1
|
Kirsh J, Kozuch J. Hydrogen Bond Blueshifts in Nitrile Vibrational Spectra Are Dictated by Hydrogen Bond Geometry and Dynamics. JACS AU 2024; 4:4844-4855. [PMID: 39735926 PMCID: PMC11672138 DOI: 10.1021/jacsau.4c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/31/2024]
Abstract
Vibrational Stark effect (VSE) spectroscopy has become one of the most important experimental approaches to determine the strength of noncovalent, electrostatic interactions in chemistry and biology and to quantify their influence on structure and reactivity. Nitriles (C≡N) have been widely used as VSE probes, but their application has been complicated by an anomalous hydrogen bond (HB) blueshift which is not encompassed within the VSE framework. We present an empirical model describing the anomalous HB blueshift in terms of H-bonding geometry, i.e., as a function of HB distance and angle with respect to the C≡N group. This model is obtained by comparing vibrational observables from density functional theory and electrostatics from the polarizable AMOEBA force field, and it provides a physical explanation for the HB blueshift in terms of underlying multipolar and Pauli repulsion contributions. Additionally, we compare predicted blueshifts with experimental results and find our model provides a useful, direct framework to analyze HB geometry for rigid HBs, such as within proteins or chemical frameworks. In contrast, nitriles in highly dynamic H-bonding environments like protic solvents are no longer a function solely of geometry; this is a consequence of motional narrowing, which we demonstrate by simulating IR spectra. Overall, when HB geometry and dynamics are accounted for, an excellent correlation is found between observed and predicted HB blueshifts. This correlation includes different types of nitriles and HB donors, suggesting that our model is general and can aid in understanding HB blueshifts wherever nitriles can be implemented.
Collapse
Affiliation(s)
- Jacob
M. Kirsh
- Department
of Chemistry, Stanford University, Stanford, California 94305-5012, United
States
| | - Jacek Kozuch
- Freie
Universität Berlin, Physics Department,
Experimental Molecular Biophysics, Arnimallee 14, 14195 Berlin, Germany
- Freie
Universität Berlin, SupraFAB Research Building, Altensteinstr. 23a, 14195 Berlin, Germany
| |
Collapse
|
2
|
Rush KW, Alwan KB, Conner AT, Welch EF, Blackburn NJ. Mechanisms of Copper Selectivity and Release by the Metallochaperone CusF: Insights from CO-Binding, Rapid-Freeze-Quench EXAFS, and Unnatural Amino Acid Substitution. Inorg Chem 2024; 63:21519-21530. [PMID: 39472424 DOI: 10.1021/acs.inorgchem.4c03578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
Abstract
Metallochaperones are small proteins that shuttle essential metal ions such as Cu selectively to their cellular targets. CusF has unusual Cu(I) coordination, bound by two methionines, one histidine and a capping tryptophan residue, W44. Here we compare the CO binding reactivity of the wild type (WT) protein and its W44A, F, and M variants. Fourier-transform infrared (FTIR) indicates that W44A provides unhindered access for CO, while W44M is unreactive. WT is also largely unreactive to CO suggesting that the tryptophan cap is effective in shielding the Cu(I) center from exogenous adduct formation, while the Phe variant shows partial reactivity suggestive of an equilibrium between cap-on and cap-off conformers. Rates of metal transfer to the partner CusB are consistent with the π-cation cap providing both selectivity and redox protection. Unnatural amino acid substitutions of the W44 ligand with cyano-Phe and Br-Phe underpin the conclusion that the Phe ligand is a less effective capping residue. Finally, density functional theory (DFT) calculations validate the CO-binding strategy. Overall, the study suggests that CusF uses the tryptophan cap to protect against exogenous ligand (O2) attack while the mechanism of protein-protein complex formation allows the cap to swing out of the way, and thus have minimal effect on the rates of metal transfer.
Collapse
Affiliation(s)
- Katherine W Rush
- Department of Chemical Physiology and Biochemistry, Oregon Health and Sciences University, Portland, Oregon 97239, United States
| | - Katherine B Alwan
- Department of Chemical Physiology and Biochemistry, Oregon Health and Sciences University, Portland, Oregon 97239, United States
| | - A Tamar Conner
- Department of Chemical Physiology and Biochemistry, Oregon Health and Sciences University, Portland, Oregon 97239, United States
| | - Evan F Welch
- Department of Chemical Physiology and Biochemistry, Oregon Health and Sciences University, Portland, Oregon 97239, United States
| | - Ninian J Blackburn
- Department of Chemical Physiology and Biochemistry, Oregon Health and Sciences University, Portland, Oregon 97239, United States
| |
Collapse
|
3
|
Cruz R, Ataka K, Heberle J, Kozuch J. Evaluating aliphatic CF, CF2, and CF3 groups as vibrational Stark effect reporters. J Chem Phys 2024; 160:204308. [PMID: 38814010 DOI: 10.1063/5.0198303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024] Open
Abstract
Given the extensive use of fluorination in molecular design, it is imperative to understand the solvation properties of fluorinated compounds and the impact of the C-F bond on electrostatic interactions. Vibrational spectroscopy can provide direct insights into these interactions by using the C-F bond stretching [v(C-F)] as an electric field probe through the vibrational Stark effect (VSE). In this work, we explore the VSE of the three basic patterns of aliphatic fluorination, i.e., mono-, di-, and trifluorination in CF, CF2, and CF3 groups, respectively, and compare their response to the well-studied aromatic v(C-F). Magnitudes (i.e., Stark tuning rates) and orientations of the difference dipole vectors of the v(C-F)-containing normal modes were determined using density functional theory and a molecular dynamics (MD)-assisted solvatochromic analysis of model compounds in solvents of varying polarity. We obtain Stark tuning rates of 0.2-0.8 cm-1/(MV/cm), with smallest and largest electric field sensitivities for CFaliphatic and CF3,aliphatic, respectively. While average electric fields of solvation were oriented along the main symmetry axis of the CFn, and thus along its static dipole, the Stark tuning rate vectors were tilted by up to 87° potentially enabling to map electrostatics in multiple dimensions. We discuss the influence of conformational heterogeneity on spectral shifts and point out the importance of multipolar and/or polarizable MD force fields to describe the electrostatics of fluorinated molecules. The implications of this work are of direct relevance for studies of fluorinated molecules as found in pharmaceuticals, fluorinated peptides, and proteins.
Collapse
Affiliation(s)
- R Cruz
- Fachbereich Physik, Freie Universität Berlin, Berlin 14195, Germany
| | - K Ataka
- Fachbereich Physik, Freie Universität Berlin, Berlin 14195, Germany
| | - J Heberle
- Fachbereich Physik, Freie Universität Berlin, Berlin 14195, Germany
- Forschungsbau SupraFAB, Freie Universität Berlin, Berlin 14195, Germany
| | - J Kozuch
- Fachbereich Physik, Freie Universität Berlin, Berlin 14195, Germany
- Forschungsbau SupraFAB, Freie Universität Berlin, Berlin 14195, Germany
| |
Collapse
|
4
|
Kocheril PA, Wang H, Lee D, Naji N, Wei L. Nitrile Vibrational Lifetimes as Probes of Local Electric Fields. J Phys Chem Lett 2024; 15:5306-5314. [PMID: 38722706 PMCID: PMC11486452 DOI: 10.1021/acs.jpclett.4c00597] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Optical measurements of electric fields have wide-ranging applications in the fields of chemistry and biology. Previously, such measurements focused on shifts in intensity or frequency. Here, we show that nitrile vibrational lifetimes can report local electric fields through ultrasensitive picosecond mid-infrared-near-infrared double-resonance fluorescence spectro-microscopy on Rhodamine 800. Using a robust convolution fitting approach, we observe that the nitrile vibrational lifetimes are strongly linearly correlated (R2 = 0.841) with solvent reaction fields. Supported by density functional theory, we rationalize this trend through a doorway model of intramolecular vibrational energy redistribution. This work provides new fundamental insights into the nature of vibrational energy flow in large polyatomic molecular systems and establishes a theoretical basis for electric field sensing with vibrational lifetimes, offering a new experimental dimension for probing intracellular electrostatics.
Collapse
Affiliation(s)
- Philip A. Kocheril
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Haomin Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Dongkwan Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Noor Naji
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lu Wei
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
5
|
Parker GL, Van Lommel R, Roig N, Alonso M, Chaplin AB. Modulation of Metal Carbonyl Stretching Frequencies in the Second Coordination Sphere through the Internal Stark Effect. Chemistry 2022; 28:e202202283. [PMID: 36082961 PMCID: PMC10092048 DOI: 10.1002/chem.202202283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Indexed: 12/14/2022]
Abstract
Spectroscopic and computational examination of a homologous series of rhodium(I) pybox carbonyl complexes has revealed a correlation between the conformation of the flanking aryl-substituted oxazoline donors and the carbonyl stretching frequency. This relationship is also observed experimentally for octahedral rhodium(III) and ruthenium(II) variants and cannot be explained through the classical, Dewar-Chatt-Duncanson, interpretation of metal-carbonyl bonding. Instead, these findings are reconciled by local changes in the magnitude of the electric field that is projected along the metal-carbonyl vector: the internal Stark effect.
Collapse
Affiliation(s)
- Gemma L. Parker
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCV4 7ALCoventryUK
| | - Ruben Van Lommel
- Eenheid Algemene Chemie (ALGC)Vrije Universiteit Brussel (VUB)1050BrusselsBelgium
- Molecular Design and SynthesisDepartment of ChemistryKU Leuven3001LeuvenBelgium
| | - Nil Roig
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCV4 7ALCoventryUK
- Eenheid Algemene Chemie (ALGC)Vrije Universiteit Brussel (VUB)1050BrusselsBelgium
| | - Mercedes Alonso
- Eenheid Algemene Chemie (ALGC)Vrije Universiteit Brussel (VUB)1050BrusselsBelgium
| | - Adrian B. Chaplin
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCV4 7ALCoventryUK
| |
Collapse
|
6
|
Boda M, Patwari GN. Vibrational Stark fields in carboxylic acid dimers. Phys Chem Chem Phys 2022; 24:5879-5885. [PMID: 35195127 DOI: 10.1039/d1cp02211c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carboxylic acids form exceptionally stable dimers and have been used to model proton and double proton transfer processes. The stabilization energies of the carboxylic acid dimers are very weakly dependent on the nature of substitution. However, the electric field experienced by the OH group of a particular carboxylic acid is dependent more on the nature of the substitution on the dimer partner. In general, the electric field was higher when the partner was substituted with an electron-donating group and lower with an electron-withdrawing substituent on the partner. The Stark tuning rate (Δ) of the O-H stretching vibrations calculated at the MP2/aug-cc-pVDZ level was found to be weakly dependent on the nature of substitution on the carboxylic acid. The average Stark tuning rate of O-H stretching vibrations of a particular carboxylic acid when paired with other acids was 5.7 cm-1 (MV cm-1)-1, while the corresponding average Stark tuning rate of the partner acids due to a particular carboxylic acid was 21.9 cm-1 (MV cm-1)-1. The difference in the Stark tuning rate is attributed to the primary and secondary effects of substitution on the carboxylic acid. The average Stark tuning rate for the anharmonic O-D frequency shifts is about 40-50% higher than the corresponding harmonic O-D frequency shifts calculated at the B3LYP/aug-cc-pVDZ level, much greater than the typical scaling factors used, indicating the strong anharmonicity of O-H/O-D oscillators in carboxylic acid dimers. Finally, the linear correlation observed between pKa and the electric field was used to estimate the pKa of fluoroformic acid to be around 0.9.
Collapse
Affiliation(s)
- Manjusha Boda
- Department of Chemistry, Indian Institute of Technology Bombay, Powai Mumbai 400076, India.
| | - G Naresh Patwari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai Mumbai 400076, India.
| |
Collapse
|
7
|
Dhakad A, Jena S, Sahoo DK, Biswal HS. Quantification of the electric field inside protein active sites and fullerenes. Phys Chem Chem Phys 2021; 23:14755-14763. [PMID: 34195713 DOI: 10.1039/d1cp01769a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
While electrostatic interactions are exceedingly accountable for biological functions, no simple method exists to directly estimate or measure the electrostatic field in protein active sites. The electrostatic field inside the protein is generally inferred from the shift in the vibrational stretching frequencies of nitrile and thionitrile probes at the active sites through several painstaking and time-consuming experiments like vibrational Stark effect spectroscopy (VSS). Here we present a simple, fast, and reliable methodology, which can efficiently predict the vibrational Stark tuning rates (VSRs) of a large variety of probes within 10% error of the reported experimental data. Our methodology is based on geometry optimization and frequency calculations in the presence of an external electric field to predict the accurate VSR of newly designed nitrile/thionitrile probes. A priori information of VSRs is useful for difficult experiments such as catalytic/enzymatic study and in structural biology. We also applied our methodology successfully to estimate the electric field inside fullerenes and nano-onions, which is encouraging for researchers to adopt it for further applications in materials science and supramolecular chemistry.
Collapse
Affiliation(s)
- Ambuj Dhakad
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India. and Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Subhrakant Jena
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India. and Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Dipak Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India. and Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Himansu S Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India. and Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
8
|
Baiz CR, Błasiak B, Bredenbeck J, Cho M, Choi JH, Corcelli SA, Dijkstra AG, Feng CJ, Garrett-Roe S, Ge NH, Hanson-Heine MWD, Hirst JD, Jansen TLC, Kwac K, Kubarych KJ, Londergan CH, Maekawa H, Reppert M, Saito S, Roy S, Skinner JL, Stock G, Straub JE, Thielges MC, Tominaga K, Tokmakoff A, Torii H, Wang L, Webb LJ, Zanni MT. Vibrational Spectroscopic Map, Vibrational Spectroscopy, and Intermolecular Interaction. Chem Rev 2020; 120:7152-7218. [PMID: 32598850 PMCID: PMC7710120 DOI: 10.1021/acs.chemrev.9b00813] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Vibrational spectroscopy is an essential tool in chemical analyses, biological assays, and studies of functional materials. Over the past decade, various coherent nonlinear vibrational spectroscopic techniques have been developed and enabled researchers to study time-correlations of the fluctuating frequencies that are directly related to solute-solvent dynamics, dynamical changes in molecular conformations and local electrostatic environments, chemical and biochemical reactions, protein structural dynamics and functions, characteristic processes of functional materials, and so on. In order to gain incisive and quantitative information on the local electrostatic environment, molecular conformation, protein structure and interprotein contacts, ligand binding kinetics, and electric and optical properties of functional materials, a variety of vibrational probes have been developed and site-specifically incorporated into molecular, biological, and material systems for time-resolved vibrational spectroscopic investigation. However, still, an all-encompassing theory that describes the vibrational solvatochromism, electrochromism, and dynamic fluctuation of vibrational frequencies has not been completely established mainly due to the intrinsic complexity of intermolecular interactions in condensed phases. In particular, the amount of data obtained from the linear and nonlinear vibrational spectroscopic experiments has been rapidly increasing, but the lack of a quantitative method to interpret these measurements has been one major obstacle in broadening the applications of these methods. Among various theoretical models, one of the most successful approaches is a semiempirical model generally referred to as the vibrational spectroscopic map that is based on a rigorous theory of intermolecular interactions. Recently, genetic algorithm, neural network, and machine learning approaches have been applied to the development of vibrational solvatochromism theory. In this review, we provide comprehensive descriptions of the theoretical foundation and various examples showing its extraordinary successes in the interpretations of experimental observations. In addition, a brief introduction to a newly created repository Web site (http://frequencymap.org) for vibrational spectroscopic maps is presented. We anticipate that a combination of the vibrational frequency map approach and state-of-the-art multidimensional vibrational spectroscopy will be one of the most fruitful ways to study the structure and dynamics of chemical, biological, and functional molecular systems in the future.
Collapse
Affiliation(s)
- Carlos R. Baiz
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, U.S.A
| | - Bartosz Błasiak
- Department of Physical and Quantum Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Jens Bredenbeck
- Johann Wolfgang Goethe-University, Institute of Biophysics, Max-von-Laue-Str. 1, 60438, Frankfurt am Main, Germany
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jun-Ho Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Steven A. Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, U.S.A
| | - Arend G. Dijkstra
- School of Chemistry and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Chi-Jui Feng
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, U.S.A
| | - Sean Garrett-Roe
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A
| | - Nien-Hui Ge
- Department of Chemistry, University of California at Irvine, Irvine, CA 92697-2025, U.S.A
| | - Magnus W. D. Hanson-Heine
- School of Chemistry, University of Nottingham, Nottingham, University Park, Nottingham, NG7 2RD, U.K
| | - Jonathan D. Hirst
- School of Chemistry, University of Nottingham, Nottingham, University Park, Nottingham, NG7 2RD, U.K
| | - Thomas L. C. Jansen
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Kijeong Kwac
- Center for Molecular Spectroscopy and Dynamics, Seoul 02841, Republic of Korea
| | - Kevin J. Kubarych
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109, U.S.A
| | - Casey H. Londergan
- Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041, U.S.A
| | - Hiroaki Maekawa
- Department of Chemistry, University of California at Irvine, Irvine, CA 92697-2025, U.S.A
| | - Mike Reppert
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Shinji Saito
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki, 444-8585, Japan
| | - Santanu Roy
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6110, U.S.A
| | - James L. Skinner
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, U.S.A
| | - Gerhard Stock
- Biomolecular Dynamics, Institute of Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - John E. Straub
- Department of Chemistry, Boston University, Boston, MA 02215, U.S.A
| | - Megan C. Thielges
- Department of Chemistry, Indiana University, 800 East Kirkwood, Bloomington, Indiana 47405, U.S.A
| | - Keisuke Tominaga
- Molecular Photoscience Research Center, Kobe University, Nada, Kobe 657-0013, Japan
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, U.S.A
| | - Hajime Torii
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, and Department of Optoelectronics and Nanostructure Science, Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-Ku, Hamamatsu 432-8561, Japan
| | - Lu Wang
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, U.S.A
| | - Lauren J. Webb
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street, STOP A5300, Austin, Texas 78712, U.S.A
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1396, U.S.A
| |
Collapse
|
9
|
Verma N, Tao Y, Zou W, Chen X, Chen X, Freindorf M, Kraka E. A Critical Evaluation of Vibrational Stark Effect (VSE) Probes with the Local Vibrational Mode Theory. SENSORS 2020; 20:s20082358. [PMID: 32326248 PMCID: PMC7219233 DOI: 10.3390/s20082358] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
Over the past two decades, the vibrational Stark effect has become an important tool to measure and analyze the in situ electric field strength in various chemical environments with infrared spectroscopy. The underlying assumption of this effect is that the normal stretching mode of a target bond such as CO or CN of a reporter molecule (termed vibrational Stark effect probe) is localized and free from mass-coupling from other internal coordinates, so that its frequency shift directly reflects the influence of the vicinal electric field. However, the validity of this essential assumption has never been assessed. Given the fact that normal modes are generally delocalized because of mass-coupling, this analysis was overdue. Therefore, we carried out a comprehensive evaluation of 68 vibrational Stark effect probes and candidates to quantify the degree to which their target normal vibration of probe bond stretching is decoupled from local vibrations driven by other internal coordinates. The unique tool we used is the local mode analysis originally introduced by Konkoli and Cremer, in particular the decomposition of normal modes into local mode contributions. Based on our results, we recommend 31 polyatomic molecules with localized target bonds as ideal vibrational Stark effect probe candidates.
Collapse
Affiliation(s)
- Niraj Verma
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA; (N.V.); (Y.T.); (M.F.)
| | - Yunwen Tao
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA; (N.V.); (Y.T.); (M.F.)
| | - Wenli Zou
- Institute of Modern Physics, Northwest University, Xi’an 710127, China;
| | - Xia Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Xin Chen
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China;
| | - Marek Freindorf
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA; (N.V.); (Y.T.); (M.F.)
| | - Elfi Kraka
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA; (N.V.); (Y.T.); (M.F.)
- Correspondence:
| |
Collapse
|
10
|
Theoretical analysis and modeling of the electrostatic responses of the vibrational and NMR spectroscopic properties of the cyanide anion. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Torii H. Strategy for Modeling the Electrostatic Responses of the Spectroscopic Properties of Proteins. J Phys Chem B 2017; 122:154-164. [PMID: 29192780 DOI: 10.1021/acs.jpcb.7b10791] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For better understanding and more efficient use of the spectroscopic probes (vibrational and NMR) of the local electrostatic situations inside proteins, appropriate modeling of the properties of those probes is essential. The present study is devoted to examining the strategy for constructing such models. A more well-founded derivation than the ones in previous studies is given in constructing the models. Theoretical analyses are conducted on two representative example cases related to proteins, i.e., the peptide group of the main chains and the CO and NO ligands to the Fe2+ ion of heme, with careful treatment of the behavior of electrons in the electrostatic responses and with verification of consistency with observable quantities. It is shown that, for the stretching frequencies and NMR chemical shifts, it is possible to construct reasonable electrostatic interaction models that encompass the situations of hydration and uniform electric field environment and thus are applicable also to the cases of nonuniform electrostatic situations, which are highly expected for inside of proteins.
Collapse
Affiliation(s)
- Hajime Torii
- Department of Chemistry, Faculty of Education and Department of Optoelectronics and Nanostructure Science, Graduate School of Science and Technology, Shizuoka University , 836 Ohya, Shizuoka 422-8529, Japan
| |
Collapse
|
12
|
Hussain A, Huse N, Vendrell O. Sensitivity of core-level spectroscopy to electrostatic environments of nitrile groups: An ab initio study. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:054102. [PMID: 28966931 PMCID: PMC5612798 DOI: 10.1063/1.5003404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/05/2017] [Indexed: 05/26/2023]
Abstract
Ab initio quantum chemistry calculations have been performed to probe the influence of hydrogen bonding on the electronic structure of hydrogen cyanide (HCN). Our calculations determine the origin of nitrogen-specific Raman spectral features from resonant inelastic X-ray scattering occurring in the presence of a water molecule and an electric dipole field. The similarity of the two interactions in altering the electronic structure of the nitrogen atom differs only in the covalent contributions from the water molecule. The CN stretching mode as a structural probe was also investigated to study the electronic origin of the anomalous frequency shift of the nitrile group when subjected to hydrogen bonding and an electrostatic dipole field. The major changes in the electronic structure of HCN are electrostatic in nature and originate from dipole-dipole interactions. The relative shifts of the CN stretching frequency are in good agreement with those experimentally observed.
Collapse
Affiliation(s)
- Abid Hussain
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, 22761 Hamburg, Germany
| | | | | |
Collapse
|
13
|
Schneider SH, Kratochvil HT, Zanni MT, Boxer SG. Solvent-Independent Anharmonicity for Carbonyl Oscillators. J Phys Chem B 2017; 121:2331-2338. [PMID: 28225620 DOI: 10.1021/acs.jpcb.7b00537] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The physical origins of vibrational frequency shifts have been extensively studied in order to understand noncovalent intermolecular interactions in the condensed phase. In the case of carbonyls, vibrational solvatochromism, MD simulations, and vibrational Stark spectroscopy suggest that the frequency shifts observed in simple solvents arise predominately from the environment's electric field due to the vibrational Stark effect. This is contrary to many previously invoked descriptions of vibrational frequency shifts, such as bond polarization, whereby the bond's force constant and/or partial nuclear charges are altered due to the environment, often illustrated in terms of favored resonance structures. Here we test these hypotheses using vibrational solvatochromism as measured using 2D IR to assess the solvent dependence of the bond anharmonicity. These results indicate that the carbonyl bond's anharmonicity is independent of solvent as tested using hexanes, DMSO, and D2O and is supported by simulated 2D spectra. In support of the linear vibrational Stark effect, these 2D IR measurements are consistent with the assertion that the Stark tuning rate is unperturbed by the electric field generated by both hydrogen and non-hydrogen bonding environments and further extends the general applicability of carbonyl probes for studying intermolecular interactions.
Collapse
Affiliation(s)
- Samuel H Schneider
- Department of Chemistry, Stanford University , Stanford, California 94305-5012, United States
| | - Huong T Kratochvil
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Steven G Boxer
- Department of Chemistry, Stanford University , Stanford, California 94305-5012, United States
| |
Collapse
|
14
|
Garrett BF, Azuri I, Kronik L, Chelikowsky JR. Real-space pseudopotential method for computing the vibrational Stark effect. J Chem Phys 2016; 145:174111. [DOI: 10.1063/1.4965918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Benjamin F. Garrett
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Ido Azuri
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100, Israel
| | - Leeor Kronik
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100, Israel
| | - James R. Chelikowsky
- Center for Computational Materials, Institute for Computational Engineering and Sciences, Departments of Physics and Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
15
|
Zhao Y, Yang F, Wang J, Yu P, Pan H, Wang H, Wang J. Structural dynamics of nitrosylruthenium isomeric complexes studied with steady-state and transient pump-probe infrared spectroscopies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 166:62-67. [PMID: 27209490 DOI: 10.1016/j.saa.2016.04.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 06/05/2023]
Abstract
The characteristic nitrosyl stretching (NO) in the region of 1800-1900cm(-1) was used to study the geometric and ligand effect on two nitrosylruthenium complexes, namely [Ru(OAc)(2QN)2NO] (QN=2-chloro-8-quinolinol (H2cqn) or QN=2-methyl-8-quinolinol (H2mqn)). The NO stretching frequency (νNO) was found in the following order: νcis-1 (2cqn)>νcis-2 (2cqn)>νcis-1 (2mqn)>νtrans (2mqn). The results exhibited a spectral sensitivity of the NO mode to both charge distribution and ligand arrangement, which was supported by ab initio computations and natural bond orbital (NBO) analyses. Further, the vibrational population of the vibrationally excited NO stretching mode was found to relax on the order of 7-10ps, showing less than 30% variation from one isomer to another, which were explained on the basis of NO local structures and solute-solvent interactions in these isomeric nitrosylruthenium complexes.
Collapse
Affiliation(s)
- Yan Zhao
- College of Physics & Electronics Engineering, Shanxi University, Taiyuan 030006, China; Molecular Reaction Dynamics Laboratory, Beijing National Laboratory for Molecular Sciences, Beijing 100190, China; Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Fan Yang
- Molecular Reaction Dynamics Laboratory, Beijing National Laboratory for Molecular Sciences, Beijing 100190, China; Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianru Wang
- Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
| | - Pengyun Yu
- Molecular Reaction Dynamics Laboratory, Beijing National Laboratory for Molecular Sciences, Beijing 100190, China; Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Huifen Pan
- Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Hongfei Wang
- Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | - Jianping Wang
- Molecular Reaction Dynamics Laboratory, Beijing National Laboratory for Molecular Sciences, Beijing 100190, China; Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
16
|
Deb P, Haldar T, Kashid SM, Banerjee S, Chakrabarty S, Bagchi S. Correlating Nitrile IR Frequencies to Local Electrostatics Quantifies Noncovalent Interactions of Peptides and Proteins. J Phys Chem B 2016; 120:4034-46. [DOI: 10.1021/acs.jpcb.6b02732] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pranab Deb
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Tapas Haldar
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Somnath M Kashid
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Subhrashis Banerjee
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Suman Chakrabarty
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Sayan Bagchi
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
17
|
Abstract
The synthesis of six new bis(cyano) iron(III) porphyrinate derivatives is reported. The anionic porphyrin complexes utilized tetraphenylporphyrin, tetramesitylporphyrin, and tetratolylporphyrin as the porphyrin ligand. The potassium salts of Kryptofix-222 and 18-C-6 were used as the cations. These complexes have been characterized by X-ray structure analysis, solid-state Mössbauer spectroscopy, and EPR spectroscopy, both in frozen CH2Cl2 solution and in the microcrystalline state. These data show that these anionic complexes can exist in either the (dxz,dyz)(4)(dxy)(1) or the (dxy)(2)(dxz,dyz)(3) electronic configuration and some can clearly readily interconvert. This is a reflection that these two states can be very close in energy. In addition to the effects of varying the porphyrin ligand, subtle effects of the cyanide ligand environment in the solid state and in solution are sufficient to shift the balance between the two electronic states.
Collapse
|
18
|
Fried SD, Wang LP, Boxer SG, Ren P, Pande VS. Calculations of the electric fields in liquid solutions. J Phys Chem B 2013; 117:16236-48. [PMID: 24304155 DOI: 10.1021/jp410720y] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The electric field created by a condensed-phase environment is a powerful and convenient descriptor for intermolecular interactions. Not only does it provide a unifying language to compare many different types of interactions, but it also possesses clear connections to experimental observables, such as vibrational Stark effects. We calculate here the electric fields experienced by a vibrational chromophore (the carbonyl group of acetophenone) in an array of solvents of diverse polarities using molecular dynamics simulations with the AMOEBA polarizable force field. The mean and variance of the calculated electric fields correlate well with solvent-induced frequency shifts and band broadening, suggesting Stark effects as the underlying mechanism of these key solution-phase spectral effects. Compared to fixed-charge and continuum models, AMOEBA was the only model examined that could describe nonpolar, polar, and hydrogen bonding environments in a consistent fashion. Nevertheless, we found that fixed-charge force fields and continuum models were able to replicate some results of the polarizable simulations accurately, allowing us to clearly identify which properties and situations require explicit polarization and/or atomistic representations to be modeled properly, and to identify for which properties and situations simpler models are sufficient. We also discuss the ramifications of these results for modeling electrostatics in complex environments, such as proteins.
Collapse
Affiliation(s)
- Stephen D Fried
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | | | | | | | | |
Collapse
|
19
|
Choi JH, Kwak KW, Cho M. Computational infrared and two-dimensional infrared photon echo spectroscopy of both wild-type and double mutant myoglobin-CO proteins. J Phys Chem B 2013; 117:15462-78. [PMID: 23869523 DOI: 10.1021/jp405210s] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The CO stretching mode of both wild-type and double mutant ( T67R / S92D ) MbCO (carbonmonoxymyoglobin) proteins is an ideal infrared (IR) probe for studying the local electrostatic environment inside the myoglobin heme pocket. Recently, to elucidate the conformational switching dynamics between two distinguishable states, extensive IR absorption, IR pump-probe, and two-dimensional (2D) IR spectroscopic studies for various mutant MbCO's have been performed by the Fayer group. They showed that the 2D IR spectroscopy of the double mutant, which has a peroxidase enzyme activity, reveals a rapid chemical exchange between two distinct states, whereas that of the wild-type does not. Despite the fact that a few simulation studies on these systems were already performed and reported, such complicated experimental results have not been fully reproduced nor described in terms of conformational state-to-state transition processes. Here, we first develop a distributed vibrational solvatochromic charge model for describing the CO stretch frequency shift reflecting local electric potential changes. Then, by carrying out molecular dynamic simulations of the two MbCO's and examining their CO frequency trajectories, it becomes possible to identify a proper reaction coordinate consisting of His64 imidazole ring rotation and its distance to the CO ligand. From the 2D surfaces of the resulting potential of mean forces, the spectroscopically distinguished A1 and A3 states of the wild-type as well as two more substates of the double mutant are identified and their vibrational frequencies and distributions are separately examined. Our simulated IR absorption and 2D IR spectra of the two MbCO's are directly compared with the previous experimental results reported by the Fayer group. The chemical exchange rate constants extracted from the two-state kinetic analyses of the simulated 2D IR spectra are in excellent agreement with the experimental values. On the basis of the quantitative agreement between the simulated spectra and experimental ones, we further examine the conformational differences in the heme pockets of the two proteins and show that the double mutation, T67R / S92D , suppresses the A1 population, restricts the imidazole ring rotation, and increases hydrogen-bond strength between the imidazole Nε-H and the oxygen atom of the CO ligand. It is believed that such delicate change of distal His64 imidazole ring dynamics induced by the double mutation may be responsible for its enhanced peroxidase catalytic activity as compared to the wild-type myoglobin.
Collapse
Affiliation(s)
- Jun-Ho Choi
- Department of Chemistry, Korea University , Seoul 136-713, Korea
| | | | | |
Collapse
|
20
|
Brookes JF, Slenkamp KM, Lynch MS, Khalil M. Effect of solvent polarity on the vibrational dephasing dynamics of the nitrosyl stretch in an Fe(II) complex revealed by 2D IR spectroscopy. J Phys Chem A 2013; 117:6234-43. [PMID: 23480848 DOI: 10.1021/jp4005345] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The vibrational dephasing dynamics of the nitrosyl stretching vibration (ν(NO)) in sodium nitroprusside (SNP, Na2[Fe(CN)5NO]·2H2O) are investigated using two-dimensional infrared (2D IR) spectroscopy. The ν(NO) in SNP acts as a model system for the nitrosyl ligand found in metalloproteins which play an important role in the transportation and detection of nitric oxide (NO) in biological systems. We perform a 2D IR line shape study of the ν(NO) in the following solvents: water, deuterium oxide, methanol, ethanol, ethylene glycol, formamide, and dimethyl sulfoxide. The frequency of the ν(NO) exhibits a large vibrational solvatochromic shift of 52 cm(-1), ranging from 1884 cm(-1) in dimethyl sulfoxide to 1936 cm(-1) in water. The vibrational anharmonicity of the ν(NO) varies from 21 to 28 cm(-1) in the solvents used in this study. The frequency-frequency correlation functions (FFCFs) of the ν(NO) in SNP in each of the seven solvents are obtained by fitting the experimentally obtained 2D IR spectra using nonlinear response theory. The fits to the 2D IR line shape reveal that the spectral diffusion time scale of the ν(NO) in SNP varies from 0.8 to 4 ps and is negatively correlated with the empirical solvent polarity scales. We compare our results with the experimentally determined FFCFs of other charged vibrational probes in polar solvents and in the active sites of heme proteins. Our results suggest that the vibrational dephasing dynamics of the ν(NO) in SNP reflect the fluctuations of the nonhomogeneous electric field created by the polar solvents around the nitrosyl and cyanide ligands. The solute solvent interactions occurring at the trans-CN ligand are sensed through the π-back-bonding network along the Fe-NO bond in SNP.
Collapse
Affiliation(s)
- Jennifer F Brookes
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
21
|
Drużbicki K, Mikuli E, Zalewski S, Ossowska-Chruściel MD, Chruściel J, Wróbel S, Czerwiec J. Dynamics and the mesomorphic properties of a novel antiferroelectric liquid crystalline thiobenzoate MHPSBO10: thermal, optical and dielectric spectroscopy study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 105:424-438. [PMID: 23337747 DOI: 10.1016/j.saa.2012.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 12/07/2012] [Accepted: 12/10/2012] [Indexed: 06/01/2023]
Abstract
The complementary studies of the mesomorphic properties of a novel antiferroelectric liquid crystal (AFLC) (S)-2-octile 4-S-(4'decyloxybiphenyl-4-tiocarboxy)benzoate, known under MHPSBO10 acronym have been undertaken. The polymorphism has been complementary studied in details by Differential Scanning Calorimetry (DSC), Transmitted Light Intensity (TLI) and Polarization Microscopy (POM). The switching characteristics along with multiple macroscopic parameters describing the mesomorphic properties were determined by using electro-optic measurements, both upon cooling and heating. Frequency domain dielectric spectroscopy (DS), covering a wide frequency range, has been applied to characterize the molecular motions. Several collective modes, including the low frequency processes in the condensed hexatic phase were detected, analyzed in details and followed with the temperature. The presented studies deliver a wide report of the phase transitions, molecular dynamics and the macroscopic properties of the novel antiferroelectric thiobenzoate.
Collapse
Affiliation(s)
- Kacper Drużbicki
- Department of Chemical Physics, Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Cracow, Poland.
| | | | | | | | | | | | | |
Collapse
|
22
|
Schkolnik G, Utesch T, Zhao J, Jiang S, Thompson MK, Mroginski MA, Hildebrandt P, Franzen S. Catalytic efficiency of dehaloperoxidase A is controlled by electrostatics – application of the vibrational Stark effect to understand enzyme kinetics. Biochem Biophys Res Commun 2013; 430:1011-5. [DOI: 10.1016/j.bbrc.2012.12.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 12/10/2012] [Indexed: 11/17/2022]
|
23
|
Saggu M, Levinson NM, Boxer SG. Experimental quantification of electrostatics in X-H···π hydrogen bonds. J Am Chem Soc 2012; 134:18986-97. [PMID: 23098379 PMCID: PMC3511793 DOI: 10.1021/ja305575t] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hydrogen bonds are ubiquitous in chemistry and biology. The physical forces that govern hydrogen-bonding interactions have been heavily debated, with much of the discussion focused on the relative contributions of electrostatic vs quantum mechanical effects. In principle, the vibrational Stark effect, the response of a vibrational mode to electric field, can provide an experimental method for parsing such interactions into their electrostatic and nonelectrostatic components. In a previous study we showed that, in the case of relatively weak O-H···π hydrogen bonds, the O-H bond displays a linear response to an electric field, and we exploited this response to demonstrate that the interactions are dominated by electrostatics (Saggu, M.; Levinson, N. M.; Boxer, S. G. J. Am. Chem. Soc.2011, 133, 17414-17419). Here we extend this work to other X-H···π interactions. We find that the response of the X-H vibrational probe to electric field appears to become increasingly nonlinear in the order O-H < N-H < S-H. The observed effects are consistent with differences in atomic polarizabilities of the X-H groups. Nonetheless, we find that the X-H stretching vibrations of the model compounds indole and thiophenol report quantitatively on the electric fields they experience when complexed with aromatic hydrogen-bond acceptors. These measurements can be used to estimate the electrostatic binding energies of the interactions, which are found to agree closely with the results of energy calculations. Taken together, these results highlight that with careful calibration vibrational probes can provide direct measurements of the electrostatic components of hydrogen bonds.
Collapse
Affiliation(s)
- Miguel Saggu
- Department of Chemistry, Stanford University, Stanford, CA 94305-5012, USA
| | | | - Steven G. Boxer
- Department of Chemistry, Stanford University, Stanford, CA 94305-5012, USA
| |
Collapse
|
24
|
Bagchi S, Fried SD, Boxer SG. A solvatochromic model calibrates nitriles' vibrational frequencies to electrostatic fields. J Am Chem Soc 2012; 134:10373-6. [PMID: 22694663 DOI: 10.1021/ja303895k] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electrostatic interactions provide a primary connection between a protein's three-dimensional structure and its function. Infrared probes are useful because vibrational frequencies of certain chemical groups, such as nitriles, are linearly sensitive to local electrostatic field and can serve as a molecular electric field meter. IR spectroscopy has been used to study electrostatic changes or fluctuations in proteins, but measured peak frequencies have not been previously mapped to total electric fields, because of the absence of a field-frequency calibration and the complication of local chemical effects such as H-bonds. We report a solvatochromic model that provides a means to assess the H-bonding status of aromatic nitrile vibrational probes and calibrates their vibrational frequencies to electrostatic field. The analysis involves correlations between the nitrile's IR frequency and its (13)C chemical shift, whose observation is facilitated by a robust method for introducing isotopes into aromatic nitriles. The method is tested on the model protein ribonuclease S (RNase S) containing a labeled p-CN-Phe near the active site. Comparison of the measurements in RNase S against solvatochromic data gives an estimate of the average total electrostatic field at this location. The value determined agrees quantitatively with molecular dynamics simulations, suggesting broader potential for the use of IR probes in the study of protein electrostatics.
Collapse
Affiliation(s)
- Sayan Bagchi
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA
| | | | | |
Collapse
|
25
|
Quantitative, directional measurement of electric field heterogeneity in the active site of ketosteroid isomerase. Proc Natl Acad Sci U S A 2012; 109:E299-308. [PMID: 22308339 DOI: 10.1073/pnas.1111566109] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the electrostatic forces and features within highly heterogeneous, anisotropic, and chemically complex enzyme active sites and their connection to biological catalysis remains a longstanding challenge, in part due to the paucity of incisive experimental probes of electrostatic properties within proteins. To quantitatively assess the landscape of electrostatic fields at discrete locations and orientations within an enzyme active site, we have incorporated site-specific thiocyanate vibrational probes into multiple positions within bacterial ketosteroid isomerase. A battery of X-ray crystallographic, vibrational Stark spectroscopy, and NMR studies revealed electrostatic field heterogeneity of 8 MV/cm between active site probe locations and widely differing sensitivities of discrete probes to common electrostatic perturbations from mutation, ligand binding, and pH changes. Electrostatic calculations based on active site ionization states assigned by literature precedent and computational pK(a) prediction were unable to quantitatively account for the observed vibrational band shifts. However, electrostatic models of the D40N mutant gave qualitative agreement with the observed vibrational effects when an unusual ionization of an active site tyrosine with a pK(a) near 7 was included. UV-absorbance and (13)C NMR experiments confirmed the presence of a tyrosinate in the active site, in agreement with electrostatic models. This work provides the most direct measure of the heterogeneous and anisotropic nature of the electrostatic environment within an enzyme active site, and these measurements provide incisive benchmarks for further developing accurate computational models and a foundation for future tests of electrostatics in enzymatic catalysis.
Collapse
|
26
|
Saggu M, Levinson NM, Boxer SG. Direct measurements of electric fields in weak OH···π hydrogen bonds. J Am Chem Soc 2011; 133:17414-9. [PMID: 21936553 DOI: 10.1021/ja2069592] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hydrogen bonds and aromatic interactions are of widespread importance in chemistry, biology, and materials science. Electrostatics play a fundamental role in these interactions, but the magnitude of the electric fields that support them has not been quantified experimentally. Phenol forms a weak hydrogen bond complex with the π-cloud of benzene, and we used this as a model system to study the role of electric fields in weak OH···π hydrogen bonds. The effects of complex formation on the vibrational frequency of the phenol OH or OD stretches were measured in a series of benzene-based aromatic solvents. Large shifts are observed and these can be converted into electric fields via the measured vibrational Stark effect. A comparison of the measured fields with quantum chemical calculations demonstrates that calculations performed in the gas phase are surprisingly effective at capturing the electrostatics observed in solution. The results provide quantitative measurements of the magnitude of electric fields and electrostatic binding energies in these interactions and suggest that electrostatics dominate them. The combination of vibrational Stark effect (VSE) measurements of electric fields and high-level quantum chemistry calculations is a general strategy for quantifying and characterizing the origins of intermolecular interactions.
Collapse
Affiliation(s)
- Miguel Saggu
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA.
| | | | | |
Collapse
|
27
|
Fu R, Gupta R, Geng J, Dornevil K, Wang S, Zhang Y, Hendrich MP, Liu A. Enzyme reactivation by hydrogen peroxide in heme-based tryptophan dioxygenase. J Biol Chem 2011; 286:26541-54. [PMID: 21632548 PMCID: PMC3143619 DOI: 10.1074/jbc.m111.253237] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 05/29/2011] [Indexed: 11/06/2022] Open
Abstract
An intriguing mystery about tryptophan 2,3-dioxygenase is its hydrogen peroxide-triggered enzyme reactivation from the resting ferric oxidation state to the catalytically active ferrous form. In this study, we found that such an odd Fe(III) reduction by an oxidant depends on the presence of L-Trp, which ultimately serves as the reductant for the enzyme. In the peroxide reaction with tryptophan 2,3-dioxygenase, a previously unknown catalase-like activity was detected. A ferryl species (δ = 0.055 mm/s and ΔE(Q) = 1.755 mm/s) and a protein-based free radical (g = 2.0028 and 1.72 millitesla linewidth) were characterized by Mössbauer and EPR spectroscopy, respectively. This is the first compound ES-type of ferryl intermediate from a heme-based dioxygenase characterized by EPR and Mössbauer spectroscopy. Density functional theory calculations revealed the contribution of secondary ligand sphere to the spectroscopic properties of the ferryl species. In the presence of L-Trp, the reactivation was demonstrated by enzyme assays and by various spectroscopic techniques. A Trp-Trp dimer and a monooxygenated L-Trp were both observed as the enzyme reactivation by-products by mass spectrometry. Together, these results lead to the unraveling of an over 60-year old mystery of peroxide reactivation mechanism. These results may shed light on how a metalloenzyme maintains its catalytic activity in an oxidizing environment.
Collapse
Affiliation(s)
- Rong Fu
- From the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Rupal Gupta
- the Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, and
| | - Jiafeng Geng
- From the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Kednerlin Dornevil
- From the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Siming Wang
- From the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Yong Zhang
- the Department of Chemistry, Chemical Biology, and Biomedical Engineering, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, New Jersey 07030
| | - Michael P. Hendrich
- the Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, and
| | - Aimin Liu
- From the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| |
Collapse
|
28
|
Morales CM, Thompson WH. Molecular-level mechanisms of vibrational frequency shifts in a polar liquid. J Phys Chem B 2011; 115:7597-605. [PMID: 21608988 DOI: 10.1021/jp201591c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A molecular-level analysis of the origins of the vibrational frequency shifts of the CN stretching mode in neat liquid acetonitrile is presented. The frequency shifts and infrared spectrum are calculated using a perturbation theory approach within a molecular dynamics simulation and are in good agreement with measured values reported in the literature. The resulting instantaneous frequency of each nitrile group is decomposed into the contributions from each molecule in the liquid and by interaction type. This provides a detailed picture of the mechanisms of frequency shifts, including the number of surrounding molecules that contribute to the shift, the relationship between their position and relative contribution, and the roles of electrostatic and van der Waals interactions. These results provide insight into what information is contained in infrared (IR) and Raman spectra about the environment of the probed vibrational mode.
Collapse
Affiliation(s)
- Christine M Morales
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin 54702, USA
| | | |
Collapse
|
29
|
Choi JH, Cho M. Vibrational solvatochromism and electrochromism of infrared probe molecules containing C≡O, C≡N, C=O, or C−F vibrational chromophore. J Chem Phys 2011; 134:154513. [DOI: 10.1063/1.3580776] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Nienhaus K, Dominici P, Astegno A, Abbruzzetti S, Viappiani C, Nienhaus GU. Ligand migration and binding in nonsymbiotic hemoglobins of Arabidopsis thaliana. Biochemistry 2010; 49:7448-58. [PMID: 20666470 DOI: 10.1021/bi100768g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We have studied carbon monoxide (CO) migration and binding in the nonsymbiotic hemoglobins AHb1 and AHb2 of Arabidopsis thaliana using Fourier transform infrared (FTIR) spectroscopy combined with temperature derivative spectroscopy (TDS) at cryogenic temperatures. Both proteins have similar amino acid sequences but display pronounced differences in ligand binding properties, at both physiological and cryogenic temperatures. Near neutral pH, the distal HisE7 side chain is close to the heme-bound ligand in the majority of AHb1-CO molecules, as indicated by a low CO stretching frequency at 1921 cm(-1). In this fraction, two CO docking sites can be populated, the primary site B and the secondary site C. When the pH is lowered, a high-frequency stretching band at approximately 1964 cm(-1) grows at the expense of the low-frequency band, indicating that HisE7 protonates and, concomitantly, moves away from the bound ligand. Geminate rebinding barriers are markedly different for the two conformations, and docking site C is not accessible in the low-pH conformation. Rebinding of NO ligands was observed only from site B of AHb1, regardless of conformation. In AHb2, the HisE7 side chain is removed from the bound ligand; rebinding barriers are low, and CO molecules can populate only primary docking site B. These results are interpreted in terms of differences in the active site structures and physiological functions.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Marek P, Mukherjee S, Zanni MT, Raleigh DP. Residue-specific, real-time characterization of lag-phase species and fibril growth during amyloid formation: a combined fluorescence and IR study of p-cyanophenylalanine analogs of islet amyloid polypeptide. J Mol Biol 2010; 400:878-88. [PMID: 20630475 DOI: 10.1016/j.jmb.2010.05.041] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 05/05/2010] [Accepted: 05/16/2010] [Indexed: 01/09/2023]
Abstract
Amyloid formation normally exhibits a lag phase followed by a growth phase, which leads to amyloid fibrils. Characterization of the species populated during the lag phase is experimentally challenging, but is critical since the most toxic entities may be pre-fibrillar species. p-Cyanophenylalanine (F(C[triple bond]N)) fluorescence is used to probe the nature of lag-phase species populated during the formation of amyloid by human islet amyloid polypeptide. The polypeptide contains two phenylalanines at positions 15 and 23 and a single tyrosine located at the C-terminus. Each aromatic residue was separately replaced by F(C[triple bond]N). The substitutions do not perturb amyloid formation relative to wild-type islet amyloid polypeptide as detected using thioflavin T fluorescence and electron microscopy. F(C[triple bond]N) fluorescence is high when the cyano group is hydrogen bonded and low when it is not. It can also be quenched via Förster resonance energy transfer to tyrosine. Fluorescence intensity was monitored in real time and revealed that all three positions remained exposed to solvent during the lag phase but less exposed than unstructured model peptides. The time course of amyloid formation as monitored by thioflavin T fluorescence and F(C[triple bond]N) fluorescence is virtually identical. Fluorescence quenching experiments confirmed that each residue remains exposed during the lag phase. These results place significant constraints on the nature of intermediates that are populated during the lag phase and indicate that significant sequestering of the aromatic side chains does not occur until beta-structure sufficient to bind thioflavin T has developed. Seeding studies and analysis of maximum rates confirm that sequestering of the cyano groups occurs concomitantly with the development of thioflavin T binding capability. Overall, the process of amyloid formation and growth appears to be remarkably homogenous in terms of side-chain ordering. F(C[triple bond]N) also provides information about fibril structure. Fluorescence emission measurements, infrared measurements, and quenching studies indicate that the aromatic residues are differentially exposed in the fibril state with Phe15 being the most exposed. F(C[triple bond]N) is readily accommodated into proteins; thus, the approach should be broadly applicable.
Collapse
Affiliation(s)
- Peter Marek
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | | | | | | |
Collapse
|
32
|
Waegele MM, Tucker MJ, Gai F. 5-Cyanotryptophan as an Infrared Probe of Local Hydration Status of Proteins. Chem Phys Lett 2009; 478:249-253. [PMID: 20161057 DOI: 10.1016/j.cplett.2009.07.058] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The nitrile (C≡N) stretching vibration is sensitive to environment, making nitrile-derivatized amino acids an increasingly utilized tool to study various biological processes. Herein, we show that the bandwidth of the C≡N stretching vibration of 5-cyanotryptophan is particularly sensitive to water, rendering it an attractive infrared probe of local hydration status. We confirm the utility of this probe in biological applications by using it to examine how the hydration status of individual tryptophan sidechains of an antimicrobial peptide, indolicidin, changes upon peptide binding to model membranes. Furthermore, we show that p-cyanophenylalanine and 5-cyanotryptophan constitute a useful fluorescence energy transfer pair.
Collapse
Affiliation(s)
- Matthias M Waegele
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
33
|
Guo L, Park J, Lee T, Chowdhury P, Lim M, Gai F. Probing the role of hydration in the unfolding transitions of carbonmonoxy myoglobin and apomyoglobin. J Phys Chem B 2009; 113:6158-63. [PMID: 19348439 DOI: 10.1021/jp900009x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We show that the equilibrium unfolding transition of horse carbonmonoxy myoglobin monitored by the stretching vibration of the CO ligand, a local environmental probe, is very sharp and, thus, quite different from those measured by global conformational reporters. In addition, the denatured protein exhibits an A(0)-like CO band. We hypothesize that this sharp transition reports penetration of water into the heme pocket of the protein. Parallel experiments on horse apomyoglobin, wherein an environment-sensitive fluorescent probe, nile red, was used, also reveals a similar putative hydration event. Given the importance of dehydration in protein folding and also the recent debate over the interpretation of probe-dependent unfolding transitions, these results have strong implications on the mechanism of protein folding.
Collapse
Affiliation(s)
- Lin Guo
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
34
|
Choi JH, Oh KI, Cho M. Azido-derivatized compounds as IR probes of local electrostatic environment: Theoretical studies. J Chem Phys 2008; 129:174512. [DOI: 10.1063/1.3001915] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
35
|
Oh KI, Choi JH, Lee JH, Han JB, Lee H, Cho M. Nitrile and thiocyanate IR probes: Molecular dynamics simulation studies. J Chem Phys 2008; 128:154504. [DOI: 10.1063/1.2904558] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
36
|
Choi JH, Oh KI, Lee H, Lee C, Cho M. Nitrile and thiocyanate IR probes: Quantum chemistry calculation studies and multivariate least-square fitting analysis. J Chem Phys 2008; 128:134506. [DOI: 10.1063/1.2844787] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
37
|
CHIBA K, HIRANO T, SATO F, OKAMOTO M. A Density Functional Study on Reaction Center Models of Horse Heart Carbonmonoxy Myoglobin– Effect of Distal Histidine to the Electronic States –. JOURNAL OF COMPUTER CHEMISTRY-JAPAN 2008. [DOI: 10.2477/jccj.h2011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Silverman LN, Pitzer ME, Ankomah PO, Boxer SG, Fenlon EE. Vibrational stark effect probes for nucleic acids. J Phys Chem B 2007; 111:11611-3. [PMID: 17877390 PMCID: PMC2546494 DOI: 10.1021/jp0750912] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The vibrational Stark effect (VSE) has proven to be an effective method for the study of electric fields in proteins via the use of infrared probes. To explore the use of VSE in nucleic acids, we investigated the Stark spectroscopy of nine structurally diverse nucleosides. These nucleosides contained nitrile or azide probes in positions that correspond to both the major and minor grooves of DNA. The nitrile probes showed better characteristics and exhibited absorption frequencies over a broad range; that is, from 2253 cm-1 for 2'-O-cyanoethyl ribonucleosides 8 and 9 to 2102 cm(-1) for a 13C-labeled 5-thiocyanatomethyl-2'-deoxyuridine 3c. The largest Stark tuning rate observed was |Deltamu| = 1.1 cm(-1)/(MV/cm) for both 5-cyano-2'-deoxyuridine 1 and N2-nitrile-2'-deoxyguanosine 7. The latter is a particularly attractive probe because of its high extinction coefficient (epsilon = 412 M-1cm-1) and ease of incorporation into oligomers.
Collapse
Affiliation(s)
- Lisa N. Silverman
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080
| | - Michael E. Pitzer
- Department of Chemistry, Franklin & Marshall College, PO Box 3003, Lancaster, PA 17601
| | - Peter O. Ankomah
- Department of Chemistry, Franklin & Marshall College, PO Box 3003, Lancaster, PA 17601
| | - Steven G. Boxer
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080
- To whom correspondence should be addressed. Stark Spectroscopy: E-mail: . Telephone: 650-723-4482. Fax: 650-723-4817. Synthesis: E-mail: . Telephone: 717-291-4201. Fax: 717-291-4343
| | - Edward E. Fenlon
- Department of Chemistry, Franklin & Marshall College, PO Box 3003, Lancaster, PA 17601
- To whom correspondence should be addressed. Stark Spectroscopy: E-mail: . Telephone: 650-723-4482. Fax: 650-723-4817. Synthesis: E-mail: . Telephone: 717-291-4201. Fax: 717-291-4343
| |
Collapse
|
39
|
Rai D, Joshi H, Kulkarni AD, Gejji SP, Pathak RK. Electric field effects on aromatic and aliphatic hydrocarbons: a density-functional study. J Phys Chem A 2007; 111:9111-21. [PMID: 17722897 DOI: 10.1021/jp074051v] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The influence of a uniform static external electric field on some aliphatic and aromatic molecular species is studied within the density functional theory (DFT) employing the 6-311++G(2d,2p) basis set with B3LYP exchange-correlation prescription. The electric field perturbs the molecular geometry but drastically alters the dipole moments and engenders, to a varying degree, the molecular vibrational Stark effect, i.e., shifts in the infrared (IR) vibrational frequencies accompanied by spectral intensity redistribution. For polar molecules, significant negative ("red") and positive ("blue") frequency shifts are observed for field orientations both parallel and antiparallel to their permanent dipole moments. Further, a selective reordering of frontier orbitals is observed to be brought about by moderately intense fields. In particular, molecules having a lowest unoccupied molecular orbital (LUMO) with predominant pi character possess a threshold field beyond which energy gap between the highest occupied molecular orbital (HOMO) and LUMO diminishes rapidly. A time-dependent (TD) DFT analysis reveals that an increase in the applied field strength by and large increases the excitation energies corresponding to significant electronic transitions among frontier MOs with a concomitant decrease in their oscillator strengths.
Collapse
Affiliation(s)
- Dhurba Rai
- Department of Physics, University of Pune, Pune-411007, India
| | | | | | | | | |
Collapse
|
40
|
Danielsson J, Meuwly M. Molecular Dynamics Simulations of CN− Dynamics and Spectroscopy in Myoglobin. Chemphyschem 2007; 8:1077-84. [PMID: 17436348 DOI: 10.1002/cphc.200700042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The vibrational dynamics of the cyanide anion and the heme group in MbCN (CN complexed to Myoglobin) are investigated using molecular dynamics simulations. A previously calculated quantum-chemical heme-ligand potential-energy surface together with a three-center charge model for the iron-ligand center that captures both polarization and ligand-to-metal charge transfer allows for a detailed description of the interactions around the active site. It is found that the CN binding orientation (Fe--CN or Fe--NC) to the heme affects the stretching frequency of the ligand, with a 25 cm-1 difference in the fundamental wavenumber between the two orientations as well as a change in bond length. The charge model also captures such crucial interactions as the possible hydrogen bond between the ligand and the His64 residue. This interaction is weakened when the ligand binds in the Fe--NC conformation but is also sensitive to the protonation state of His64. The structural changes around the active site, the observation of water penetration for the Fe--NC conformation, the computed IR spectrum, and the energetics suggest that the Fe--CN conformation with Hisepsilon64 is the most likely one. The water accessibility of the active site is also found to be related to the protonation state of His64. The presence of water in the active site could also affect the IR band of the C--N stretch mode. Thus, IR spectroscopy of the C--N stretch is a potentially useful reporter of ligand isomers and active-site structure.
Collapse
Affiliation(s)
- Jonas Danielsson
- University of Basel, Department of Chemistry, Klingelbergstr. 80, 4056 Basel, Switzerland
| | | |
Collapse
|
41
|
Li J, Noll BC, Schulz CE, Scheidt WR. New insights on the electronic and molecular structure of cyanide-ligated iron(III) porphyrinates. Inorg Chem 2007; 46:2286-98. [PMID: 17309249 PMCID: PMC2532704 DOI: 10.1021/ic061463u] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The preparation and characterization of several new cyano-ligated six-coordinate low-spin iron(III) porphyrinates are reported. The synthesis and structure of the new bis(cyanide) derivative K(222)][Fe(TMP)(CN)2] (TMP = tetramesitylporphyrinate) is described. Three mixed-ligand species of the general form [Fe(Porph)(CN)(L)], where L = 1-methylimidazole or pyridine, have also been prepared and structurally characterized. All complexes have been studied with EPR spectroscopy in frozen solution and in microcrystalline form. In some cases, especially those of the bis(cyanide) derivative above and the previously reported [Fe(TPP)(CN)2](-), there are significant differences in the EPR spectra as a result of the state change. These spectral differences can be correlated with changes in the electron configuration that are the likely result of a differing environment of the coordinated cyanide ligands; the core conformation and electronic structure of the porphyrin ligand are unlikely to play a role. All four new complexes and [Fe(TPP)(CN)2](-) have been studied by Mössbauer spectroscopy with variable-temperature and applied magnetic-field measurements. The sign of the quadrupole splitting value has been established as negative. These measurements have allowed us to give estimates of the energy difference between the two close-lying dpi (dxz and dyz) orbitals. These splitting values range from approximately 267 cm-1 for [Fe(TPP)(CN)2](-) to approximately 614 cm(-1) for [Fe(TPP)(CN)(Py)].
Collapse
Affiliation(s)
- Jianfeng Li
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | |
Collapse
|
42
|
Mankoo PK, Keyes T. Classical Molecular Electrostatics: Recognition of Ligands in Proteins and the Vibrational Stark Effect. J Phys Chem B 2006; 110:25074-9. [PMID: 17149932 DOI: 10.1021/jp063971v] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
It is shown that classical electrostatics quantitatively describes both the binding of the diatomic ligands XO (X = C, N, O) to the heme group in myoglobin and the dependence of their vibrational frequencies upon an external field, the vibrational Stark effect. The key is a proper treatment of induced dipoles. The results suggest that ligand binding occurs via an "electrostatic bond", a generalization of the standard ionic bond to include induction, and, more generally, that classical electrostatics can replace quantum mechanics for a considerable simplification of some complex problems.
Collapse
Affiliation(s)
- Parminder K Mankoo
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
43
|
Kaposi AD, Vanderkooi JM, Stavrov SS. Infrared absorption study of the heme pocket dynamics of carbonmonoxyheme proteins. Biophys J 2006; 91:4191-200. [PMID: 16980362 PMCID: PMC1635657 DOI: 10.1529/biophysj.105.068254] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The temperature dependencies of the infrared absorption CO bands of carboxy complexes of horseradish peroxidase (HRP(CO)) in glycerol/water mixture at pH 6.0 and 9.3 are interpreted using the theory of optical absorption bandshape. The bands' anharmonic behavior is explained assuming that there is a higher-energy set of conformational substates (CSS(h)), which are populated upon heating and correspond to the protein substates with disordered water molecules in the heme pocket. Analysis of the second moments of the CO bands of the carboxy complexes of myoglobin (Mb(CO)) and hemoglobin (Hb(CO)), and of HRP(CO) with benzohydroxamic acid (HRP(CO)+BHA), shows that the low energy CSS(h) exists also in the open conformation of Mb(CO), where the heme pocket is spacious enough to accommodate a water molecule. In the HRP(CO)+BHA and closed conformations of Mb(CO) and Hb(CO), the heme pocket is packed with BHA and different amino acids, the CSS(h) has much higher energy and is hardly populated even at the highest temperatures. Therefore only motions of these amino acids contribute to the band broadening. These motions are linked to the protein surface and frozen in the glassy matrix, whereas in the liquid solvent they are harmonic. Thus the second moment of the CO band is temperature-independent in glass and is proportional to the temperature in liquid. The temperature dependence of the second moment of the CO peak of HRP(CO) in the trehalose glass exhibits linear coupling to an oscillator. This oscillator can be a moving water molecule locked in the heme pocket in the whole interval of temperatures or a trehalose molecule located in the heme pocket.
Collapse
Affiliation(s)
- Andras D Kaposi
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | | | | |
Collapse
|
44
|
Tucker MJ, Oyola R, Gai F. A novel fluorescent probe for protein binding and folding studies:p-cyano-phenylalanine. Biopolymers 2006; 83:571-6. [PMID: 16917881 DOI: 10.1002/bip.20587] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Recently, it is has been shown that the C=N stretching vibration of a non-natural amino acid, p-cyano-phenylalanine (PheCN), could be used as an infrared reporter of local environment. Here, we further showed that the fluorescence emission of PheCN is also sensitive to solvent and, therefore, could be used as a novel optical probe for protein binding and folding studies. Moreover, we found that the fluorescence quantum yield of PheCN is nearly five times larger than that of phenylalanine and, more importantly, can be selectively excited even when other aromatic amino acids are present, thus making it a more versatile fluorophore. To test the feasibility of using PheCN as a practical fluorescent probe, we studied the binding of calmodulin (CaM) to a peptide derived from the CaM-binding domain of skeletal muscle myosin light chain kinase (MLCK). The peptide (MLCK3CN) contains a single PheCN residue and has been shown to bind to CaM with high affinity. As expected, addition of CaM into a MLCK3CN solution resulted in quenching of the PheCN fluorescence. A series of stochiometric titrations further allowed us to determine the binding affinity (Kd) of this peptide to CaM. Taken together, these results indicated that the PheCN fluorescence is sensitive to environment and could be applicable to a wide variety of biological problems.
Collapse
Affiliation(s)
- Matthew J Tucker
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
45
|
Bikiel DE, Boechi L, Capece L, Crespo A, De Biase PM, Di Lella S, González Lebrero MC, Martí MA, Nadra AD, Perissinotti LL, Scherlis DA, Estrin DA. Modeling heme proteins using atomistic simulations. Phys Chem Chem Phys 2006; 8:5611-28. [PMID: 17149482 DOI: 10.1039/b611741b] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heme proteins are found in all living organisms, and perform a wide variety of tasks ranging from electron transport, to the oxidation of organic compounds, to the sensing and transport of small molecules. In this work we review the application of classical and quantum-mechanical atomistic simulation tools to the investigation of several relevant issues in heme proteins chemistry: (i) conformational analysis, ligand migration, and solvation effects studied using classical molecular dynamics simulations; (ii) electronic structure and spin state energetics of the active sites explored using quantum-mechanics (QM) methods; (iii) the interaction of heme proteins with small ligands studied through hybrid quantum mechanics-molecular mechanics (QM-MM) techniques; (iv) and finally chemical reactivity and catalysis tackled by a combination of quantum and classical tools.
Collapse
Affiliation(s)
- Damián E Bikiel
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Cordone L, Cottone G, Giuffrida S, Palazzo G, Venturoli G, Viappiani C. Internal dynamics and protein–matrix coupling in trehalose-coated proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1749:252-81. [PMID: 15886079 DOI: 10.1016/j.bbapap.2005.03.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 03/04/2005] [Accepted: 03/04/2005] [Indexed: 11/23/2022]
Abstract
We review recent studies on the role played by non-liquid, water-containing matrices on the dynamics and structure of embedded proteins. Two proteins were studied, in water-trehalose matrices: a water-soluble protein (carboxy derivative of horse heart myoglobin) and a membrane protein (reaction centre from Rhodobacter sphaeroides). Several experimental techniques were used: Mossbauer spectroscopy, elastic neutron scattering, FTIR spectroscopy, CO recombination after flash photolysis in carboxy-myoglobin, kinetic optical absorption spectroscopy following pulsed and continuous photoexcitation in Q(B) containing or Q(B) deprived reaction centre from R. sphaeroides. Experimental results, together with the outcome of molecular dynamics simulations, concurred to give a picture of how water-containing matrices control the internal dynamics of the embedded proteins. This occurs, in particular, via the formation of hydrogen bond networks that anchor the protein surface to the surrounding matrix, whose stiffness increases by lowering the sample water content. In the conclusion section, we also briefly speculate on how the protein-matrix interactions observed in our samples may shed light on the protein-solvent coupling also in liquid aqueous solutions.
Collapse
Affiliation(s)
- Lorenzo Cordone
- Dipartimento di Scienze Fisiche ed Astronomiche, Università di Palermo, Italy.
| | | | | | | | | | | |
Collapse
|
47
|
Vanderkooi JM, Dashnau JL, Zelent B. Temperature excursion infrared (TEIR) spectroscopy used to study hydrogen bonding between water and biomolecules. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1749:214-33. [PMID: 15927875 DOI: 10.1016/j.bbapap.2005.03.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 02/15/2005] [Accepted: 03/09/2005] [Indexed: 11/22/2022]
Abstract
Water is a highly polar molecule that is capable of making four H-bonding linkages. Stability and specificity of folding of water-soluble protein macromolecules are determined by the interplay between water and functional groups of the protein. Yet, under some conditions, water can be replaced with sugar or other polar protic molecules with retention of protein structure. Infrared (IR) spectroscopy allows one to probe groups on the protein that interact with solvent, whether the solvent is water, sugar or glycerol. The basis of the measurement is that IR spectral lines of functional groups involved in H-bonding show characteristic spectral shifts with temperature excursion, reflecting the dipolar nature of the group and its ability to H-bond. For groups involved in H-bonding to water, the stretching mode absorption bands shift to lower frequency, whereas bending mode absorption bands shift to higher frequency as temperature decreases. The results indicate increasing H-bonding and decreasing entropy occurring as a function of temperature, even at cryogenic temperatures. The frequencies of the amide group modes are temperature dependent, showing that as temperature decreases, the amide group H-bonds to water strengthen. These results are relevant to protein stability as a function of temperature. The influence of solvent relaxation is demonstrated for tryptophan fluorescence over the same temperature range where the solvent was examined by infrared spectroscopy.
Collapse
Affiliation(s)
- Jane M Vanderkooi
- Johnson Research Foundation, Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, 19104-6059, USA.
| | | | | |
Collapse
|