1
|
Inuki S, Ohta I, Ishibashi S, Takamatsu M, Fukase K, Fujimoto Y. Total Synthesis of Cardiolipins Containing Chiral Cyclopropane Fatty Acids. J Org Chem 2017; 82:7832-7838. [PMID: 28682614 DOI: 10.1021/acs.joc.7b00945] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cardiolipin (CL) is a phospholipid located in both the eukaryotic mitochondrial inner membrane and the bacterial cell membrane. Some bacterial CLs are known to contain cyclopropane moieties in their acyl chains. Although the CLs are thought to be involved in the innate immune response, there have been few attempts at chemical synthesis of the CLs, and detailed studies of their biological activities are scarce. Thus, we have developed a synthetic route to CLs containing chiral cyclopropane moieties.
Collapse
Affiliation(s)
- Shinsuke Inuki
- Department of Chemistry, Faculty of Science and Technology, Keio University , 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Ippei Ohta
- Department of Chemistry, Faculty of Science and Technology, Keio University , 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Shunichi Ishibashi
- Department of Chemistry, Faculty of Science and Technology, Keio University , 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Masayuki Takamatsu
- Department of Chemistry, Graduate School of Science, Osaka University , 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University , 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yukari Fujimoto
- Department of Chemistry, Faculty of Science and Technology, Keio University , 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
2
|
Bazin HG, Bess LS, Livesay MT, Mwakwari SC, Johnson DA. Phospholipidation of TLR7/8-active imidazoquinolines using a tandem phosphoramidite method. Tetrahedron Lett 2016; 57:2063-2066. [PMID: 32863446 PMCID: PMC7451945 DOI: 10.1016/j.tetlet.2016.03.091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A high-yielding and scalable phosphoramidite procedure was developed for the phospholipidation of TLR7/8-active imidazoquinolines. This method involves the reaction of a 1,2-diacyl- or dialkyl-sn-glycerol or 3-chlolesterylalkanol with 2-cyanoethyl N,N,N',N'-tetraisopropylphosphordiamidite in the presence of 1H-tetrazole followed by treatment of the resulting N,N'-diisopropylphosphoramidite lipid in situ with 1-imidazoquinolinylalkanols. The resulting phosphite can be purified or directly oxidized with t-butyl hydroperoxide. The cyanoethyl protecting group is then removed with triethylamine and the phospholipidated imidazoquinoline products isolated in good yield and purity by simple filtration.
Collapse
|
3
|
Stemper J, Isaac K, Pastor J, Frison G, Retailleau P, Voituriez A, Betzer J, Marinetti A. Development of Chiral Phosphoric Acids based on Ferrocene‐Bridged Paracyclophane Frameworks. Adv Synth Catal 2013. [DOI: 10.1002/adsc.201300697] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jérémy Stemper
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Centre de Recherche de Gif, 91198 Gif‐sur‐Yvette, France, Fax: (+33)‐1‐6907‐7247
| | - Kévin Isaac
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Centre de Recherche de Gif, 91198 Gif‐sur‐Yvette, France, Fax: (+33)‐1‐6907‐7247
| | - Julien Pastor
- Laboratoire des Mécanismes Réactionnels, Department of Chemistry, Ecole Polytechnique and CNRS, 91128 Palaiseau, France
| | - Gilles Frison
- Laboratoire des Mécanismes Réactionnels, Department of Chemistry, Ecole Polytechnique and CNRS, 91128 Palaiseau, France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Centre de Recherche de Gif, 91198 Gif‐sur‐Yvette, France, Fax: (+33)‐1‐6907‐7247
| | - Arnaud Voituriez
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Centre de Recherche de Gif, 91198 Gif‐sur‐Yvette, France, Fax: (+33)‐1‐6907‐7247
| | - Jean‐François Betzer
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Centre de Recherche de Gif, 91198 Gif‐sur‐Yvette, France, Fax: (+33)‐1‐6907‐7247
| | - Angela Marinetti
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Centre de Recherche de Gif, 91198 Gif‐sur‐Yvette, France, Fax: (+33)‐1‐6907‐7247
| |
Collapse
|
4
|
Crossey K, Hardacre C, Migaud ME, Norman SE. Exploiting the use of ionic liquids to access phosphorodiamidites. RSC Adv 2012. [DOI: 10.1039/c2ra20131c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
5
|
Rowland MM, Bostic HE, Gong D, Speers AE, Lucas N, Cho W, Cravatt BF, Best MD. Phosphatidylinositol 3,4,5-trisphosphate activity probes for the labeling and proteomic characterization of protein binding partners. Biochemistry 2011; 50:11143-61. [PMID: 22074223 DOI: 10.1021/bi201636s] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Phosphatidylinositol polyphosphate lipids, such as phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P₃], regulate critical biological processes, many of which are aberrant in disease. These lipids often act as site-specific ligands in interactions that enforce membrane association of protein binding partners. Herein, we describe the development of bifunctional activity probes corresponding to the headgroup of PI(3,4,5)P₃ that are effective for identifying and characterizing protein binding partners from complex samples, namely cancer cell extracts. These probes contain both a photoaffinity tag for covalent labeling of target proteins and a secondary handle for subsequent detection or manipulation of labeled proteins. Probes bearing different secondary tags were exploited, either by direct attachment of a fluorescent dye for optical detection or by using an alkyne that can be derivatized after protein labeling via click chemistry. First, we describe the design and modular synthetic strategy used to generate multiple probes with different reporter tags of use for characterizing probe-labeled proteins. Next, we report initial labeling studies using purified protein, the PH domain of Akt, in which probes were found to label this target, as judged by in-gel detection. Furthermore, protein labeling was abrogated by controls including competition with an unlabeled PI(3,4,5)P₃ headgroup analogue as well as through protein denaturation, indicating specific labeling. In addition, probes featuring linkers of different lengths between the PI(3,4,5)P₃ headgroup and photoaffinity tag led to variations in protein labeling, indicating that a shorter linker was more effective in this case. Finally, proteomic labeling studies were performed using cell extracts; labeled proteins were observed by in-gel detection and characterized using postlabeling with biotin, affinity chromatography, and identification via tandem mass spectrometry. These studies yielded a total of 265 proteins, including both known and novel candidate PI(3,4,5)P₃-binding proteins.
Collapse
Affiliation(s)
- Meng M Rowland
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Bandyopadhyay S, Bong D. Synthesis of Trifunctional Phosphatidylserine Probes for Identification of Lipid-Binding Proteins. European J Org Chem 2010. [DOI: 10.1002/ejoc.201001264] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
7
|
John F, Hendrickson TL. Synthesis of truncated analogues for studying the process of glycosyl phosphatidylinositol modification. Org Lett 2010; 12:2080-3. [PMID: 20380381 DOI: 10.1021/ol100575q] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many eukaryotic proteins are modified with a glycosylphosphatidylinositol (GPI) anchor at their C-termini. This post-translational modification causes these proteins to be noncovalently tethered to the plasma membrane. The synthesis of truncated GPI anchor analogues is reported; these compounds were designed for use as soluble substrates for GPI transamidase (GPI-T), the enzyme that appends the GPI anchor onto proteins.
Collapse
Affiliation(s)
- Franklin John
- Department of Chemistry, 5101 Cass Avenue, Wayne State University, Detroit, Michigan 48202, USA
| | | |
Collapse
|
8
|
Best MD, Zhang H, Prestwich GD. Inositol polyphosphates, diphosphoinositol polyphosphates and phosphatidylinositol polyphosphate lipids: Structure, synthesis, and development of probes for studying biological activity. Nat Prod Rep 2010; 27:1403-30. [DOI: 10.1039/b923844c] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Conway SJ, Gardiner J, Grove SJA, Johns MK, Lim ZY, Painter GF, Robinson DEJE, Schieber C, Thuring JW, Wong LSM, Yin MX, Burgess AW, Catimel B, Hawkins PT, Ktistakis NT, Stephens LR, Holmes AB. Synthesis and biological evaluation of phosphatidylinositol phosphate affinity probes. Org Biomol Chem 2009; 8:66-76. [PMID: 20024134 DOI: 10.1039/b913399b] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The synthesis of the complete family of phosphatidylinositol phosphate analogues (PIPs) from five key core intermediates A-E is described. These core compounds were obtained from myo-inositol orthoformate 1 via regioselective DIBAL-H and trimethylaluminium-mediated cleavages and a resolution-protection process using camphor acetals 10. Coupling of cores A-E with phosphoramidites 34 and 38, derived from the requisite protected lipid side chains, afforded the fully-protected PIPs. Removal of the remaining protecting groups was achieved via hydrogenolysis using palladium black or palladium hydroxide on carbon in the presence of sodium bicarbonate to afford the complete family of dipalmitoyl- and amino-PIP analogues 42, 45, 50, 51, 58, 59, 67, 68, 76, 77, 82, 83, 92, 93, 99 and 100. Investigations using affinity probes incorporating these compounds have identified novel proteins involved in the PI3K intracellular signalling network and have allowed a comprehensive proteomic analysis of phosphoinositide interacting proteins.
Collapse
Affiliation(s)
- Stuart J Conway
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Gong D, Bostic HE, Smith MD, Best MD. Synthesis of Modular Headgroup Conjugates Corresponding to All Seven Phosphatidylinositol Polyphosphate Isomers for Convenient Probe Generation. European J Org Chem 2009. [DOI: 10.1002/ejoc.200900476] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Keddie NS, Bultynck G, Luyten T, Slawin AM, Conway SJ. A type 2 Ferrier rearrangement-based synthesis of d-myo-inositol 1,4,5-trisphosphate. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.tetasy.2009.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Sureshan KM, Devaraj S, Shashidhar MS. Regioselective O-acylation of myo-inositol 1,3,5-orthoesters: dependence of regioselectivity on the stoichiometry of the base. Tetrahedron 2009. [DOI: 10.1016/j.tet.2009.01.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Ali SM, Ahmad MU, Koslosky P, Kasireddy K, Murali Krishna U, Ahmad I. Synthesis of short and long chain cardiolipins. Tetrahedron 2006. [DOI: 10.1016/j.tet.2006.04.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Prestwich GD. Visualization and perturbation of phosphoinositide and phospholipid signaling. Prostaglandins Other Lipid Mediat 2005; 77:168-78. [PMID: 16099401 DOI: 10.1016/j.prostaglandins.2004.09.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2004] [Accepted: 09/14/2004] [Indexed: 10/26/2022]
Abstract
Cells signal through lipids that are produced by phospholipid (PL) and phosphoinositide (PIPn) metabolism involve three enzymatic processes: (i) ester and phosphodiester hydrolysis by phospholipases, (ii) monophosphate hydrolysis by phosphatases, and (iii) phosphorylation of hydroxy groups by kinases. Unregulated enzyme activity correlates with specific pathologies, which are specific targets for therapeutic intervention. A variety of reagents now permit monitoring of in vitro enzyme activity, spatiotemporal changes of intracellular lipid concentrations, and identification of lipid-protein interactions. This minireview summarizes a chemical biology approach that illustrates how chemically synthesized affinity probes can be used to characterize changes in lipid signaling in cellular and molecular biology.
Collapse
Affiliation(s)
- Glenn D Prestwich
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, UT 84108-1257, USA.
| |
Collapse
|
15
|
Abstract
Lipid signaling by phosphoinositides (PIP(n)s) involves an array of proteins with lipid recognition, kinase, phosphatase, and phospholipase functions. Understanding PIP(n) pathway signaling requires identification and characterization of PIP(n)-interacting proteins. Moreover, spatiotemporal localization and physiological function of PIP(n)-protein complexes must be elucidated in cellular and organismal contexts. For protein discovery to functional elucidation, reporter-linked phosphoinositides or tethered PIP(n)s have been essential. The phosphoinositide 3-kinase (PI 3-K) signaling pathway has recently emerged as an important source of potential "druggable" therapeutic targets in human pathophysiology in both academic and pharmaceutical environments. This review summarizes the chemistry of PIP(n) affinity probes and their use in identifying macromolecular targets. The process of target validation will be described, i.e., the use of tethered PIP(n)s in determining PIP(n) selectivity in vitro and in establishing the function of PIP(n)-protein complexes in living cells.
Collapse
Affiliation(s)
- Glenn D Prestwich
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, UT 84108, USA.
| |
Collapse
|
16
|
Regioselective phosphorylation of vicinal 3,4-hydroxy myo-inositol derivative promoted practical synthesis of d-PtdIns(4,5)P2 and d-Ins(1,4,5)P3. Tetrahedron 2003. [DOI: 10.1016/s0040-4020(03)01212-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Han F, Hayashi M, Watanabe Y. A Short Synthesis of Dipalmitoylphosphatidylinositol 4,5-Bisphosphate via 3-O-Selective Phosphorylation of a 3,4-Free Inositol Derivative. CHEM LETT 2003. [DOI: 10.1246/cl.2003.46] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
18
|
Kular GS, Chaudhary A, Prestwich G, Swigart P, Wetzker R, Cockcroft S. Co-operation of phosphatidylinositol transfer protein with phosphoinositide 3-kinase gamma in vitro. ADVANCES IN ENZYME REGULATION 2002; 42:53-61. [PMID: 12123706 DOI: 10.1016/s0065-2571(01)00023-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Gursant S Kular
- Research Unit Molecular Cell Biology, University of Jena, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Chen R, Kang VH, Chen J, Shope JC, Torabinejad J, DeWald DB, Prestwich GD. A monoclonal antibody to visualize PtdIns(3,4,5)P(3) in cells. J Histochem Cytochem 2002; 50:697-708. [PMID: 11967281 DOI: 10.1177/002215540205000511] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)] is a second messenger produced in response to agonist stimulation. Traditionally, visualization of phosphoinositide polyphosphates (PtdInsP(n)) in living cells is accomplished using chimeric green fluorescent protein (GFP)-pleckstrin homology (PH) domain proteins, while PtdInsP(n) quantitation is accomplished by extraction and separation of radiolabeled cellular PtdInsP(n)s. Here we describe preparation of a covalent protein-PtdIns(3,4,5)P(3) immunogen, characterization of binding selectivity of an anti-PtdIns(3,4,5)P(3) IgM, and immunodetection of PtdIns(3,4,5)P(3) in stimulated mammalian cells. This antibody has greater than three orders of magnitude selectivity for binding PtdIns(3,4,5)P(3) relative to its precursor, phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)), and is therefore optimal for studies of cell function. The immunodetection in platelet-derived growth factor (PDGF)-stimulated NIH 3T3 cells was benchmarked against HPLC analysis of [3H]-myo-inositol-labeled cellular PtdInsP(n)s. In addition, the changes in subcellular amounts and localizations of both PtdIns(3,4,5)P(3) and PtdIns(4,5)P(2) in stimulated NIH 3T3 fibroblasts and human neutrophils were observed by immunofluorescence. In insulin- or PDGF-stimulated fibroblasts, PtdIns(3,4,5)P(3) levels increased in the cytoplasm, peaking at 10 min. In contrast, increases in the PtdIns(4,5)P(2) levels were detected in nuclei, corresponding to the production of new substrate following depletion by phosphoinositide (PI) 3-kinase.
Collapse
Affiliation(s)
- Riyan Chen
- Center for Cell Signaling, Salt Lake City, Utah 84108, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Whitley P, Gibbard AM, Koumanov F, Oldfield S, Kilgour EE, Prestwich GD, Holman GD. Identification of centaurin-alpha2: a phosphatidylinositide-binding protein present in fat, heart and skeletal muscle. Eur J Cell Biol 2002; 81:222-30. [PMID: 12018390 DOI: 10.1078/0171-9335-00242] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe here the cloning, expression and characterisation of centaurin-alpha2 from a rat adipocyte cDNA library. The centaurin-alpha2 cDNA contains an open reading frame, which codes for a protein of 376 amino acids with predicted mass of 43.5 kDa. Centaurin-alpha2 shares 51-59% identity with centaurin-alpha1 proteins and has the same domain organisation, consisting of a predicted N-terminal ArfGAP domain followed by two successive pleckstrin homology domains. Despite the sequence similarity, there are a number of notable differences between the previously characterised centaurin-alpha1 proteins and the newly described centaurin-alpha2: (i) in vitro lipid binding experiments with centaurin-alpha2 do not reveal the same selectivity for phosphatidylinositol 3,4,5-trisphosphate over phosphatidylinositol 4,5-bisphosphate that has been shown for centaurin-alpha; (ii) unlike centaurin-alpha1 which is expressed mainly in the brain, centaurin-alpha2 has a broad tissue distribution, being particularly abundant in fat, heart and skeletal muscle; (iii) in contrast to centaurin-alpha1 which is found in both membrane and cytosolic fractions, endogenous centaurin-alpha2 is exclusively present in the dense membrane fractions of cell extracts, suggesting a constitutive membrane association. Insulin stimulation, which stimulates phosphatidylinositol 3,4,5-trisphosphate production, does not alter the subcellular distribution of centaurin-alpha2 between adipocyte membrane fractions. This observation is consistent with the lack of specificity of centaurin-alpha2 for phosphatidylinositol 3,4,5-trisphosphate over phosphatidylinositol 4,5-bisphosphate.
Collapse
Affiliation(s)
- Paul Whitley
- Department of Biology and Biochemistry, University of Bath, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
21
|
Zhu XF, Scott AI. An improved synthesis of the dinucleotides pdCpA and pdCpdA. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2001; 20:197-211. [PMID: 11393397 DOI: 10.1081/ncn-100002081] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
An improved route was developed for the preparation of the dinucleotide hybrid 5'-O-phosphoryl-2'-deoxycytidylyl-(3'--> 5')adenosine (pdCpA) 7. This simple and concise synthesis involves the successive coupling of 2-cyanoethyl N, N, N', N'-tetra- isopropylphosphorodiamidite with 4-N-benzoyl-5'-O-(4, 4'-dimethoxytrityl)-2'-deoxy-cytidine 1 and 6-N,6-N,2'-O,3'-O-tetrabenzoyladenosine 2 as the key step. Some dinucleotide derivatives bearing different protecting groups were also synthesized and the selective deprotection conditions were studied in detail. The utility and efficiency of this approach has been further demonstrated by its application to the synthesis of total DNA dinucleotide pdCpdA 17 and total RNA dinucleotide 21.
Collapse
Affiliation(s)
- X F Zhu
- Center for Biological NMR, Department of Chemistry, Texas A&M University, College Station 77842-3012, USA
| | | |
Collapse
|
22
|
Nifantiev EE, Grachev MK, Burmistrov SY. Amides of trivalent phosphorus acids as phosphorylating reagents for proton-donating nucleophiles. Chem Rev 2000; 100:3755-800. [PMID: 11749327 DOI: 10.1021/cr9601371] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- E E Nifantiev
- V. I. Lenin Moscow State Pedagocical University, Chemistry Department, Nesvizhskii per., 3, 119021 Moscow, Russian Federation
| | | | | |
Collapse
|
23
|
|
24
|
A synthesis of l-α-phosphatidyl-d-myo-inositol 4,5-bisphosphate (4,5-PIP2) and glyceryl lipid analogs. Tetrahedron Lett 1999. [DOI: 10.1016/s0040-4039(99)01877-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Blader IJ, Cope MJ, Jackson TR, Profit AA, Greenwood AF, Drubin DG, Prestwich GD, Theibert AB. GCS1, an Arf guanosine triphosphatase-activating protein in Saccharomyces cerevisiae, is required for normal actin cytoskeletal organization in vivo and stimulates actin polymerization in vitro. Mol Biol Cell 1999; 10:581-96. [PMID: 10069805 PMCID: PMC25189 DOI: 10.1091/mbc.10.3.581] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent cloning of a rat brain phosphatidylinositol 3,4, 5-trisphosphate binding protein, centaurin alpha, identified a novel gene family based on homology to an amino-terminal zinc-binding domain. In Saccharomyces cerevisiae, the protein with the highest homology to centaurin alpha is Gcs1p, the product of the GCS1 gene. GCS1 was originally identified as a gene conditionally required for the reentry of cells into the cell cycle after stationary phase growth. Gcs1p was previously characterized as a guanosine triphosphatase-activating protein for the small guanosine triphosphatase Arf1, and gcs1 mutants displayed vesicle-trafficking defects. Here, we have shown that similar to centaurin alpha, recombinant Gcs1p bound phosphoinositide-based affinity resins with high affinity and specificity. A novel GCS1 disruption strain (gcs1Delta) exhibited morphological defects, as well as mislocalization of cortical actin patches. gcs1Delta was hypersensitive to the actin monomer-sequestering drug, latrunculin-B. Synthetic lethality was observed between null alleles of GCS1 and SLA2, the gene encoding a protein involved in stabilization of the actin cytoskeleton. In addition, synthetic growth defects were observed between null alleles of GCS1 and SAC6, the gene encoding the yeast fimbrin homologue. Recombinant Gcs1p bound to actin filaments, stimulated actin polymerization, and inhibited actin depolymerization in vitro. These data provide in vivo and in vitro evidence that Gcs1p interacts directly with the actin cytoskeleton in S. cerevisiae.
Collapse
Affiliation(s)
- I J Blader
- Departments of Neurobiology and Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Profit AA, Chen J, Gu QM, Chaudhary A, Prasad K, Lafer EM, Prestwich GD. Probing the phosphoinositide binding site of the clathrin assembly protein AP-2 with photoaffinity labels. Arch Biochem Biophys 1998; 357:85-94. [PMID: 9721186 DOI: 10.1006/abbi.1998.0796] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The relative binding specificities of the subunitsof bovine assembly protein AP-2 for the phosphatidylinositol polyphosphates (PtdInsPn) and inositol polyphosphates (InsPn) were determined by photoaffinitylabeling. Three types of benzophenone-containing photoprobes were employed: (i) the water-solubleP-1- or P-2-tethered p-benzoyldihydrocinnamoyl-InsPn (BZDC-InsPn) analogs, (ii) P-1-linked phosphotriester PtdInsPn analogs that sampled the interface between the water and lipid phases, and (iii) sn-1-O-acyl-linked PtdInsPn analogs that interacted with proteins penetrating the bilayer. The InsPn and PtdInsPn probes bind with highest selectivity and affinity to the two alpha subunit isoforms, with certain probes and conditions resulting in strong labeling of the 50-kDa mu subunit. Three main conclusions were reached: (i) head group recognition predominated over acyl chain recognition, (ii) the PtdInsPn binding site of alpha-AP-2 prefers more highly phosphorylated species, and (iii) the protein-acyl chain interactions showed high capacity but low selectivity.
Collapse
Affiliation(s)
- A A Profit
- Department of Chemistry, University at Stony Brook, Stony Brook, New York 11794-3400, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Chaudhary A, Chen J, Gu QM, Witke W, Kwiatkowski DJ, Prestwich GD. Probing the phosphoinositide 4,5-bisphosphate binding site of human profilin I. CHEMISTRY & BIOLOGY 1998; 5:273-81. [PMID: 9578635 DOI: 10.1016/s1074-5521(98)90620-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Profilin is a widely and highly expressed 14 kDa protein that binds actin monomers, poly(L-proline) and polyphosphoinositol lipids. It participates in regulating actin-filament dynamics that are essential for many types of cell motility. We sought to investigate the site of interaction of profilin with phosphoinositides. RESULTS Human profilin I was covalently modified using three tritium-labeled 4-benzoyldihydrocinnamoyl (BZDC)-containing photoaffinity analogs of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). The P-1-tethered D-myoinositol 1,4,5-trisphosphate (Ins(1,4,5)P3) modified profilin I efficiently and specifically; the covalent labeling could be displaced by co-incubation with an excess of PtdIns(4,5)P2 but not with Ins(1,4,5)P3. The acyl-modified PtdIns(4,5)P2 analog showed little protein labeling even at very low concentrations, whereas the head-group-modified PtdIns(4,5)P2 phosphotriester-labeled monomeric and oligomeric profilin. Mass spectroscopic analyses of CNBr digests of [3H]BZDC-Ins(1,4,5)P3-modified recombinant profilin suggested that modification was in the amino-terminal helical CNBr fragment. Edman degradation confirmed Ala1 of profilin I (residue 4 of the recombinant protein) was modified. Molecular models show a minimum energy conformation in which the hydrophobic region of the ligand contacts the amino-terminal helix whereas the 4,5-bisphosphate interacts with Arg135 and Arg136 of the carboxy-terminal helix. CONCLUSIONS The PtdIns(4,5)P2-binding site of profilin I includes a bisphosphate interaction with a base-rich motif in the carboxy-terminal helix and contact between the lipid moiety of PtdIns(4,5)P2 and a hydrophobic region of the aminoterminal helix of profilin. This is the first direct evidence for a site of interaction of the lipid moiety of a phosphoinositide bisphosphate analog with profilin.
Collapse
Affiliation(s)
- A Chaudhary
- Department of Chemistry, University at Stony Brook, New York 11794-3400, USA
| | | | | | | | | | | |
Collapse
|
28
|
Chung SH, Song WJ, Kim K, Bednarski JJ, Chen J, Prestwich GD, Holz RW. The C2 domains of Rabphilin3A specifically bind phosphatidylinositol 4,5-bisphosphate containing vesicles in a Ca2+-dependent manner. In vitro characteristics and possible significance. J Biol Chem 1998; 273:10240-8. [PMID: 9553075 DOI: 10.1074/jbc.273.17.10240] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the present study we investigated the lipid binding characteristics of the C2 domains of Rabphilin3a. We found that the tandem C2 domain of Rabphilin3a specifically bound lipid vesicles containing phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) in a Ca2+-dependent manner. There was little binding to vesicles containing PtdIns(3,4)P2 in the presence or absence of Ca2+. Binding to phosphatidylinositol 3,4,5-triphosphate-containing vesicles was similar to binding to PtdIns(4,5)P2-containing vesicles. The presence of physiological amounts of phosphatidylserine (PS) greatly potentiated the ability of PtdIns(4,5)P2 to cause vesicle binding. As with the C2 domains together, the binding of individual C2 domain of Rabphilin3a was much greater to PtdIns(4,5)P2-containing vesicles than PtdIns(3,4)P2-containing vesicles. Both C2 domains also bound 29 mol % PS-containing vesicles in a Ca2+-dependent manner. Because of the importance of the C2B domain in the enhancement of secretion from chromaffin cells by Rabphilin3a, its biochemistry was further investigated. The mutation of aspartates 657 and 659 to asparagines in C2B decreased Ca2+-dependent and increased Ca2+-independent vesicle binding, indicating the Ca2+ dependence of the domain is provided by aspartic acid residues in the putative Ca2+-binding pocket. A peptide from the COOH-terminal region of the C2B domain specifically inhibited ATP-dependent secretion from permeabilized chromaffin cells and the binding of Rabphilin3a to phosphatidylcholine/PS/PtdIns(4,5)P2-containing lipid vesicles, suggesting a role of this sequence in secretion through its ability to interact with acidic lipid vesicles.
Collapse
Affiliation(s)
- S H Chung
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0632, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Chaudhary A, Gu QM, Thum O, Profit AA, Qi Y, Jeyakumar L, Fleischer S, Prestwich GD. Specific interaction of Golgi coatomer protein alpha-COP with phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 1998; 273:8344-50. [PMID: 9525943 DOI: 10.1074/jbc.273.14.8344] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phosphoinositide binding selectivity of Golgi coatomer COPI polypeptides was examined using photoaffinity analogs of the soluble inositol polyphosphates Ins(1,4,5)P3, Ins(1,3,4,5)P4, and InsP6, and of the polyphosphoinositides PtdIns(3,4,5)P3, PtdIns(4,5)P2, and PtdIns(3,4)P2. Highly selective Ins(1,3,4,5)P4-displaceable photocovalent modification of the alpha-COP subunit was observed with a p-benzoyldihydrocinnamide (BZDC)-containing probe, [3H]BZDC-Ins(1,3,4,5)P4. A more highly phosphorylated probe, [3H]BZDC-InsP6 probe labeled six of the seven subunits, with only beta, beta', delta, and epsilon-COP showing competitive displacement by excess InsP6. Importantly, [3H]BZDC-triester-PtdIns(3,4,5)P3, the lipid with the same phosphorylation pattern as Ins(1,3,4,5)P4, showed specific, PtdIns(3,4,5)P3-displaceable labeling of only alpha-COP. Labeling by the PtdIns(4,5)P2 and PtdIns(3,4)P2 photoaffinity probes was less intense and showed no discrimination based on PtdInsPn ligand. Thus, both the D-3 and D-5 phosphates are critical for the alpha-COP-PtdIns(3,4,5)P3 interaction, suggesting an important role for this polyphosphoinositide in vesicular trafficking.
Collapse
Affiliation(s)
- A Chaudhary
- The University of Utah, Department of Medicinal Chemistry, Salt Lake City, Utah 84112-5820, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Tall E, Dormán G, Garcia P, Runnels L, Shah S, Chen J, Profit A, Gu QM, Chaudhary A, Prestwich GD, Rebecchi MJ. Phosphoinositide binding specificity among phospholipase C isozymes as determined by photo-cross-linking to novel substrate and product analogs. Biochemistry 1997; 36:7239-48. [PMID: 9188725 DOI: 10.1021/bi9702288] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We tested for the presence of high-affinity phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and PI(3,4,5)P3 binding sites in four phospholipase C (PLC) isozymes (delta1, beta1, beta2, and beta3), by probing these proteins with analogs of inositol phosphates, D-Ins(1,4,5)P3, D-Ins(1,3,4,5)P4, and InsP6, and polyphosphoinositides PI(4,5)P2 and PI(3,4,5)P3, which contain a photoactivatable benzoyldihydrocinnamide moiety. Only PLC-delta1 was specifically radiolabeled. More than 90% of the label was found in tryptic and chymotryptic fragments which reacted with antisera against the pleckstrin homology (PH) domain, whereas less than 5% was recovered in fragments that encompassed the catalytic core. In separate experiments, the isolated delta1-PH domain was also specifically labeled. Equilibrium binding of D-Ins(1,4,5)P3 to PLC-delta1 indicated the presence of a single, high-affinity binding site; binding of D-Ins(1,4,5)P3 to PLC-beta1, -beta2, or -beta3 was not detected. The catalytic activity of PLC-delta1 was inhibited by the product D-Ins(1,4,5)P3, whereas no inhibition of PLC-beta1, -beta2, or -beta3 activity was observed. These results demonstrate that the PH domain is the sole high-affinity PI(4,5)P2 binding site of PLC-delta1 and that a similar site is not present in PLC-beta1, -beta2, or -beta3. The data are consistent with the idea that the PH domain of PLC-delta1, but not the beta isozymes, directs the catalytic core to membranes enriched in PI(4,5)P2 and is subject to product inhibition.
Collapse
Affiliation(s)
- E Tall
- Department of Anesthesiology, State University of New York at Stony Brook, 11794, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hammond SM, Jenco JM, Nakashima S, Cadwallader K, Gu Q, Cook S, Nozawa Y, Prestwich GD, Frohman MA, Morris AJ. Characterization of two alternately spliced forms of phospholipase D1. Activation of the purified enzymes by phosphatidylinositol 4,5-bisphosphate, ADP-ribosylation factor, and Rho family monomeric GTP-binding proteins and protein kinase C-alpha. J Biol Chem 1997; 272:3860-8. [PMID: 9013646 DOI: 10.1074/jbc.272.6.3860] [Citation(s) in RCA: 421] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We previously reported the cloning of a cDNA encoding human phosphatidylcholine-specific phospholipase D1 (PLD1), an ADP-ribosylation factor (ARF)-activated phosphatidylcholine-specific phospholipase D (Hammond, S. M., Tsung, S., Autschuller, Y., Rudge, S. A., Rose, K., Engebrecht, J., Morris, A. J., and Frohman, M. A. (1995) J. Biol. Chem. 270, 29640-29643). We have now identified an evolutionarily conserved shorter splice variant of PLD1 lacking 38 amino acids (residues 585-624) that arises from regulated splicing of an alternate exon. Both forms of PLD1 (PLD1a and 1b) have been expressed in Sf9 cells using baculovirus vectors and purified to homogeneity by detergent extraction and immunoaffinity chromatography. PLD1a and 1b have very similar properties. PLD1a and 1b activity is Mg2+dependent but insensitive to changes in free Ca2+ concentration. Phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate activate PLD1a and 1b but a range of other acidic phospholipids are ineffective. PLD1a and 1b are highly responsive to activation by GTP-gammaS-liganded ADP-ribosylation factor-1 (ARF-1) and can also be activated to a lesser extent by three purified RHO family monomeric GTP-binding proteins, RHO A, RAC-1, and CDC42. Activation of PLD1a and 1b by the RHO family monomeric GTP-binding proteins is GTP-dependent and synergistic with ARF-1. Purified protein kinase C-alpha activates PLD1a and 1b in a manner that is stimulated by phorbol esters and does not require ATP. Activation of PLD1a and 1b by protein kinase C-alpha is synergistic with ARF and with the RHO family monomeric GTP-binding proteins, suggesting that these three classes of regulators interact with different sites on the enzyme.
Collapse
Affiliation(s)
- S M Hammond
- Department of Pharmacological Sciences, Stony Brook Health Sciences Center, Stony Brook, New York 11794-8651, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|