) and as multitargeting agents for hormone-independent tumors, such as the steroidal STX140 and nonsteroidal counterparts, acting inter alia through microtubule disruption. The aryl sulfamate pharmacophore is highly versatile, operating via three distinct mechanisms of action, and imbues attractive pharmaceutical properties. This Perspective gives a personal view of the work leading both to the therapeutic concepts and these drugs, their current status, and how they might develop in the future.
Collapse
Affiliation(s)
- Mark P. Thomas
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Barry V. L. Potter
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, United Kingdom
| |
Collapse
|
20
|
Thomas MP, Potter BVL. Estrogen O-sulfamates and their analogues: Clinical steroid sulfatase inhibitors with broad potential. J Steroid Biochem Mol Biol 2015; 153:160-9. [PMID: 25843211 DOI: 10.1016/j.jsbmb.2015.03.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 03/31/2015] [Indexed: 01/20/2023]
Abstract
Estrogen sulfamate derivatives were the first irreversible active-site-directed inhibitors of steroid sulfatase (STS), an emerging drug target for endocrine therapy of hormone dependent diseases that catalyzes inter alia the hydrolysis of estrone sulfate to estrone. In recent years this has stimulated clinical investigation of the estradiol derivative both as an oral prodrug and its currently ongoing exploration in endometriosis. 2-Substituted steroid sulfamate derivatives show considerable potential as multi-targeting agents for hormone-independent disease, but are also potent STS inhibitors. The steroidal template has spawned nonsteroidal STS inhibitors one of which, Irosustat, has been evaluated clinically in breast cancer, endometrial cancer and prostate cancer and there is potential for innovative dual-targeting approaches. This review surveys the role of estrogen sulfamates, their analogues and current status.
Collapse
Affiliation(s)
- Mark P Thomas
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Barry V L Potter
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom.
| |
Collapse
|
21
|
Stevenson BJ, Waller CC, Ma P, Li K, Cawley AT, Ollis DL, McLeod MD. Pseudomonas aeruginosaarylsulfatase: a purified enzyme for the mild hydrolysis of steroid sulfates. Drug Test Anal 2015; 7:903-11. [DOI: 10.1002/dta.1782] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/04/2015] [Accepted: 02/04/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Bradley J. Stevenson
- Research School of Chemistry; Australian National University; Canberra ACT 2601 Australia
| | - Christopher C. Waller
- Research School of Chemistry; Australian National University; Canberra ACT 2601 Australia
| | - Paul Ma
- Research School of Chemistry; Australian National University; Canberra ACT 2601 Australia
| | - Kunkun Li
- Research School of Chemistry; Australian National University; Canberra ACT 2601 Australia
| | - Adam T. Cawley
- Racing New South Wales - Australian Racing Forensic Laboratory; Sydney NSW 1465 Australia
| | - David L. Ollis
- Research School of Chemistry; Australian National University; Canberra ACT 2601 Australia
| | - Malcolm D. McLeod
- Research School of Chemistry; Australian National University; Canberra ACT 2601 Australia
| |
Collapse
|
22
|
Appel MJ, Bertozzi CR. Formylglycine, a post-translationally generated residue with unique catalytic capabilities and biotechnology applications. ACS Chem Biol 2015; 10:72-84. [PMID: 25514000 PMCID: PMC4492166 DOI: 10.1021/cb500897w] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Formylglycine (fGly) is a catalytically essential residue found almost exclusively in the active sites of type I sulfatases. Formed by post-translational oxidation of cysteine or serine side chains, this aldehyde-functionalized residue participates in a unique and highly efficient catalytic mechanism for sulfate ester hydrolysis. The enzymes that produce fGly, formylglycine-generating enzyme (FGE) and anaerobic sulfatase-maturating enzyme (anSME), are as unique and specialized as fGly itself. FGE especially is structurally and mechanistically distinct, and serves the sole function of activating type I sulfatase targets. This review summarizes the current state of knowledge regarding the mechanism by which fGly contributes to sulfate ester hydrolysis, the molecular details of fGly biogenesis by FGE and anSME, and finally, recent biotechnology applications of fGly beyond its natural catalytic function.
Collapse
Affiliation(s)
- Mason J. Appel
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Carolyn R. Bertozzi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
23
|
Duarte F, Åqvist J, Williams NH, Kamerlin SCL. Resolving apparent conflicts between theoretical and experimental models of phosphate monoester hydrolysis. J Am Chem Soc 2014; 137:1081-93. [PMID: 25423607 PMCID: PMC4311964 DOI: 10.1021/ja5082712] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
Understanding
phosphoryl and sulfuryl transfer is central to many
biochemical processes. However, despite decades of experimental and
computational studies, a consensus concerning the precise mechanistic
details of these reactions has yet to be reached. In this work we
perform a detailed comparative theoretical study of the hydrolysis
of p-nitrophenyl phosphate, methyl phosphate and p-nitrophenyl sulfate, all of which have served as key model
systems for understanding phosphoryl and sulfuryl transfer reactions,
respectively. We demonstrate the existence of energetically similar
but mechanistically distinct possibilities for phosphate monoester
hydrolysis. The calculated kinetic isotope effects for p-nitrophenyl phosphate provide a means to discriminate between substrate-
and solvent-assisted pathways of phosphate monoester hydrolysis, and
show that the solvent-assisted pathway dominates in solution. This
preferred mechanism for p-nitrophenyl phosphate hydrolysis
is difficult to find computationally due to the limitations of compressing
multiple bonding changes onto a 2-dimensional energy surface. This
problem is compounded by the need to include implicit solvation to
at least microsolvate the system and stabilize the highly charged
species. In contrast, methyl phosphate hydrolysis shows a preference
for a substrate-assisted mechanism. For p-nitrophenyl
sulfate hydrolysis there is only one viable reaction pathway, which
is similar to the solvent-assisted pathway for phosphate hydrolysis,
and the substrate-assisted pathway is not accessible. Overall, our
results provide a unifying mechanistic framework that is consistent
with the experimentally measured kinetic isotope effects and reconciles
the discrepancies between theoretical and experimental models for
these biochemically ubiquitous classes of reaction.
Collapse
Affiliation(s)
- Fernanda Duarte
- Department of Cell and Molecular Biology (ICM), Uppsala University , SE-751 24 Uppsala, Sweden
| | | | | | | |
Collapse
|