1
|
Vejerano EP, Ahn J, Scott GI. Aerosolized algal bloom toxins are not inert. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2024; 4:1113-1128. [PMID: 39169920 PMCID: PMC11331395 DOI: 10.1039/d4ea00078a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024]
Abstract
Harmful algal blooms (HABs) are projected to become increasingly prevalent, extending over longer periods and wider geographic regions due to the warming surface ocean water and other environmental factors, including but not limited to nutrient concentrations and runoff for marine and freshwater environments. Incidents of respiratory distress linked to the inhalation of marine aerosols containing HAB toxins have been documented, though the risk is typically associated with the original toxins. However, aerosolized toxins in micrometer and submicrometer particles are vulnerable to atmospheric processing. This processing can potentially degrade HAB toxins and produce byproducts with varying potencies compared to the parent toxins. The inhalation of aerosolized HAB toxins, especially in conjunction with co-morbid factors such as exposure to air pollutants from increased commercial activities in ports, may represent a significant exposure pathway for a considerable portion of the global population. Understanding the chemistry behind the transformation of these toxins can enhance public protection by improving the existing HAB alert systems.
Collapse
Affiliation(s)
- Eric P Vejerano
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences USA +1-803-777-6360
| | - Jeonghyeon Ahn
- Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina Columbia 29208 USA
| | - Geoffrey I Scott
- Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina Columbia 29208 USA
| |
Collapse
|
2
|
Song J, Werner L, Da Silva YCM, Theis A, Donaldson DJ, George C. Spontaneous Production of H 2O 2 at the Liquid-Ice Interface: A Potential Source of Atmospheric Oxidants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39387440 DOI: 10.1021/acs.est.4c07546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
We present experimental evidence for the spontaneous production of hydrogen peroxide (H2O2) at the liquid-ice interface during the freezing of dilute salt solutions. Specifically, sample solutions containing NaCl, NaBr, NH4Cl, and NaI at concentrations between 10-6 and 10-1 M were subjected to freezing-melting cycles and then analyzed for H2O2 content. The relationship between the production rate of H2O2 and the salt concentration follows that of the Workman-Reynolds freezing potential (WRFP) values as a function of the salt concentration. Our results suggest that H2O2 is formed at the liquid-ice interface from the self-recombination of hydroxyl radicals (OH·), produced from the oxidation of hydroxide anions due to the high electric field generated at the aqueous-ice interface under the WRFP effect. Furthermore, the involvement of O2 likely acting as an electron capturer could promote to produce more OH radicals and hydroperoxyl radicals (HO2·), thus enhancing the production of H2O2 at the liquid-ice interface. Overall, this study suggests a novel mechanism of H2O2 formation in ice via its spontaneous production at the liquid-ice interface, induced by the Workman-Reynolds effect.
Collapse
Affiliation(s)
- Junwei Song
- Universite Claude Bernard Lyon 1, CNRS, IRCELYON, UMR 5256, F-69626 Villeurbanne, France
| | - Laura Werner
- Particle Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg1, 55128 Mainz, Germany
| | | | - Alexander Theis
- Particle Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg1, 55128 Mainz, Germany
| | - D James Donaldson
- Department of Physical and Environmental Science, University of Toronto Scarborough and Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Christian George
- Universite Claude Bernard Lyon 1, CNRS, IRCELYON, UMR 5256, F-69626 Villeurbanne, France
| |
Collapse
|
3
|
Enami S, Numadate N, Hama T. Atmospheric Intermediates at the Air-Water Interface. J Phys Chem A 2024; 128:5419-5434. [PMID: 38968003 PMCID: PMC11264275 DOI: 10.1021/acs.jpca.4c02889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 07/07/2024]
Abstract
The air-water interface (AWI) is a ubiquitous reaction field different from the bulk phase where unexpected reactions and physical processes often occur. The AWI is a region where air contacts cloud droplets, aerosol particles, the ocean surface, and biological surfaces such as fluids that line human epithelia. In Earth's atmosphere, short-lived intermediates are expected to be generated at the AWI during multiphase reactions. Recent experimental developments have enabled the direct detection of atmospherically relevant, short-lived intermediates at the AWI. For example, spray ionization mass spectrometric analysis of water microjets exposed to a gaseous mixture of ozone and water vapor combined with a 266 nm laser flash photolysis system (LFP-SIMS) has been used to directly probe organic peroxyl radicals (RO2·) produced by interfacial hydroxyl radicals (OH·) + organic compound reactions. OH· emitted immediately after the laser flash photolysis of carboxylic acid at the gas-liquid interface have been directly detected by time-resolved, laser-induced florescence techniques that can be used to study atmospheric multiphase photoreactions. In this Featured Article, we show some recent experimental advances in the detection of atmospherically important intermediates at the AWI and the associated reaction mechanisms. We also discuss current challenges and future prospects for atmospheric multiphase chemistry.
Collapse
Affiliation(s)
- Shinichi Enami
- Department
of Chemistry, Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Naoki Numadate
- Department
of Chemistry, Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Tetsuya Hama
- Komaba
Institute for Science and Department of Basic Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
4
|
Kumar N, Premadasa UI, Dong D, Roy S, Ma YZ, Doughty B, Bryantsev VS. Adsorption, Orientation, and Speciation of Amino Acids at Air-Aqueous Interfaces for the Direct Air Capture of CO 2. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14311-14320. [PMID: 38958522 DOI: 10.1021/acs.langmuir.4c00907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Amino acids make up a promising family of molecules capable of direct air capture (DAC) of CO2 from the atmosphere. Under alkaline conditions, CO2 reacts with the anionic form of an amino acid to produce carbamates and deactivated zwitterionic amino acids. The presence of the various species of amino acids and reactive intermediates can have a significant effect on DAC chemistry, the role of which is poorly understood. In this study, all-atom molecular dynamics (MD) based computational simulations and vibrational sum frequency generation (vSFG) spectroscopy studies were conducted to understand the role of competitive interactions at the air-aqueous interface in the context of DAC. We find that the presence of potassium bicarbonate ions, in combination with the anionic and zwitterionic forms of amino acids, induces concentration and charge gradients at the interface, generating a layered molecular arrangement that changes under pre- and post-DAC conditions. In parallel, an enhancement in the surface activity of both anionic and zwitterionic forms of amino acids is observed, which is attributed to enhanced interfacial stability and favorable intermolecular interactions between the adsorbed amino acids in their anionic and zwitterionic forms. The collective influence of these competitive interactions, along with the resulting interfacial heterogeneity, may in turn affect subsequent capture reactions and associated rates. These effects underscore the need to consider dynamic changes in interfacial chemical makeup to enhance DAC efficiency and to develop successful negative emission and storage technologies.
Collapse
Affiliation(s)
- Nitesh Kumar
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Uvinduni I Premadasa
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Dengpan Dong
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Santanu Roy
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ying-Zhong Ma
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Benjamin Doughty
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Vyacheslav S Bryantsev
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
5
|
Bain A, Lalemi L, Croll Dawes N, Miles REH, Prophet AM, Wilson KR, Bzdek BR. Surfactant Partitioning Dynamics in Freshly Generated Aerosol Droplets. J Am Chem Soc 2024; 146:16028-16038. [PMID: 38822805 PMCID: PMC11177314 DOI: 10.1021/jacs.4c03041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
Aerosol droplets are unique microcompartments with relevance to areas as diverse as materials and chemical synthesis, atmospheric chemistry, and cloud formation. Observations of highly accelerated and unusual chemistry taking place in such droplets have challenged our understanding of chemical kinetics in these microscopic systems. Due to their large surface-area-to-volume ratios, interfacial processes can play a dominant role in governing chemical reactivity and other processes in droplets. Quantitative knowledge about droplet surface properties is required to explain reaction mechanisms and product yields. However, our understanding of the compositions and properties of these dynamic, microscopic interfaces is poor compared to our understanding of bulk processes. Here, we measure the dynamic surface tensions of 14-25 μm radius (11-65 pL) droplets containing a strong surfactant (either sodium dodecyl sulfate or octyl-β-D-thioglucopyranoside) using a stroboscopic imaging approach, enabling observation of the dynamics of surfactant partitioning to the droplet-air interface on time scales of 10s to 100s of microseconds after droplet generation. The experimental results are interpreted with a state-of-the-art kinetic model accounting for the unique high surface-area-to-volume ratio inherent to aerosol droplets, providing insights into both the surfactant diffusion and adsorption kinetics as well as the time-dependence of the interfacial surfactant concentration. This study demonstrates that microscopic droplet interfaces can take up to many milliseconds to reach equilibrium. Such time scales should be considered when attempting to explain observations of accelerated chemistry in microcompartments.
Collapse
Affiliation(s)
- Alison Bain
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
- Department
of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Lara Lalemi
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Nathan Croll Dawes
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Rachael E. H. Miles
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Alexander M. Prophet
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Kevin R. Wilson
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Bryan R. Bzdek
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| |
Collapse
|
6
|
Limmer DT, Götz AW, Bertram TH, Nathanson GM. Molecular Insights into Chemical Reactions at Aqueous Aerosol Interfaces. Annu Rev Phys Chem 2024; 75:111-135. [PMID: 38360527 DOI: 10.1146/annurev-physchem-083122-121620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Atmospheric aerosols facilitate reactions between ambient gases and dissolved species. Here, we review our efforts to interrogate the uptake of these gases and the mechanisms of their reactions both theoretically and experimentally. We highlight the fascinating behavior of N2O5 in solutions ranging from pure water to complex mixtures, chosen because its aerosol-mediated reactions significantly impact global ozone, hydroxyl, and methane concentrations. As a hydrophobic, weakly soluble, and highly reactive species, N2O5 is a sensitive probe of the chemical and physical properties of aerosol interfaces. We employ contemporary theory to disentangle the fate of N2O5 as it approaches pure and salty water, starting with adsorption and ending with hydrolysis to HNO3, chlorination to ClNO2, or evaporation. Flow reactor and gas-liquid scattering experiments probe even greater complexity as added ions, organic molecules, and surfactants alter the interfacial composition and reaction rates. Together, we reveal a new perspective on multiphase chemistry in the atmosphere.
Collapse
Affiliation(s)
- David T Limmer
- Department of Chemistry, University of California, Berkeley, California, USA;
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Kavli Energy NanoScience Institute, Berkeley, California, USA
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Andreas W Götz
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California, USA;
| | - Timothy H Bertram
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; ,
| | - Gilbert M Nathanson
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; ,
| |
Collapse
|
7
|
Dai Y, Chen Z, Qin X, Dong P, Xu J, Hu J, Gu L, Chen S. Hydrolysis reactivity reveals significant seasonal variation in the composition of organic peroxides in ambient PM 2.5. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172143. [PMID: 38569967 DOI: 10.1016/j.scitotenv.2024.172143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/24/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Atmospheric organic peroxides (POs) play a key role in the formation of O3 and secondary organic aerosol (SOA), impacting both air quality and human health. However, there still remain technical challenges in investigating the reactivity of POs in ambient aerosols due to the instability and lack of standards for POs, impeding accurate evaluation of their environmental impacts. In the present study, we conducted the first attempt to categorize and quantify POs in ambient PM2.5 through hydrolysis, which is an important transformation pathway for POs, thus revealing the reactivities of various POs. POs were generally categorized into hydrolyzable POs (HPO) and unhydrolyzable POs (UPO). HPO were further categorized into three groups: short-lifetime HPO (S-HPO), intermediate-lifetime HPO (I-HPO), and long-lifetime HPO (L-HPO). S-HPO and L-HPO are typically formed from Criegee intermediate (CI) and RO2 radical reactions, respectively. Results show that L-HPO are the most abundant HPO, indicating the dominant role of RO2 pathway in HPO formation. Despite their lower concentration compared to L-HPO, S-HPO make a major contribution to the HPO hydrolysis rate due to their faster rate constants. The hydrolysis of PM2.5 POs accounts for 19 % of the nighttime gas-phase H2O2 growth during the summer observation, constituting a noteworthy source of gas-phase H2O2 and contributing to the atmospheric oxidation capacity. Seasonal and weather conditions significantly impact the composition of POs, with HPO concentrations in summer being significantly higher than those in winter and elevated under rainy and nighttime conditions. POs are mainly composed of HPO in summer, while in winter, POs are dominated by UPO.
Collapse
Affiliation(s)
- Yishuang Dai
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhongming Chen
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Xuan Qin
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ping Dong
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jiayun Xu
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jingcheng Hu
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Linghao Gu
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shiyi Chen
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Wilson KR, Prophet AM. Chemical Kinetics in Microdroplets. Annu Rev Phys Chem 2024; 75:185-208. [PMID: 38382571 DOI: 10.1146/annurev-physchem-052623-120718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Micrometer-sized compartments play significant roles in driving heterogeneous transformations within atmospheric and biochemical systems as well as providing vehicles for drug delivery and novel reaction environments for the synthesis of industrial chemicals. Many reports now indicate that reaction kinetics are accelerated under microconfinement, for example, in sprays, thin films, droplets, aerosols, and emulsions. These observations are dramatic, posing a challenge to our understanding of chemical reaction mechanisms with potentially significant practical consequences for predicting the complex chemistry in natural systems. Here we introduce the idea of kinetic confinement, which is intended to provide a conceptual backdrop for understanding when and why microdroplet reaction kinetics differ from their macroscale analogs.
Collapse
Affiliation(s)
- Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA;
| | - Alexander M Prophet
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA;
- Department of Chemistry, University of California, Berkeley, California, USA;
| |
Collapse
|
9
|
Polley K, Wilson KR, Limmer DT. On the Statistical Mechanics of Mass Accommodation at Liquid-Vapor Interfaces. J Phys Chem B 2024; 128:4148-4157. [PMID: 38652843 DOI: 10.1021/acs.jpcb.4c00899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
We propose a framework for describing the dynamics associated with the adsorption of small molecules to liquid-vapor interfaces using an intermediate resolution between traditional continuum theories that are bereft of molecular detail and molecular dynamics simulations that are replete with them. In particular, we develop an effective single particle equation of motion capable of describing the physical processes that determine thermal and mass accommodation probabilities. The effective equation is parametrized with quantities that vary through space away from the liquid-vapor interface. Of particular importance in describing the early time dynamics is the spatially dependent friction, for which we propose a numerical scheme to evaluate from molecular simulation. Taken together with potentials of mean force computable with importance sampling methods, we illustrate how to compute the mass accommodation coefficient and residence time distribution. Throughout, we highlight the case of ozone adsorption in aqueous solutions and its dependence on electrolyte composition.
Collapse
Affiliation(s)
- Kritanjan Polley
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - David T Limmer
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Angelaki M, Carreira Mendes Da Silva Y, Perrier S, George C. Quantification and Mechanistic Investigation of the Spontaneous H 2O 2 Generation at the Interfaces of Salt-Containing Aqueous Droplets. J Am Chem Soc 2024; 146:8327-8334. [PMID: 38488457 PMCID: PMC10979748 DOI: 10.1021/jacs.3c14040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
There is now much evidence that OH radicals and H2O2 are spontaneously generated at the air-water interface of atmospheric aerosols. Here, we investigated the effect of halide anions (Cl-, Br-, I-), which are abundant in marine aerosols, on this H2O2 production. Droplets were generated via nebulization of water solutions containing Na2SO4, NaCl, NaBr, and NaI containing solutions, and H2O2 was monitored as a function of the salt concentration under atmospheric relevant conditions. The interfacial OH radical formation was also investigated by adding terephthalic acid (TA) to our salt solutions, and the product of its reaction with OH, hydroxy terephthalic acid (TAOH), was monitored. Finally, a mechanistic investigation was performed to examine the reactions participating in H2O2 production, and their respective contributions were quantified. Our results showed that only Br- contributes to the interfacial H2O2 formation, promoting the production by acting as an electron donor, while Na2SO4 and NaCl stabilized the droplets by only reducing their evaporation. TAOH was observed in the collected droplets and, for the first time, directly in the particle phase by means of online fluorescence spectroscopy, confirming the interfacial OH production. A mechanistic study suggests that H2O2 is formed by both OH and HO2 self-recombination, as well as HO2 reaction with H atoms. This work is expected to enhance our understanding of interfacial processes and assess their impact on climate, air quality, and health.
Collapse
Affiliation(s)
- Maria Angelaki
- Université Claude Bernard Lyon 1, CNRS, IRCELYON, UMR 5256, F-69626, Villeurbanne, France
| | | | - Sébastien Perrier
- Université Claude Bernard Lyon 1, CNRS, IRCELYON, UMR 5256, F-69626, Villeurbanne, France
| | - Christian George
- Université Claude Bernard Lyon 1, CNRS, IRCELYON, UMR 5256, F-69626, Villeurbanne, France
| |
Collapse
|
11
|
Bang S, Snoeckx R, Cha MS. Valorization of Glycerol through Plasma-Induced Transformation into Formic Acid. CHEMSUSCHEM 2024; 17:e202300925. [PMID: 37811907 DOI: 10.1002/cssc.202300925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/10/2023]
Abstract
To cope with climate change issues, a significant shift is required in worldwide energy sources. Hydrogen and bioenergy are being considered as alternatives toward a carbon neutral society, making formic acid - a hydrogen carrying product of glycerol - of interest for the valorization of glycerol. Here we investigate the plasma-induced transformation of glycerol in an aqueous nanosecond repetitively pulsed discharge reactor. We found that the water content in the aqueous mixture fulfilled a crucial role in both the gas phase (as a source of OH radicals) and the liquid phase (as a promotor of the dissolved OH radical's mobility and reactivity). The formic acid produced was linearly proportional to the specific input energy, and the most cost-effective production of formic acid was found with 10 % v/v glycerol in the aqueous mixture. A plausible reaction pathway was proposed, consisting of the OH radical-driven dehydrogenation and dehydration of glycerol. The results provide a fundamental understanding of plasma-induced transformation of glycerol to formic acid and insights for future practical applications.
Collapse
Affiliation(s)
- Seunghwan Bang
- CCRC, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Ramses Snoeckx
- CCRC, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Min Suk Cha
- CCRC, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| |
Collapse
|
12
|
Prophet AM, Polley K, Van Berkel GJ, Limmer DT, Wilson KR. Iodide oxidation by ozone at the surface of aqueous microdroplets. Chem Sci 2024; 15:736-756. [PMID: 38179528 PMCID: PMC10762724 DOI: 10.1039/d3sc04254e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/03/2023] [Indexed: 01/06/2024] Open
Abstract
The oxidation of iodide by ozone occurs at the sea-surface and within sea spray aerosol, influencing the overall ozone budget in the marine boundary layer and leading to the emission of reactive halogen gases. A detailed account of the surface mechanism has proven elusive, however, due to the difficulty in quantifying multiphase kinetics. To obtain a clearer understanding of this reaction mechanism at the air-water interface, we report pH-dependent oxidation kinetics of I- in single levitated microdroplets as a function of [O3] using a quadrupole electrodynamic trap and an open port sampling interface for mass spectrometry. A kinetic model, constrained by molecular simulations of O3 dynamics at the air-water interface, is used to understand the coupled diffusive, reactive, and evaporative pathways at the microdroplet surface, which exhibit a strong dependence on bulk solution pH. Under acidic conditions, the surface reaction is limited by O3 diffusion in the gas phase, whereas under basic conditions the reaction becomes rate limited on the surface. The pH dependence also suggests the existence of a reactive intermediate IOOO- as has previously been observed in the Br- + O3 reaction. Expressions for steady-state surface concentrations of reactants are derived and utilized to directly compute uptake coefficients for this system, allowing for an exploration of uptake dependence on reactant concentration. In the present experiments, reactive uptake coefficients of O3 scale weakly with bulk solution pH, increasing from 4 × 10-4 to 2 × 10-3 with decreasing solution pH from pH 13 to pH 3.
Collapse
Affiliation(s)
- Alexander M Prophet
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- Department of Chemistry, University of California Berkeley CA 94720 USA
| | - Kritanjan Polley
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- Department of Chemistry, University of California Berkeley CA 94720 USA
| | | | - David T Limmer
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- Department of Chemistry, University of California Berkeley CA 94720 USA
- Materials Science Division, Lawrence Berkeley National Laboratory Berkeley California 94720 USA
- Kavli Energy NanoScience Institute Berkeley California 94720 USA
| | - Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| |
Collapse
|
13
|
Roy M, Dahmani R, Vallet V, Masella M. Early Steps in the O 2 Scavenger Process in the Aqueous Phase: Hydrazine vs DEHA. J Phys Chem A 2023; 127:10104-10117. [PMID: 37988629 DOI: 10.1021/acs.jpca.3c05383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
We investigate the first direct proton abstraction reactions from reducing agents (RAHs) hydrazine and diethyl hydroxylamine (DEHA), toward dioxygen (O2) in the aqueous phase, spanning ambient to high-temperature conditions. Quantum chemistry methods and molecular dynamics simulations are employed in this study. Quantum chemistry methods are used to analyze the quasi-equilibrium between a reactive conformation and a transition state in the [RAH,O2] cluster. On the other hand, molecular dynamics simulations estimate the probability of observing a reactive conformation of the [RAH,O2] cluster in the solution. In this study, we assume that the energy barrier of the quasi-equilibrium is sufficiently high for the RAH/O2 association process to be at equilibrium. Our findings indicate that the first proton abstraction process from a reactive conformation cluster by DEHA is energetically favored compared to hydrazine. Conversely, the association process of hydrazine and O2 in solution is more favorable than that of DEHA. Consequently, the rate constant for the first proton abstraction process is similar for both hydrazine and DEHA, particularly at high temperatures, with activation energies of approximately 21.5 ± 1.5 kcal mol-1 for both compounds. These results align with recent experiments investigating the complete O2 scavenger process in liquid water with hydrazine and DEHA. Therefore, our findings support the assumption that first proton abstraction reactions are the rate-determining steps in O2 scavenger processes in the aqueous phase.
Collapse
Affiliation(s)
- Marion Roy
- Service de Physico-Chimie, Université Paris-Saclay, CEA, Gif-sur-Yvette 91190, France
| | - Rahma Dahmani
- Laboratoire de Biologie Structurale et Radiobiologie, Service de Bioénergétique, Biologie Structurale et Mécanismes, Institut de Biologie et de Technologies de Saclay, CEA Saclay, Gif sur Yvette Cedex F-91191, France
| | - Valérie Vallet
- Univ. Lille, CNRS, UMR 8523─PhLAM─Physique des Lasers Atomes et Molécules, Lille F-59000, France
| | - Michel Masella
- Laboratoire de Biologie Structurale et Radiobiologie, Service de Bioénergétique, Biologie Structurale et Mécanismes, Institut de Biologie et de Technologies de Saclay, CEA Saclay, Gif sur Yvette Cedex F-91191, France
| |
Collapse
|
14
|
Peralta A, Odriozola G. A Neural-Network-Optimized Hydrogen Peroxide Pairwise Additive Model for Classical Simulations. J Chem Theory Comput 2023; 19:4172-4181. [PMID: 37306692 PMCID: PMC10921400 DOI: 10.1021/acs.jctc.3c00287] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Indexed: 06/13/2023]
Abstract
We have developed an all-atom pairwise additive model for hydrogen peroxide using an optimization procedure based on artificial neural networks (ANNs). The model is based on experimental molecular geometry and includes a dihedral potential that hinders the cis-type configuration and allows for crossing the trans one, defined between the planes that have the two oxygen atoms and each hydrogen. The model's parametrization is achieved by training simple ANNs to minimize a target function that measures the differences between various thermodynamic and transport properties and the corresponding experimental values. Finally, we evaluated a range of properties for the optimized model and its mixtures with SPC/E water, including bulk-liquid properties (density, thermal expansion coefficient, adiabatic compressibility, etc.) and properties of systems at equilibrium (vapor and liquid density, vapor pressure and composition, surface tension, etc.). Overall, we obtained good agreement with experimental data.
Collapse
Affiliation(s)
- Alvaro
Ramos Peralta
- Área de Física de Procesos
Irreversibles, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 180, 02200 Ciudad de México, Mexico
| | - Gerardo Odriozola
- Área de Física de Procesos
Irreversibles, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 180, 02200 Ciudad de México, Mexico
| |
Collapse
|
15
|
Brown EK, Rovelli G, Wilson KR. pH jump kinetics in colliding microdroplets: accelerated synthesis of azamonardine from dopamine and resorcinol. Chem Sci 2023; 14:6430-6442. [PMID: 37325131 PMCID: PMC10266468 DOI: 10.1039/d3sc01576a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/21/2023] [Indexed: 06/17/2023] Open
Abstract
Recent studies report the dramatic acceleration of chemical reactions in micron-sized compartments. In the majority of these studies the exact acceleration mechanism is unknown but the droplet interface is thought to play a significant role. Dopamine reacts with resorcinol to form a fluorescent product azamonardine and is used as a model system to examine how droplet interfaces accelerate reaction kinetics. The reaction is initiated by colliding two droplets levitated in a branched quadrupole trap, which allows the reaction to be observed in individual droplets where the size, concentration, and charge are carefully controlled. The collision of two droplets produces a pH jump and the reaction kinetics are quantified optically and in situ by measuring the formation of azamonardine. The reaction was observed to occur 1.5 to 7.4 times faster in 9-35 micron droplets compared to the same reaction conducted in a macroscale container. A kinetic model of the experimental results suggests that the acceleration mechanism arises from both the more rapid diffusion of oxygen into the droplet, as well as increased reagent concentrations at the air-water interface.
Collapse
Affiliation(s)
- Emily K Brown
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA +1 510-495-2474
- Department of Chemistry, University of California Berkeley CA 94720 USA
| | - Grazia Rovelli
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA +1 510-495-2474
| | - Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA +1 510-495-2474
| |
Collapse
|
16
|
Zheng J, Qi J, Song S, Yuan K, Zhang L, Zhao H, Lü J, Zhu B, Zhang Y, Hu J. An antioxidation strategy based on ultra-small nanobubbles without exogenous antioxidants. Sci Rep 2023; 13:8455. [PMID: 37231048 DOI: 10.1038/s41598-023-35766-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/23/2023] [Indexed: 05/27/2023] Open
Abstract
Antioxidation is in demand in living systems, as the excessive reactive oxygen species (ROS) in organisms lead to a variety of diseases. The conventional antioxidation strategies are mostly based on the introduction of exogenous antioxidants. However, antioxidants usually have shortcomings of poor stability, non-sustainability, and potential toxicity. Here, we proposed a novel antioxidation strategy based on ultra-small nanobubbles (NBs), in which the gas-liquid interface was employed to enrich and scavenge ROS. It was found that the ultra-small NBs (~ 10 nm) exhibited a strong inhibition on oxidization of extensive substrates by hydroxyl radicals, while the normal NBs (~ 100 nm) worked only for some substrates. Since the gas-water interface of the ultra-small NBs is non-expendable, its antioxidation would be sustainable and its effect be cumulative, which is different to that using reactive nanobubbles to eliminate free radicals as the gases are consumptive and the reaction is unsustainable. Therefore, our antioxidation strategy based on ultra-small NB would provide a new solution for antioxidation in bioscience as well as other fields such as materials, chemical industry, food industry, etc.
Collapse
Affiliation(s)
- Jin Zheng
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juncheng Qi
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sanzhao Song
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
| | - Kaiwei Yuan
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lijuan Zhang
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hongwei Zhao
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Junhong Lü
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Beien Zhu
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yi Zhang
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jun Hu
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
17
|
Pandey PK, Chandra A. Mechanism, Kinetics, and Potential of Mean Force of Evaporation of Water from Aqueous Sodium Chloride Solutions of Varying Concentrations. J Phys Chem B 2023; 127:4602-4612. [PMID: 37163726 DOI: 10.1021/acs.jpcb.2c09004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The mechanism, kinetics, and potential of mean force of evaporation of water from aqueous NaCl solutions are investigated through both unbiased molecular dynamics simulations and also biased simulations using the umbrella sampling method. The results are obtained for aqueous solutions of three different NaCl concentrations ranging from 0.6 to 6.0 m and also for pure water. The rate of evaporation is found to decrease in the presence of ions. It is found that the process of evaporation of a surface water molecule from ionic solutions can be triggered through its collision with another water or chloride ion. Such collisions provide the additional kinetic energy that is required for evaporation. However, when the collision takes place with a Cl- ion, the evaporation of the escaping water also involves a collision with water in the vicinity of the ion at the same time along with the ion-water collision. These two collisions together provide the required kinetic energy for escape of the evaporating water molecule. Thus, the mechanism of evaporation process of ionic solutions can be more complex than that of pure water. The potential of mean force (PMF) of evaporation is found to be positive and it increases with increasing ion concentration. Also, no barrier in the PMF is found to be present for the condensation of water from vapor phase to the surfaces of the solutions. A detailed analysis of the unsuccessful evaporation attempts by surface water molecules is also made in the current study.
Collapse
Affiliation(s)
- Prashant Kumar Pandey
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, India 208016
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, India 208016
| |
Collapse
|
18
|
Nguyen D, Lyu P, Nguyen SC. Experimental and Thermodynamic Viewpoints on Claims of a Spontaneous H 2O 2 Formation at the Air-Water Interface. J Phys Chem B 2023; 127:2323-2330. [PMID: 36913256 PMCID: PMC10041628 DOI: 10.1021/acs.jpcb.2c07394] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/24/2023] [Indexed: 03/14/2023]
Abstract
Recent claims of the spontaneous H2O2 formation at the air-water interface of water microdroplets have sparked debates on its feasibility. New results from different research groups have provided more insight into these claims, but conclusive proofs are still far from realized. In this Perspective, thermodynamic viewpoints, potential experiments, and theoretical approaches are presented as references for future studies. We suggest that future work should seek for H2 byproduct as indirect evidence to confirm the feasibility of this phenomenon. Examining potential energy surfaces for H2O2 formation reaction when moving from the bulk to the interface under the influence of the local electric fields is also critical to establish this phenomenon.
Collapse
Affiliation(s)
- Duy Nguyen
- Department of Chemistry and
Biochemistry, University of California, Merced, California 95343, United States
| | - Pin Lyu
- Department of Chemistry and
Biochemistry, University of California, Merced, California 95343, United States
| | - Son C. Nguyen
- Department of Chemistry and
Biochemistry, University of California, Merced, California 95343, United States
| |
Collapse
|
19
|
Falciani G, Bergamasco L, Bonke SA, Sen I, Chiavazzo E. A novel concept of photosynthetic soft membranes: a numerical study. NANOSCALE RESEARCH LETTERS 2023; 18:9. [PMID: 36757508 DOI: 10.1186/s11671-023-03772-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/22/2022] [Indexed: 05/24/2023]
Abstract
We focus on a novel concept of photosynthetic soft membranes, possibly able to allow the conversion of solar energy and carbon dioxide (CO[Formula: see text]) into green fuels. The considered membranes rely on self-assembled functional molecules in the form of soap films. We elaborate a multi-scale and multi-physics model to describe the relevant phenomena, investigating the expected performance of a single soft photosynthetic membrane. First, we present a macroscale continuum model, which accounts for the transport of gaseous and ionic species within the soap film, the chemical equilibria and the two involved photocatalytic half reactions of the CO[Formula: see text] reduction and water oxidation at the two gas-surfactant-water interfaces of the soap film. Second, we introduce a mesoscale discrete Monte Carlo model, to deepen the investigation of the structure of the functional monolayers. Finally, the morphological information obtained at the mesoscale is integrated into the continuum model in a multi-scale framework. The developed tools are then used to perform sensitivity studies in a wide range of possible experimental conditions, to provide scenarios on fuel production by such a novel approach.
Collapse
Affiliation(s)
| | | | - Shannon A Bonke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Indraneel Sen
- Department of Chemistry, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
20
|
Masaya TW, Goulay F. A Molecular Dynamic Study of the Effects of Surface Partitioning on the OH Radical Interactions with Solutes in Multicomponent Aqueous Aerosols. J Phys Chem A 2023; 127:751-764. [PMID: 36639126 DOI: 10.1021/acs.jpca.2c07419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The surface-bulk partitioning of small saccharide and amide molecules in aqueous droplets was investigated using molecular dynamics. The air-particle interface was modeled using a 80 Å cubic water box containing a series of organic molecules and surrounded by gaseous OH radicals. The properties of the organic solutes within the interface and the water bulk were examined at a molecular level using density profiles and radial pair distribution functions. Molecules containing only polar functional groups such as urea and glucose are found predominantly in the water bulk, forming an exclusion layer near the water surface. Substitution of a single polar group by an alkyl group in sugars and amides leads to the migration of the molecule toward the interface. Within the first 2 nm from the water surface, surface-active solutes lose their rotational freedom and adopt a preferred orientation with the alkyl group pointing toward the surface. The different packing within the interface leads to different solvation shell structures and enhanced interaction between the organic molecules and absorbed OH radicals. The simulations provide quantitative information about the dimension, composition, and organization of the air-water interface as well as about the nonreactive interaction of the OH radicals with the organic solutes. It suggests that increased concentrations, preferred orientations, and decreased solvation near the air-water surface may lead to differences in reactivities between surface-active and surface-inactive molecules. The results are important to explain how heterogeneous oxidation mechanisms and kinetics within interfaces may differ from those of the bulk.
Collapse
Affiliation(s)
- Tadini Wenyika Masaya
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26506, United States
| | - Fabien Goulay
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26506, United States
| |
Collapse
|
21
|
Martins-Costa MTC, Ruiz-López MF. Electrostatics and Chemical Reactivity at the Air-Water Interface. J Am Chem Soc 2023; 145:1400-1406. [PMID: 36622259 DOI: 10.1021/jacs.2c12089] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
It has been recently discovered that chemical reactions at aqueous interfaces can be orders of magnitude faster compared to conventional bulk phase reactions, but despite its wide-ranging implications, which extend from atmospheric to synthetic chemistry or technological applications, the phenomenon is still incompletely understood. The role of strong electric fields due to space asymmetry and the accumulation of ions at the interface has been claimed as a possible cause from some experiments, but the reorganization of the solvent around the reactive system should provide even greater additional electrostatic contributions that have not yet been analyzed. In this study, with the help of first-principles molecular dynamics simulations, we go deeper into this issue by a careful assessment of solvation electrostatics at the air-water interface. Our simulations confirm that electrostatic forces can indeed be a key factor in rate acceleration compared to bulk solution. Remarkably, the study reveals that the effect cannot simply be attributed to the magnitude of the local electric field and that the fluctuations of the full electrostatic potential resulting from unique dynamical behavior of the solvation shells at the interface must be accounted for. This finding paves the way for future applications of the phenomenon in organic synthesis, especially for charge transfer or redox reactions in thin films and microdroplets.
Collapse
Affiliation(s)
- Marilia T C Martins-Costa
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, University of Lorraine, CNRS, BP 70239, 54506 Vandoeuvre-lès-Nancy, France
| | - Manuel F Ruiz-López
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, University of Lorraine, CNRS, BP 70239, 54506 Vandoeuvre-lès-Nancy, France
| |
Collapse
|
22
|
Wilson KR, Prophet AM, Willis MD. A Kinetic Model for Predicting Trace Gas Uptake and Reaction. J Phys Chem A 2022; 126:7291-7308. [PMID: 36170058 DOI: 10.1021/acs.jpca.2c03559] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A model is developed to describe trace gas uptake and reaction with applications to aerosols and microdroplets. Gas uptake by the liquid is formulated as a coupled equilibria that links gas, surface, and bulk regions of the droplet or solution. Previously, this framework was used in explicit stochastic reaction-diffusion simulations to predict the reactive uptake kinetics of ozone with droplets containing aqueous aconitic acid, maleic acid, and sodium nitrite. With the use of prior data and simulation results, a new equation for the uptake coefficient is derived, which accounts for both surface and bulk reactions. Lambert W functions are used to obtain closed form solutions to the integrated rate laws for the multiphase kinetics; similar to previous expressions that describe Michaelis-Menten enzyme kinetics. Together these equations couple interface and bulk processes over a wide range of conditions and do not require many of the limiting assumptions needed to apply resistor model formulations to explain trace gas uptake and reaction.
Collapse
Affiliation(s)
- Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alexander M Prophet
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Megan D Willis
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523 United States
| |
Collapse
|
23
|
Foreseeing the future of green Technology. Molecular dynamic investigation on passive membrane penetration by the products of the CO2 and 1,3-butadiene reaction. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Donaldson DJ. Experimental Confirmation of H 2O 2 Adsorption at the Water-Air Interface. J Phys Chem A 2022; 126:5647-5653. [PMID: 35960909 PMCID: PMC9422982 DOI: 10.1021/acs.jpca.2c04373] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/01/2022] [Indexed: 11/28/2022]
Abstract
Recent work has reported that hydrogen peroxide is formed at the air-water interface. Given the reduced solvation environment there, this process could give rise to enhanced production of OH from H2O2 photolysis at the interface. These considerations give some importance to understanding the adsorption thermochemistry of hydrogen peroxide. Although there are two molecular dynamics studies that provide the adsorption free energy, to date there is no experimental verification that H2O2 adsorbs at the air-water interface. Here we use glancing-angle Raman spectroscopy to follow the surface adsorption behavior of this molecule. Using standard states of 1 mol L-1 for each of the bulk and surface phases yields a ΔG° of -5 kJ mol-1 at 293 K, comparable to that obtained for DMSO.
Collapse
Affiliation(s)
- D. James Donaldson
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S
3H6, Canada
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| |
Collapse
|
25
|
El-Tawargy AS. Spatio-temporal photolysis rate profiles of UV 254 irradiated toluene. Sci Rep 2022; 12:12744. [PMID: 35882928 PMCID: PMC9325976 DOI: 10.1038/s41598-022-16941-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/18/2022] [Indexed: 12/25/2022] Open
Abstract
The volatile organic compound (VOC) toluene is irradiated with a 254 nm UV source. The studied sample (1 mL) of toluene is equipped in a sealed quartz cuvette and inserted in one of the Michelson interferometer's arms. During a UV254 irradiation of 1 h, the variation in the toluene's refractive index profiles are monitored as a movement of Michelson interference fringes. These interferograms are recorded and digitally analyzed to produce their phase map distributions and, hence, reconstructing the refractive index profiles which are expressing the toluene's photolysis behavior. With increasing the UV254 irradiation time, the toluene's refractive index profiles exhibit both temporal and spatial decrease due to the production of benzyl radicals and the consequent oxidation of these radicals. The spatio-temporal refractive index and photolysis rate profiles of toluene are reconstructed and discussed.
Collapse
Affiliation(s)
- Ahmed S El-Tawargy
- Optics Research Laboratory, Physics Department, Faculty of Science, Damietta University, New Damietta City, 34517, Egypt.
| |
Collapse
|
26
|
Willis MD, Wilson KR. Coupled Interfacial and Bulk Kinetics Govern the Timescales of Multiphase Ozonolysis Reactions. J Phys Chem A 2022; 126:4991-5010. [PMID: 35863113 DOI: 10.1021/acs.jpca.2c03059] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Chemical transformations in aerosols impact the lifetime of particle phase species, the fate of atmospheric pollutants, and both climate- and health-relevant aerosol properties. Timescales for multiphase reactions of ozone in atmospheric aqueous phases are governed by coupled kinetic processes between the gas phase, the particle interface, and its bulk, which respond dynamically to reactive consumption of O3. However, models of atmospheric aerosol reactivity often do not account for the coupled nature of multiphase processes. To examine these dynamics, we use new and prior experimental observations of aqueous droplet reaction kinetics, including three systems with a range of surface affinities and ozonolysis rate coefficients (trans-aconitic acid (C6H6O6), maleic acid (C4H4O4), and sodium nitrite (NaNO2)). Using literature rate coefficients and thermodynamic properties, we constrain a simple two-compartment stochastic kinetic model which resolves the interface from the particle bulk and represents O3 partitioning, diffusion, and reaction as a coupled kinetic system. Our kinetic model accurately predicts decay kinetics across all three systems, demonstrating that both the thermodynamic properties of O3 and the coupled kinetic and diffusion processes are key to making accurate predictions. An enhanced concentration of adsorbed O3, compared to gas and bulk phases is rapidly maintained and remains constant even as O3 is consumed by reaction. Multiphase systems dynamically seek to achieve equilibrium in response to reactive O3 loss, but this is hampered at solute concentrations relevant to aqueous aerosol by the rate of O3 arrival in the bulk by diffusion. As a result, bulk-phase O3 becomes depleted from its Henry's law solubility. This bulk-phase O3 depletion limits reaction timescales for relatively slow-reacting organic solutes with low interfacial affinity (i.e., trans-aconitic and maleic acids, with krxn ≈ 103-104 M-1 s-1), which is in contrast to fast-reacting solutes with higher surface affinity (i.e., nitrite, with krxn ≈ 105 M-1 s-1) where surface reactions strongly impact the observed decay kinetics.
Collapse
Affiliation(s)
- Megan D Willis
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| |
Collapse
|
27
|
Razzokov J, Fazliev S, Kodirov A, AttrI P, Chen Z, Shiratani M. Mechanistic Insight into Permeation of Plasma-Generated Species from Vacuum into Water Bulk. Int J Mol Sci 2022; 23:6330. [PMID: 35683009 PMCID: PMC9181481 DOI: 10.3390/ijms23116330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 11/18/2022] Open
Abstract
Due to their potential benefits, cold atmospheric plasmas (CAPs), as biotechnological tools, have been used for various purposes, especially in medical and agricultural applications. The main effect of CAP is associated with reactive oxygen and nitrogen species (RONS). In order to deliver these RONS to the target, direct or indirect treatment approaches have been employed. The indirect method is put into practice via plasma-activated water (PAW). Despite many studies being available in the field, the permeation mechanisms of RONS into water at the molecular level still remain elusive. Here, we performed molecular dynamics simulations to study the permeation of RONS from vacuum into the water interface and bulk. The calculated free energy profiles unravel the most favourable accumulation positions of RONS. Our results, therefore, provide fundamental insights into PAW and RONS chemistry to increase the efficiency of PAW in biological applications.
Collapse
Affiliation(s)
- Jamoliddin Razzokov
- Institute of Material Sciences, Academy of Sciences, Chingiz Aytmatov 2b, Tashkent 100084, Uzbekistan;
- Institute of Fundamental and Applied Research, National Research University TIIAME, Kori Niyoziy 39, Tashkent 100000, Uzbekistan
- Department of Physics, National University of Uzbekistan, Universitet 4, Tashkent 100174, Uzbekistan
- College of Engineering, Akfa University, Milliy Bog Street 264, Tashkent 111221, Uzbekistan
| | - Sunnatullo Fazliev
- Max Planck School Matter to Life, Jahnstrasse 29, 69120 Heidelberg, Germany;
- Faculty of Chemistry and Earth Sciences, Heidelberg University, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| | - Akbar Kodirov
- Institute of Material Sciences, Academy of Sciences, Chingiz Aytmatov 2b, Tashkent 100084, Uzbekistan;
- Department of Physics, National University of Uzbekistan, Universitet 4, Tashkent 100174, Uzbekistan
| | - Pankaj AttrI
- Center of Plasma Nano-Interface Engineering, Kyushu University, Fukuoka 819-0395, Japan; (P.A.); (M.S.)
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Zhitong Chen
- Center for Advanced Therapy, National Innovation Center for Advanced Medical Devices, Shenzhen 518000, China;
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Masaharu Shiratani
- Center of Plasma Nano-Interface Engineering, Kyushu University, Fukuoka 819-0395, Japan; (P.A.); (M.S.)
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
28
|
Suchan J, Kolafa J, Slavíček P. Electron-induced fragmentation of water droplets: Simulation study. J Chem Phys 2022; 156:144303. [DOI: 10.1063/5.0088591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The transport of free electrons in a water environment is still poorly understood. We show that additional insight can be brought about by investigating fragmentation patterns of finite-size particles upon electron impact ionization. We have developed a composite protocol aiming to simulate fragmentation of water clusters by electrons with kinetic energies in the range of up to 100 eV. The ionization events for atomistically described molecular clusters are identified by a kinetic Monte Carlo procedure. We subsequently model the fragmentation with classical molecular dynamics simulations, calibrated by non-adiabatic quantum mechanics/molecular mechanics simulations of the ionization process. We consider one-electron ionizations, energy transfer via electronic excitation events, elastic scattering, and also the autoionization events through intermolecular Coulombic decay. The simulations reveal that larger water clusters are often ionized repeatedly, which is the cause of substantial fragmentation. After losing most of its energy, low-energy electrons further contribute to fragmentation by electronic excitations. The simultaneous measurement of cluster size distribution before and after the ionization represents a sensitive measure of the energy transferred into the system by an incident electron.
Collapse
Affiliation(s)
- Jiří Suchan
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague, Czech Republic
| | - Jiří Kolafa
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague, Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague, Czech Republic
| |
Collapse
|
29
|
Priyadarsini A, Mallik BS. Structure and rotational dynamics of water around hydrogen peroxide. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Wang Y, Brigante M, Mailhot G, Talaga D, Wu Y, Dong W, Sobanska S. Toward a better understanding of ferric-oxalate complex photolysis: The role of the aqueous/air interface of droplet. CHEMOSPHERE 2022; 289:133127. [PMID: 34864008 DOI: 10.1016/j.chemosphere.2021.133127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/02/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
In this work, the photo reactivity of ferric oxalate (Fe(III)-Ox) complex in atmospheric particles was investigated. Raman spectroscopy was used to explore the mechanism and kinetics of Fe(III)-Ox photolysis occurring at the aqueous/gas interface, inside the droplet and in bulk solution. Ferrous carbonate (FeCO3) was detected indicating that carbonate ion (CO32-) formed inside the droplets would compete with oxalate ligands for iron complexation. A higher concentration of photoproduct Fe(II)-Ox was observed at the surface and inside of the droplets than in bulk solution. In particular, Fe(III)-Ox on the droplet surface was quickly reduced with light and Fe(II)-Ox concentration gradually decreased with irradiation time. The evolution of Fe(II)-Ox concentration was similar inside the droplet and in bulk solution with a trend of first increasing and then gradually decreasing during irradiation time. Although FeCO3 would hinder Fenton intermediate reaction, the photolysis rate of Fe(III)-Ox in droplets was almost two orders of magnitude times faster than that observed during bulk experiment. In general, the photolysis mechanism and kinetics of Fe(III)-Ox in aqueous/air interface, inside of droplet and bulk solution were distinct, and the production of oxide species from the atmospheric Fe(III)-Ox droplets was underestimated.
Collapse
Affiliation(s)
- Yu Wang
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200438, China; Institut des Sciences Moléculaires, UMR CNRS 5255, Univ. Bordeaux, Talence, F-33405, France
| | - Marcello Brigante
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000, Clermont-Ferrand, France
| | - Gilles Mailhot
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000, Clermont-Ferrand, France
| | - David Talaga
- Institut des Sciences Moléculaires, UMR CNRS 5255, Univ. Bordeaux, Talence, F-33405, France
| | - Yanlin Wu
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Wenbo Dong
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Sophie Sobanska
- Institut des Sciences Moléculaires, UMR CNRS 5255, Univ. Bordeaux, Talence, F-33405, France.
| |
Collapse
|
31
|
Dong P, Chen Z, Qin X, Gong Y. Water Significantly Changes the Ring-Cleavage Process During Aqueous Photooxidation of Toluene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16316-16325. [PMID: 34877862 DOI: 10.1021/acs.est.1c04770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As a major constituent of aromatic compounds, toluene exists widely in environmental aqueous phases. This research investigated the aqueous-phase OH oxidation of toluene to determine how liquid water changes the radical chemistry of ring-cleavage pathways. Results show that ring-cleavage pathways through the C7 bicyclic peroxy radical (BPR) account for about 70% of total aqueous-phase oxidation pathways, which is similar to that in the gas-phase oxidation. However, detailed ring-cleavage pathways in the aqueous phase change significantly compared with those in the gas phase as shown by the decreased production of glyoxal and methylglyoxal and the enhanced production of formic acid and acetic acid as primary products, which can be attributed to the presence of liquid water. Water facilitates the formation of the BPR whose structure is different from that in the gas-phase oxidation and results in different ring-cleavage pathways through hydrogen-shift reactions. Furthermore, water helps the hydration of acyl radicals formed by the BPR to produce organic acids. With the suggested ring-cleavage mechanisms, a box model can simulate aqueous-phase product distributions better than that with the classical ring-cleavage mechanisms. Given the influence of water on reaction mechanisms, aqueous-phase oxidation of hydrophobic organic compounds may be more important than previously assumed.
Collapse
Affiliation(s)
- Ping Dong
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhongming Chen
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xuan Qin
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yiwei Gong
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
32
|
Hadizadeh MH, Pan Z, Azamat J. Investigation of OH radical in the water nanodroplet during vapor freezing process: An ab initio molecular dynamics study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Wang S, Hou K, Heinz H. Accurate and Compatible Force Fields for Molecular Oxygen, Nitrogen, and Hydrogen to Simulate Gases, Electrolytes, and Heterogeneous Interfaces. J Chem Theory Comput 2021; 17:5198-5213. [PMID: 34255965 DOI: 10.1021/acs.jctc.0c01132] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gas molecules and interfaces with liquids and solids play a critical role in living organisms, sorption, catalysis, and the environment. Monitoring adsorption and heterogeneous interfaces remains difficult in experiments, and earlier models for molecular simulations lead to errors over 100% in fundamental molecular properties. We introduce conceptually new force field parameters for molecular oxygen, nitrogen, and hydrogen that reduce deviations to <5%. We employ a combination of a harmonic bond stretching potential and Lennard-Jones parameters with 12-6 and 9-6 options, leading to computed bond lengths, Raman peaks, liquid densities, vaporization enthalpies, and free energies of hydration in impressive agreement with experiments. Reliable free energies of hydration were obtained upon validation of density and vaporization energy without significant further parameter adjustments. We illustrate applications to O2 adsorption on Pt electrocatalysts and N2 adsorption in zeolites, showing <5% deviation in adsorption energies measured in experiments without additional fitting parameters. We discuss the chemical interpretation of all parameters and explain the reasons for discrepancies in earlier models. Compatibility with the Interface Force Field (IFF), CHARMM, AMBER, OPLS-AA, GROMOS, DREIDING, CVFF, PCFF, COMPASS, and QM/MM methods enables reliable simulations of gases and liquid/solid interfaces with biopolymers, minerals, and metals. The parametrization protocol can be applied to similar molecules.
Collapse
Affiliation(s)
- Shiyi Wang
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Kaiyi Hou
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Hendrik Heinz
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
34
|
Uematsu Y. Electrification of water interface. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33. [PMID: 34280896 DOI: 10.1088/1361-648x/ac15d5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/19/2021] [Indexed: 05/04/2023]
Abstract
The surface charge of a water interface determines many fundamental processes in physical chemistry and interface science, and it has been intensively studied for over a hundred years. We summarize experimental methods to characterize the surface charge densities developed so far: electrokinetics, double-layer force measurements, potentiometric titration, surface-sensitive nonlinear spectroscopy, and surface-sensitive mass spectrometry. Then, we elucidate physical ion adsorption and chemical electrification as examples of electrification mechanisms. In the end, novel effects on surface electrification are discussed in detail. We believe that this clear overview of state of the art in a charged water interface will surely help the fundamental progress of physics and chemistry at interfaces in the future.
Collapse
Affiliation(s)
- Yuki Uematsu
- Department of Physics, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
35
|
Ruiz-López MF, Martins-Costa MTC, Francisco JS, Anglada JM. Tight electrostatic regulation of the OH production rate from the photolysis of hydrogen peroxide adsorbed on surfaces. Proc Natl Acad Sci U S A 2021; 118:e2106117118. [PMID: 34290148 PMCID: PMC8325346 DOI: 10.1073/pnas.2106117118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recently, experimental and theoretical works have reported evidence indicating that photochemical processes may significantly be accelerated at heterogeneous interfaces, although a complete understanding of the phenomenon is still lacking. We have carried out a theoretical study of interface and surface effects on the photochemistry of hydrogen peroxide (H2O2) using high-level ab initio methods and a variety of models. Hydrogen peroxide is an important oxidant that decomposes in the presence of light, forming two OH radicals. This elementary photochemical process has broad interest and is used in many practical applications. Our calculations show that it can drastically be affected by heterogeneous interfaces. Thus, compared to gas phase, the photochemistry of H2O2 appears to be slowed on the surface of apolar or low-polar surfaces and, in contrast, hugely accelerated on ionic surfaces or the surface of aqueous electrolytes. We give particular attention to the case of the neat air-water interface. The calculated photolysis rate is similar to the gas phase, which stems from the compensation of two opposite effects, the blue shift of the n→σ* absorption band and the increase of the absorption intensity. Nevertheless, due to the high affinity of H2O2 for the air-water interface, the predicted OH production rate is up to five to six orders of magnitude larger. Overall, our results show that the photochemistry of H2O2 in heterogeneous environments is greatly modulated by the nature of the surface, and this finding opens interesting new perspectives for technological and biomedical applications, and possibly in various atmospheres.
Collapse
Affiliation(s)
- Manuel F Ruiz-López
- Laboratoire de Physique et Chimie Théoriques, CNRS UMR 7019, University of Lorraine, 54506 Vandoeuvre-lès-Nancy, France;
| | - Marilia T C Martins-Costa
- Laboratoire de Physique et Chimie Théoriques, CNRS UMR 7019, University of Lorraine, 54506 Vandoeuvre-lès-Nancy, France
| | - Joseph S Francisco
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA 19104;
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Josep M Anglada
- Departament de Química Biològica, Institut de Química Avançada de Catalunya, Consejo Superior de Investigaciones Científicas, E-08034 Barcelona, Spain
| |
Collapse
|
36
|
Rózsa ZB, Szőri-Dorogházi E, Viskolcz B, Szőri M. Transmembrane penetration mechanism of cyclic pollutants inspected by molecular dynamics and metadynamics: the case of morpholine, phenol, 1,4-dioxane and oxane. Phys Chem Chem Phys 2021; 23:15338-15351. [PMID: 34254082 DOI: 10.1039/d1cp01521d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The presence of industrially produced chemicals in water is often not monitored, while their passive transport and accumulation can cause serious damage in living cells. Molecular dynamics simulations are an effective way to understand the mechanism of the action of these pollutants. In this paper, the passive membrane transport of 1,4-dioxane, phenol, oxane and morpholine was investigated and analyzed thoroughly from structural and energetic points of view. Free energy profiles for pollutant and water penetration into the bilayer were obtained from well-tempered metadynamics (WT-MD) simulations and a mass density-based approach. It was found that all four investigated compounds can penetrate biological membranes and affect the free energy profile of water penetration. Out of the investigated species, oxane has the thermodynamically most preferred position in the bilayer center, leading to a lower free energy barrier of water molecules by 3 kJ mol-1, resulting in 5 times more water molecules in the bilayer center. The concentration dependence of free energy was tested at two different phenol concentrations using WT-MD, and it was found that the higher phenol concentration lowers the main barrier by 3 kJ mol-1. Density-based free energy calculations were found to reproduce the results of WT-MD within the limits of chemical accuracy.
Collapse
Affiliation(s)
- Zsófia Borbála Rózsa
- Institute of Chemistry, University of Miskolc, Egyetemváros A/2, H-3515 Miskolc, Hungary.
| | - Emma Szőri-Dorogházi
- Centre for Higher Education and Industrial Cooperation, University of Miskolc, Egyetemváros A/2, H-3515 Miskolc, Hungary
| | - Béla Viskolcz
- Institute of Chemistry, University of Miskolc, Egyetemváros A/2, H-3515 Miskolc, Hungary.
| | - Milán Szőri
- Institute of Chemistry, University of Miskolc, Egyetemváros A/2, H-3515 Miskolc, Hungary.
| |
Collapse
|
37
|
Wang S, Zhu E, Huang Y, Heinz H. Direct correlation of oxygen adsorption on platinum-electrolyte interfaces with the activity in the oxygen reduction reaction. SCIENCE ADVANCES 2021; 7:eabb1435. [PMID: 34108201 PMCID: PMC8189588 DOI: 10.1126/sciadv.abb1435] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/22/2021] [Indexed: 05/24/2023]
Abstract
The oxygen reduction reaction (ORR) on platinum catalysts is essential in fuel cells. Quantitative predictions of the relative ORR activity in experiments, in the range of 1 to 50 times, have remained challenging because of incomplete mechanistic understanding and lack of computational tools to account for the associated small differences in activation energies (<2.3 kilocalories per mole). Using highly accurate molecular dynamics (MD) simulation with the Interface force field (0.1 kilocalories per mole), we elucidated the mechanism of adsorption of molecular oxygen on regular and irregular platinum surfaces and nanostructures, followed by local density functional theory (DFT) calculations. The relative ORR activity is determined by oxygen access to platinum surfaces, which greatly depends on specific water adlayers, while electron transfer occurs at a similar slow rate. The MD methods facilitate quantitative predictions of relative ORR activities of any platinum nanostructures, are applicable to other catalysts, and enable effective MD/DFT approaches.
Collapse
Affiliation(s)
- Shiyi Wang
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Enbo Zhu
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Hendrik Heinz
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
38
|
Li J, Knopf DA. Representation of Multiphase OH Oxidation of Amorphous Organic Aerosol for Tropospheric Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7266-7275. [PMID: 33974411 DOI: 10.1021/acs.est.0c07668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Organic aerosol (OA) is ubiquitous in the atmosphere and, during transport, can experience chemical transformation with consequences for air quality and climate. Prediction of the chemical evolution of OA depends on its reactivity with atmospheric oxidants such as the OH radical. OA particles undergo amorphous phase transitions from liquid to solid (glassy) states in response to temperature changes, which, in turn, will impact its reactivity toward OH oxidation. To improve the predictability of OA reactivity toward OH oxidation, the reactive uptake coefficients (γ) of OH radicals reacting with triacontane and squalane serving as amorphous OA surrogates were measured at temperatures from 213-293 K. γ increases strongest with temperature when the organic species is in the liquid phase, compared to when being in the semisolid or solid phase. The resistor model is applied, accounting for the amorphous phase state changes using the organic species' glass transition temperature and fragility, to evaluate the physicochemical parameters of the temperature dependent OH uptake process. This allows for the derivation of a semiempirical formula, applicable to models, to predict the degree of oxidation and chemical lifetime of the condensed-phase organic species for typical tropospheric temperature and humidity when OA particle viscosity is known.
Collapse
Affiliation(s)
- Jienan Li
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794, United States
| | - Daniel A Knopf
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
39
|
von Domaros M, Liu Y, Butman JL, Perlt E, Geiger FM, Tobias DJ. Molecular Orientation at the Squalene/Air Interface from Sum Frequency Generation Spectroscopy and Atomistic Modeling. J Phys Chem B 2021; 125:3932-3941. [DOI: 10.1021/acs.jpcb.0c11158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael von Domaros
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Yangdongling Liu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jana L. Butman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Eva Perlt
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Franz M. Geiger
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Douglas J. Tobias
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
40
|
Kandagal VS, Pringle JM, Forsyth M, Chen F. Predicting gas selectivity in organic ionic plastic crystals by free energy calculations. RSC Adv 2021; 11:19623-19629. [PMID: 35479202 PMCID: PMC9033621 DOI: 10.1039/d1ra01844b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/24/2021] [Indexed: 01/02/2023] Open
Abstract
Organic ionic plastic crystals (OIPCs) are molecularly disordered solids, and their potential for the development of gas separation membranes has recently been demonstrated. Here, the gas absorption capability of the OIPC, diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate ([P122i4][PF6]), for four gases is predicted through potential of mean force (PMF) calculations based on two methods – average force method and adaptive biasing force method. Both methods correctly predicted the different trends of adsorption and absorption of these gases across the OIPC–gas interface. The distinct energy barriers of the PMF profiles of CO2 and N2 near the interface directly reflect the good selectivity of OIPC to these two gases. However, the selectivity of CH4 and O2 cannot be accurately reflected by the PMF curve near the interface, because the relative energy varies greatly at different positions inside the OIPC. Thus the average free energy change should be calculated over the entire OIPC box to evaluate the difference in selectivity between the two gases. This also suggests that gas absorption in OIPCs is greatly affected by the structural order and chemical environment. The adaptive biasing force method overall outperforms the average force method. The method should be able to provide a prediction of gas selectivity for a wider range of organic ionic plastic crystals and other solid materials. The free energy calculation shows the different free energy changes of the adsorption and absorption of gas molecules into an organic ionic plastic crystal, successfully predicting the gas selectivity of this new type of gas separation material.![]()
Collapse
Affiliation(s)
- Vinay S. Kandagal
- Institute for Frontier Materials
- ARC Centre of Excellence for Electromaterials Science
- Deakin University
- Burwood
- Australia
| | - Jennifer M. Pringle
- Institute for Frontier Materials
- ARC Centre of Excellence for Electromaterials Science
- Deakin University
- Burwood
- Australia
| | - Maria Forsyth
- Institute for Frontier Materials
- ARC Centre of Excellence for Electromaterials Science
- Deakin University
- Burwood
- Australia
| | - Fangfang Chen
- Institute for Frontier Materials
- ARC Centre of Excellence for Electromaterials Science
- Deakin University
- Burwood
- Australia
| |
Collapse
|
41
|
Hadizadeh MH, Yang L, Fang G, Qiu Z, Li Z. The mobility and solvation structure of a hydroxyl radical in a water nanodroplet: a Born-Oppenheimer molecular dynamics study. Phys Chem Chem Phys 2021; 23:14628-14635. [PMID: 34196637 DOI: 10.1039/d1cp01830b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxyl radicals (OH*) play a crucial role in atmospheric chemistry and biological processes. In this study, Born-Oppenheimer molecular dynamics simulations are performed under ambient conditions for a hydroxyl radical in a water nanodroplet containing 191 water molecules. Density functional theory calculations are performed at the BLYP-D3 level with some test calculations at the B3LYP-D3 level. In two 150 ps trajectories, either with OH* initially located in the interior region or at the surface of the water nanodroplet, the OH* radical ends up in the subsurface layer of the nanodroplet, which is different from the "surface preference" predicted from previous empirical force field simulations. The solvation structure of OH* contains fluctuating hydrogen bonds, as well as a two-center three-electron hemibond in some cases. The mobility of OH* is enhanced by hydrogen transfer, which has a free energy barrier of ∼4.6 kcal mol-1. The results presented in this study deepen our understanding of the structure and dynamics of OH* in aqueous solutions, especially around the air-water interface.
Collapse
Affiliation(s)
- Mohammad Hassan Hadizadeh
- Hefei National Laboratory of Physical Sciences at the Microscale, School of Chemistry and Materials Sciences, University of Science and Technology of China, Hefei, 230026, China.
| | - Lewen Yang
- Hefei National Laboratory of Physical Sciences at the Microscale, School of Chemistry and Materials Sciences, University of Science and Technology of China, Hefei, 230026, China.
| | - Guoyong Fang
- Hefei National Laboratory of Physical Sciences at the Microscale, School of Chemistry and Materials Sciences, University of Science and Technology of China, Hefei, 230026, China.
| | - Zongyang Qiu
- Hefei National Laboratory of Physical Sciences at the Microscale, School of Chemistry and Materials Sciences, University of Science and Technology of China, Hefei, 230026, China.
| | - Zhenyu Li
- Hefei National Laboratory of Physical Sciences at the Microscale, School of Chemistry and Materials Sciences, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
42
|
Anglada JM, Martins-Costa MTC, Francisco JS, Ruiz-López MF. Reactivity of Undissociated Molecular Nitric Acid at the Air-Water Interface. J Am Chem Soc 2020; 143:453-462. [PMID: 33355444 DOI: 10.1021/jacs.0c11841] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent experiments and theoretical calculations have shown that HNO3 may exist in molecular form in aqueous environments, where in principle one would expect this strong acid to be completely dissociated. Much effort has been devoted to understanding this fact, which has huge environmental relevance since nitric acid is a component of acid rain and also contributes to renoxification processes in the atmosphere. Although the importance of heterogeneous processes such as oxidation and photolysis have been evidenced by experiments, most theoretical studies on hydrated molecular HNO3 have focused on the acid dissociation mechanism. In the present work, we carry out calculations at various levels of theory to obtain insight into the properties of molecular nitric acid at the surface of liquid water (the air-water interface). Through multi-nanosecond combined quantum-classical molecular dynamics simulations, we analyze the interface affinity of nitric acid and provide an order of magnitude for its lifetime with regard to acid dissociation, which is close to the value deduced using thermodynamic data in the literature (∼0.3 ns). Moreover, we study the electronic absorption spectrum and calculate the rate constant for the photolytic process HNO3 + hν → NO2 + OH, leading to 2 × 10-6 s-1, about twice the value in the gas phase. Finally, we describe the reaction HNO3 + OH → NO3 + H2O using a cluster model containing 21 water molecules with the help of high-level ab initio calculations. A large number of reaction paths are explored, and our study leads to the conclusion that the most favorable mechanism involves the formation of a pre-reactive complex (HNO3)(OH) from which product are obtained through a coupled proton-electron transfer mechanism that has a free-energy barrier of 6.65 kcal·mol-1. Kinetic calculations predict a rate constant increase by ∼4 orders of magnitude relative to the gas phase, and we conclude that at the air-water interface, a lower limit for the rate constant is k = 1.2 × 10-9 cm3·molecule-1·s-1. The atmospheric significance of all these results is discussed.
Collapse
Affiliation(s)
- Josep M Anglada
- Departament de Química Biològica, Institut de Química Avançada de Catalunya (IQAC - CSIC), c/Jordi Girona 18, E-08034 Barcelona, Spain
| | - Marilia T C Martins-Costa
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, University of Lorraine, BP 70239, 54506 Vandoeuvre-lès-Nancy, France
| | - Joseph S Francisco
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6316, United States
| | - Manuel F Ruiz-López
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, University of Lorraine, BP 70239, 54506 Vandoeuvre-lès-Nancy, France
| |
Collapse
|
43
|
Acoustic tracheal rupture provides insights into larval mosquito respiration. Sci Rep 2020; 10:2378. [PMID: 32047234 PMCID: PMC7012908 DOI: 10.1038/s41598-020-59321-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 01/28/2020] [Indexed: 11/08/2022] Open
Abstract
Acoustic larviciding (AL) occurs by exposing mosquito larvae to acoustic energy that ruptures their dorsal tracheal trunks (DTTs) by the expulsion of gas bubbles into the body. In studying this technique, we serendipitously identified undescribed anatomical and physiological respiratory features. The classical theory of respiration is that the siphon and DTTs play obligate roles in respiration. Our results contradict the accepted theory that culicine larvae respire via atmospheric gas exchange. We identified an undescribed tracheal occlusion (TO) at the posterior extremities the DTTs. The TOs appear necessary for the acoustic rupture of DTTs; this constriction prevents the escape of energized gas from the siphon and allows the tracheal system to be pressurized. With a pressurized isolated tracheal system, metabolic gas exchange directly with the atmosphere is unlikely and could mostly occur through the chitin and setae. Future studies are needed to explore respiration and elucidate the mechanisms of oxygen absorption and carbon dioxide elimination.
Collapse
|
44
|
Martins‐Costa MTC, Ruiz‐López MF. Isoprene Reactivity on Water Surfaces from ab initio QM/MM Molecular Dynamics Simulations. Chemphyschem 2020; 21:2263-2271. [DOI: 10.1002/cphc.202000652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/17/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Marilia T. C. Martins‐Costa
- Laboratoire de Physique et Chimie Théoriques UMR CNRS 7019 University of Lorraine CNRS BP 70239 54506 Vandoeuvre-lès-Nancy France
| | - Manuel F. Ruiz‐López
- Laboratoire de Physique et Chimie Théoriques UMR CNRS 7019 University of Lorraine CNRS BP 70239 54506 Vandoeuvre-lès-Nancy France
| |
Collapse
|
45
|
Anglada JM, Martins-Costa MTC, Francisco JS, Ruiz-López MF. Photoinduced Oxidation Reactions at the Air-Water Interface. J Am Chem Soc 2020; 142:16140-16155. [PMID: 32833454 DOI: 10.1021/jacs.0c06858] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemistry on water is a fascinating area of research. The surface of water and the interfaces between water and air or hydrophobic media represent asymmetric environments with unique properties that lead to unexpected solvation effects on chemical and photochemical processes. Indeed, the features of interfacial reactions differ, often drastically, from those of bulk-phase reactions. In this Perspective, we focus on photoinduced oxidation reactions, which have attracted enormous interest in recent years because of their implications in many areas of chemistry, including atmospheric and environmental chemistry, biology, electrochemistry, and solar energy conversion. We have chosen a few representative examples of photoinduced oxidation reactions to focus on in this Perspective. Although most of these examples are taken from the field of atmospheric chemistry, they were selected because of their broad relevance to other areas. First, we outline a series of processes whose photochemistry generates hydroxyl radicals. These OH precursors include reactive oxygen species, reactive nitrogen species, and sulfur dioxide. Second, we discuss processes involving the photooxidation of organic species, either directly or via photosensitization. The photochemistry of pyruvic acid and fatty acid, two examples that demonstrate the complexity and versatility of this kind of chemistry, is described. Finally, we discuss the physicochemical factors that can be invoked to explain the kinetics and thermodynamics of photoinduced oxidation reactions at aqueous interfaces and analyze a number of challenges that need to be addressed in future studies.
Collapse
Affiliation(s)
- Josep M Anglada
- Departament de Química Biològica, IQAC-CSIC, c/Jordi Girona 18, E-08034 Barcelona, Spain
| | - Marilia T C Martins-Costa
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, University of Lorraine, CNRS, BP 70239, 54506 Vandoeuvre-lès-Nancy, France
| | - Joseph S Francisco
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-631, United States
| | - Manuel F Ruiz-López
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, University of Lorraine, CNRS, BP 70239, 54506 Vandoeuvre-lès-Nancy, France
| |
Collapse
|
46
|
Ruiz-Lopez MF, Francisco JS, Martins-Costa MTC, Anglada JM. Molecular reactions at aqueous interfaces. Nat Rev Chem 2020; 4:459-475. [PMID: 37127962 DOI: 10.1038/s41570-020-0203-2] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2020] [Indexed: 12/16/2022]
Abstract
This Review aims to critically analyse the emerging field of chemical reactivity at aqueous interfaces. The subject has evolved rapidly since the discovery of the so-called 'on-water catalysis', alluding to the dramatic acceleration of reactions at the surface of water or at its interface with hydrophobic media. We review critical experimental studies in the fields of atmospheric and synthetic organic chemistry, as well as related research exploring the origins of life, to showcase the importance of this phenomenon. The physico-chemical aspects of these processes, such as the structure, dynamics and thermodynamics of adsorption and solvation processes at aqueous interfaces, are also discussed. We also present the basic theories intended to explain interface catalysis, followed by the results of advanced ab initio molecular-dynamics simulations. Although some topics addressed here have already been the focus of previous reviews, we aim at highlighting their interconnection across diverse disciplines, providing a common perspective that would help us to identify the most fundamental issues still incompletely understood in this fast-moving field.
Collapse
|
47
|
Yonetani Y, Nakagawa H. Understanding water-mediated DNA damage production by molecular dynamics calculation of solvent accessibility. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Xu Q, Kang J, Chen X, Li J. Catalytic effect of water on the HO 3 + NO formations from the HNO + O 3reaction in tropospheric conditions. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1732962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Qiong Xu
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, People’s Republic of China
- Shaanxi Key Laboratory of Catalysis, Institute of Theoretical and Computational Chemistry, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| | - Jiaxin Kang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, People’s Republic of China
| | - Xuenian Chen
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, People’s Republic of China
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Jun Li
- Key Laboratory of Organic Optoelectronics, Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, People’s Republic of China
| |
Collapse
|
49
|
Fiedler J, Boström M, Persson C, Brevik I, Corkery R, Buhmann SY, Parsons DF. Full-Spectrum High-Resolution Modeling of the Dielectric Function of Water. J Phys Chem B 2020; 124:3103-3113. [DOI: 10.1021/acs.jpcb.0c00410] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Johannes Fiedler
- Centre for Materials Science and Nanotechnology, Department of Physics, University of Oslo, P. O. Box 1048 Blindern, NO-0316 Oslo, Norway
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Mathias Boström
- Centre for Materials Science and Nanotechnology, Department of Physics, University of Oslo, P. O. Box 1048 Blindern, NO-0316 Oslo, Norway
- Department of Energy and Process Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Clas Persson
- Centre for Materials Science and Nanotechnology, Department of Physics, University of Oslo, P. O. Box 1048 Blindern, NO-0316 Oslo, Norway
| | - Iver Brevik
- Department of Energy and Process Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Robert Corkery
- Applied Physical Chemistry, KTH Royal Institute of Technology, SE 100 44 Stockholm, Sweden
| | - Stefan Yoshi Buhmann
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Drew F. Parsons
- Discipline of Chemistry & Physics, Murdoch University, 90 South St, Murdoch, WA 6150, Australia
| |
Collapse
|
50
|
Adsorption and distribution of gas molecules at the (CH4 + CO2)-water interface: insights from analysis of intrinsic interfacial structure. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|