1
|
Dhara D, Mulard LA, Hollenstein M. Natural, modified and conjugated carbohydrates in nucleic acids. Chem Soc Rev 2025. [PMID: 39936337 DOI: 10.1039/d4cs00799a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Storage of genetic information in DNA occurs through a unique ordering of canonical base pairs. However, this would not be possible in the absence of the sugar-phosphate backbone which is essential for duplex formation. While over a hundred nucleobase modifications have been identified (mainly in RNA), Nature is rather conservative when it comes to alterations at the level of the (deoxy)ribose sugar moiety. This trend is not reflected in synthetic analogues of nucleic acids where modifications of the sugar entity is commonplace to improve the properties of DNA and RNA. In this review article, we describe the main incentives behind sugar modifications in nucleic acids and we highlight recent progress in this field with a particular emphasis on therapeutic applications, the development of xeno-nucleic acids (XNAs), and on interrogating nucleic acid etiology. We also describe recent strategies to conjugate carbohydrates and oligosaccharides to oligonucleotides since this represents a particularly powerful strategy to improve the therapeutic index of oligonucleotide drugs. The advent of glycoRNAs combined with progress in nucleic acid and carbohydrate chemistry, protein engineering, and delivery methods will undoubtedly yield more potent sugar-modified nucleic acids for therapeutic, biotechnological, and synthetic biology applications.
Collapse
Affiliation(s)
- Debashis Dhara
- Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, Institut Pasteur, Université Paris Cité, CNRS UMR 352328, rue du Docteur Roux, 75724 Paris Cedex 15, France.
- Department of Structural Biology and Chemistry, Laboratory for Chemistry of Biomolecules, Institut Pasteur, Université Paris Cité, CNRS UMR 3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Laurence A Mulard
- Department of Structural Biology and Chemistry, Laboratory for Chemistry of Biomolecules, Institut Pasteur, Université Paris Cité, CNRS UMR 3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Marcel Hollenstein
- Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, Institut Pasteur, Université Paris Cité, CNRS UMR 352328, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
2
|
Das G, Harikrishna S, Gore KR. Investigating the Effect of Chemical Modifications on the Ribose Sugar Conformation, Watson-Crick Base Pairing, and Intrastrand Stacking Interactions: A Theoretical Approach. J Phys Chem B 2024; 128:8313-8331. [PMID: 39172066 DOI: 10.1021/acs.jpcb.4c02557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Over the last few decades, chemically modified sugars have been incorporated into nucleic acid-based therapeutics to improve their pharmacological potential. Chemical modification can influence the sugar conformation, Watson-Crick hydrogen (W-C) bonding, and nucleobase stacking interactions, which play major roles in the structural integrity and dynamic properties of nucleic acid duplexes. In this study, we categorized 33 uridine (U*) and cytidine (C*) sugar modifications and calculated their sugar conformational parameters. We also calculated the Watson-Crick hydrogen bond energies of the modified RNA-type base pairs (U*:A and C*:G) using DFT and sSAPT0 methods. The W-C base pairing energy calculations suggested that the South-type modified sugar strengthens the C*:G base pair and weakens the U*:A base pair compared to the unmodified one. In contrast, the North-type sugar modifications form weaker C*:G base pair and marginally stronger U*:A base pair compared to the South-type modified sugars. Moreover, intrastrand base stacking energies were calculated for 15 modifications incorporated at the fourth position in 7-mer non-self-complementary RNA duplexes [(GCAU*GAC)2 and (GCAC*GAC)2], utilizing molecular dynamics simulation and quantum mechanical (DFT and sSAPT0) methods. The sugar modifications were found to have minimal effect on the intrastrand base-stacking interactions. However, the glycol nucleic acid modification disturbs the intrastrand base-stacking significantly, corroborating the experimental data.
Collapse
Affiliation(s)
- Gourav Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - S Harikrishna
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Kiran R Gore
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
3
|
Mesaros EF, Dugan BJ, Gao M, Sheraz M, McGovern-Gooch K, Xu F, Fan KY, Nguyen D, Kultgen SG, Lindstrom A, Stever K, Tercero B, Binder RJ, Liu F, Micolochick Steuer HM, Mani N, Harasym TO, Thi EP, Cuconati A, Dorsey BD, Cole AG, Lam AM, Sofia MJ. Discovery of C-Linked Nucleoside Analogues with Antiviral Activity against SARS-CoV-2. ACS Infect Dis 2024; 10:1780-1792. [PMID: 38651692 DOI: 10.1021/acsinfecdis.4c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The recent COVID-19 pandemic underscored the limitations of currently available direct-acting antiviral treatments against acute respiratory RNA-viral infections and stimulated major research initiatives targeting anticoronavirus agents. Two novel nsp5 protease (MPro) inhibitors have been approved, nirmatrelvir and ensitrelvir, along with two existing nucleos(t)ide analogues repurposed as nsp12 polymerase inhibitors, remdesivir and molnupiravir, but a need still exists for therapies with improved potency and systemic exposure with oral dosing, better metabolic stability, and reduced resistance and toxicity risks. Herein, we summarize our research toward identifying nsp12 inhibitors that led to nucleoside analogues 10e and 10n, which showed favorable pan-coronavirus activity in cell-infection screens, were metabolized to active triphosphate nucleotides in cell-incubation studies, and demonstrated target (nsp12) engagement in biochemical assays.
Collapse
Affiliation(s)
- Eugen F Mesaros
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Benjamin J Dugan
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Min Gao
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Muhammad Sheraz
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | | | - Fran Xu
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Kristi Yi Fan
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Duyan Nguyen
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Steven G Kultgen
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Aaron Lindstrom
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Kim Stever
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Breanna Tercero
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Randall J Binder
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Fei Liu
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | | | - Nagraj Mani
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Troy O Harasym
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Emily P Thi
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Andrea Cuconati
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Bruce D Dorsey
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Andrew G Cole
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Angela M Lam
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Michael J Sofia
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| |
Collapse
|
4
|
Xiang L, Hu T, Xue H, Pan W, Xie Y, Shen J. Synthesis and evaluation of NHC derivatives and 4'-fluorouridine prodrugs. Org Biomol Chem 2023; 21:2754-2767. [PMID: 36917467 DOI: 10.1039/d3ob00268c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
β-D-N4-Hydroxycytidine (NHC) derivatives with structural modifications at the C4', O4' or C6 position and 4'-fluorouridine prodrugs were synthesized and evaluated for their antiviral activities against respiratory syncytial virus (RSV) or influenza virus (IFV) in vitro. The NHC derivatives were found inactive, but 4'-fluorouridine and its prodrugs had potent anti-RSV and anti-IFV activities. 4'-Fluorouridine was proved to be a nucleoside with poor stability, but the tri-ester prodrugs exhibited enhanced stability, especially tri-isobutyrate ester 1a. This prodrug also showed excellent oral pharmacokinetic properties in rats, with potential to be an oral antiviral candidate.
Collapse
Affiliation(s)
- Li Xiang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Tianwen Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Haitao Xue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenfang Pan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuanchao Xie
- Lingang Laboratory, Shanghai 200031, P. R. China.
| | - Jingshan Shen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
5
|
Lowe PT, O'Hagan D. 4'-Fluoro-nucleosides and nucleotides: from nucleocidin to an emerging class of therapeutics. Chem Soc Rev 2023; 52:248-276. [PMID: 36472161 DOI: 10.1039/d2cs00762b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The history and development of 4'-fluoro-nucleosides is discussed in this review. This is a class of nucleosides which have their origin in the discovery of the rare fluorine containing natural product nucleocidin. Nucleocidin contains a fluorine atom located at the 4'-position of its ribose ring. From its early isolation as an unexpected natural product, to its total synthesis and bioactivity assessment, nucleocidin has played a role in inspiring the exploration of 4'-fluoro-nucleosides as a privileged motif for nucleoside-based therapeutics.
Collapse
Affiliation(s)
- Phillip T Lowe
- School of Chemistry and Biomedical Sciences Research Centre, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK.
| | - David O'Hagan
- School of Chemistry and Biomedical Sciences Research Centre, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK.
| |
Collapse
|
6
|
Das G, Harikrishna S, Gore KR. Influence of Sugar Modifications on the Nucleoside Conformation and Oligonucleotide Stability: A Critical Review. CHEM REC 2022; 22:e202200174. [PMID: 36048010 DOI: 10.1002/tcr.202200174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/16/2022] [Indexed: 12/15/2022]
Abstract
Ribofuranose sugar conformation plays an important role in the structure and dynamics of functional nucleic acids such as siRNAs, AONs, aptamers, miRNAs, etc. To improve their therapeutic potential, several chemical modifications have been introduced into the sugar moiety over the years. The stability of the oligonucleotide duplexes as well as the formation of stable and functional protein-oligonucleotide complexes are dictated by the conformation and dynamics of the sugar moiety. In this review, we systematically categorise various ribofuranose sugar modifications employed in DNAs and RNAs so far. We discuss different stereoelectronic effects imparted by different substituents on the sugar ring and how these effects control sugar puckering. Using this data, it would be possible to predict the precise use of chemical modifications and design novel sugar-modified nucleosides for therapeutic oligonucleotides that can improve their physicochemical properties.
Collapse
Affiliation(s)
- Gourav Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal-721302, India
| | - S Harikrishna
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Kiran R Gore
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal-721302, India
| |
Collapse
|
7
|
Grosse S, Tahri A, Raboisson P, Houpis Y, Stoops B, Jacoby E, Neefs JM, Van Loock M, Goethals O, Geluykens P, Bonfanti JF, Jonckers THM. From Oxetane to Thietane: Extending the Antiviral Spectrum of 2′-Spirocyclic Uridines by Substituting Oxygen with Sulfur. ACS Med Chem Lett 2022; 13:1879-1884. [DOI: 10.1021/acsmedchemlett.2c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Sandrine Grosse
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Abdellah Tahri
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Pierre Raboisson
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Yannis Houpis
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Bart Stoops
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Edgar Jacoby
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Jean-Marc Neefs
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Marnix Van Loock
- Janssen Global Public Health, R&D, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Olivia Goethals
- Janssen Global Public Health, R&D, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Peggy Geluykens
- Charles River, Discovery, Turnhoutseweg 30, 2340 Beerse, Belgium
| | | | - Tim H. M. Jonckers
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| |
Collapse
|
8
|
Li Q, Trajkovski M, Fan C, Chen J, Zhou Y, Lu K, Li H, Su X, Xi Z, Plavec J, Zhou C. 4'-SCF 3 -Labeling Constitutes a Sensitive 19 F NMR Probe for Characterization of Interactions in the Minor Groove of DNA. Angew Chem Int Ed Engl 2022; 61:e202201848. [PMID: 36163470 PMCID: PMC9828712 DOI: 10.1002/anie.202201848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 01/12/2023]
Abstract
Fluorinated nucleotides are invaluable for 19 F NMR studies of nucleic acid structure and function. Here, we synthesized 4'-SCF3 -thymidine (T 4 ' - SCF 3 ${{^{4{^\prime}\hbox{-}{\rm SCF}{_{3}}}}}$ ) and incorporated it into DNA by means of solid-phase DNA synthesis. NMR studies showed that the 4'-SCF3 group exhibited a flexible orientation in the minor groove of DNA duplexes and was well accommodated by various higher order DNA structures. The three magnetically equivalent fluorine atoms in 4'-SCF3 -DNA constitute an isolated spin system, offering high 19 F NMR sensitivity and excellent resolution of the positioning of T 4 ' - SCF 3 ${{^{4{^\prime}\hbox{-}{\rm SCF}{_{3}}}}}$ within various secondary and tertiary DNA structures. The high structural adaptability and high sensitivity of T 4 ' - SCF 3 ${{^{4{^\prime}\hbox{-}{\rm SCF}{_{3}}}}}$ make it a valuable 19 F NMR probe for quantitatively distinguishing diverse DNA structures with single-nucleotide resolution and for monitoring the dynamics of interactions in the minor groove of double-stranded DNA.
Collapse
Affiliation(s)
- Qiang Li
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China,Slovenian NMR CentreNational Institute of ChemistryHajdrihova 19SI-1000LjubljanaSlovenia
| | - Marko Trajkovski
- Slovenian NMR CentreNational Institute of ChemistryHajdrihova 19SI-1000LjubljanaSlovenia
| | - Chaochao Fan
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China
| | - Jialiang Chen
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China
| | - Yifei Zhou
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China
| | - Kuan Lu
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China
| | - Hongjun Li
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China
| | - Xuncheng Su
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China
| | - Janez Plavec
- Slovenian NMR CentreNational Institute of ChemistryHajdrihova 19SI-1000LjubljanaSlovenia
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China
| |
Collapse
|
9
|
Rietmeyer L, Li De La Sierra-Gallay I, Schepers G, Dorchêne D, Iannazzo L, Patin D, Touzé T, van Tilbeurgh H, Herdewijn P, Ethève-Quelquejeu M, Fonvielle M. Amino-acyl tXNA as inhibitors or amino acid donors in peptide synthesis. Nucleic Acids Res 2022; 50:11415-11425. [PMID: 36350642 PMCID: PMC9723616 DOI: 10.1093/nar/gkac1023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/10/2022] Open
Abstract
Xenobiotic nucleic acids (XNAs) offer tremendous potential for synthetic biology, biotechnology, and molecular medicine but their ability to mimic nucleic acids still needs to be explored. Here, to study the ability of XNA oligonucleotides to mimic tRNA, we synthesized three L-Ala-tXNAs analogs. These molecules were used in a non-ribosomal peptide synthesis involving a bacterial Fem transferase. We compared the ability of this enzyme to use amino-acyl tXNAs containing 1',5'-anhydrohexitol (HNA), 2'-fluoro ribose (2'F-RNA) and 2'-fluoro arabinose. L-Ala-tXNA containing HNA or 2'F-RNA were substrates of the Fem enzyme. The synthesis of peptidyl-XNA and the resolution of their structures in complex with the enzyme show the impact of the XNA on protein binding. For the first time we describe functional tXNA in an in vitro assay. These results invite to test tXNA also as substitute for tRNA in translation.
Collapse
Affiliation(s)
| | | | - Guy Schepers
- Laboratory of Medicinal Chemistry, Rega Institute for Biomedical Research, KU Leuven, Herestraat 49, Box 1041, 3000 Leuven, Belgium
| | - Delphine Dorchêne
- INSERM UMR-S 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, F-75006 Paris, France
| | - Laura Iannazzo
- Université Paris Cité, CNRS UMR 8601, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, F-75006Paris, France
| | - Delphine Patin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay 91198, Gif-sur-Yvette, France
| | - Thierry Touzé
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay 91198, Gif-sur-Yvette, France
| | - Herman van Tilbeurgh
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay 91198, Gif-sur-Yvette, France
| | - Piet Herdewijn
- Laboratory of Medicinal Chemistry, Rega Institute for Biomedical Research, KU Leuven, Herestraat 49, Box 1041, 3000 Leuven, Belgium
| | - Mélanie Ethève-Quelquejeu
- Université Paris Cité, CNRS UMR 8601, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, F-75006Paris, France
| | | |
Collapse
|
10
|
Abstract
Fluorinated carbohydrates have found many applications in the glycosciences. Typically, these contain fluorination at a single position. There are not many applications involving polyfluorinated carbohydrates, here defined as monosaccharides in which more than one carbon has at least one fluorine substituent directly attached to it, with the notable exception of their use as mechanism-based inhibitors. The increasing attention to carbohydrate physical properties, especially around lipophilicity, has resulted in a surge of interest for this class of compounds. This review covers the considerable body of work toward the synthesis of polyfluorinated hexoses, pentoses, ketosugars, and aminosugars including sialic acids and nucleosides. An overview of the current state of the art of their glycosidation is also provided.
Collapse
Affiliation(s)
- Kler Huonnic
- School
of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Bruno Linclau
- School
of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
- Department
of Organic and Macromolecular Chemistry, Ghent University, Campus Sterre, Krijgslaan 281-S4, Ghent, 9000, Belgium
| |
Collapse
|
11
|
Shet H, Sahu R, Sanghvi YS, Kapdi AR. Strategies for the Synthesis of Fluorinated Nucleosides, Nucleotides and Oligonucleotides. CHEM REC 2022; 22:e202200066. [PMID: 35638251 DOI: 10.1002/tcr.202200066] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/11/2022] [Indexed: 11/09/2022]
Abstract
Fluorinated nucleosides and oligonucleotides are of specific interest as probes for studying nucleic acids interaction, structures, biological transformations, and its biomedical applications. Among various modifications of oligonucleotides, fluorination of preformed nucleoside and/or nucleotides have recently gained attention owing to the unique properties of fluorine atoms imparting medicinal properties with respect to the small size, electronegativity, lipophilicity, and ability for stereochemical control. This review deals with synthetic protocols for selective fluorination either at sugar or base moiety in a preformed nucleosides, nucleotides and nucleic acids using specific fluorinating reagents.
Collapse
Affiliation(s)
- Harshita Shet
- Department of Chemistry, Institute of Chemical Technology -, Indian Oil Odisha Campus, IIT Kharagpur Extension Centre, Mouza Samantpuri, Bhubaneswar, Odisha-751013, India.,Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai-400019, India
| | - Rajesh Sahu
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai-400019, India
| | - Yogesh S Sanghvi
- Rasayan Inc., 2802, Crystal Ridge, Encinitas, CA92024-6615, California, USA
| | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai-400019, India
| |
Collapse
|
12
|
Pal S, Chandra G, Patel S, Singh S. Fluorinated Nucleosides: Synthesis, Modulation in Conformation and Therapeutic Application. CHEM REC 2022; 22:e202100335. [PMID: 35253973 DOI: 10.1002/tcr.202100335] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/22/2022] [Indexed: 12/17/2022]
Abstract
Over the last twenty years, fluorination on nucleoside has established itself as the most promising tool to use to get biologically active compounds that could sustain the clinical trial by affecting the pharmacodynamics and pharmacokinetic properties. Due to fluorine's inherent unique properties and its judicious introduction into the molecule, makes the corresponding nucleoside metabolically very stable, lipophilic, and opens a new site of intermolecular binding. Fluorination on various nucleosides has been extensively studied as a result, a series of fluorinated nucleosides come up for different therapeutic uses which are either approved by the FDA or under the advanced stage of the clinical trial. Here in this review, we are summarizing the latest development in the chemistry of fluorination on nucleoside that led to varieties of new analogs like carbocyclic, acyclic, and conformationally biased nucleoside and their biological properties, the influence of fluorine on conformation, oligonucleotide stability, and their use in therapeutics.
Collapse
Affiliation(s)
- Shantanu Pal
- School of Basic Sciences, Indian Institute of Technology, Bhubaneswar Argul, Odisha, India, 752050
| | - Girish Chandra
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar, India, 824236
| | - Samridhi Patel
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar, India, 824236
| | - Sakshi Singh
- School of Basic Sciences, Indian Institute of Technology, Bhubaneswar Argul, Odisha, India, 752050
| |
Collapse
|
13
|
Zhou Y, Lu K, Li Q, Fan C, Zhou C. C4'-Fluorinated Oligodeoxynucleotides: Synthesis, Stability, Structural Studies. Chemistry 2021; 27:14738-14746. [PMID: 34432342 DOI: 10.1002/chem.202102561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 11/06/2022]
Abstract
Fluoro-substitution on the ribose moiety (e. g., 2'-F-deoxyribonucleotide) represents a popular way to modulate the ribose conformation and, hence, the structure and function of nucleic acids. In the present study, we synthesized 4'-F-deoxythymidine (4'-F T) and introduced it to oligodeoxyribonucleotides (ODNs). Though scission of the glycosylic bond of 4'-F T followed by strand cleavage occurred to some extent under alkaline conditions, the 4'-F T-modified ODNs were rather stable in neutral buffers. NMR studies showed that like 2'-F-deoxyribonucleoside, 4'-F T exists predominantly in the North conformation not only in the nucleoside form but also in the context of ODN strands. Circular dichroism spectroscopy, thermal denaturing and RNase H1 footprinting studies of 4'-F T-modified ODN/cDNA and ODN/cRNA duplexes indicated that the North conformation tendency of 4'-F T is maintained in the duplexes, leading to a local structural perturbation. Collectively, 4'-F-deoxyribonucleotide structurally resembles the 2'-F-deoxyribonucleotide but imparts less structural perturbation to the duplex than the latter.
Collapse
Affiliation(s)
- Yifei Zhou
- State Key Laboratory of Elemento-Organic Chemistry, and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Kuan Lu
- State Key Laboratory of Elemento-Organic Chemistry, and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qiang Li
- State Key Laboratory of Elemento-Organic Chemistry, and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chaochao Fan
- State Key Laboratory of Elemento-Organic Chemistry, and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry, and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
14
|
Liczner C, Duke K, Juneau G, Egli M, Wilds CJ. Beyond ribose and phosphate: Selected nucleic acid modifications for structure-function investigations and therapeutic applications. Beilstein J Org Chem 2021; 17:908-931. [PMID: 33981365 PMCID: PMC8093555 DOI: 10.3762/bjoc.17.76] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Over the past 25 years, the acceleration of achievements in the development of oligonucleotide-based therapeutics has resulted in numerous new drugs making it to the market for the treatment of various diseases. Oligonucleotides with alterations to their scaffold, prepared with modified nucleosides and solid-phase synthesis, have yielded molecules with interesting biophysical properties that bind to their targets and are tolerated by the cellular machinery to elicit a therapeutic outcome. Structural techniques, such as crystallography, have provided insights to rationalize numerous properties including binding affinity, nuclease stability, and trends observed in the gene silencing. In this review, we discuss the chemistry, biophysical, and structural properties of a number of chemically modified oligonucleotides that have been explored for gene silencing.
Collapse
Affiliation(s)
- Christopher Liczner
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Kieran Duke
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Gabrielle Juneau
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Martin Egli
- Department of Biochemistry, Vanderbilt Institute of Chemical Biology, and Center for Structural Biology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Christopher J Wilds
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B 1R6, Canada
| |
Collapse
|
15
|
Nikam RR, Harikrishna S, Gore KR. Synthesis, Structural, and Conformational Analysis of 4′‐
C
‐Alkyl‐2′‐
O
‐Ethyl‐Uridine Modified Nucleosides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Rahul R. Nikam
- Department of Chemistry University of Mumbai Mumbai 400098 India
| | - S. Harikrishna
- Center for Structural Biology Vanderbilt University Nashville, Tennessee 37232 United States
| | - Kiran R. Gore
- Department of Chemistry University of Mumbai Mumbai 400098 India
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur, West Bengal 721302 India
| |
Collapse
|
16
|
Zheng Z, Groaz E, Snoeck R, De Jonghe S, Herdewijn P, Andrei G. Influence of 4'-Substitution on the Activity of Gemcitabine and Its ProTide Against VZV and SARS-CoV-2. ACS Med Chem Lett 2021; 12:88-92. [PMID: 33479570 PMCID: PMC7737538 DOI: 10.1021/acsmedchemlett.0c00485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
![]()
In
addition to its therapeutic value as a chemotherapy drug, gemcitabine
is of ongoing interest to the scientific community for its broad-spectrum
antiviral activity. Herein the synthesis of 4′-methoxy- and
4′-fluoro-substituted gemcitabine analogues along with their
phosphoramidate prodrugs is described. Among these derivatives, 4′-fluorogemcitabine
proved to be active against varicella zoster virus (VZV, TK+ strain)
with an EC50 of 0.042 μM and produced significant
cytotoxicity (CC50 = 0.11 μM). Upon derivatization
of this trifluoro nucleoside as its prodrug, decreased anti-VZV activity
was observed, but with a concomitantly improved selectivity index
(SI = 36). When this prodrug was tested against severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), its antiviral activity (EC50 = 0.73 μM) was comparable to or slightly lower than
its cytotoxic concentration in measurements of cell growth and cell
morphology, respectively.
Collapse
Affiliation(s)
- Zihua Zheng
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49 bus 1043, 3000 Leuven, Belgium
| | - Elisabetta Groaz
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Robert Snoeck
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49 bus 1043, 3000 Leuven, Belgium
| | - Steven De Jonghe
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49 bus 1043, 3000 Leuven, Belgium
| | - Piet Herdewijn
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Graciela Andrei
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49 bus 1043, 3000 Leuven, Belgium
| |
Collapse
|
17
|
Guo F, Trajkovski M, Li Q, Plavec J, Xi Z, Zhou C. Synthesis and Structure of 4'-CF 3-Uridine Modified Oligoribonucleotides. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202103058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
McKenzie LK, El-Khoury R, Thorpe JD, Damha MJ, Hollenstein M. Recent progress in non-native nucleic acid modifications. Chem Soc Rev 2021; 50:5126-5164. [DOI: 10.1039/d0cs01430c] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
While Nature harnesses RNA and DNA to store, read and write genetic information, the inherent programmability, synthetic accessibility and wide functionality of these nucleic acids make them attractive tools for use in a vast array of applications.
Collapse
Affiliation(s)
- Luke K. McKenzie
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| | | | | | | | - Marcel Hollenstein
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| |
Collapse
|
19
|
Synthesis and Conformational Analysis of Fluorinated Uridine Analogues Provide Insight into a Neighbouring-Group Participation Mechanism. Molecules 2020; 25:molecules25235513. [PMID: 33255573 PMCID: PMC7728060 DOI: 10.3390/molecules25235513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/14/2020] [Accepted: 11/15/2020] [Indexed: 02/05/2023] Open
Abstract
Fluorinated nucleoside analogues have attracted much attention as anticancer and antiviral agents and as probes for enzymatic function. However, the lack of direct synthetic methods, especially for 2′,3′-dideoxy-2′,3′-difluoro nucleosides, hamper their practical utility. In order to design more efficient synthetic methods, a better understanding of the conformation and mechanism of formation of these molecules is important. Herein, we report the synthesis and conformational analysis of a 2′,3′-dideoxy-2′,3′-difluoro and a 2′-deoxy-2′-fluoro uridine derivative and provide an insight into the reaction mechanism. We suggest that the transformation most likely diverges from the SN1 or SN2 pathway, but instead operates via a neighbouring-group participation mechanism.
Collapse
|
20
|
Dentmon ZW, Kaiser TM, Liotta DC. Synthesis and Antiviral Activity of a Series of 2'- C-Methyl-4'-thionucleoside Monophosphate Prodrugs. Molecules 2020; 25:E5165. [PMID: 33171951 PMCID: PMC7664256 DOI: 10.3390/molecules25215165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
The NS5B RNA-dependent RNA polymerase of the hepatitis C virus (HCV) is a validated target for nucleoside antiviral drug therapy. We endeavored to synthesize and test a series of 4'-thionucleosides with a monophosphate prodrug moiety for their antiviral activity against HCV and other related viruses in the Flaviviridae family. Nucleoside analogs were prepared via the stereoselective Vorbrüggen glycosylation of various nucleobases with per-acetylated 2-C-methyl-4-thio-d-ribose built in a 10-step synthetic sequence from the corresponding ribonolactone. Conjugation of the thionucleoside to a ProTide phosphoramidate allowed for evaluation of the prodrugs in the cellular HCV replicon assay with anti-HCV activities ranging from single-digit micromolar (μM) to >200 μM. The diminished anti-HCV potency of our best compound compared to its 4'-oxo congener is the subject of ongoing research in our lab and is proposed to stem from changes in sugar geometry imparted by the larger sulfur atom.
Collapse
Affiliation(s)
- Zackery W. Dentmon
- Department of Chemistry, Emory University, 1521 Dickey Dr., Atlanta, GA 30322, USA;
| | | | - Dennis C. Liotta
- Department of Chemistry, Emory University, 1521 Dickey Dr., Atlanta, GA 30322, USA;
| |
Collapse
|
21
|
|
22
|
Li Q, Chen J, Trajkovski M, Zhou Y, Fan C, Lu K, Tang P, Su X, Plavec J, Xi Z, Zhou C. 4′-Fluorinated RNA: Synthesis, Structure, and Applications as a Sensitive 19F NMR Probe of RNA Structure and Function. J Am Chem Soc 2020; 142:4739-4748. [DOI: 10.1021/jacs.9b13207] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Qiang Li
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jialiang Chen
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Marko Trajkovski
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Ljubljana, EN-FIST Centre of Excellence, Ljubljana, Slovenia
| | - Yifei Zhou
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chaochao Fan
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Kuan Lu
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Pingping Tang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xuncheng Su
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Ljubljana, EN-FIST Centre of Excellence, Ljubljana, Slovenia
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
23
|
Zhou Y, Zang C, Wang H, Li J, Cui Z, Li Q, Guo F, Yan Z, Wen X, Xi Z, Zhou C. 4'-C-Trifluoromethyl modified oligodeoxynucleotides: synthesis, biochemical studies, and cellular uptake properties. Org Biomol Chem 2020; 17:5550-5560. [PMID: 31112186 DOI: 10.1039/c9ob00765b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Herein, we report the synthesis of 4'-C-trifluoromethyl (4'-CF3) thymidine (T4'-CF3) and its incorporation into oligodeoxynucleotides (ODNs) through solid-supported DNA synthesis. The 4'-CF3 modification leads to a marginal effect on the deoxyribose conformation and a local helical structure perturbation for ODN/RNA duplexes. This type of modification slightly decreases the thermal stability of ODN/RNA duplexes (-1 °C/modification) and leads to improved nuclease resistance. Like the well-known phosphorothioate (PS) modification, heavy 4'-CF3 modifications enable direct cellular uptake of the modified ODNs without any delivery reagents. This work highlights that 4'-CF3 modified ODNs are promising candidates for antisense-based therapeutics, which will, in turn, inspire us to develop more potent modifications for antisense ODNs and siRNAs.
Collapse
Affiliation(s)
- Yifei Zhou
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Levi-Acobas F, Katolik A, Röthlisberger P, Cokelaer T, Sarac I, Damha MJ, Leumann CJ, Hollenstein M. Compatibility of 5-ethynyl-2'F-ANA UTP with in vitro selection for the generation of base-modified, nuclease resistant aptamers. Org Biomol Chem 2019; 17:8083-8087. [PMID: 31460550 DOI: 10.1039/c9ob01515a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A modified nucleoside triphosphate bearing two modifications based on a 2'-deoxy-2'-fluoro-arabinofuranose sugar and a uracil nucleobase equipped with a C5-ethynyl moiety (5-ethynyl-2'F-ANA UTP) was synthesized. This nucleotide analog could enzymatically be incorporated into DNA oligonucleotides by primer extension and reverse transcribed to unmodified DNA. This nucleotide could be used in SELEX for the identification of high binding affinity and nuclease resistant aptamers.
Collapse
Affiliation(s)
- Fabienne Levi-Acobas
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR 3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France. and Institut Pasteur, Department of Genome and Genetics, Paris, France
| | - Adam Katolik
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland and Department of Chemistry, McGill University, 801 Rue Sherbrooke Street West, Montréal, QC H3A 0B8, Canada
| | - Pascal Röthlisberger
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR 3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France. and Institut Pasteur, Department of Genome and Genetics, Paris, France
| | - Thomas Cokelaer
- Institut Pasteur, Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, USR 3756 CNRS, Paris, France and Institut Pasteur, Biomics Platform, C2RT, Paris, France
| | - Ivo Sarac
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR 3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France. and Institut Pasteur, Department of Genome and Genetics, Paris, France
| | - Masad J Damha
- Department of Chemistry, McGill University, 801 Rue Sherbrooke Street West, Montréal, QC H3A 0B8, Canada
| | - Christian J Leumann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Marcel Hollenstein
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR 3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France. and Institut Pasteur, Department of Genome and Genetics, Paris, France
| |
Collapse
|
25
|
Harp JM, Guenther DC, Bisbe A, Perkins L, Matsuda S, Bommineni GR, Zlatev I, Foster DJ, Taneja N, Charisse K, Maier MA, Rajeev KG, Manoharan M, Egli M. Structural basis for the synergy of 4'- and 2'-modifications on siRNA nuclease resistance, thermal stability and RNAi activity. Nucleic Acids Res 2019; 46:8090-8104. [PMID: 30107495 PMCID: PMC6144868 DOI: 10.1093/nar/gky703] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022] Open
Abstract
Chemical modification is a prerequisite of oligonucleotide therapeutics for improved metabolic stability, uptake and activity, irrespective of their mode of action, i.e. antisense, RNAi or aptamer. Phosphate moiety and ribose C2′/O2′ atoms are the most common sites for modification. Compared to 2′-O-substituents, ribose 4′-C-substituents lie in proximity of both the 3′- and 5′-adjacent phosphates. To investigate potentially beneficial effects on nuclease resistance we combined 2′-F and 2′-OMe with 4′-Cα- and 4′-Cβ-OMe, and 2′-F with 4′-Cα-methyl modification. The α- and β-epimers of 4′-C-OMe-uridine and the α-epimer of 4′-C-Me-uridine monomers were synthesized and incorporated into siRNAs. The 4′α-epimers affect thermal stability only minimally and show increased nuclease stability irrespective of the 2′-substituent (H, F, OMe). The 4′β-epimers are strongly destabilizing, but afford complete resistance against an exonuclease with the phosphate or phosphorothioate backbones. Crystal structures of RNA octamers containing 2′-F,4′-Cα-OMe-U, 2′-F,4′-Cβ-OMe-U, 2′-OMe,4′-Cα-OMe-U, 2′-OMe,4′-Cβ-OMe-U or 2′-F,4′-Cα-Me-U help rationalize these observations and point to steric and electrostatic origins of the unprecedented nuclease resistance seen with the chain-inverted 4′β-U epimer. We used structural models of human Argonaute 2 in complex with guide siRNA featuring 2′-F,4′-Cα-OMe-U or 2′-F,4′-Cβ-OMe-U at various sites in the seed region to interpret in vitro activities of siRNAs with the corresponding 2′-/4′-C-modifications.
Collapse
Affiliation(s)
- Joel M Harp
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA
| | - Dale C Guenther
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
| | - Anna Bisbe
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
| | - Lydia Perkins
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
| | - Shigeo Matsuda
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
| | | | - Ivan Zlatev
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
| | - Donald J Foster
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
| | - Nate Taneja
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
| | - Klaus Charisse
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
| | - Martin A Maier
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
| | | | - Muthiah Manoharan
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
- To whom correspondence should be addressed. Tel: +1 615 343 8070; Fax: +1 615 343 0704; . Correspondence may also be addressed to Muthiah Manoharan. Tel: +1 617 551 8319; Fax: +1 617 551 8101;
| | - Martin Egli
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA
- To whom correspondence should be addressed. Tel: +1 615 343 8070; Fax: +1 615 343 0704; . Correspondence may also be addressed to Muthiah Manoharan. Tel: +1 617 551 8319; Fax: +1 617 551 8101;
| |
Collapse
|
26
|
Wang G, Dyatkina N, Prhavc M, Williams C, Serebryany V, Hu Y, Huang Y, Wan J, Wu X, Deval J, Fung A, Jin Z, Tan H, Shaw K, Kang H, Zhang Q, Tam Y, Stoycheva A, Jekle A, Smith DB, Beigelman L. Synthesis and Anti-HCV Activities of 4'-Fluoro-2'-Substituted Uridine Triphosphates and Nucleotide Prodrugs: Discovery of 4'-Fluoro-2'- C-methyluridine 5'-Phosphoramidate Prodrug (AL-335) for the Treatment of Hepatitis C Infection. J Med Chem 2019; 62:4555-4570. [PMID: 30951311 DOI: 10.1021/acs.jmedchem.9b00143] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We report the synthesis and biological evaluation of a series of 4'-fluoro-2'- C-substituted uridines. Triphosphates of the uridine analogues exhibited a potent inhibition of hepatitis C virus (HCV) NS5B polymerase with IC50 values as low as 27 nM. In an HCV subgenomic replicon assay, the phosphoramidate prodrugs of these uridine analogues demonstrated a very potent activity with EC50 values as low as 20 nM. A lead compound AL-335 (53) demonstrated high levels of the nucleoside triphosphate in vitro in primary human hepatocytes and Huh-7 cells as well as in dog liver following a single oral dose. Compound 53 was selected for the clinical development where it showed promising results in phase 1 and 2 trials.
Collapse
Affiliation(s)
- Guangyi Wang
- Janssen BioPharma, Inc. , South San Francisco , California 94080 , United States
| | - Natalia Dyatkina
- Janssen BioPharma, Inc. , South San Francisco , California 94080 , United States
| | - Marija Prhavc
- Janssen BioPharma, Inc. , South San Francisco , California 94080 , United States
| | - Caroline Williams
- Janssen BioPharma, Inc. , South San Francisco , California 94080 , United States
| | - Vladimir Serebryany
- Janssen BioPharma, Inc. , South San Francisco , California 94080 , United States
| | - Yujian Hu
- Department of Medicinal Chemistry , WuXi AppTec , Shanghai 200131 , P. R. China
| | - Yongfei Huang
- Department of Medicinal Chemistry , WuXi AppTec , Shanghai 200131 , P. R. China
| | - Jinqiao Wan
- Department of Medicinal Chemistry , WuXi AppTec , Shanghai 200131 , P. R. China
| | - Xiangyang Wu
- Department of Medicinal Chemistry , WuXi AppTec , Shanghai 200131 , P. R. China
| | - Jerome Deval
- Janssen BioPharma, Inc. , South San Francisco , California 94080 , United States
| | - Amy Fung
- Janssen BioPharma, Inc. , South San Francisco , California 94080 , United States
| | - Zhinan Jin
- Janssen BioPharma, Inc. , South San Francisco , California 94080 , United States
| | - Hua Tan
- Janssen BioPharma, Inc. , South San Francisco , California 94080 , United States
| | - Kenneth Shaw
- Janssen BioPharma, Inc. , South San Francisco , California 94080 , United States
| | - Hyunsoon Kang
- Janssen BioPharma, Inc. , South San Francisco , California 94080 , United States
| | - Qingling Zhang
- Janssen BioPharma, Inc. , South San Francisco , California 94080 , United States
| | - Yuen Tam
- Janssen BioPharma, Inc. , South San Francisco , California 94080 , United States
| | - Antitsa Stoycheva
- Janssen BioPharma, Inc. , South San Francisco , California 94080 , United States
| | - Andreas Jekle
- Janssen BioPharma, Inc. , South San Francisco , California 94080 , United States
| | - David B Smith
- Janssen BioPharma, Inc. , South San Francisco , California 94080 , United States
| | - Leonid Beigelman
- Janssen BioPharma, Inc. , South San Francisco , California 94080 , United States
| |
Collapse
|
27
|
O'Reilly D, Stein RS, Patrascu MB, Jana SK, Kurian J, Moitessier N, Damha MJ. Exploring Atypical Fluorine-Hydrogen Bonds and Their Effects on Nucleoside Conformations. Chemistry 2018; 24:16432-16439. [PMID: 30125398 DOI: 10.1002/chem.201803940] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Daniel O'Reilly
- Department of Chemistry; McGill University; Otto Maass Chemistry Bldg.; 801 Sherbrooke St. West Montreal QC, H3C0B8 Canada
| | - Robin S. Stein
- Department of Chemistry; McGill University; Otto Maass Chemistry Bldg.; 801 Sherbrooke St. West Montreal QC, H3C0B8 Canada
| | - Mihai Burai Patrascu
- Department of Chemistry; McGill University; Otto Maass Chemistry Bldg.; 801 Sherbrooke St. West Montreal QC, H3C0B8 Canada
| | - Sunit Kumar Jana
- Department of Chemistry; McGill University; Otto Maass Chemistry Bldg.; 801 Sherbrooke St. West Montreal QC, H3C0B8 Canada
| | - Jerry Kurian
- Department of Chemistry; McGill University; Otto Maass Chemistry Bldg.; 801 Sherbrooke St. West Montreal QC, H3C0B8 Canada
| | - Nicolas Moitessier
- Department of Chemistry; McGill University; Otto Maass Chemistry Bldg.; 801 Sherbrooke St. West Montreal QC, H3C0B8 Canada
| | - Masad J. Damha
- Department of Chemistry; McGill University; Otto Maass Chemistry Bldg.; 801 Sherbrooke St. West Montreal QC, H3C0B8 Canada
| |
Collapse
|
28
|
Malek-Adamian E, Patrascu MB, Jana SK, Martínez-Montero S, Moitessier N, Damha MJ. Adjusting the Structure of 2'-Modified Nucleosides and Oligonucleotides via C4'-α-F or C4'-α-OMe Substitution: Synthesis and Conformational Analysis. J Org Chem 2018; 83:9839-9849. [PMID: 29963864 DOI: 10.1021/acs.joc.8b01329] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report the first syntheses of three nucleoside analogues, namely, 2',4'-diOMe-rU, 2'-OMe,4'-F-rU, and 2'-F,4'-OMe-araU, via stereoselective introduction of fluorine or methoxy functionalities at the C4'-α-position of a 4',5'-olefinic intermediate. Conformational analyses of these nucleosides and comparison to other previously reported 2',4'-disubstituted nucleoside analogues make it possible to evaluate the effect of fluorine and methoxy substitution on the sugar pucker, as assessed by NMR, X-ray diffraction, and computational methods. We found that C4'-α-F/OMe substituents reinforce the C3'-endo ( north) conformation of 2'-OMe-rU. Furthermore, the predominant C2'-endo ( south/ east) conformation of 2'-F-araU switches to C3'-endo upon introduction of these substituents at C4'. The nucleoside analogues were incorporated into DNA and RNA oligonucleotides via standard phosphoramidite chemistry, and their effects on the thermal stability of homo- and heteroduplexes were assessed via UV thermal melting experiments. We found that 4'-substituents can modulate the binding affinity of the parent 2'-modified oligomers, inducing a mildly destabilizing or stabilizing effect depending on the duplex type. This study expands the spectrum of oligonucleotide modifications available for rational design of oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Elise Malek-Adamian
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec , Canada H3A 0B8
| | - Mihai Burai Patrascu
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec , Canada H3A 0B8
| | - Sunit Kumar Jana
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec , Canada H3A 0B8
| | - Saúl Martínez-Montero
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec , Canada H3A 0B8
| | - Nicolas Moitessier
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec , Canada H3A 0B8
| | - Masad J Damha
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec , Canada H3A 0B8
| |
Collapse
|
29
|
Structure-activity relationship of uridine-based nucleoside phosphoramidate prodrugs for inhibition of dengue virus RNA-dependent RNA polymerase. Bioorg Med Chem Lett 2018; 28:2324-2327. [PMID: 29801997 DOI: 10.1016/j.bmcl.2018.04.069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/25/2018] [Accepted: 04/29/2018] [Indexed: 11/24/2022]
Abstract
To identify a potent and selective nucleoside inhibitor of dengue virus RNA-dependent RNA polymerase, a series of 2'- and/or 4'-ribose sugar modified uridine nucleoside phosphoramidate prodrugs and their corresponding triphosphates were synthesized and evaluated. Replacement of 2'-OH with 2'-F led to be a poor substrate for both dengue virus and human mitochondrial RNA polymerases. Instead of 2'-fluorination, the introduction of fluorine at the ribose 4'-position was found not to affect the inhibition of the dengue virus polymerase with a reduction in uptake by mitochondrial RNA polymerase. 2'-C-ethynyl-4'-F-uridine phosphoramidate prodrug displayed potent anti-dengue virus activity in the primary human peripheral blood mononuclear cell-based assay with no significant cytotoxicity in human hepatocellular liver carcinoma cell lines and no mitochondrial toxicity in the cell-based assay using human prostate cancer cell lines.
Collapse
|
30
|
Guo F, Li Q, Zhou C. Synthesis and biological applications of fluoro-modified nucleic acids. Org Biomol Chem 2018; 15:9552-9565. [PMID: 29086791 DOI: 10.1039/c7ob02094e] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Owing to the unique physical properties of a fluorine atom, incorporating fluoro-modifications into nucleic acids offers striking biophysical and biochemical features, and thus significantly extends the breadth and depth of biological applications of nucleic acids. In this review, fluoro-modified nucleic acids that have been synthesized through either solid phase synthesis or the enzymatic approach are briefly summarised, followed by a section describing their biomedical applications in nucleic acid-based therapeutics, 18F PET imaging and mechanistic studies of DNA modifying enzymes. In the last part, the utility of 19F NMR and MRI for probing the structure, dynamics and molecular interactions of fluorinated nucleic acids is reviewed.
Collapse
Affiliation(s)
- Fengmin Guo
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China.
| | | | | |
Collapse
|
31
|
Hřebabecký H, Dračínský M, Procházková E, Šála M, Mackman R, Nencka R. Control of α/β Anomer Formation by a 2',5' Bridge: Toward Nucleoside Derivatives Locked in the South Conformation. J Org Chem 2017; 82:11337-11347. [PMID: 28972760 DOI: 10.1021/acs.joc.7b01000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We describe a novel stereoselective synthesis of nucleoside derivatives with the ribose ring locked in the South conformation by a bridge between C2' and C5'. Despite the intrinsic constraints of the bicyclic structure, we demonstrate that their synthesis can be achieved by ring closing metathesis of readily accessible precursors. The obtained ribose derivatives are, however, very poor substrates for further installation of the nucleobases, and even simple nucleophiles, such as azido or cyano anions, react with unexpected stereo- or regioselectivity under standard glycosylation conditions. Here we explain this behavior by employing density functional theory (DFT) computations and devise an alternative approach resulting in isomers with the desired orientation of the nucleobase.
Collapse
Affiliation(s)
- Hubert Hřebabecký
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , v.v.i, Gilead Sciences & IOCB Research Centre, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , v.v.i, Gilead Sciences & IOCB Research Centre, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Eliška Procházková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , v.v.i, Gilead Sciences & IOCB Research Centre, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Michal Šála
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , v.v.i, Gilead Sciences & IOCB Research Centre, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Richard Mackman
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , v.v.i, Gilead Sciences & IOCB Research Centre, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
32
|
Malek-Adamian E, Guenther DC, Matsuda S, Martínez-Montero S, Zlatev I, Harp J, Burai Patrascu M, Foster DJ, Fakhoury J, Perkins L, Moitessier N, Manoharan RM, Taneja N, Bisbe A, Charisse K, Maier M, Rajeev KG, Egli M, Manoharan M, Damha MJ. 4'-C-Methoxy-2'-deoxy-2'-fluoro Modified Ribonucleotides Improve Metabolic Stability and Elicit Efficient RNAi-Mediated Gene Silencing. J Am Chem Soc 2017; 139:14542-14555. [PMID: 28937776 DOI: 10.1021/jacs.7b07582] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We designed novel 4'-modified 2'-deoxy-2'-fluorouridine (2'-F U) analogues with the aim to improve nuclease resistance and potency of therapeutic siRNAs by introducing 4'-C-methoxy (4'-OMe) as the alpha (C4'α) or beta (C4'β) epimers. The C4'α epimer was synthesized by a stereoselective route in six steps; however, both α and β epimers could be obtained by a nonstereoselective approach starting from 2'-F U. 1H NMR analysis and computational investigation of the α-epimer revealed that the 4'-OMe imparts a conformational bias toward the North-East sugar pucker, due to intramolecular hydrogen bonding and hyperconjugation effects. The α-epimer generally conceded similar thermal stability as unmodified nucleotides, whereas the β-epimer led to significant destabilization. Both 4'-OMe epimers conferred increased nuclease resistance, which can be explained by the close proximity between 4'-OMe substituent and the vicinal 5'- and 3'-phosphate group, as seen in the X-ray crystal structure of modified RNA. siRNAs containing several C4'α-epimer monomers in the sense or antisense strands triggered RNAi-mediated gene silencing with efficiencies comparable to that of 2'-F U.
Collapse
Affiliation(s)
- Elise Malek-Adamian
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Dale C Guenther
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Shigeo Matsuda
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Saúl Martínez-Montero
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Ivan Zlatev
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Joel Harp
- Department of Biochemistry, School of Medicine, Vanderbilt University , Nashville, Tennessee 37232, United States
| | - Mihai Burai Patrascu
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Donald J Foster
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Johans Fakhoury
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Lydia Perkins
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Nicolas Moitessier
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Rajar M Manoharan
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Nate Taneja
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Anna Bisbe
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Klaus Charisse
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Martin Maier
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | | | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University , Nashville, Tennessee 37232, United States
| | - Muthiah Manoharan
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Masad J Damha
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
33
|
Bhuma N, Burade SS, Bagade AV, Kumbhar NM, Kodam KM, Dhavale DD. Synthesis and anti-proliferative activity of 3′-deoxy-3′-fluoro-3′- C -hydroxymethyl-pyrimidine and purine nucleosides. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
34
|
Gerland B, Addamiano C, Renard BL, Payrastre C, Gopaul D, Escudier JM. Thio- and Seleno-Dioxaphosphorinane-Constrained Dinucleotides (D-CNA): Synthesis and Conformational Study. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Béatrice Gerland
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, UMR CNRS 5068; Université Paul Sabatier; 118 route de Narbonne 31062 Toulouse France
| | - Claudia Addamiano
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, UMR CNRS 5068; Université Paul Sabatier; 118 route de Narbonne 31062 Toulouse France
| | - Brice-Loïc Renard
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, UMR CNRS 5068; Université Paul Sabatier; 118 route de Narbonne 31062 Toulouse France
| | - Corinne Payrastre
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, UMR CNRS 5068; Université Paul Sabatier; 118 route de Narbonne 31062 Toulouse France
| | - Deshmukh Gopaul
- Laboratoire de Génomes et Génétique; UMR 3525 Institut Pasteur; 25 rue du Docteur Roux 75015 Paris France
| | - Jean-Marc Escudier
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, UMR CNRS 5068; Université Paul Sabatier; 118 route de Narbonne 31062 Toulouse France
| |
Collapse
|
35
|
Kel'in AV, Zlatev I, Harp J, Jayaraman M, Bisbe A, O'Shea J, Taneja N, Manoharan RM, Khan S, Charisse K, Maier MA, Egli M, Rajeev KG, Manoharan M. Structural Basis of Duplex Thermodynamic Stability and Enhanced Nuclease Resistance of 5'-C-Methyl Pyrimidine-Modified Oligonucleotides. J Org Chem 2016; 81:2261-79. [PMID: 26940174 DOI: 10.1021/acs.joc.5b02375] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although judicious use of chemical modifications has contributed to the success of nucleic acid therapeutics, poor systemic stability remains a major hurdle. The introduction of functional groups around the phosphate backbone can enhance the nuclease resistance of oligonucleotides (ONs). Here, we report the synthesis of enantiomerically pure (R)- and (S)-5'-C-methyl (C5'-Me) substituted nucleosides and their incorporation into ONs. These modifications generally resulted in a decrease in thermal stability of oligonucleotide (ON) duplexes in a manner dependent on the stereoconfiguration at C5' with greater destabilization characteristic of (R)-epimers. Enhanced stability against snake venom phosphodiesterase resulted from modification of the 3'-end of an ON with either (R)- or (S)-C5'-Me nucleotides. The (S)-isomers with different 2'-substituents provided greater resistance against 3'-exonucleases than the corresponding (R)-isomers. Crystal structure analyses of RNA octamers with (R)- or (S)-5'-C-methyl-2'-deoxy-2'-fluorouridine [(R)- or (S)-C5'-Me-2'-FU, respectively] revealed that the stereochemical orientation of the C5'-Me and the steric effects that emanate from the alkyl substitution are the dominant determinants of thermal stability and are likely molecular origins of resistance against nucleases. X-ray and NMR structural analyses showed that the (S)-C5'-Me epimers are spatially and structurally more similar to their natural 5' nonmethylated counterparts than the corresponding (R)-epimers.
Collapse
Affiliation(s)
- Alexander V Kel'in
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Ivan Zlatev
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Joel Harp
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, School of Medicine , Nashville, Tennessee 37232, United States
| | - Muthusamy Jayaraman
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Anna Bisbe
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Jonathan O'Shea
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Nate Taneja
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Rajar M Manoharan
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Saeed Khan
- Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095, United States
| | - Klaus Charisse
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Martin A Maier
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Martin Egli
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, School of Medicine , Nashville, Tennessee 37232, United States
| | | | - Muthiah Manoharan
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
36
|
Ciceri S, Ciuffreda P, Grisenti P, Ferraboschi P. Synthesis of the antitumoral nucleoside capecitabine through a chemo-enzymatic approach. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.09.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Martínez-Montero S, Deleavey GF, Martín-Pintado N, Fakhoury JF, González C, Damha MJ. Locked 2'-Deoxy-2',4'-Difluororibo Modified Nucleic Acids: Thermal Stability, Structural Studies, and siRNA Activity. ACS Chem Biol 2015; 10:2016-23. [PMID: 26053215 DOI: 10.1021/acschembio.5b00218] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
2'-Deoxy-2',4'-difluorouridine (2',4'-diF-rU) was readily incorporated into DNA and RNA oligonucleotides via standard solid phase synthesis protocols. NMR and thermal denaturation (Tm) data of duplexes was consistent with the 2',4'-diF-rU nucleotides adopting a rigid North (RNA-like) sugar conformation, as previously observed for the nucleoside monomer. The impact of this modification on Tm is neutral when incorporated within RNA:RNA duplexes, mildly destabilizing when located in the RNA strand of a DNA:RNA duplex, and highly destabilizing when inserted in the DNA strand of DNA:RNA and DNA:DNA duplexes. Molecular dynamics calculations suggest that the destabilization effect in DNA:DNA and DNA:RNA duplexes is the result of structural distortions created by A/B junctions within the helical structures. Quantum mechanics calculations suggest that the "neutral" effect imparted to A-form duplexes is caused by alterations in charge distribution that compensate the stabilizing effect expected for a pure North-puckered furanose sugar. 2',4'-diF-RNA modified siRNAs were able to trigger RNA interference with excellent efficiency. Of note, incorporation of a few 2',4'-diF-rU residues in the middle of the guide (antisense) strand afforded siRNAs that were more potent than the corresponding siRNAs containing LNA and 2'-F-ANA modifications, and as active as the 2'-F-RNA modified siRNAs.
Collapse
Affiliation(s)
- Saúl Martínez-Montero
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| | - Glen F. Deleavey
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| | - Nerea Martín-Pintado
- Instituto de Química Física Rocasolano, CSIC, C/. Serrano 119, 28006 Madrid, Spain
| | - Johans F. Fakhoury
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| | - Carlos González
- Instituto de Química Física Rocasolano, CSIC, C/. Serrano 119, 28006 Madrid, Spain
| | - Masad J. Damha
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| |
Collapse
|
38
|
Yamada K, Wahba AS, Bernatchez JA, Ilina T, Martínez-Montero S, Habibian M, Deleavey GF, Götte M, Parniak MA, Damha MJ. Nucleotide Sugar Pucker Preference Mitigates Excision by HIV-1 RT. ACS Chem Biol 2015; 10:2024-33. [PMID: 26131619 DOI: 10.1021/acschembio.5b00263] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of DNA primers containing nucleotides with various sugar pucker conformations at the 3'-terminus were chemically synthesized by solid-phase synthesis. The ability of wild-type (WT) HIV-1 reverse transcriptase (RT) and AZT-resistant (AZTr) RT to excise the 3'-terminal nucleotide was assessed. Nucleosides with a preference for the North conformation were more refractory to excision by both WT-RT and AZTr-RT. We found that DNA primers that contain North puckered-nucleotides at the 3'-terminus can also affect the translocation status of the RT/template/primer complex, which provides an underlying mechanism to avoid being excised. Together, these results point to a correlation between the sugar conformation of the 3'-terminal nucleotide, the precise position of HIV-1 RT on its nucleic acid substrate, and, in turn, its catalytic function. Nucleotide sugar conformation is therefore an important parameter in defining the susceptibility to RT-catalyzed phosphorolytic excision.
Collapse
Affiliation(s)
- Ken Yamada
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Alexander S. Wahba
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Jean A. Bernatchez
- Department
of Biochemistry, McGill University, 3655 Sir William Osler Promenade, Montreal, Quebec H3G1Y6, Canada
| | - Tatiana Ilina
- Department
of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, Pennsylvania 15219-3143, United States
| | - Saúl Martínez-Montero
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Maryam Habibian
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Glen F. Deleavey
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Matthias Götte
- Department
of Biochemistry, McGill University, 3655 Sir William Osler Promenade, Montreal, Quebec H3G1Y6, Canada
- Department
of Microbiology and Immunology, McGill University, 3775 University, Montreal, Quebec H3A 2B4, Canada
| | - Michael A. Parniak
- Department
of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, Pennsylvania 15219-3143, United States
| | - Masad J. Damha
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
39
|
Abstract
The role of fluorine in drug design and development is expanding rapidly as we learn more about the unique properties associated with this unusual element and how to deploy it with greater sophistication. The judicious introduction of fluorine into a molecule can productively influence conformation, pKa, intrinsic potency, membrane permeability, metabolic pathways, and pharmacokinetic properties. In addition, (18)F has been established as a useful positron emitting isotope for use with in vivo imaging technology that potentially has extensive application in drug discovery and development, often limited only by convenient synthetic accessibility to labeled compounds. The wide ranging applications of fluorine in drug design are providing a strong stimulus for the development of new synthetic methodologies that allow more facile access to a wide range of fluorinated compounds. In this review, we provide an update on the effects of the strategic incorporation of fluorine in drug molecules and applications in positron emission tomography.
Collapse
Affiliation(s)
- Eric P Gillis
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Kyle J Eastman
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Matthew D Hill
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - David J Donnelly
- Discovery Chemistry Platforms, PET Radiochemical Synthesis, Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Nicholas A Meanwell
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| |
Collapse
|
40
|
Martínez-Montero S, Deleavey GF, Dierker-Viik A, Lindovska P, Ilina T, Portella G, Orozco M, Parniak MA, González C, Damha MJ. Synthesis and properties of 2'-deoxy-2',4'-difluoroarabinose-modified nucleic acids. J Org Chem 2015; 80:3083-91. [PMID: 25723361 PMCID: PMC4484724 DOI: 10.1021/jo502948t] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We report the synthesis, thermal stability, and RNase H substrate activity of 2'-deoxy-2',4'-difluoroarabino-modified nucleic acids. 2'-Deoxy-2',4'-difluoroarabinouridine (2,'4'-diF-araU) was prepared in a stereoselective way in six steps from 2'-deoxy-2'-fluoroarabinouridine (2'-F-araU). NMR analysis and quantum mechanical calculations at the nucleoside level reveal that introduction of 4'-fluorine introduces a strong bias toward the North conformation, despite the presence of the 2'-βF, which generally steers the sugar pucker toward the South/East conformation. Incorporation of the novel monomer into DNA results on a neutral to slightly stabilizing thermal effect on DNA-RNA hybrids. Insertion of 2',4'-diF-araU nucleotides in the DNA strand of a DNA-RNA hybrid decreases the rate of both human and HIV reverse transcriptase-associated RNase H-mediated cleavage of the complement RNA strand compared to that for an all-DNA strand or a DNA strand containing the corresponding 2'-F-araU nucleotide units, consistent with the notion that a 4'-fluorine in 2'-F-araU switches the preferred sugar conformation from DNA-like (South/East) to RNA-like (North).
Collapse
Affiliation(s)
- Saúl Martínez-Montero
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Glen F. Deleavey
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Arden Dierker-Viik
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Petra Lindovska
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Tatiana Ilina
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, Pennsylvania 15219-3143, United States
| | - Guillem Portella
- Joint IRB–BSC program on Computational Biology, Institute for Research in Biomedicine, Barcelona Supercomputing Center, and Department of Biochemistry, University of Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Modesto Orozco
- Joint IRB–BSC program on Computational Biology, Institute for Research in Biomedicine, Barcelona Supercomputing Center, and Department of Biochemistry, University of Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Michael A. Parniak
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, Pennsylvania 15219-3143, United States
| | - Carlos González
- Instituto de Química Física Rocasolano, CSIC, C/Serrano 119, 28006 Madrid, Spain
| | - Masad J. Damha
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
41
|
Wang G, Deval J, Hong J, Dyatkina N, Prhavc M, Taylor J, Fung A, Jin Z, Stevens SK, Serebryany V, Liu J, Zhang Q, Tam Y, Chanda SM, Smith DB, Symons JA, Blatt LM, Beigelman L. Discovery of 4'-chloromethyl-2'-deoxy-3',5'-di-O-isobutyryl-2'-fluorocytidine (ALS-8176), a first-in-class RSV polymerase inhibitor for treatment of human respiratory syncytial virus infection. J Med Chem 2015; 58:1862-78. [PMID: 25667954 DOI: 10.1021/jm5017279] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Respiratory syncytial virus (RSV) is a leading pathogen of childhood and is associated with significant morbidity and mortality. To date, ribavirin is the only approved small molecule drug, which has limited use. The only other RSV drug is palivizumab, a monoclonal antibody, which is used for RSV prophylaxis. Clearly, there is an urgent need for small molecule RSV drugs. This article reports the design, synthesis, anti-RSV activity, metabolism, and pharmacokinetics of a series of 4'-substituted cytidine nucleosides. Among tested compounds 4'-chloromethyl-2'-deoxy-2'-fluorocytidine (2c) exhibited the most promising activity in the RSV replicon assay with an EC50 of 0.15 μM. The 5'-triphosphate of 2c (2c-TP) inhibited RSV polymerase with an IC50 of 0.02 μM without appreciable inhibition of human DNA and RNA polymerases at 100 μM. ALS-8176 (71), the 3',5'-di-O-isobutyryl prodrug of 2c, demonstrated good oral bioavailability and a high level of 2c-TP in vivo. Compound 71 is a first-in-class nucleoside RSV polymerase inhibitor that demonstrated excellent anti-RSV efficacy and safety in a phase 2 clinical RSV challenge study.
Collapse
Affiliation(s)
- Guangyi Wang
- Alios BioPharma, Inc. , 260 East Grand Avenue, South San Francisco, California 94080, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Iannazzo L, Laisné G, Fonvielle M, Braud E, Herbeuval JP, Arthur M, Etheve-Quelquejeu M. Synthesis of 3′-Fluoro-tRNA Analogues for Exploring Non-ribosomal Peptide Synthesis in Bacteria. Chembiochem 2015; 16:477-86. [DOI: 10.1002/cbic.201402523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Indexed: 11/08/2022]
|
43
|
Abstract
Since its first use in the steroid field in the late 1950s, the use of fluorine in medicinal chemistry has become commonplace, with the small electronegative fluorine atom being a key part of the medicinal chemist's repertoire of substitutions used to modulate all aspects of molecular properties including potency, physical chemistry and pharmacokinetics. This review will highlight the special nature of fluorine, drawing from a survey of marketed fluorinated pharmaceuticals and the medicinal chemistry literature, to illustrate key concepts exploited by medicinal chemists in their attempts to optimize drug molecules. Some of the potential pitfalls in the use of fluorine will also be highlighted.
Collapse
|